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Abstract: This paper addresses the task of modeling Deformable Linear Objects
(DLOs), such as ropes and cables, during dynamic motion over long time hori-
zons. This task presents significant challenges due to the complex dynamics of
DLOs. To address these challenges, this paper proposes differentiable Discrete
Elastic Rods For deformable linear Objects with Real-time Modeling (DEFORM),
a novel framework that combines a differentiable physics-based model with a
learning framework to model DLOs accurately in real-time. The performance
of DEFORM is evaluated in an experimental setup involving two industrial robots
and a variety of sensors. A comprehensive series of experiments demonstrate the
efficacy of DEFORM in terms of accuracy, computational speed, and general-
izability when compared to state-of-the-art alternatives. To further demonstrate
the utility of DEFORM, this paper integrates it into a perception pipeline and il-
lustrates its superior performance when compared to the state-of-the-art methods
while tracking a DLO even in the presence of occlusions. Finally, this paper il-
lustrates the superior performance of DEFORM when compared to state-of-the-art
methods when it is applied to perform autonomous planning and control of DLOs.

Keywords: Deformable Linear Objects Modeling, Physics-Informed Learning,
Differentiable Simulation

Figure 1: This paper introduces DEFORM, a novel framework that combines a differentiable physics-based
model with a learning framework to model and predict dynamic DLO behavior accurately in real-time. The
figure shows DEFORM'’s predicted states (yellow) and the actual states (red) for a DLO over 4.5 seconds at 100
Hz. Note that the prediction is performed recursively, without requiring access to ground truth or perception
during the process. A video of related experiments can be found in the supplementary material.

1 Introduction

Robotic manipulation tasks such as surgical suturing or vehicle wire harness assembly [1, 2, 3] are
challenging problems because they require accurately and dynamically manipulating DLOs over
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Figure 2: Overview of DEFORM contributions (green). a) DER models discretize DLOs into vertices, segment
them into elastic rods, and model their dynamic propagation. DEFORM reformulates DER into Differentiable
DER (DDER) which describes how to compute gradients from the prediction loss, enabling efficient system
identification and incorporation into deep learning pipelines. b) To compensate for the error from DER’s nu-
merical integration, DEFORM introduces residual learning via DNNs. ¢) 1 — 2: DER enforces inextensibility,
but this does not satisfy classical conservation principles. 1 — 3: DEFORM enforces inextensibility with
momentum conservation, which allows dynamic modeling while maintaining simulation stability.

long time horizons (> 1s) [4]. Nonlinear dynamics make manipulating DLOs challenging because
computationally expensive models are required for accurate prediction. Further, practical applica-
tions such as vehicle wire harness assembly often result in DLO occlusions, meaning perception
systems cannot robustly estimate the entire DLO configuration. For robotic manipulators to suc-
cessfully manipulate DLOs, a novel modeling method capable of quick and accurate predictions of
dynamic DLO behavior, even in the presence of occlusions, is needed.

To model DLOs, physics-based approaches can be used, but they suffer a tradeoff between costly
computation and low accuracy when predicting dynamic movements. State-of-the-art learning-
based modeling approaches have used deep neural networks (DNNs) to model interaction propa-
gation in DLOs [5, 6, 7]. Despite their success, these methods require large datasets of real-world
manipulation data, which can be impractical to collect and are not robust to variations in DLO prop-
erties. Alternatively, using a physics-based model as a prior for DNNSs is promising due to increased
sampling efficiency and generalizability [8, 9, 10, 11, 12]. However, to the best of our knowledge,
this approach has not been applied to predict behavior of DLOs during dynamic motions.

A recent promising physics-based modeling method is Discrete Elastic Rods (DER). This approach
qualitatively and efficiently describes the 3-D behavior of DLOs [13, 14]. Despite its potential for
physics-informed learning, applying DER theory to model DLOs in the real-world is challenging
for three reasons. First, tuning DER model parameters to match a real-world DLO is difficult.
Second, computing analytical gradients for DER models is challenging. Third, numerical errors
arise from discrete numerical integration of DER models and from enforcing DLO inextensibility.
These drawbacks affect the accuracy of the DER model, limiting the utility of embedding a DER
model in a learning-based framework. In particular, a lack of analytical gradients prevent learning
over multiple steps, which reduces the accuracy of long horizon predictions.

To address the above challenges, this paper introduces Differentiable Discrete Elastic Rods For
Deformable Linear Objects with Real-time Modeling (DEFORM), a novel framework that uses a
differentiable physics-based learning model, with real-time inference speed, to accurately predict
dynamic DLO behavior over long time horizons. As illustrated in Figure 2, the main contribu-
tions of DEFORM are four-fold. First, a novel DLO model is presented, called the Differentiable
Discrete Elastic Rod (DDER) model that makes DER models differentiable with respect to any vari-
ables. Second, a numerical integration error compensation method that uses DNNs is developed
to improve accuracy when numerically integrating DER models. Third, a novel inextensibility en-
forcement algorithm is presented for DER models that guarantees momentum conservation, thereby
enabling accurate prediction of dynamic DLO behavior. Fourth, a comprehensive set of experiments
are presented, which illustrate that DEFORM has superior performance in terms of accuracy, com-
putational speed, and sampling efficiency. We also demonstrate the utility of DEFORM for robust
DLO tracking and precise shape-matching manipulation tasks.



2 Related Work

Learning-Based Modeling. Latent dynamics modeling approaches, such as graph neural networks
(GNN) [15] and Bidirectional LSTM (Bi-LSTM) [6], reason over vertices spatially to formulate
latent dynamics of DLOs for predicting their behavior in 2-D. Unfortunately, as we illustrate in this
paper through real-world experiments, these methods are unable to accurate describe the behavior
of DLOs during dynamic motions in 3D.

Physics-Based Modeling. Traditionally, DLOs have been modeled using physics-based approaches.
Examples include mass-spring system models [16, 17, 18], Position-Based Dynamics (PBD) mod-
els [19, 20, 21], Discrete Elastic Rod (DER) models [13, 14, 22, 23], or Finite Element Method
(FEM) models [24, 25, 26]. Although easy to implement, the mass-spring system imposes unneces-
sary stiffness to enforce inextensibility, resulting in instability during simulation. FEM models ac-
curately modeling DLO behavior, but are impractical for real-time prediction due to their prohibitive
computational costs. PBD and DER methods have been applied in planning and control frameworks
for manipulation tasks due to their computational efficiency [20, 21, 27, 28, 29]. However, PBD
models are sensitive to parameter selection and assume quasi-static behavior. As illustrated in this
paper, this results in low accuracy during dynamic manipulation. Though DER models have been
qualitatively validated to describe the 3D behavior of DLOs, we illustrate that their quantitative
performance while describing dynamic motion is lacking.

Differentiable Modeling Framework. Differentiable models are computational frameworks where
every operation is differentiable with respect to the input parameters. Importantly, a differentiable
model enables integration into a learning framework to improve learning and can enable efficient pa-
rameter auto-tuning via gradient-based optimization during training. There are differentiable models
for deformable objects, such as DiffCloth [16, 17] and XPBD [21], but these models tend to suffer
from numerical instability. This makes it challenging to apply these modeling frameworks while
trying to perform parameter identification for real-world DLO manipulation. To address these lim-
itations, this paper proposes a differentiable DER model, called DDER, which is incorporated into
a learning framework to achieve numerical stability. This results in better predictive performance
for dynamic DLO behavior when compared to state-of-the-art methods and enables auto-tuning of
DLO parameters using limited real-world data.

3 Preliminaries

Deformable Linear Object (DLO) Model. To model a DLO, we separate the DLO into an indexed
set of n vertices at each time instance. The ground truth locations of vertex ¢ at time ¢ is denoted
by xi € R? and the set of all n vertices is denoted by X,. Let M' € R3*3 denote the mass matrix
of vertex 7. Our objective is to model the dynamic behavior of a DLO that is being controlled by
a robot with following assumption: the first and last edge of the DLO are each held by a distinct
end effector. Note this assumption is commonly made during DLO manipulation [30, 20, 19, 7, 31].
Using this assumption, let the orientation and position of the two end effectors at time ¢ be denoted
by u; € R'2, which we refer to as the input. The velocity of the vertices of the DLO can be denoted
as V; = (X;—X,1)/At. Note that V| is an approximation of the actual velocity. Finally, note that we
distinguish between ground truth elements and predicted elements by using the circumflex symbol
(e.g., X; is the ground truth set of vertices at time ¢ and X, is the predicted set of vertices at time t).

Modeling DLOs with DER for Dual Manipulation. DLOs primarily exhibit three distinct de-
formation modes: bending, twisting, and stretching [13]. This paper focuses on DLOs that are
inextensible (e.g., cables and wires), and therefore do not experience stretching. DER models intro-
duce a single scalar i € R to represent bending and twisting in R3. This parameter describes the
potential energy P (X, u;, 8, ) of the DLO that arises due to bending or twisting, where ¢ denotes
the vector of the material properties of each vertex of the DLO (i.e., their mass, bending modulus,
and twisting modulus) [13, Section 4.2]. Notably, DER models assume that the DLO reaches an
equilibrium state between each simulation time step to obtain 8;:



0; (X;, @) = argmin P(Xy, u, 0, ) (1)
0,
Once the potential energy expression is derived, then the restorative force experienced during defor-

mation is set equal to the negative of the gradient of the potential energy expression with respect to
the vertices. Therefore, the equations of motion of the DLO are:
. 5‘P(Xt,uf,0f(Xt,a),a)
MX; = — - 2
¢ X, 2)
After solving (1), one can numerically integrate this formula to predict the velocity and position by
applying the Semi-Implicit Euler method:
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(3)-(4) can be recursively solved to simulate the behavior of the DER model of a DLO.

Inextensibility Enforcement. During simulation, the DLO’s length may change due to numerical
errors, but this is undesirable when modeling inextensible DLOs. To ensure constant length, DER
methods project a computed solution onto a constraint set that enforces inextensibility[32]. How-
ever, this projection operation can introduce instabilities during simulation of dynamic behavior
because it does not ensure that momentum is conserved. This paper adopts a constraint solver based
on a PBD model [33], which is described in Section 4.3, to enforce inextensiblity while conserving
momentum. This improves prediction accuracy compared to classical methods.

4 Methodology

This sect'ion first introduces DDER’ a ?e_ Algorithm 1 One Step Prediction with DEFORM
formulation of DER to ensure differentia-

bility, which enables efficient DER model  Imputs: Xi, Vi uy '
parameter estimation using real-world 1t 07 (X;) = argming, P(X¢, 6, ) > Section.4.1

data. Next, this section describes how  2: Vt+1 = Vt - Ay M 4%&‘“")’“) > (3)
to incorporate a learning-assisted integra- 3. XH =X+ AV ++1 + DNN > Section.4.2

tion method to improve the speed of DLO 4. pextensibility Enforcement on X4 > Section.4.3

simulation and accuracy. Finally, this . Vt+1 _ (Xt+1 _ Xt) /A, > Velocity Update
section describes a position-based con-

straint that enforces inextensibility while
preserving momentum, which results in
improved numerical stability during simulation. These results are combined in a prediction algo-
rithm that is described in Algorithm 1. This algorithm can be run over multiple steps to generate an
accurate prediction of the state of the DLO over a long time horizon.

return X1, Vi1

4.1 Differentiable Discrete Elastic Rods (DDER)

We first develop a reformulation of DER such that the DER model is differentiable with respect to
any model variables (i.e., material properties, and DNN weights). We call this extension Differen-
tiable Discrete Elastic Rods (DDER). To do this, we implement DDER in PyTorch [34] by taking
advantage of its automatic differentiation functionality. Unfortunately, simulating the DDER model
to predict Xt+1 using (3) and (4) also requires solving an optimization problem (1). As a result, to
minimize the prediction loss, we need to solve a bi-level optimization problem at each time ¢. For
instance, if we train a learning model to identify the material parameters by minimizing a prediction
loss between experimentally collected ground truth data X;;; and our model prediction Xt+1 for
each time ¢, then the following bi-level optimization problem needs to be solved:

min- X - X 11(67)|2 S)
6; = argmin P(Xt,ut,et,oz) (6)
0,



Note that Xt+1 depends on the previously computed 8; due to (3) and (4). To compute the gradient
of this optimization problem with respect to «, one can perform implicit differentiation, which we
implement using Theseus [35].

4.2 Integration Method with Residual Learning

To compensate for numerical errors that arise from discrete integration methods and to improve the
numerical stability of the algorithm that we use to simulate the DDER model, we incorporate a
learning-based framework into the integration method as follows:

. . P(X,, 0 (X N

Vt+1 :Vt_AtM_l(a ( t70t< t7a)7a) +DNN(Xt7a))7 (7)
X,

Xt+1 =X; + A (vt+1 + DNN(Xm Vty a)), ®)

where DNN denotes a deep neural network. We utilize a structure similar to residual learning [36],
with one major difference: we define a shortcut connection that is equal to the integration method
that is derived from the DDER physics-based modeling. Unlike pure learning methods, the short cut
connection grounds the DNN in physical laws while also leveraging data-driven insights. As shown
in the ablation study results, this approach significantly improves modeling performance. Additioanl
discussion of section can be found in Appendix B.5. Implementation details of the DNN structure
can be found in Appendix B.1. Note that this contribution can also be applied to standard DER
models, but does not improve performance as much as it does when combined with our DDER
modeling approach as we illustrate in this paper.

4.3 Improved Inextensiblity Enforcement with PBD

To enforce inextensibility and conserve momentum after simulating the DLO forward for a single
time step (8), we enforce an additional constraint on the DLO in a manner similar to the PBD method
[33]. First, we define a constraint function between spatially successive vertices at each time step:
si+1 ~14+1 —
CRipr, % 11) = [lIKips — %l — [feillo| ©)

where € denotes the edge between vertices ¢ and ¢ + 1 when the DLO is undeformed. Note that
this constraint is non-zero if the distance between successive vertices of the DLO changes. The
PBD method iteratively modifies the positions of each of the vertex using a pair of correction terms,
A%y, and A%, 1}, until the following constraint is satisfied:

C(Rip + AXppr X1 +AK) <6 (10)
where € > 0 is a user-specified threshold. To calculate the correction terms, PBD typically applies

a Taylor Approximation of the constraint and sets this equal to zero (i.e., the correction to the vertex
locations are chosen to ensure that the constraint is satisfied). The correction term is then given by:

Lt g
A1 ~1+1 t+1 t+1
AXt+1 = C(Xt+1vxt+1)—' (11)

i1 ~
|[x 311 Xi+1”2

Notably, this correction to the vertex location does not ensure that the linear and angular momen-
tum is preserved. To ensure that linear and angular momentum is conserved after the correction is
applied, one needs to ensure that the following pair of equations are satisfied:

n—2 n—2
ZIW AXtH—OaHd Zr x (M- AXt+1) 0 (12)
=3

where r? is the vector between xt 41 and a common rotation center. Note in particular that if the mass
matrix associated with each vertex is not identical, then the correction proposed in (11) leads to a
violation of (12). To address this issue, we modify the correction proposed in (11) by multiplying
it by a 8 € R that is inversely correlated with the weight ratio between successive vertices (i.e.,
let B* = m and gt = (\\M\Izjrww) Then, if we let the correction between
successive steps be equal to 3°AX; , ;, one can ensure that (12) is satisfied. Verification proof can be
found in Appendix B.2. Pseudo code to enforce inextensibility while preserving momentum can be
found in Appendix B.3.



(c) DLO 2, robot-human manipulation (d) DLO 2, dual-robot manipulation
Figure 3: Visualization of the performance of DEFORM and Bi-LSTM in predicting trajectories for DLOs 1
and 2. The ground truth vertices of the DLOs are marked with red hollow circles. The predicted vertices are
marked with orange solid circles for DEFORM and blue solid circles for the Bi-LSTM model, respectively.

5 Experiments and Results

This section covers the real-world evaluation of DEFORM, including: 1) a quantitative comparison
of modeling accuracy with state-of-the-art methods, 2) computational speed assessment, 3) an abla-
tion study on parameter auto-tuning, residual learning, and multi-step training, 4) using DEFORM
to track DLOs with an RGB-D camera, and 5) a shape matching manipulation demonstration. Code
and data will be provided upon final paper acceptance. Additional information is in Appendix C.

5.1 Experiment Setup:

Hardware Setup. Three distinct cables and two distinct ropes were constructed to validate the
modeling accuracy of DEFORM. Spherical markers were attached to the DLOs and are used to
create training and evaluation datasets. We set the number of vertices equal to the number of MoCap
markers. We use an OptiTrack motion capture (MoCap) system to obtain the ground truth vertex
locations. Because the markers are incorporated during training and evaluation, their effect on the
dynamics is incorporated into all subsequent evaluations. Note that for real-world applications, the
markers would not be needed. A Franka Emika Research 3 robot and a Kinova Gen3 robot are used
for dual manipulation.

Dataset Collection and Training. For each DLO, we collect 350 seconds of dynamic trajectory
data in the real-world using the motion capture system at a frequency of 100 Hz. The model for
each of the five DLOs is trained separately using the trajectory data collected from our real-world
experiments. The dataset is split with 80% for training and 20% for evaluation. In training, models
are trained using the same 100 steps (1s) of dynamic motion, which included slow and fast DLO
motions. The L1 loss over the 100 step prediction horizon is used for training. For evaluation, the
trained model is used to predict DLO behavior for 500 steps without accessing ground truth.

Baseline Comparisons. Physics-Based Modeling: The XPBD [21] approach is constructed us-
ing PBD, formulating constraints quasi-statically to model stretching and bending behavior. The
DRM [19] method is rooted in the concept of directional diminished rigidity such that the dynamics
of a vertex is dependent on its configuration relative to the gripper’s configuration. The original
DER [13] modeling approach is included as a baseline to demonstrate its performance when com-
pared to other analytical methods and to DEFORM. Learning-Based Modeling: Yan et al. [6] and



Wang et al. [15] use Bi-LSTM and GNN to represent a DLO and reason about interactions between
the vertices respectively. Physics-based models with enhancements: To further demonstrate the
capabilities of DEFORM, we enhanced XPBD and DRM with residual learning and material prop-
erty parameter tuning, which we denote as XPBD-NN and DRM-NN, respectively.

5.2 Modeling Results

Table 1 (Left) summarizes the results of using DEFORM when compared to baselines using the
average L1 loss. Performance is evaluated when predicting the state of the wire over a 5s predic-
tion horizon. Note that DEFORM outperforms all baselines for each of the five evaluated cables.
An illustration of the performance of these methods can be found in Figure 3. Next, we compare
computational speed for one step inference. Table 1 (Right) indicates that Bi-LSTM has the fastest
speed. Note that DEFORM is able to generate single step predictions at a 100Hz frequency.

Table 1: Left: Baseline comparison results for modeling real-world DLO. Right: Computational Speed.

Modeling Accuracy (10~2m) Computational Speed (10~ 2s)
Method 1 2 3 4 5 1 2 3 4 5

XPBD[21] 400 385 380 362 435|145 138 133 131 136
DRM[19] 364 416 321 402 419|045 044 043 044 041
Bi-LSTM[6] | 1.98 1.75 1.10 1.75 1.88 | 0.04 0.03 0.03 0.03 0.03
GNN[15] 341 223 215 249 268 | 1.69 167 159 1.60 1.55
DER[13] 196 191 186 150 1.65 | 181 1.77 176 1.79 1.73
NN-XPBD 250 239 218 262 273|199 18 191 186 1.83
NN-DRM 291 322 264 299 331|092 0.82 0.81 084 0.79
DEFORM 1.01 097 077 085 099 | 097 092 094 095 092

. . . Table 2: Ablation Study.
Ablation Study. Results are summarized in Ta-

ble 2 and show the effect of each DEFORM Accuracy (10~2m)
contribution. Note that a standard DER method  Method 1 2 3

is included as a baseline apd QOes not include DER 196 191 186
any of the DEFORM contributions. The results /) Residual Learnin o | 154 177 142
of the study show that residual learning has /o System ID 121 132 1.09
the biggest improvement on the baseline per-  Qriginal Inextensibility | 1.65 1.23 1.00
formance, but the auto-tuning of material prop- DEFORM 1.01 0.97 0.77

erties has a non-trivial affect as well. Further,
the improved inextensibility enforcement makes a large improvement for more compliant DLOs,
such as DLOI1. This is because the more compliant DLOs swing more during dynamic behavior, so
ensuring momentum is conserved greatly improves prediction accuracy. The results for DLO4 and
DLOS, as well as an additional ablation study, are in Appendix C.3 and C.4, respectively. Note that
the stiffnesses of the tested DLOs can be found in Appendix Table 4.

State Estimation. We next evaluate the performance of DEFORM when it is used in concert with
sensor observations for state estimation. These experi-

ments included occlusions of the DLO that arose from the = DEFORM
manipulators or humans moving in front of the sensor. In 0020 ‘ BILSTM
this experiment, we compare how well the state estima- }

tion framework described in Appendix D does when us-
ing the DEFORM model versus the Bi-LSTM model. Bi-

LSTM was chosen because it was the second best model ~
in terms of model accuracy. We also compare how well 000 '
each of these methods do with varying frequencies of sen- ' I

0 0.5 1 30

sor measurement updates. As in the earlier experiment, .

0.015

L1 Loss

we evaluate the L1 norm of the prediction over a 5s long Perception FPS
prediction horizon. Experimental results are shown in Figure 4: The average L1 loss (m) while per-
Figure 4. Unsurprisingly, each method improves when forming state estimation.



Figure 5: A time lapse comparison of the DEFORM model and the Bi-LSTM model when each is used to
perform a shape matching task. The goal configuration is green whereas the start configuration is pink. The
DEFORM model enables the planning algorithm to successfully complete the task whereas the planning algo-
rithm using the Bi-LSTM model fails to complete the task.

given access to more frequent sensor updates. This illustrates that the state estimation algorithm
described in Appendix D.2 behaves appropriately. Notably, the DEFORM model with no state es-
timation does better than the Bi-LSTM model even when the Bi-LSTM model is given access to 1
fps updates. The method using the DEFORM model with access to 30 fps sensor measurements is
the most effective.

3-D Shape Matching Manipulation. To demonstrate the practical applicability of DEFORM,
we illustrate its use for DLO 3-D shape matching tasks in both simulation and the real world.
This experiment uses ARMOUR [37], a receding-horizon tra-
jectory planner and tracking controller framework, to manipu-
late DLOs. ARMOUR uses either DEFORM or Bi-LSTM to
predict the manipulated DLO state and tries to match the fi- Success Rate
nal DLO configuration with a desired configuration. Details Method ‘ Real Sim
of combining ARMOUR with the DLO simulators are in Ap- Bi-LSTM | 10/20 78/100
pendix C.6. We compare the performance of each method on DEFORM | 17/20 90/100
100 random cases in a PyBullet simulation and 20 random
cases in the real world. If the Euclidean distance between each individual pair of ground truth
and desired DLO vertices is less than 0.05 meters, then the trial is a success. ARMOUR is given 30
seconds to complete the task, otherwise the trial is marked as a failure. The results are summarized
in Table 3 and Figure 5 shows one of the real-world results. A video of these experiments can be
found in the supplementary material.

Table 3: Shape matching manipulation
success rate

6 Conclusion and Limitations

This paper presents DEFORM, a method that embeds residual learning in a novel differentiable De-
formable Linear Object (DLO) simulator. This enables accurate modeling and real-time prediction
of dynamic DLO behavior over long time horizons during dynamic manipulation. To demonstrate
DEFORM’s efficacy, this paper performs a comprehensive set of experiments that evaluate accuracy,
computational speed, and its usefulness for manipulation and perception tasks. When compared to
the state-of-the-art, DEFORM is more accurate while being sample efficient without sacrificing
computational speed. This paper also illustrates the practicality of applying DEFORM for state
estimation to track an occluded DLO during dynamic manipulation. Furthermore, DEFORM is
combined with a manipulation planning and control framework for 3D shape matching of a DLO
in both simulations and real-world scenarios, achieving a higher task success rate compared to the
closest-performing baseline.

Limitations. We recognize several opportunities to enhance DEFORM. Currently, DEFORM could
be improved by adding contact modeling to accurately predict interactions between different com-
ponents under load [38]. Additionally, DEFORM does not model multi-branched DLOs, which
are common in wire-harness assembly [39]. Furthermore, DEFORM assumes that the ends of the
DLO are grasped, which could restrict manipulation dexterity. We look forward to addressing these
aspects in our future work to improve DEFORM model’s accuracy and applicability.
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A Additional DER Background

Figure 6: An illustration of DER coordinate frames.

Bishop Frame. To accurately approximate the potential energy of the DLO that arises due to bend-
ing or twisting, DER first assigns Bishop frames {t*, u’, v*} as reference frame onto edge i. t* € R?
represents the unit tangent vector along edge 4. The vector u’ € R? is defined iteratively through a
rotation operation u* = R - u’~!. This rotation is governed by a rotation matrix R? € R3*3, which
satisfies following conditions: t* = R -t~ ! and t'~1 x t' = R’ - (t'~! x t?). v?, orthogonal to t*
and u’, is defined by v = t’ x u’. This transportation results in the least amount of twist, making
it ideal for adapting the Bishop frame as the most natural reference frame. Further details of the
Bishop frame can be found in [40].

Material Frame. DER further introduces a scalar §° to measure the rotation of material frames
{t’, m%, m}} relative to the Bishop frame along t'. m}, m are defined as following

m) =cosf' -u' +sinf" v, mh=—sinf" -u’+cos v (13)
The material frames are used in (1) to obtain potential energy. An illustration of Bishop frame and
material frame can be found in Figure 6. More relevant details can be found in [13, Section 4].

B Algorithmic Details

B.1 DNN Structure

We built our DNN using a Graph Neural Network (GNN) [S]. This is motivated in part by re-
cent work that has illustrated how to successfully apply GNNs to model the spatial relationship
between vertices in a DLO [15]. We adapt the default implementation of a graph convolution net-
work (GCN) [41] found in the PyTorch Geomeric library [42]. GCNs have demonstrated their
ability to reduce computational costs while effectively extracting informative latent representations
from graph-structured data. X, and V are feature-wise concatenated as ()A(t7 \7) € R"6 and are
the input of the GCN. We set the feature dimension to 32 for message passing, allowing each node
to receive information from its local neighborhood. We aggregate each node’s neighbors’ features
using summation. The outputs of the GCN are flattened and decoded by a MLP constructed with
two linear layers with a Rectified Linear Unit (ReLU) in the middle.

B.2 Verification of Improved Inextensiblity Enforcement with PBD

First, note that (9) applies only to successive vertices. This simplifies the conservation of momentum
equation(12) so that it only involves successive vertices, as shown below:

M AR M AT =0 (14)
rix (M- AKX ) ) (ML AR =0 (15)
The complete proposed solution, as detailed in Section 4.3, can be expressed as:
N M+1 ~i+1 Al

oi  oitly Xep1 — X
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Since DLOs are linear and symmetric about their center axis, their mass matrices are also symmetric
[43]. Consequently, M1 . M' = M* - M, allowing us to cancel both terms in (18) , resulting in
zero linear momentum change. A key observation here is that (16) and (17) are collinear along the

edge i. Therefore, Af(i 41 and Af(iﬁ will not change orientation of edge ¢, naturally satisfies (15).

B.3 Summary and Discussion of Improved Inextensiblity Enforcement with PBD

Algorithm 2 summarizes our proposed method  Ajgorithm 2 Enforcing Inextensibility with Mo-
to enforce inextensibility while preserving mo-  mentum Preserving PBD

mentum. Note that in practice, the while loop
in Algorithm 2 typically converges after two it-

Require: Xm and e >0

. . A1 ~1+1
erations for e = 0.05. Once we have the output ~ 1: While any C(X;41,X11) > € do
from Algorithm 2, we update the velocities of § for ZAZ-: 2103 -1 doi AK 11
the vertices to reflect the new vertex locations ) X1 =Xy + BA% > (11)
. . . 4: end for
(i.e., Line 5 of Algorithm 1). Further, as shown 5. end while
in Table 6, skipping Algorithm 2 in Algorithm  ¢. return : Xt+1 > Updated Vertices

1 and relying solely on DNNs to capture the in-
extensibility of DLOs can lead to simulation instability. This instability arises because modeling
stiff behavior, such as the inextensibility of DLOs, makes the learning process sensitive to inputs
and hinders effective gradient propagation. A key issue with using neural network predictions in
position-based dynamics (PBD) is that the dynamics/data lie on a low-dimensional manifold within
a high-dimensional space. Over several open-loop predictions, the network’s prediction errors can
push the system state away from this manifold, leading to deterioration in the network’s predictions.
This occurs because the network has never encountered these “off-manifold” points during training.
Algorithm 2 is designed to ensure that model inputs remain on the manifold on which the training
data was collected, thereby mitigating these issues.

B.4 Training Setup

Let U;.r—1 denote the set of inputs applied between times ¢t = 1 andt = T — 1, and let X;.7 =
{X1,Xa,..., Xt} € RT*"*3 denote the associated ground truth trajectory of the DLO from times
t = 1tot = T. With known Xj, V; and U;.7_1, Algorithm 1 can be applied recursively to generate
predicted associated trajectory Xo.1. Let ¢ denote parameters of DNN. The objective of training is
to solve the following optimization problem:

T-1

I;ﬁél Z IXe1 — Xesall2 (19)
’ t=1

By taking advantage of DEFORM’s differentiability, T can be set to values greater than 2 to capture
long-term behavior. This multi-step training pipeline results in higher prediction accuracy than the
single-step training pipeline, as shown in Table 6.

B.5 Discussion of Neural Network Utilization in (7)

This section provides an additional discussion of using neural networks in (7) and (8). Incorpo-
rating a GNN enhances prediction accuracy by addressing inaccuracies arising from spatial and
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temporal discretization. This network can effectively identify and adjust for these imperfections,
as demonstrated in the ablation study. As the training involves a multi-step process, the GNN al-
lows DEFORM to leverage gradients backpropaged from future prediction losses, which enables
better informed and proactive corrections. GNN can implicitly capture variations (e.g., shearing) in
residual energy that are not directly modeled by the traditional DER framework.

However, the integration of a neural network also introduces several challenges. Primarily, it in-
creases the computational load. Moreover, the addition of a neural network, particularly in capturing
and correcting impulse vectors, introduces complexity in ensuring that the network’s outputs remain
physically plausible and consistent with the DER’s modeling output.

B.6 Comparison of DER to other DLO dynamics formulations

Originally derived from computer graphics, the DER approaches uses Lagrangian mechanics to
model the dynamics of a chain of point masses, employing a unique choice of coordinates that ef-
fectively captures bending and twisting dynamics. This method contrasts with recent studies that
apply Newtonian multi-body dynamics using Featherstone’s algorithms [44] and [45]. For instance,
[45] models DLO dynamics using a chain of rigid bodies defined in minimal coordinates like angles
between body elements, which simplifies the computation by making forward dynamics explicit
and eliminating the need for implicit optimization or additional constraint enforcement algorithms.
While both Newtonian and Lagrangian dynamics conserve energy, their methods for deriving con-
servative forces differ, necessitating a deeper discussion on the advantages and limitations of each
approach.

From a Lagrangian perspective, DER’s innovative coordinate choice and post-integration con-
straint enforcement allow for the modeling of complex, stiff behaviors through various optimiza-
tion solvers, enhancing stability and accuracy crucial for DLO simulations. The accurate and stable
model offers a high-fidelity prior for learning residual behavior, significantly enhancing sampling
efficiency and performance as shown in the ablation study. However, this can introduce signifi-
cant computational complexity and burden due to the need to solve implicit optimization problems
and enforce constraints. In contrast, Newtonian dynamics offer simpler, faster computations due to
their explicit nature and minimal coordinate system, facilitating the integration of complex neural
networks. However, this can sometimes result in simulation instabilities, particularly when mod-
eling stiff materials, and may struggle to capture complex deformable behaviors without extensive
modifications. The pros and cons of each method illustrate a clear trade-off between computational
simplicity and the ability to handle complex behaviors. Overall, there are certainly benefits to using
Newtonian multi-body dynamics that warrant further exploration.

C Experimental Details
C.1 Hardware Parameters

We use an OptiTrack motion capture (Mocap) system to obtain the ground truth vertex locations for
DLOs as depicted in Figure 7. Spherical markers with a diameter of 7.9 mm and weight of 0.4 g, are
attached to the DLOs using the OptiTrack tracking system. Ten Flex3 cameras capture the motion of
the markers at a frequency of 100Hz, with a positional error of less than 0.3mm. For perception with
an RGB-D camera, we use an Azure Kinect DK with a resolution of 720 x 1080 and a frequency
of 30 Hz. Three distinct cables and two distinct ropes were constructed as shown in Figure 7. The
physical properties of each wire are outlined in Table 4. These properties include the length, weight,
and stiffness of each DLO, as well as the number of Mocap markers attached to it. The stiffness of
each DLO is ranked on a relative scale.

C.2 Software Implementation:

All experiments were conducted in Python, on an Ubuntu 20.04 machine equipped with an AMD
Ryzen PRO 5995WX CPU, 256GB RAM, and 128 cores. All training pipelines were built within

15



% :
Cameras =Y , r
\‘. RGB-D
R 7 ‘ Camera
Kinova Gen3 —¥ / f f. ®_
Robot / p
\ Franka Emika

Panda Robot

Mocap

N /"“‘
Mocap ¥ " ¥ P
Markers RLO n\\

Figure 7: Left: An illustration of the experimental setup. Right: An illustration of the DLOs that are used to
evaluate and compare the performance of DEFORM with various state-of-the-art DLO modeling methods.

Table 4: Material Properties

. . # Mocap
Name | Length [m] Weight[g] Stiffness Markers
DLO 1 1.152 34.5 3 13
DLO 2 0.996 65.2 4 12
DLO 3 0.998 96.8 5 12
DLO 4 0.973 22.0 1 12
DLO S 0.988 19.2 2 12

the PyTorch training framework. We implement DEFORM with PyTorch and use the Levenberg-
Marquardt algorithm as the solver for Theseus. We utilize PyTorch for training and Numpy for non-
batched prediction. We initialize the length and mass parameters of the DLO according to Table 4.
The other material properties are initialized randomly and learned during the training process. We
use SGD optimizer with 10~ learning rate for training.

C.3 Ablation Study: DLLO4 and DLOS5

As a supplement for Table 2, the ablation study of DLO4 and DLOS is shown in Table 5.

C.4 Ablation Study: Inextensibility Enforcement with Learning and Single-step Training

We conducted a further ablation study on training DEFORM without the improved inextensibility
enforcement and training DEFORM using only a single-step prediction as shown in Table 6. When
DEFORM is trained without enforcing inextensibility, simulation instability results in very high
prediction loss, highlighting the importance of properly enforcing inextensibility over long time
horizons. Additionally, training DEFORM using only a single-step prediction results in lower long-
term prediction accuracy compared to training DEFORM using a 100-step prediction, demonstrating
the importance of DEFORM’s differentiability for accurate long-term predictions.

Table 5: Ablation Study with DLO 4 and DLO 5.

Accuracy (10~2m)
Method 4 5
DER 1.50 1.65
W/O Residual Learning | 1.33 1.26
W/O System ID 1.02 1.10
Original Inextensibility 1.29 1.58
DEFORM 0.850 0.987
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Table 6: Additional Ablation Study.
Accuracy (10~2m)

Method 1 2 3
W/O Enforcing Inextensibility with PBD | 7.7 x 10° 260 x 10> 310 x 10°
Single Step Prediction Training 1.82 1.74 1.79
DEFORM 1.01 0.97 0.77

C.5 Effect of Number of Vertices: Accuracy and Computational Efficiency

To further investigate the impact of vertices number on accuracy and computational efficiency, we
conducted additional experiments using DLO 1. Figure 8 illustrates that increasing the number of
vertices enhances prediction accuracy by allowing DEFORM to capture finer details due to improved
resolution. However, this increase in detail is at the cost of reduced computational efficiency. In our
case we chose the number of vertices to achieve optimal prediction accuracy while ensuring real-
time inference capabilities at a 100Hz frequency.

Accuracy and Computational Time vs. Vertices Number
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Figure 8: Accuracy and Compuational Time vs. Vertices Number

C.6 ARMOUR

To perform a shape matching task, we rely upon ARMOUR[37], an optimization-based motion plan-
ning and control framework. The goal of the shape matching task is to use a robot arm to manipulate
the DLO from an initial configuration to a predefined target configuration. To accomplish this goal,
ARMOUR performs planning in a receding horizon fashion. During each planning iteration, AR-
MOUR selects a trajectory to follow by solving an optimization problem. ARMOUR represents
joint trajectories of the robot as polynomials, where the coefficients are considered as the decision
variables of the optimization. One end of the rope is rigidly attached to the end effector of the
robot, whose configuration can be computed by forward kinematics. By plugging the end effector
configuration at the end of the trajectories into DEFORM, we are able to get a prediction of the
rope configuration at the end of the robot motion. The cost function for the optimization problem
to minimize is then defined as the norm distance between the predicted rope configuration and the
target rope configuration. Joint position, velocity, and torque limits of the arm are considered as
constraints of the optimization problem in ARMOUR’s formulation, which ensures that the robot
motion is feasible. The solution to this optimization problem is then the joint trajectories of the
robot that manipulate the rope to approach the desired configuration. To command the robot to track
the solution trajectories, we use the controller proposed in ARMOUR. This process is conducted re-
peatedly until the desired configuration is reached, or a planning iteration limit is reached resulting
in a failure. More details about ARMOUR’s trajectory parameterization and associated closed loop
controller can be found in [37, Section IX]. The cost function minimizes the distance between the
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predicted DLO configuration given a chosen robot trajectory and a target DLO configuration. The
predicted state of the DLO is computed via a DLO modeling technique.

D DLO Tracking with Modeling

This section first discusses the difficulties of incorporating existing framework with modeling for
long-time DLO tracking under occlusion. It then proposes a novel perception pipeline, which is
utilized in Section 5.2.

D.1 DLO Tracking Review

If a DLO is fully observable, then current state-of-the-art methods estimate the location of the DLO’s
vertices by applying a Gaussian Mixture Model (GMM), performing clustering, and then using
Expectation-Maximization [46, 47, 48, 49, 50, 51, 52, 53]. The output of this GMM algorithm is
the mean locations in R? of each of the Gaussians, which is then set equal to the vertex locations
of the DLO. However, in practical applications, occlusion of DLOs during manipulation often leads
to perception challenges, which complicates accurate prediction. In particular, due to occlusions,
one cannot simply set the number of mixtures in the GMM equal to the number of vertices of the
DLO. Doing so results in the vertices being incorrectly distributed only to the unoccluded parts of
the DLO. Some of the aforementioned methods[49, 50] have been applied to perform tracking of
DLOs under occlusion. Typically, this is done by leveraging short time horizon prediction with
geometric regularization using prior observations. [49, 50, 51, 52, 53] Though powerful, to work
accurately, these methods require frequent measurement updates and can struggle in the presence
of occlusions for long time horizons. Recent research has explored particle filtering within a lower-
dimensional latent space embedding and applied learning-based techniques for shape estimation
under occlusion [54, 55]. Each of these methods rely upon different models for DLOs that tend to
have numerical instabilities when used for prediction. As a result, these perception methods require
high frequency sensor measurement updates to behave accurately. This paper illustrates that our
proposed model allows us to adapt DEFORM'’s long time horizon prediction capability to relax the
frequency of sensor updates, which reduces the overall computational cost of tracking DLOs in the
presence of occlusions.

D.2 DLO Tracking with DEFORM

This section describes how we can use DEFORM to perform robust DLO tracking. Notably, DE-
FORM enables us to deal with occlusions without requiring a frame-by-frame sensor update of the
state of the DLO. In particular, this is possible due to our model accurately predicting the state of
the DLO over long time horizons. As a result, we utilize a GMM model because it is independent
of time. The state estimation approach is outlined in Algorithm 3. Additionally, Algorithm 4 sum-
marizes the perception pipeline that describes the tracking of DLOs with state estimation and initial
state estimation using DEFORM.

D.3 State Estimation in the Presence of Occlusions

Suppose that we are given access to an RGB-D sensor observing our DLO during manipulation and
suppose that we translate these measurements at time step ¢ into a point cloud which we denote by
S; = {sf,s7, ..., sM} € RMX3,

To address the limitations of the algorithms discussed in Section 2, we leverage our predictions
generated by applying Algorithm 1 as follows. We first filter the point cloud at time ¢ using our
predicted data. If any element of the point cloud is beyond some distance from our prediction, X,,
then we remove it. Let S; denote the remaining points in the point cloud. Next, we detect which of
the vertices of the DLO are unoccluded from the RGB-D sensor by checking if their predicted depth
is close to their observed depth in the sensor. Suppose the number of vertices that are unoccluded is

n.
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Algorithm 3 State Estimation with Presence of Occlusion

Inputs: Xm > Algorithm. 1
1: S741 < RGB-D Camera

St1 < filter(Xee1,Sr41) ) R

Unoccluded X,; ¢ Depth Matching(S741, Xi+1)

-+ 1 groups < DBSCAN(S7, 1)

for each group do
GMM Number j +— Match(Unoccluded X[+1, group)
Mixture Center <— GMM(group, j)

end for

9: for each X, do

10: if Observed then

PRDILE RN

11: Vertex < Associated Mixture Center
12: else

13: Vertex < Predicted Vertex

14: end if

15: end for

16: return : Vertices

Algorithm 4 Tracking DLO with Modeling
Initial State Estimation
Require: S; < RGB-D Camera
1: DLO Initial Guess < S;
2: while DLO not Static do
3: Execute DEFORM > Algorithm. 1
4: end while
5: Return X;,V; =0
Tracking DLO under Manipulation
1: while Tracking DLO do
2 while Predicting DLO do
3: Execute DEFORM > Algorithm. 1
4: end while
5
6:

State Estimation and Correction
end while

Once this is done, we apply DBSCAN to group S; into 71+ 1 groups. Next, we associate each of the
unoccluded vertices with one of the groups by finding the group to which its predicted location is
smallest. We then take each group and perform GMM on the group with a number of mixtures equal
to the number of vertices j that were associated with that group. Note, each mixture is associated with
an unoccluded vertex of the DLO. The new predicted location of the vertex generated by DEFORM
is updated by setting the new vertex location equal to the mean of its associated mixture. If a
particular vertex was occluded, then its predicted location is left equal to its output from Algorithm 1.

D.4 Initial State Estimation under Occlusion

Note that in many instances, it can be difficult to estimate the location of the vertices when the sensor
turns on and the DLO is occluded. Unfortunately, Algorithm 1 and the state estimation algorithm
from the previous subsection require access to a full initial state. Fortunately, we can address this
problem by making the following assumption: When the sensor measurements begin, the DLO is
static and is only subject to gravity and/or the manipulators which are holding its ends. Under the
above assumption, we initialize the DLO using an initial guess that aligns with observed vertices.
This initial guess is then forward simulated using Algorithm 1 repeatedly until the DLO reaches a
static state. This steady state is then used as the predicted state for all the vertices, including the
occluded vertices.

19



	Introduction
	Related Work
	Preliminaries
	Methodology
	Differentiable Discrete Elastic Rods (DDER)
	Integration Method with Residual Learning
	Improved Inextensiblity Enforcement with PBD

	Experiments and Results
	Experiment Setup:
	Modeling Results

	Conclusion and Limitations
	Additional DER Background
	Algorithmic Details
	DNN Structure
	Verification of Improved Inextensiblity Enforcement with PBD
	Summary and Discussion of Improved Inextensiblity Enforcement with PBD
	Training Setup
	Discussion of Neural Network Utilization in (7)
	Comparison of DER to other DLO dynamics formulations

	Experimental Details
	Hardware Parameters
	Software Implementation:
	Ablation Study: DLO4 and DLO5
	Ablation Study: Inextensibility  Enforcement with Learning and Single-step Training
	Effect of Number of Vertices: Accuracy and Computational Efficiency
	ARMOUR

	DLO Tracking with Modeling
	DLO Tracking Review
	DLO Tracking with DEFORM
	State Estimation in the Presence of Occlusions
	Initial State Estimation under Occlusion


