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Abstract
Large Language Models (LLMs) are expected to
be predictable and trustworthy to support reliable
decision-making systems. Yet current LLMs of-
ten show inconsistencies in their judgments. In
this work, we examine logical preference consis-
tency as a foundational requirement for building
more dependable LLM systems, ensuring stable
and coherent decision-making while minimizing
erratic or contradictory outputs. To quantify the
logical preference consistency, we propose a uni-
versal evaluation framework based on three funda-
mental properties: transitivity, commutativity and
negation invariance. Through extensive experi-
mentation across diverse LLMs, we demonstrate
that these properties serve as strong indicators of
judgment robustness. Furthermore, we introduce
a data refinement and augmentation technique,
REPAIR, that enhances logical consistency while
maintaining alignment with human preferences.
Finally, we show that improving consistency leads
to better performance in LLM-driven logic-based
algorithms, reinforcing stability and coherence in
decision-making systems. Code is available at
https://github.com/williamLyh/REPAIR

1. Introduction
Recent research in Large Language Models (LLMs; Brown
et al. 2020; OpenAI 2023; Anil et al. 2023a;b) has achieved
substantial progress on various tasks, enabling them to gen-
erate responses that better support their decision-making
and problem-solving (Dai et al., 2024). However, key chal-
lenges still exist regarding the reliability and trustworthiness
of LLMs. Issues such as hallucination (Zhang et al., 2023),
bias (Gallegos et al., 2024), and inconsistencies in reasoning
(Huang & Chang, 2023) continue to affect their credibility.
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These limitations hinder the full deployment of LLMs, par-
ticularly in professional and high-stakes applications.3

The foundation of a reliable and trustworthy system is the
consistency of its predictions. A consistent system produces
explainable and tractable decisions, enhancing its depend-
ability and reliability. In this work, we focus on a key form
of consistency in LLMs: logical preference consistency,
which is critical for applications requiring structured rea-
soning and coherent decision-making (Creswell et al., 2023;
Hamon et al., 2020). Logical inconsistencies can lead to
unreliable conclusions (Restall, 2002) and even paradoxes
(Hyde, 2011), posing significant risks in domains that de-
mand rigorous logical judgment, such as temporal or spatial
reasoning (Mostafazadeh et al., 2016b), optimization (Guo
et al., 2024), and automated decision systems.

This paper examines three key aspects of logical preference
consistency in LLMs: transitivity, commutativity, and
negation invariance. We propose a universal framework
for quantifying these consistency properties, applicable to
any number of items, and adaptable across various domains.
Our evaluations reveal a strong correlation between con-
sistency and LLMs’ judgment robustness, suggesting that
logical preference consistency serves as a useful proxy for
preference reliability. To enhance the logical preference
consistency of LLMs, we propose REPAIR, a framework
that refines noisy pairwise comparisons using rank aggre-
gation and extrapolates additional comparisons logically.
Models trained with this approach achieve better internal
consistency without sacrificing alignment with human pref-
erences. Moreover, in logic-dependent tasks, these models
outperform less consistent ones, demonstrating improved
efficiency in sorting-based ranking algorithms (Liu et al.,
2024) reliant on logical coherence.

In sum, our contributions are as follows: 1) We highlight the
importance of logical preference consistency—alongside
human alignment—in aligning LLM preferences. We define
mathematical formulations for quantifying/measuring three
key consistency properties: transitivity, commutativity and

3For instance, in the fields of behavioral economics and psy-
chology systems are traditionally evaluated on two key dimensions:
validity and reliability (Schmidt et al., 2000; Guion, 2004; Miller
et al., 2023).
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Figure 1: Three types of logical inconsistencies are observed in real-world pairwise annotations (top row): Transitivity,
Commutativity, and Negation Invariance. By refining the data for self-consistency using rank estimation, we can train LLMs
with enhanced logical consistency, improving their performance in logic-dependent algorithms (bottom row).

negation invariance. 2) We conduct extensive experiments
to evaluate logical preference consistency across state-of-
the-art LLMs and analyze its correlation with model relia-
bility. 3) We propose a data refinement and augmentation
method for instruction-tuning that enhances logical prefer-
ence consistency while maintaining alignment with human
preferences and 4) we demonstrate that improving logical
consistency enhances LLM performance in logic-dependent
algorithms where LLMs serve as logical operators. We re-
lease our source code and the refined dataset at ANONYMOUS.

2. Measuring Logical Consistency
We evaluate the logical preference consistency of LLMs by
assessing their ability to predict logically consistent relations
among a set of items. These items could represent diverse
entities or events with a uniform relation between them;
such a relation might be (i) comparing the preference among
response candidates to a query or (ii) determining the causal
order of shuffled events, among other possibilities. This
evaluation is grounded in relational algebra and order theory
(Abiteboul et al., 1995; Imieliński & Lipski Jr, 1984), with
the goal of assessing whether the model maintains coherent
and self-consistent judgments across its predictions.

To formalize this concept, we define the logical preference

consistency evaluation process by treating an LLM as an
operator function that compares pairs of items and outputs
a decision on the relation between the items. Let X =
{x1, x2, . . . , xN} represent a set of items, and we define
a relation (e.g., comparison) function F : X × X → R,
which compares two items, such as (xi, xj), and assigns a
relational decision F (xi, xj) = r, where r ∈ R denotes
the directional relation between xi and xj . For simplicity,
we consider R to be a binary relation set, R = {rij , rji},
where rij represents a preferential relation xi ≻ xj (i.e.,
item xi is preferred over item xj), and rji indicates the
reverse preference xj ≻ xi.

In evaluating logical consistency, we focus on whether the
function F adheres to the following key properties over the
item set X: 1) transitivity, 2) commutativity, and 3) negation
invariance, as demonstrated in Figure 1. Transitivity ensures
that the LLM’s predictions and judgements are internally co-
herent and do not suffer from logical contradictions within
a given context. Commutativity tests whether the model’s
decisions are invariant to the order in which items are com-
pared. The negation invariance checks whether the model
maintains consistent understanding when dealing with re-
lational negations. By systematically applying these tests,
we are able to assess the extent to which the model’s judg-
ments conform to logically consistent behavior, providing a
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Figure 2: Example of relation graphs illustrating transitivity,
where items are represented as nodes, and directed edges
indicate pairwise preferential relations. Red dashed cycles
in the graph highlight violations of transitivity. The cycle
in (d), spanning 4 items, cannot be captured by stran(3).
The stran metric can be applied to partial relation graphs,
as shown in (c) and (d).
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Figure 3: Examples illustrating violations of commutativity
and negation invariance. Each entry of the two preference
matrices represents predicted judgments of xi ≻ xj and
xi ≺ xj , labelled with A and B respectively. The top-left
matrix is based on the original relation, while the bottom-
right matrix reflects the negated relation. Linked red cycles
highlight non-commutative pairs, and linked dashed purple
cycles indicate negation inconsistencies.

quantitative proxy measure of its decision reliability.

2.1. Measuring Transitivity

Grounded in our problem setup and definitions above, tran-
sitivity implies that if a model predicts A ≻ B and B ≻ C,
it must also predict A ≻ C. Ensuring transitive predictions
is essential for a coherent global understanding of item rela-
tionships, preventing contradictions that could undermine
reliability in decision-making or ranking tasks (Liu et al.,
2024; Li et al., 2019; Qin et al., 2024).

We define that the function F is fully transitive if it does
not predict any intransitive relation within the set X . This
means that if F (xi, xj) = rij and F (xj , xk) = rjk, then
F (xi, xk) = rik must hold for all i, j, k ∈ X . This can
be visualized in Figure 2, where we represent the pairwise
relations by F as a relation graph. If F is transitive over
X , the corresponding relation graph should be a Directed
Acyclic Graph (DAG). 4 Consequently, to determine if F is
fully transitive over the item set X , we only have to verify
whether the predicted relation graph contains any cycle. We
show how to construct the relation graph from the judge-
ments of the LLM operator function F , and the algorithm
to check whether a graph contains cycles in Appendix §A.

We introduce stran(K) to quantify transitivity over an ar-

4A DAG implies that no cycles exist in the relation graph. We
assume the comparison F is irreflexive, explained in Appendix §J

bitrary number of items. LLMs often struggle to maintain
perfect/full transitivity, especially as the number of items in-
creases. The proposed metric stran(K) captures the degree
of transitivity across subsets of K sampled items, where
3 ≤ K ≤ |X|. The metric is defined as:

stran(K) =
1

M

M∑
i=1

1acyclic(S
K
i ). (1)

Here, SK
i represents a randomly sampled sub-graph of size

K, and the indicator function 1acyclic returns 1 if the sub-
graph SK

i contains no cycles (i.e., is transitive), and 0 if
otherwise. M denotes the total number of the sampled sub-
graphs. As the size of the item set increases, the number of
possible sub-graph combinations grows exponentially. To
manage this complexity, we cap the number of samples to
1,000 sub-graphs to estimate transitivity for larger sets. The
choice of M is supported by theoretical evidence explained
in Appendix §I. Therefore, the metric ranges from 0 to 1,
where 1 represents nearly perfect transitivity.

Maintaining transitivity becomes increasingly difficult as
the size of the subset grows. For any set of K items, there
are 2K possible combinations of pairwise relationships, but
only K! of these can form a transitive ranking. As a result,
the degree of transitivity tends to decrease with larger sub-
graph sizes. This means that for the same LLM, stran(K)
typically decreases as K increases, reflecting that preserving
consistent rankings over larger sets of items is increasingly
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challenging. Since stran(K) measures transitivity for a
fixed subset size, it allows for fair transitivity comparisons
between item sets of different sizes.

2.2. Measuring Commutativity

Commutativity refers to the logical property that ensures
the model’s judgments remain consistent when the order of
comparison between two items is reversed. Prior studies
have shown that LLMs are susceptible to permutation bias,
also referred to as positional bias (Wang et al., 2024b; Liusie
et al., 2024a). To measure the degree of commutativity,
we propose a metric scomm, which evaluates whether the
model’s judgment changes when the order of the items is
swapped in the prompt. Specifically, it is defined as follows:

scomm =
2

|X|(|X| − 1)

∑
i<j

1(F (xi, xj) = F (xj , xi)).

(2)
Here, F (xi, xj) represents the model’s judgment when com-
paring items xi and xj . The indicator function 1 returns 1
if the model’s judgment remains consistent when the order
of the items is reversed, i.e., F (xi, xj) = F (xj , xi), and 0
otherwise. We visualize this comparison in Figure 3. The
normalization term ensures that scomm is averaged across
all pairwise combinations of the items in set X . As a result,
the metric ranges from 0 to 1, with 1 indicating perfect com-
mutativity, meaning that the model is completely robust to
the order of item comparisons.

2.3. Measuring Negation Invariance

Negation invariance tests whether the model maintains con-
sistency when confronted with the negation or inversion of
a relational statement. Inconsistencies indicate a failure to
correctly understand and apply the complementary nature
of relations. Previous work suggested that LLMs struggle to
automatically infer appropriate inverse relationships when
acquiring knowledge (Allen-Zhu & Li, 2023; Berglund et al.,
2024). To quantify negation invariance, we propose the met-
ric sneg , which examines if the model can correctly reverse
its judgement when prompted with a negated relationship
between items. The metric is defined as below:

sneg =
1

|X|(|X| − 1)

∑
0<i,j≤|X|

i̸=j

1(
¬
F (xi, xj) = ¬F (xi, xj)).

(3)
In this formulation, ¬F (xi, xj) represents the negation of
the original relation (e.g., reversing a preference or rela-

tional direction).
¬
F (xi, xj) refers to the model’s judgment

when explicitly prompted with the negated relation. The
indicator function returns 1 if the model’s response to the
negated relation matches the expected negated judgment

(i.e.,
¬
F (xi, xj) = ¬F (xi, xj)), and 0 otherwise. We also

visualize this comparison in Figure 3. The normalization
factor averages across all pairwise permutations in set X ,
ensuring that sneg ranges from 0 to 1. The maximum score
of 1 indicates perfect negation invariance, where the model
consistently handles negated relations.

3. Evaluating Logical Consistency of LLMs
After defining the measures, we proceed to evaluate LLMs’
judgments from the consistency angle on three representa-
tive tasks, each reflecting different levels of subjectivity.

3.1. Evaluation Setup

Tasks and Datasets. We employ three representative tasks
to evaluate LLMs’ logical consistency. The first task, ab-
stractive summarization evaluation, uses the SummEval
dataset (Fabbri et al., 2021) and focuses on the model’s abil-
ity to make preference judgments between summaries, par-
ticularly regarding the coherence aspect. The second task,
document reranking, leverages the NovelEval dataset (Sun
et al., 2023), where LLMs assess the relevance of retrieved
documents in response to queries. The final task, tempo-
ral event ordering, uses the CaTeRS dataset (Mostafazadeh
et al., 2016b) and tests the model’s capability to judge tem-
poral and causal relationships between events, critical for
maintaining consistency in narrative understanding. Further
task and dataset details are available in Appendix §B.

Metrics and Reliability Measurement. In Appendix §G,
we show metric computation details and the prompt tem-
plates used. We compute the logical consistency metrics at
the instance level and report averages across the test sets
for each task. In addition, we report the human agreement
rate (abbreviated as H.) by calculating the pairwise judge-
ment accuracy between judgements made by LLMs and
the provided human annotations. It serves as a reference
for how closely the model’s judgements align with human
judgements. For the measurement of LLMs’ reliability, we
perform Monte Carlo Sampling of Chain-of-Thought (Wei
et al., 2022) reasoning outputs, using a temperature of 0.7.
Self-agreement is defined as the percentage of outputs that
agree with the majority judgment across multiple samples.
This measurement ranges from 0.5 to 1, with higher values
indicating greater stability in the model’s judgments.

3.2. Results and Analysis

Performance of Different (Families of) Models. As
shown in Table 1, recent LLMs like Gemma2-9B and Phi-3-
medium demonstrate stronger overall consistency compared
to earlier models. In particular, models such as Deepseek-
chat-v2, Phi-3-medium, and Gemma-2-9B perform well
across all three evaluated consistency dimensions. However,
it is important to note that strong performance in one aspect
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Table 1: Logical consistency evaluation results. We report human accuracy (H.), transitivity over 5 items (stran(5)),
commutativity (scomm) and negation invariance (sneg), all measured in accuracy.

Models SummEval (Coh) NovelEval CaTeRS
H. stran(5) scomm sneg H. stran(5) scomm sneg H. stran(5) scomm sneg

Direct Judgements
Llama-2-7B 57.5 88.3 57.5 66.2 57.5 68.1 57.5 78.1 61.9 88.4 56.0 49.7
Llama-2-13B 58.3 86.6 59.3 84.0 58.3 88.2 62.9 76.9 65.6 95.3 70.8 54.5
Llama-3-8B 67.8 91.0 76.1 48.9 60.6 73.0 73.3 79.1 73.1 88.2 79.9 63.3
Mistral-7B 63.6 95.1 59.9 51.2 60.1 90.5 68.0 82.1 70.2 95.9 73.9 76.9
Zephyr-7B-beta 61.3 87.8 52.8 74.1 60.5 91.5 63.8 86.5 70.6 93.5 77.8 80.8
Phi-3-mini 65.6 92.8 66.9 75.1 59.7 92.5 55.5 39.4 60.2 97.2 85.5 73.3
Phi-3-medium 68.8 96.2 71.0 78.1 62.7 93.7 76.3 77.6 67.2 93.4 87.9 84.1
Gemma-2-9B 73.8 94.8 78.1 78.2 63.6 89.9 85.3 88.2 72.4 96.0 86.5 66.9
GPT-3.5-0125 66.3 82.5 67.5 65.8 61.2 89.8 71.6 83.4 69.3 86.2 66.7 81.7
Deepseek-chat-v2 72.7 93.1 72.8 84.9 65.7 95.1 86.7 89.2 73.5 93.8 91.9 91.1

CoT Prompting
Llama-2-7B 55.0 42.6 45.7 68.9 56.5 50.8 66.7 60.1 59.5 40.5 56.7 56.1
Llama-2-13B 66.6 55.8 63.2 40.3 59.2 60.8 71.0 56.4 60.6 61.1 63.5 74.3
Llama-3-8B 67.2 65.0 64.8 61.2 60.2 69.3 76.8 72.4 67.9 62.2 46.1 78.6
Mistral-7B 61.6 64.7 65.3 58.0 58.5 64.9 73.2 77.7 60.3 66.1 69.0 79.1
Zephyr-7B-beta 58.4 46.4 51.7 74.0 60.0 64.5 70.6 71.2 65.7 69.3 78.4 77.3
Phi-3-mini 65.1 67.9 61.9 43.0 56.5 61.2 47.8 80.5 58.4 81.2 82.6 78,7
Phi-3-medium 69.1 82.3 72.5 58.9 63.1 89.0 87.3 79.3 54.5 81.4 87.4 85.9
Gemma-2-9B 73.5 74.0 71.9 81.3 62.1 89.9 85.9 82.3 63.5 83.8 87.1 69.9
GPT-3.5-0125 63.9 63.3 64.8 68.4 59.3 79.3 73.4 67.5 62.8 68.6 70.5 74.9
Deepseek-chat-v2 74.9 79.4 76.1 82.8 61.5 94.2 90.4 83.0 69.1 81.6 88.2 88.4

of consistency does not guarantee similar performance in
others. For example, while Mistral-7B excels in transitivity,
its performance in other consistency aspects is weaker. The
Phi-3 family consistently shows high logical consistency,
which we hypothesize is due to its reliance on synthesized
data which is cleaner and less self-contradictory.

Another observation is that LLMs tend to perform more
consistently on the CaTeRS dataset. We attribute this to
the dataset’s focus on temporal and causal relations. The
more objective and logical preferential relations may make
it easier for models to maintain consistency.

Impact of CoT Prompting. We also investigated the effect
of Chain-of-Thought (CoT) prompting (Wei et al., 2022)
on logical preference consistency. Surprisingly, CoT rea-
soning did not generally improve consistency, and in some
cases, it led to a decrease in transitivity performance. We
hypothesize that this decline may be due to the additional
CoT reasoning tokens could introduce variations in the judg-
ment standards used for different comparisons. When the
understanding of the preferential relations is not uniform, it
may produce inconsistent (non-transitive) outcomes. This
suggests that CoT prompting, while beneficial for complex
reasoning, might introduce unintended inconsistencies in
certain logical judgment tasks.

3.3. Consistency and Reliability

Transitivity as a Proxy for Self-Agreement. As shown in
Figure 4, there are strong correlations between transitivity
and self-agreement across all three datasets, regardless of the
task’s level of subjectiveness. Self-agreement indicates the
model’s internal consistency and robustness, as a reliable
model should not fluctuate significantly in its responses.
Higher self-agreement suggests that the model exhibits a
stable understanding of the underlying relations in the input.
Given that transitivity captures this self-consistency, we
argue that transitivity serves as a useful proxy for evaluating
the local robustness of LLMs.

Commutativity Correlates Strongly with Human Pref-
erences. For each task, we paraphrased the comparison
prompt template 10 times using GPT-4-turbo to explore
the sensitivity of LLMs to input variations. Despite these
paraphrases being semantically equivalent, they produced
different performance outcomes, as shown in Figure 5. We
observe strong correlations between commutativity and hu-
man agreement rates across nearly all datasets and models.
This finding is not surprising, as a lack of commutativity
often indicates a strong positional bias. These results align
with previous research (Zhou et al., 2024), which demon-
strated that positional bias can significantly impact align-
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Figure 4: Transitivity shows strong correlations with self-agreement across all three datasets. Self-agreement is measured as
the percentage of majority choices from 10 CoT inferences, generated with a temperature of 0.7.
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Figure 5: Commutativity shows a generally strong correlation with human preference across various LLMs and datasets.

ment with human judgments.

We also show that the strength of this correlation varies
between models. For instance, Llama-3-8B exhibits a higher
correlation with human preferences compared to Gemma-2-
9B. We hypothesize that this difference is due to Gemma-
2-9B’s training, which was designed to be more robust to
input prompts, while other models, like Llama-3-8B, are
more fine-tuned to specific prompting styles.

4. Improve Logical Preference Consistency in
LLMs via REPAIR

Our analysis so far has demonstrated that LLMs ex-
hibit inconsistent logical behavior in making preferen-
tial judgments. To address this, we propose REPAIR
(Ranking Estimation and Preference Augmentation through
Information Refinement), a framework that aims to miti-
gate these inconsistencies. REPAIR first estimates a rank-
ing from noisy preference data, then generates additional
conflict-free pairwise comparisons. This approach enhances
logical preference coherence while maintaining alignment
with human preferences, improving LLMs’ reliability as
logical operators. See Appendix §K for detailed motivation.

4.1. Estimating Rankings from Noisy Pairwise Data

Estimating global rankings from noisy pairwise annotations
is essentially a rank aggregation problem. We use the win-
loss rate method due to its simplicity and two key advan-
tages: 1) it performs well with partial and sparse compar-
isons, which is common in real-world preference datasets,
and 2) it remains unaffected by the order in which com-
parisons are presented. In Appendix §N, we compare the
performance of alternative rank aggregation methods, such
as the ELO rating and the Bradley-Terry model, within the
REPAIR framework. Additionally, we provide a detailed
analysis of their respective strengths and limitations.

The win-loss rate for each item is calculated as the number
of comparisons it wins minus the number of comparisons
it loses and then divided by the number of comparisons it
participates in. Following that, as shown in Figure 6, we
rank the item by the value of its win-loss rate. Through this
way, a full or partial ranking is aggregated. We then extrap-
olate the ranking into a self-consistent pairwise comparison
set, which can be further augmented by adding comparisons
with the negated relation.
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Figure 6: Illustration of data refinement and augmentation based on preference rank estimation using win-loss rates. The
original annotations (left) are sparse and exhibit inconsistencies (non-transitivity), while the augmented annotations are
consistent and include more comparisons. For partially ordered rankings, items are not compared when their preference
relationship is unknown.

Table 2: Statistics at each augmentation stage. # Data means data
size and AvgComp/Inst for average comparisons per instance.
REPAIR-ed data represents data augmented by our REPAIR
framework and Neg. denotes further augmentation with negated
relation comparisons.

Data stran(5) scomm # Data AvgComp/Inst

Raw data 98.4 - 14.8K 6.29
Perturbed data 87.6 - 14.8K 6.29
REPAIR-ed data 1 1 30.9K 13.2
REPAIR-ed data+Neg. 1 1 61.8K 26.4

Table 3: Instruction-tuning of Llama-3 Instruct (8B)
using different variants (see Section 4.2). Only training
on negated relations can enhance negation invariance.

Models Summarize from Feedback
H. stran(5) scomm sneg

Zero-shot inference 64.3 81.1 70.2 63.8
Raw data 74.4 93.1 89.0 60.6
Perturbed data 70.3 91.9 88.4 61.0
REPAIR-ed data 70.1 95.4 91.2 60.8
REPAIR-ed data + Neg. 69.7 95.2 90.5 87.9

4.2. Experiments

Experimental Setup. The previously used datasets (Sum-
mEval, NovelEval, and CateRS) were primarily designed as
evaluation benchmarks and are therefore too limited in size
to support model training. To address this limitation, we em-
ploy the Summarize from Feedback dataset (Mostafazadeh
et al., 2016b), where annotators made pairwise comparisons
between two summaries based on qualitative factors. Fur-
ther details about this dataset can be found in Appendix §B.
Additionally, we provide experiments on another dataset
in Appendix §L. Given that original annotations are sparse
and relatively clean, we introduce synthetic noise by ran-
domly flipping 10% of the training labels. The objective of
REPAIR is to both refine and augment this noisy dataset,
thereby enabling the extraction of more reliable training
signals. To this end, we apply REPAIR to enhance the con-
sistency and increase the volume of pairwise comparisons,
as shown in Table 2.

To assess the effectiveness of REPAIR, we instruction-
tuned three Meta-Llama-3-8B-Instruct models on: 1) the
original raw and clean training set data, 2) the flipped/per-
turbed training set data, 3) the refined and augmented
dataset, denoted as REPAIR-ed data, and 4) The REPAIR-

ed dataset with additional negated relation comparisons.
Training hyperparameters are detailed in Appendix § F. For
evaluation, we randomly sample 200 instances from the test
set and evaluate all models on this subset. The impact of the
data augmentation is assessed in terms of logical consistency
and model performance.

Results and Findings. Results in Table 3 highlight four
key findings: 1) Zero-shot inference shows considerable
logical inconsistency. However, training on perturbed data
can already substantially improve both human preference
alignment and consistency. 2) Training on the original,
clean dataset provides an upper bound in terms of align-
ment with human judgments, as it contains the complete
and uncorrupted signals. Interestingly, this does not neces-
sarily lead to superior logical consistency when compared
to models trained on the REPAIR-ed perturbed data. 3)
Models trained with the REPAIR-ed dataset demonstrate
significant gains in transitivity and commutativity, while pre-
serving strong alignment with human preferences. 4) Only
training further on negated relations improves the model per-
formance in negation invariance. However, adding negated
relations to the broader dataset may introduce distractions
and cause a forgetting effect (Luo et al., 2023), resulting in
a slight reduction in performance on other logical properties.

7



Aligning with Logic: Measuring, Evaluating and Improving Logical Preference Consistency in Large Language Models

Table 4: LLMs with better transitivity perform better with PairS. Improved commutativity indicates less need for algorithm
calibration. For both PairS methods, we report the average Spearman correlations over 100 runs.

Models SummEval (Coh)
H. stran(5) scomm PairS PairS calibrated

Mistral-7B 63.6 95.1 59.9 27.7 31.2 +3.5
Phi-3-mini 65.6 92.8 46.9 33.9 38.0 +4.1
GPT-3.5-turbo 66.3 82.5 67.5 33.5 36.3 +2.8
Llama-3-8B 67.8 91.0 76.1 37.7 38.9 +1.2
Phi-3-medium 68.8 96.2 71.0 38.9 41.3 +.2.4

Overall, the findings support the effectiveness of REPAIR
in improving the logical preference consistency of LLMs.

5. Impact of Logical Preference Consistency
on Downstream Applications

LLMs are increasingly used as logical operators in high-
level algorithms due to their ability to process and under-
stand text semantics. For instance, Qin et al. (2024) use
LLMs to enhance document reranking in information re-
trieval systems. Similarly, Guo et al. (2024) and Yang et al.
(2024) utilize LLMs as optimizers in prompt-tuning algo-
rithms, while Liu et al. (2024) and Liusie et al. (2024b)
employ LLMs as pairwise comparators to aggregate prefer-
ence rankings. When LLMs are used as logical operators,
maintaining a high level of logical consistency is critical
to ensure predictable and efficient decision-making. In this
section, we examine how logical preference consistency in-
fluences the performance of LLM-based algorithms in such
‘logically grounded’ tasks.

We illustrate the impact of logical preference consistency
through the Pairwise-Preference Search (PairS) algorithm
proposed by Liu et al. (2024). PairS is a sorting-based rank
aggregation method that uses LLMs as pairwise evaluators
(i.e., a particular ‘LLM-as-a-judge’ algorithm), comparing
items based on specific attributes using a merge-sort ap-
proach. Its performance is measured by comparing the
LLM-generated rankings with human judgments via Spear-
man’s correlation. Sorting algorithms depend heavily on
logical properties. PairS assumes that LLMs used as com-
parators have near-perfect transitivity and commutativity for
optimal ranking results.

To evaluate this, we conduct controlled experiments on the
coherence aspect of SummEval, using various LLMs with
similar accuracy to human judgments. As shown in Table 4,
we follow Liu et al. (2024) by reporting both raw and cali-
brated results. The calibration, performed as described in
Zheng et al. (2023), averages the evaluation probabilities
across both possible pairwise orders. While this technique
increases inference cost, it reduces bias by balancing posi-
tional preferences. Our findings from Table 4 reveal two key

insights: 1) Although Phi-3-mini has slightly lower accu-
racy with human judgments than GPT-3.5-turbo, its stronger
transitivity leads to better ranking performance with or with-
out calibration. 2) There is a clear correlation between
an LLM’s commutativity and the performance gains from
calibration in the PairS algorithm. LLMs that are more
commutative rely less on calibration to achieve optimal per-
formance, and therefore, require less computations.

6. Related Work
Consistency of LLMs has been explored in several contexts
before, where previous research has predominantly focused
on two domains: consistency of factual knowledge and en-
tailment consistency across limited statements.

Consistency of Factual Knowledge. Previous work
has demonstrated that in knowledge-intensive question-
answering tasks, concepts like symmetry and transitivity
of knowledge snippets are important (Asai & Hajishirzi,
2020). To this end, a benchmark for studying language
model consistency with paraphrased relations (Elazar et al.,
2021) has been created. Additionally, different studies have
examined whether LLMs have a coherent understanding of
knowledge graphs related to real-world entities (Jung et al.,
2022; Gu et al., 2023; Kassner et al., 2023; Gu et al., 2023).
The ‘reverse curse’ phenomenon highlights that unlearned
factual knowledge cannot be deduced by reversing learned
knowledge (Allen-Zhu & Li, 2023; Berglund et al., 2024).

Entailment and Inference Consistency. In Natural Lan-
guage Inference (NLI), the consistency of transitivity and
symmetry in statement pairs has been explored using prede-
fined inference rules (Li et al., 2019; Jang & Lukasiewicz,
2023). Jang et al. (2022) proposed a test set to exam the
consistency of LLMs for NLI tasks. Prediction consistency
has been improved through the use of adversarial first-order
logic examples (Minervini & Riedel, 2018).

Despite the wealth of knowledge regarding the logical con-
sistency of LLMs within specific domains, most studies
have concentrated on first-order relations—logical connec-
tions or implications directly linking two or three individual
statements. Consequently, there is a notable gap in research
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addressing the consistency and reliability of LLMs when
applied to more complex decision-making scenarios or the
evaluation of multiple items simultaneously. This limitation
suggests a pressing need for further investigation into how
LLMs can maintain coherence and consistency in broader,
more comprehensive contexts, which is essential for their
deployment in practical applications.

7. Conclusion
In this work, we explored the critical role of logical prefer-
ence consistency in enhancing the reliability and trustwor-
thiness of LLMs, introducing a framework to quantify three
key properties: transitivity, commutativity, and negation
invariance, which serve as strong proxies for assessing over-
all reliability. To address logical inconsistencies, we pro-
posed REPAIR, a data refinement and augmentation frame-
work, demonstrating that models trained on REPAIR-ed
data achieve higher logical preference consistency without
compromising human alignment. Additionally, integrating
logically consistent LLMs into logic-driven algorithms en-
hanced global performance and computational efficiency,
underscoring the practical benefits of logical coherence in
downstream tasks. Our findings highlight logical consis-
tency as a complementary factor to human alignment in
developing more reliable LLMs, encouraging its recogni-
tion as a fundamental aspect of improving trustworthiness
and reliability.

Impact Statement
There are several potential societal consequences of our
work. By ensuring logical coherence in LLMs, we hope to
contribute to the development of more reliable and trustwor-
thy AI systems. This could have positive implications for
various sectors, including healthcare, finance, and educa-
tion, where decision-making and reasoning tasks are critical.
However, it is important to consider the ethical aspects of de-
ploying such systems. Ensuring logical consistency does not
automatically guarantee fairness, transparency, or account-
ability. Therefore, we encourage the broader community to
continue exploring these ethical dimensions in parallel with
technical advancements. In summary, while our work aims
to advance the field of artificial intelligence by improving
the logical consistency of LLMs, we recognize the need for
ongoing discussions and research to address the ethical and
societal implications of deploying AI systems.
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A. Transitivity Calculation
In this section, we show two algorithms: (i) construct a preference relation graph by LLM’s judgements, and (ii) detect cycle
in a relation graph.

Algorithm 1 Construct Preference Relation Graph
1: Objective: Construct a relation graph reflecting the understanding of LLM upon a set of items.
2: Inputs: X = {x1, x2, . . . , xN}: A set of items; LLM(·, ·|I): LLM, for a given instruction prompt I , as a preference operator.
3: Output: G: A relation graph represented as an adjacency list for each vertex.
4: Initialize: Initialize the relation graph G such that for each x in X , G[x]← ∅, where G[x] represents the pointed vertexes from

vertex x.
5: for i← 1 to n do
6: for j ← i+ 1 to n do
7: P (xi ≻ xj)← LLM(xi, xj |I)
8: if P (xi ≻ xj) ≥ 1

2
then

9: G[xi]← G[xi] ∪ {xj}
10: else
11: G[xj ]← G[xj ] ∪ {xi}
12: end if
13: end for
14: end for
15: Return G

Algorithm 2 Check for Cycles in a Directed Graph
1: Objective: Detect if a directed graph G contains a cycle.
2: Inputs: G: A directed graph represented as an adjacency list.
3: Output: True if a cycle exists, False otherwise.
4: Initialize: visited← ∅, recStack ← ∅
5: for each v in G do
6: if v /∈ visited and CycleUtil(v, visited, recStack) then
7: Return True
8: end if
9: end for

10: Return False
1: Function CycleUtil(v, visited, recStack)
2: visited← visited ∪ {v}
3: recStack ← recStack ∪ {v}
4: for each u in G[v] do
5: if u /∈ visited ∧ CycleUtil(u, visited, recStack) then
6: Return True
7: else if u ∈ recStack then
8: Return True
9: end if

10: end for
11: recStack ← recStack \ {v}
12: Return False

B. Dataset

SummEval (Fabbri et al., 2021) is a summarization meta-evaluation dataset comprising 100 source texts, each paired with
16 summary candidates generated by various language models (LMs). The dataset is annotated based on four criteria:
coherence (COH), fluency (FLU), consistency (CON), and relevancy (RE).

NovelEval (Sun et al., 2023) is a document reranking test set consisting of 21 novel questions. This set was constructed by
compiling questions and passages from four domains published after the release of GPT-4. For each question, 20 candidate
passages were retrieved through Google search, and their relevance was manually labeled.

CaTerS (Mostafazadeh et al., 2016b) is a dataset focused on temporal event ordering. It contains 1,600 annotated sentences
derived from 320 five-sentence short stories sampled from the ROCStories corpus (Mostafazadeh et al., 2016a). These
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stories are organized based on causal and temporal relations. We filtered the dataset to include only instances with seven or
more events, resulting in 70 instances.

Summarize from Feedback. (Mostafazadeh et al., 2016b) consists of 64,832 summary comparisons drawn from the
TL;DR (Cachola et al., 2020) and CNN/DM datasets (Nallapati et al., 2016). This dataset is divided into two sections:
pairwise comparisons and axis annotations. We concentrate on the pairwise comparison section, which is labeled based on
the overall quality of two summaries. For training, we utilize the entire training set, while for testing, we randomly sample
200 instances from the validation set.

MS MARCO. (Nguyen et al., 2016) is a widely used large-scale benchmark for training and evaluating retrieval-based
question answering systems. Following the methodology of Sun et al. (2023), we leverage the dataset for a document
reranking task. Specifically, they randomly sample a subset of queries from the MS MARCO training set, retrieving 10
candidate passages for each query using BM25. Ranking preferences for these passages were distilled using GPT-3.5-turbo.
In this work, we decompose the preference rankings into full pairwise comparison annotations. We randomly sample 1K
examples from their query subset and corresponding ranking labels. We then split them into a training set of 800 examples
and a test set of 200 examples.

C. Large Language Models in Evaluation
Open-Sourced LLMs. The Llama-2-7b-chat-hf and Llama-2-13b-chat-hf models (Touvron et al., 2023) were developed by
Meta and are part of the Llama-2 family. Llama-3-8B-Instruct (Dubey et al., 2024) is another model from Meta’s Llama
series. The Mistral-7B-Instruct-v0.1 (Jiang et al., 2023) model is an instruction-tuned LLM developed by Mistral AI. The
zephyr-7b-beta model (Tunstall et al., 2024) is developed by Zephyr AI. The Phi-3-mini-4k-instruct and Phi-3-medium-4k-
instruct models (Abdin et al., 2024) are part of the Phi model series developed by Microsoft. The gemma-2-9b-it (Rivière
et al., 2024) model is created by the Gemma team.

API-Based LLMs. The GPT-3.5-turbo-0125 model is part of OpenAI’s GPT-3.5 series, which is renowned for its strong
performance in natural language understanding and generation. Deepseek-chat-v2 (DeepSeek-AI, 2024) is another API-based
LLM developed by DeepSeek.

D. Additional Related Work
Improving Consistency of LLMs. Asai & Hajishirzi (2020) proposed an augmentation method and a training regularization
term to improve the logical consistency of language models for QA tasks. Minervini & Riedel (2018) proposed an adversarial
training procedure to improve the robustness of NLI models to adversarial examples. Wang & Henao (2021) focus on
improving the paraphrasing consistency during training for the task of low-resource Named Entity Recognition (NER). Li
et al. (2019) proposed a framework to regularize the loss function when training a neural model, based on logic rules to
improve the logical consistency.

Kumar & Joshi (2022) performed a symmetric consistency analysis on NLI and semantic textual similarity (STS) tasks in a
more conservative manner, arguing that a model should generate not only the same predictions but also the same confidence
scores if it is truly input-order invariant. They also observed that pretrained language models violated symmetric consistency
and the authors then introduced a consistency regularisation term to compensate for the issue.

Theory of Consistency. The concept of transitivity in preferences has been extensively explored, revealing its significance
in both psychological and logical frameworks. Tversky (1969) highlighted various psychological factors that can lead to
intransitive preferences, illustrating how human decision-making often deviates from rational models. Building on this,
Arrow (1950) introduced Arrow’s Impossibility Theorem, which addresses the inherent challenges of constructing social
choice functions that maintain transitivity.

Further contributions to the understanding of transitivity include a comprehensive review by Regenwetter et al. (2011), which
examines both theoretical and empirical perspectives on the subject. Their work underscores the critical role transitivity
plays in preference structures. In a more formal context, Tarski (1941) examined the role of transitivity within relational
calculus, an area that is foundational to many logical systems. This connection demonstrates how transitivity not only
influences preferences but also underpins logical reasoning.

Moreover, Hansson (2001) provided insights into the implications of violating transitivity in preferences, showing that such
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violations can lead to logical inconsistencies within decision theory. This theme is further explored by Hyde (2011), who
proved that apparent violations of transitivity can give rise to logical paradoxes. Collectively, these works emphasize the
importance of transitivity in ensuring consistency, both in decision-making and logical deduction.

E. Distinguishing Logical Transitivity from Social Network Analysis (SNA) Transitivity
Transitivity is a well-studied concept in Social Network Analysis (SNA). However, the definition and purpose for transitivity
in our framework diverge significantly from those in SNA. Below, we highlight the key distinctions:

Motivations. In SNA, transitivity measures the tendency of nodes in a network to form tightly connected groups. It is
based on real-world social patterns, where ”friends of friends” are likely to be friends, leading to clustered communities.
In contrast, our logical consistency framework employs transitivity to assess self-conflict in relation graphs generated by
models or human judgments. Here, transitivity serves as an indicator of logical coherence rather than network clustering.

Definition. In graph theory, transitivity quantifies the formation of closed triangles (fully connected triplets), indicating the
probability that two neighbors of a node are also connected. In our framework, however, it measures the extent to which
relation graphs are acyclic. Specifically, it evaluates the probability that a randomly selected set of nodes forms an acyclic
structure, extending beyond simple triplet closures.

Application and Scenarios. SNA transitivity is primarily applied to undirected social network graphs, while our logical
transitivity operates exclusively on directed relation graphs. SNA transitivity focuses on the closure of triplets, whereas our
logical transitivity evaluates logical circulations spanning 3 to K nodes, with K being the size of the sampled sub-graph.
Extending SNA measures to higher-order relationships is nontrivial and computationally inefficient.

To illustrate these differences, we provide a detailed analysis of popular SNA transitivity measures:

1. Clustering Coefficient (Wasserman, 1994): Global clustering coefficient measures

C =
Number of Closed Triplets

Number of All Triplets (closed and open)
,

and local clustering coefficient measures

Ci =
Number of closed triplets including node i

All triplets including node i
.

While applicable to directed graphs, clustering coefficient still measures the ratio between closed triplets and total
triplets instead of circular relations and cannot be applied to larger structures.

2. Triad Census (Batagelj & Mrvar, 2001): Counts the relative frequency of 16 possible triadic configurations in directed
graphs. However, this method is inherently constrained to triads.

3. E-I (External-Internal) Index (Krackhardt & Stern, 1988): Measures the ratio of external to internal ties within a given
partition, capturing group closure rather than logical acyclicity.

F. Instruction-Tuning: Training Details
The model was fine-tuned using the following hyperparameters. A learning rate of 5× 10−5 was employed over the course
of 2 training epochs. A weight decay of 1× 10−2 was applied to prevent overfitting. For the LoRA (Low-Rank Adaptation)
settings, the rank r was set to 16 and the scaling factor α was set to 64. The batch size during training was 4, with a gradient
accumulation step of 2 to effectively handle smaller batches. All training was performed on an A100 machine.

G. Metric Computation details and Prompt Templates
Metrics Computation details. For all three datasets, they have the format of each input context is associated with multiple
items, and the task is to determine specific relations among them.

For SummEval, the input context is a source text, and the task involves determining coherence preferences among multiple
summary candidates. In NovelEval, the input context is a query, with the task focused on assessing relevance preferences
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Prompt for F (x
1
, x2) 

"""
Source Text: {{ input }}

Summary candidate A: {{ output_1 }}
Summary candidate B: {{ output_2 }}

Question: Which summary
candidate has better coherence? 

Please only answer with A or B.

Answer:
"""

Prompt for F (x2, x
1
) 

"""
Source Text: {{ input }}

Summary candidate A: {{ output_2 }}
Summary candidate B: {{ output_1 }}

Question: Which summary
candidate has better coherence?

Please only answer with A or B.

Answer:
"""

Prompt for F (x
1
, x2) 

"""
Source Text: {{ input }}

Summary candidate A: {{ output_1 }}
Summary candidate B: {{ output_2 }}

Question: Which summary
candidate has worse coherence?

Please only answer with A or B.

Answer:
"""

¬

(a) SummEval

Prompt for F (x
1
, x2) 

"""
Query: {{ input }}

Document candidate A: {{ output_1 }}
Document candidate B: {{ output_2 }}

Question: Which document candidate
is more relevant to the query? 

Please only answer with A or B.

Answer: """

Prompt for F (x2, x
1
)  Prompt for F (x

1
, x2) 

¬

(b) NovelEval

Prompt for F (x
1
, x2) 

"""
Event context:
{{ input }}

Question: Does {{ output_1 }} happen
temporally or causally later than 
{{ output_2 }}? 
Please only answer with 'Yes' or 'No'.  

Answer:"""

Prompt for F (x2, x
1
)  Prompt for F (x

1
, x2) 

¬

(c) CaTeRS

"""
Query: {{ input }}

Document candidate A: {{ output_2 }}
Document candidate B: {{ output_1 }}

Question: Which document candidate
is more relevant to the query? 

Please only answer with A or B.

Answer: """

"""
Query: {{ input }}

Document candidate A: {{ output_1 }}
Document candidate B: {{ output_2 }}

Question: Which document candidate
is less relevant to the query? 

Please only answer with A or B.

Answer: """

"""
Event context:
{{ input }}

Question: Does {{ output_2 }} happen
temporally or causally later than 
{{ output_1 }}? 
Please only answer with 'Yes' or 'No'.  

Answer:"""

"""
Event context:
{{ input }}

Question: Does {{ output_1 }} happen
temporally or causally earlier than 
{{ output_2 }}? 
Please only answer with 'Yes' or 'No'.  

Answer:"""

Figure 7: Prompt templates for pairwise comparisons. From left to right: Normal comparison, comparison with reversed
item order, and comparison with negated relation.
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Prompt for F (x
1
, x2) 

"""
### Source text: {{ input }}

### Summary candidate A: {{ output_1 }}

### Summary candidate B: {{ output_2 }}

### Question: Which summary candidate is

overall better? Please select A or B.

### Answer:
"""

Prompt for F (x
1
, x2) 

"""
### Source text: {{ input }}

### Summary candidate A: {{ output_1 }}

### Summary candidate B: {{ output_2 }}

### Question: Which summary candidate is

overall worse? Please select A or B.

### Answer:
"""

¬

(a) Summary with Feeback

Figure 8: Pairwise comparison prompt templates for the instruction tuning on Summary with Feedback, as discussed in
Section 4.

among multiple retrieved documents. For CaTeRS, the input context consists of a list of unordered events, with the goal
being to infer the temporal or causal order among these events.

To compute the consistency metrics, a full pairwise comparison is conducted between every pair of items, including all

permutations of the item set X . Both standard expression (F (xi, xj)) and its reverse (
¬
F (xi, xj)) are used. This will result

two preference matrices as shown in Fig. 3, and can be used to compute the Stran, Scomm and Sneg following the Equ. 1,
Equ. 2 and Equ. 3.

Prompt Templates. we demonstrate the prompt templates we used to perform pairwise comparisons for all three datasets
in Figure 7. Figure 8 illustrates the prompt templates utilized for conducting the instruction tuning experiments on the
Summary with Feedback dataset, as detailed in Section 4.

H. The Choice of K
In this section, we discuss the considerations regarding the choice of K for the transitivity metric Stran(K).

4 6 8 10 12 14
K

0.2

0.4

0.6

0.8
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S t
ra
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K)

SummEval

Llama-2-7b
Llama-3-8B
Mistral-7B
Phi-3-medium
gemma-2-9B

Figure 9: Transitivity metric Stran(K) as a function of sub-graph size, K, on the SummEval dataset. Transitivity values
decrease as K increases.

Robustness of transitivity to K. Stran(K) is robust to variations in K. It is uncommon for a model to perform well on
Stran(3) but poorly on Stran(5), as shown in the Figure 9. Additionally, it shows that larger values of K expand the value
range of Stran(K), making comparisons between models more distinct.

Dependence on Prior Knowledge. Choosing K can depend on prior knowledge about the general consistency performance
of current LLMs. For example, we observe that the consistency performance improves progressively from earlier LLMs,
such as LLama-2 and Zephyr-7B-beta, to more advanced models like Gemma-2 and Llama-3. This trend suggests that
considering the evaluated LLMs’ expected consistency levels can inform an appropriate choice of K.
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Task-Specific Considerations. As discussed in Section 3.2, consistency performance varies depending on the task. For
objective tasks, consistency tends to be higher, which means task-specific nuances should also guide the selection of K.

In summary, there is no definitive “gold standard” for choosing K. Similar to selecting the N-gram size in BLEU-N , the
choice depends on the models and tasks under evaluation.

I. Theoretical Evidence for the Choice of transitivity Sub-graph sampling size M

Theoretical Basis. The transitivity metric Stran(K) is computed as the average result of a binary indicator function (as
defined in Equation 1), which follows a binomial distribution. Intuitively, Stran(K) can be interpreted as the probability (p)
that a randomly sampled K-node sub-graph is transitive.

Estimation Accuracy. Using the Central Limit Theorem (Barnard, 1949), the binomial distribution of Stran(K) approxi-
mates a normal distribution when the sample size (n) is sufficiently large. To estimate p within a margin of error (E) at a
confidence level z (e.g. z = 1.96 for 95% confidence), the required sample size is:

n =
z2 · p · (1− p)

E2
(4)

Worst-Case Scenario Analysis. Since the exact value of p is unknown, we consider the worst-case scenario where p(1− p)
is maximized at p = 0.5. Under this assumption, for a margin of error E at 95% confidence (z = 1.96). The sample size n
should be at least 394, which is far exceeded by our choice of M = 1000. Therefore, our estimation of the Stran(K) is
statistically accurate and stable.

J. The Irreflexive Assumption
As discussed in Section 2, we have stated that if comparison function F is transitive, the corresponding relation graph is
a DAG. This statement is based on the assumption that F is irreflexive. For example, in Figure 3 and Equation 2 and 3,
we omit the diagonal elements of the pairwise comparison matrices, and we compute the total pairwise comparisons as
|X| · (|X| − 1) instead of |X|2.

This assumption is justified by practical considerations: in real-world applications—such as evaluating causal or temporal
orders or comparing preferences—it is uncommon to compare an item against itself, particularly in the context of large
language models (LLMs).

K. Motivations for our Data Refinement and Augmentation Framework
Previous work has proven the benefits of using pairwise comparisons derived from preference rankings to train LLMs
for a better understanding of preference orderings (Song et al., 2024). Additionally, Asai & Hajishirzi (2020) showed
that incorporating logically derived counterparts of pairwise annotations improves consistency in knowledge-intensive
QA tasks. However, real-world preference data are often noisy and self-contradictory (Chowdhery et al., 2023; Ouyang
et al., 2022), especially in more subjective tasks (Bai et al., 2022). The inter-rater agreement rate typically falls between
60% to 80% for preference or evaluation datasets. Prior work (Wang et al., 2024a) has shown that these self-conflicting
annotations reduce the efficiency of learning preferences, and we hypothesize that such annotations also contribute to the
logical inconsistencies in trained models. Inspired by RLHF, where a reward model is used to establish a complete order of
responses, we propose first estimating a coherent ranking from the noisy data. This refined ranking can then be augmented
with additional conflict-free pairwise comparisons to align LLMs more effectively. This method is expected to be more
efficient than aligning models to noisy and inconsistent annotations directly.

L. Performance of REPAIR on the MS-MARCO Dataset
In this section, we present the performance of the REPAIR framework on the MS-MARCO dataset (details provided in
Appendix §B). The results, shown in Table 5, correspond to those in Table 3 and Table 4.

Our findings reaffirm the effectiveness of the proposed data augmentation framework. Specifically, we observe that REPAIR
enhances consistency while maintaining alignment with human preferences. Additionally, we analyze the Spearman
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Table 5: Instruction-tuning of Llama-3-Instruct-8B on the REPAIR-ed MS MARCO dataset and their performance on the
PairS algorithm. LLMs trained on the REPAIR-ed dataset show improved performance on PairS with reduced need for
algorithm calibration. For both PairS methods, we report the average Spearman correlations over 100 runs.

Models MS MARCO
H. stran(5) scomm sneg PairS PairS calibrated

Zero-shot inference 57.2 74.2 68.5 64.7 18.7 22.1(+3.4)
Perturbed data 74.7 86.7 81.1 62.9 58.1 60.3(+2.2)
REPAIR-ed data 75.0 91.3 85.9 63.1 61.0 62.6(+1.6)
REPAIR-ed data + Neg. 74.9 90.2 86.2 85.5 - -

correlations of the rankings predicted by the PairS algorithm. Our results indicate that models with higher transitivity
produce more accurate overall rankings, while models with stronger commutativity require less calibration to achieve
optimal performance.

M. Ablation Study: REPAIR Down-Sampling Performance
In this section, we analyze the performance of the REPAIR framework when sampling an equivalent size of perturbed data
from the REPAIR-ed dataset. This ensures that the comparison remains unaffected by dataset size differences, allowing for
a clearer assessment of the framework’s efficacy.

REPAIR is a data augmentation framework, a widely adopted strategy to mitigate the challenges of acquiring high-quality,
consistent data, particularly in the era of LLMs. Given the increasing difficulty and resource intensity associated with
obtaining such data through synthetic methods or human annotations, data augmentation offers a practical and cost-effective
alternative. Our framework enhances data quality solely by leveraging the perturbed dataset, without requiring any external
knowledge.

Although the datasets differ in size, the comparisons in Table 3 remain valid, as they effectively showcase the ability of our
approach to extract and expand information from the perturbed data.

To conduct this ablation study, we randomly sample an equivalent amount of REPAIR-ed data as the perturbed dataset
while maintaining all other experimental settings consistent with those in Table 3. The experimental results, summarized in
Table 6, yield the following key observations:

1. Information Expansion and Loss:

• The REPAIR-ed dataset enriches the information content of the perturbed dataset. However, random sampling
from this augmented dataset inevitably leads to some degree of information loss.

• Without employing a targeted sampling strategy to mitigate this loss, the comparison may not fully reflect the
optimal benefits of our augmentation approach.

2. Impact on Performance:

• Due to the inherent information loss from random sampling, alignment with human preferences exhibits a slight
decline. However, this performance drop remains relatively minor.

• Despite the reduced dataset size, all three consistency metrics demonstrate noticeable improvements over the
perturbed dataset. This highlights the robustness of our augmentation framework, even though the performance is
naturally lower than that of models trained on the full augmented dataset.

These findings reaffirm the efficacy of our proposed framework and offer deeper insights into its behavior under constrained
data conditions.

N. Ablation Study: Alternative Ranking Estimation Methods for REPAIR
In the main paper, we presented REPAIR’s performance using the win-loss rate as the ranking estimation method. In this
section, we conduct additional experiments to compare win-loss rate with alternative ranking methods.
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Table 6: Instruction-tuning of Llama-3-Instruct-8B on the down-
sampled REPAIR-ed Summarize from Feedback dataset, matched in
size to the Perturbed data. Despite information loss from the down-
sampling, all three consistency metrics show steady improvements
over the perturbed dataset.

Models Summarize from Feedback
H. stran(5) scomm sneg

Zero-shot inference 62.9 84.7 68.2 64.0
Perturbed data 71.3 92.4 79.6 60.9
REPAIR-ed data (sampled) 69.1 96.3 88.9 61.7
REPAIR-ed data + Neg. (sampled) 68.8 96.2 86.2 84.5

Table 7: Instruction-tuning of Llama-3-Instruct-
8B on the REPAIR-ed Summarize from Feed-
back dataset using various rank estimation meth-
ods. All methods integrate well with the REPAIR
framework and yield notable improvements.

Models Summarize from Feedback
H. stran(5) scomm

Zero-shot inference 62.9 84.7 68.2
Perturbed data 71.3 92.4 79.6
REPAIR-ed data W-L 70.5 97.5 89.4
REPAIR-ed data ELO 71.4 97.7 89.7
REPAIR-ed data B-T 71.2 98.6 91.0

We evaluate two widely used ranking methods: the Elo rating system (Elo & Sloan, 1978) and the Bradley-Terry (B-T) model
(Bradley & Terry, 1952). Table 7 reports the results from these methods, maintaining consistency with the experimental
setup in Table 3 (Section 4). Our findings indicate that both Elo and the B-T model achieve slightly better performance
than the win-loss rate, improving human accuracy and consistency metrics. However, the performance differences remain
relatively small.

To further analyze the strengths and weaknesses of ranking estimation methods, we summarize their characteristics below:

• Win-loss rate: This method does not incorporate transitive information, treating all pairwise comparisons independently.
While this may appear to be a limitation, it has certain advantages:

– Pros: Consider the pairwise comparisons {A ≻ B, A ≻ C}. The win-loss rate does not infer a relationship
between B and C, correctly predicting A ≻ B = C. Later, we show how Elo and B-T fail in such cases.

– Cons: In a transitive scenario {A ≻ B, B ≻ C, C ≻ D}, an ideal ranking should yield A ≻ B ≻ C ≻ D. However,
the win-loss rate produces A ≻ B = C ≻ D, as it does not consider indirect comparisons.

• Elo rating: This method effectively incorporates transitive information but is highly sensitive to the order of com-
parisons. When pairwise comparisons are sparse, this sensitivity can significantly impact ranking estimation. For
example:

– Given {A ≻ B, A ≻ C}, Elo predicts A ≻ C ≻ B.
– If the order is reversed to {A ≻ C, A ≻ B}, Elo instead predicts A ≻ B ≻ C.

Since our dataset is static and comparison order carries no inherent meaning, Elo’s sensitivity may introduce noise into
the augmented preference data.

• Bradley-Terry model: This probabilistic model estimates rankings using maximum likelihood, effectively handling
transitive relationships and generating nuanced rankings. However, it has limitations:

– It struggles to produce tied rankings without explicit design modifications. For instance, given {A ≻ B, A ≻
C}, the B-T model predicts A ≻ B ∼ C, where B and C receive slightly different scores, even if they should
theoretically tie.

– This forced ranking structure may introduce noise in scenarios where ties should be preserved.

Overall, the effectiveness of each ranking estimation method depends on factors such as pairwise comparison sparsity and
computational constraints:

• Sparse comparisons: Methods relying on transitive relationships, such as Elo and B-T, may struggle when comparison
data is limited.

• Computational efficiency: Simpler methods like the win-loss rate are advantageous when computational resources or
time are constrained.
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These observations align with the axiomatic assumptions of the Von Neumann–Morgenstern utility theorem (?), which
requires that preferences be complete—that is, a preference judgment must exist between every pair of items—to aggregate
preferences into a consistent linear ranking. When comparison annotations are sparse, this completeness assumption is
violated, leading to a degradation in the performance of ranking estimation methods.

In summary, while Elo and the B-T model are effective in capturing transitive relationships and generating likelihood-based
rankings, their sensitivity to noise and computational demands can be limiting in certain contexts. In contrast, the win-loss
rate offers a simple and robust baseline, especially when tied rankings are acceptable or when efficiency is a key concern.
Additionally, extensions such as TrueSkill build upon Elo and B-T by explicitly modeling ties and uncertainty, potentially
mitigating some of these limitations.
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