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ABSTRACT

Generative models have been widely applied to world modeling for environment
simulation and future state prediction. With advancements in autonomous driv-
ing, there is a growing demand not only for high-fidelity video generation under
various controls, but also for producing diverse and meaningful information such
as depth estimation. To address this, we propose CVD-STORM, a cross-view
video diffusion model utilizing a spatial-temporal reconstruction Variational Au-
toencoder (VAE) that generates long-term, multi-view videos with 4D reconstruc-
tion capabilities under various control inputs. Our approach first fine-tunes the
VAE with an auxiliary 4D reconstruction task, enhancing its ability to encode 3D
structures and temporal dynamics. Subsequently, we integrate this VAE into the
video diffusion process to significantly improve generation quality. Experimental
results demonstrate that our model achieves substantial improvements in both FID
and FVD metrics. Additionally, the jointly-trained Gaussian Splatting Decoder ef-
fectively reconstructs dynamic scenes, providing valuable geometric information
for comprehensive scene understanding.

(a) Ground Truth

(b) w/o STORM-VAE (1200 step)

(c) w/ STORM-VAE (1200 step)

Figure 1: Early-Stage Generation Visualization. (a) shows the ground-truth sequence. (b) depicts
the model’s output at training step 1,200 when using a standard VAE. (c) presents the correspond-
ing output generated with our STORM-VAE at the same step. Notably, (c) exhibits significantly
improved convergence and visual fidelity compared to (b), demonstrating the effectiveness of our
approach even at early stage in training.

1 INTRODUCTION

Autonomous vehicles have emerged as a prominent research domain within artificial intelligence
applications. The development of reliable self-driving systems necessitates both extensive data col-
lection for training decision-making algorithms and sophisticated closed-loop simulations to verify
planning outputs. These requirements present significant challenges, particularly the need for driv-
ing world models that accurately represent the environment and enables precise prediction of fu-
ture scenarios. Concurrently, diffusion models have become the state-of-the-art approach for video
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generation, offering a promising solution for realistic simulation. Recent advances in this field have
demonstrated the remarkable capability of these models to generate photorealistic videos Hong et al.
(2022); Zheng et al. (2024); Peng et al. (2025), with successful applications extending to complex
driving scenarios Kim et al. (2021); Zhao et al. (2025).

To serve as comprehensive driving world models, diffusion-based approaches must be capable of
generating long-term, multi-view, and controllable videos. Early attempts such as Gao et al. (2023);
Kim et al. (2021) struggled with generating extended sequences and following complex conditional
inputs. Recent advancements, however, have significantly addressed these limitations by adopting
architectures and methodologies from high-performing diffusion models. For example, Chen et al.
(2024); Gao et al. (2024b); Ren et al. (2025) have all implemented spatial-temporal diffusion trans-
former (DiT) architectures and employed multi-stage training strategies, progressively enhancing
generative fidelity and temporal consistency. Nevertheless, despite incorporating cross-view gener-
ation, these approaches lack explicit 3D information, which constrains their applicability as world
models. To overcome this limitation, Gao et al. (2024a) directly applies an enhanced 3D Gaussian
Splatting (3DGS) technique to diffusion outputs, though internal inconsistencies in the generated
images remain inadequately resolved. UniScene Li et al. (2025) incorporates semantic occupancy
as conditional guidance for LiDAR generation, but requires additional annotation during the training
process. Other approaches Hassan et al. (2025); Liang et al. (2025) produce depth maps supervised
by Depth Anything V2 Yang et al. (2024c), but these relative depth estimates cannot accurately rep-
resent real-world geometry. While Wu et al. (2024b) attempts to generate LiDAR data and video
simultaneously, the LiDAR is not well aligned with the images.

To address these challenges, we propose CVD-STORM, a framework that generates long sequen-
tial multi-view driving videos while simultaneously decoding reconstructed scenes represented by
dynamic 3D Gaussian Splatting (3DGS) Kerbl et al. (2023). First, we finetune an image VAE with
an affiliated Gaussian decoder as described in STORM Yang et al. (2025), enabling the decoding of
VAE latents into 3D Gaussians. This finetuned model, dubbed as STORM-VAE, serves as the latent
encoder for training a cross-view video diffusion model with the same architecture as Chen et al.
(2024). Recent research Yu et al. (2025); Leng et al. (2025); Fuest et al. (2024) has established that
representation learning is crucial to diffusion model performance. Aligned with these findings, our
experiments demonstrate that the latents encoded by STORM-VAE, which fuse information from
LiDAR and across frames, significantly improve the generative quality and convergence rate. Fig-
ure 1 illustrates the impressive denoising ability of CVD-STORMat an early step, compared with
the one without STORM-VAE. During inference, CVD-STORM can generate long-term six-view
videos conditioned on text, bounding boxes (BBox), and high-definition maps (HDMap), while the
Gaussian Splatting (GS) Decoder can directly reconstruct 4D scenes from the generated latents.

In summary, our main contributions are:

• We introduce STORM-VAE, an extended VAE model incorporating a Gaussian Splatting
decoder for 4D scene reconstruction. This auxiliary network integrates spatial and tempo-
ral information into the latent representation, moving beyond RGB-only encoding. Mean-
while, it can also achieve 4D reconstruction in the driving scenarios.

• We propose CVD-STORM, a novel pipeline for driving world modeling that simultane-
ously generates multi-view videos and reconstructs 4D scenes. We separate the training of
these complex tasks into two stages, by training the

• Our experiments demonstrate that CVD-STORM not only significantly improve the gen-
erative quality of the current world model by enhancing representation learning, but also
addresses the challenges of 4D absolute depth estimation.

2 RELATED WORK

2.1 VIDEO DIFFUSION AND DRIVING WORLD MODEL

The diffusion approach has become the mainstream for generative tasks. With the advancements
in 2D image diffusion models Rombach et al. (2022); Zhang et al. (2023); Labs et al. (2025); Li
et al. (2024), this technique has rapidly extended to video generation Hong et al. (2022); Yang et al.
(2024d); Gao et al. (2025); Zheng et al. (2024); Peng et al. (2025); Kong et al. (2024), yielding
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impressive visualizations and enabling precise control. In addition, related studies highlight its
significant potential as a real-world simulator.

In the field of autonomous driving, research started to focus on constructing driving world mod-
els based on video generation to simulate realistic driving scenarios. For instance, GenAD Yang
et al. (2024a) leverages large-scale web video datasets to enhance long-duration video generation
capabilities, while Vista Gao et al. (2024c) incorporates action inputs to control vehicle trajectories.
However, these approaches are limited to single-view generation and do not include other condi-
tions to simulate road conditions. There still exists a significant gap between their capabilities and
real-world driving requirements.

Therefore, generating multi-view video with precise control and long-term consistency has attracted
significant research attention. Early approaches such as Gao et al. (2023); Zhao et al. (2025); Xie
et al. (2025) achieved promising results for short-term videos but struggled to extend sequence
length effectively. The emergenece of DiT Peebles & Xie (2023) substantially improved diffu-
sion model scalability, prompting numerous researchers to incorporate transformer architectures
into driving world models. UniMLVG Chen et al. (2024) enhancs Stable Diffusion 3.5 Esser et al.
(2024) with temporal and multi-view modules, successfully unifying multiple datasets with hetero-
geneous structures during training. Similarly, MagicDriveV2 Gao et al. (2024b) also employs this
design but encodes videos through 3D VAE to achieve greater data compression. This architecture
has demonstrated exceptional performance when applied to larger-scale datasets Ren et al. (2025);
Russell et al. (2025). Additionally, researchers also have successfully incorporated action control
mechanisms to enable the generation of precisely controllable multi-view videos Ni et al. (2025b).
Despite these advancements, current generative methods still fail to adequately capture important
structural information, particularly depth data.

2.2 4D RECONSTRUCTION IN DRIVING SCENARIOS

Capturing 3D information is crucially important in driving scenarios and numerous studies has
explored how to predict the depth or reconstruct the 4D scene in the front-view driving videos.
Some research incorporates the structure prediction in the generative procedure. For instance,
UniFuture Liang et al. (2025) directly unified the depth prediction into the video generation to
attain highly aligned RGB-Depth correspondence. However, this work needs Depth Anything
V2 Yang et al. (2024c) to generate pseudo supervision for depth. Additionally, this approach can
only produce relative depth, which is insufficient for the autonomous driving application. Another
unified framework GEM Hassan et al. (2025) mitigates problems with consistencies in long-range
video generation, yet still preserves similar problem in depth estimation as UniFuture.

On the other hand, a considerable body of research has focused on incorporating reconstruction tasks
into driving scenarios. MagicDrive3D Gao et al. (2024a) employs a two-stage pipeline that integrates
Gaussian splatting for 3D reconstruction. Although presented as a unified framework, the second-
stage reconstruction process exerts minimal influence on the generative model in the first stage,
limiting true end-to-end interaction. More approaches concentrate primarily on pure reconstruction
objectives. For instance, ReconDreamer Ni et al. (2025a) introduces a network trained to correct
artifacts in novel views reconstructed from a pretrained 3D Gaussian representation. Similarly, Om-
niScene Wei et al. (2025) leverages forward Gaussian mapping to obtain a 3D scene representation
in bird’s-eye view (BEV) format. Building upon this, STORM Yang et al. (2025) advances the
paradigm by employing forward 4D Gaussian splatting to capture spatiotemporal dynamics through
sequential scene modeling.

While both generative modeling and 3D reconstruction have been extensively studied in autonomous
driving contexts, few works have explored the integration of these two tasks in a synergistic manner.
The potential of jointly optimizing generation and reconstruction remains largely underexplored.

2.3 REPRESENTATION LEARNING IN DIFFUSION

Recent research has devoted considerable effort to exploring better latent representations for im-
proving diffusion model performance Fuest et al. (2024). Yang et al. (2022); Tian et al. (2023); Deja
et al. (2023) involves incorporating additional tasks during generation training, such as classification
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Figure 2: Overall framework of the model. Our pipeline contains two models. The upper section
illustrates STORM-VAE training, with the forward process indicated by blue arrows. STORM-VAE
takes multi-view images from context timesteps and processes the image latents through two de-
coders: the VAE Decoder performs image reconstruction (updated by LVAE), while the GS Decoder
performs scene reconstruction (updated by LSTORM). The lower section illustrates the inference
pipeline of CVD-STORM, with the forward process shown by solid block arrows. The diffusion
part can either use STORM-VAE latents as reference frames for prediction or generate from noise,
while incorporating various conditioning inputs for guidance.

and segmentation. Other works focuses on aligning the latent space with that of foundation mod-
els. For example, Pernias et al. (2023) divides diffusion training into two stages, with the first stage
dedicated to training an additional encoder that extracts image semantic features. REPA Yu et al.
(2025) takes intermediate features from the diffusion model and projects them to align with features
from pretrained models, while VA-VAE Yao et al. (2025) performs this alignment during variational
auto-encoder (VAE) training. Building upon REPA, REPA-E Leng et al. (2025) finetunes the entire
model end-to-end, allowing the alignment loss to update VAE parameters and thereby accelerating
generation performance.

Inspired by these advances, we extend this representation learning approach to video diffusion mod-
els by introducing a reconstruction task during training and simultaneously tuning the VAE. This
approach aims to enhance generation performance while achieving a significant additional capabil-
ity — 4D reconstruction.

3 METHOD

Figure 2 illustrates the overall pipeline of our proposed method. Our framework generates multi-
view driving videos conditioned on various inputs, including text prompts, bounding boxes, HD
maps—with or reference frames, while simultaneously producing scene reconstructions represented
as dynamic 3DGS. Our approach extends UniMLVG Chen et al. (2024) by enhancing its variational
autoencoder (VAE) architecture and refining the training procedure. Specifically, we first finetune
the pretrained image VAE to create STORM-VAE, which incorporates an additional reconstruction
task adapted from STORM Yang et al. (2025). This modification introduces a Gaussian Decoder
capable of reconstructing 3D Gaussians and their associated velocities. We then leverage STORM-
VAE to train a DiT-based diffusion model that employs three distinct transformer blocks operating
along different data dimensions, which improve both spatial coherence and temporal consistency in
the generated outputs.

3.1 PRELIMINARY: STORM

Given a set of images {Iv
t ∈ RH×W×3} with corresponding camera poses from timestamps t ∈ Tc

and viewpoints v ∈ V , STORM fuses image features through a Vision Transformer (ViT) and
generate pixel-level Gaussians {Gv

t ∈ RH×W×12}. Each Gaussian is characterized by its center
µ ∈ R3, orientation R ∈ SO(3), scale s ∈ R, opacity o ∈ R, and color c ∈ R3. The center
µ is positioned along the ray cast from the camera center, allowing the Gaussian decoder to only
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output the depth value. Additionally, the model predicts the velocity of each Gaussian to model
dynamic scene elements. To render target viewpoints at timestamp t′, the 3D Gaussian Splatting
(3DGS) elements Gv

t are transformed according to their predicted velocities into Gaussians at time
t′, denoted as Gv

t→t′ . The target images are then rendered based on the union of all Gv
t→t′ . To

enhance image quality, STORM incorporates auxiliary tokens to compose sky colors and adopts
view-based exposure variations.

The training process is supervised by target views randomly sampled within a predefined sampling
range. The image rendering loss Lrgb is formulated as:

Lrgb =
∑

t′∈Tt,v∈V

∥D(F ({Iv
t }), t′, v)− Iv

t′∥22, (1)

where F represents the ViT encoder, D denotes the decoder and rendering, including all image post-
processing operations, and Tt is the set of target timesteps. Additionally, the Gaussian rendering can
also produce depth so we use the depth map obtained by projecting LiDAR on camera views to
supervise the training. We define the overall loss as LSTORM and omit discussion of additional loss
terms not directly relevant to this paper. For more detailed description of the methodology, please
refer to Yang et al. (2025).

3.2 STORM-VAE

We introduce STORM-VAE, a novel variational autoencoder that incorporates STORM as an aux-
iliary network within the VAE framework. The upper part of Figure 2 illustrates the architecture
of our proposed model. STORM-VAE builds upon a general VAE structure, specifically utilizing
the pretrained VAE from Stable Diffusion 3.5 (SD3.5) Esser et al. (2024) in our setting. In the
STORM-VAE pipeline, the VAE encoder E first encodes input images into latent representations,
which are subsequently processed through two parallel branches. In the first branch, the latents are
processed by the VAE decoder DV AE to ensure high-fidelity image reconstruction, supervised by
the loss function LVAE. In the second branch, sampled context latents are fed into the Gaussian Splat-
ting decoder (DGS), which shares architectural similarities with STORM. The key distinction is that
STORM processes RGB images directly while the DGS operates on the VAE latent representations.
Consequently, the new RGB rendering loss is formulated as:

Lrgb =
∑

t′∈Tt,v∈V

DGS(E(Itv), t′, v)− It′v|22, (2)

where DGS is equivalent to D · F described in Section 3.1. The comprehensive training objective
combines the VAE and STORM components as follows:

L = LVAE + λLSTORM. (3)

Here, LVAE comprises three components: the reconstruction loss LMSE, the perceptual loss LLPIPS,
and the KL divergence loss LKL. We deliberately excluded the GAN loss from our implementation
as our experiments indicated it compromised training stability. In our experiments, we set λ to 0.5.

3.3 CVD-STORM

The lower part of Figure 2 illustrates the architecture of CVD-STORM. Following UniMLVG Chen
et al. (2024), we adopt SD3.5 as initialization and append a temporal block and a cross-view block
after each Multi-Modality DiT (MM-DiT) block of SD3.5. The input latent of CVD-STORM is
zt ∈ RT×V×C×H×W , where T is the number of frames, V is the number of viewpoints, C is
the latent dimension, and H,W are the latent spatial dimensions of a single image. The MM-DiT
block performs attention only at the image level (i.e., across H × W dimensions), which requires
reshaping the input to HW ×TV ×C before processing. Similarly, the temporal block operates on
the sequence length dimension and the cross-view block operates on the view dimension, requiring
to reshape the input to T × V HW × C and V × THW × C, respectively. We also incorporate the
multiple conditioning approaches and multi-task framework from UniMLVG in our training. For
details regarding these components, please refer to their paper. The training loss utilizes rectified
flow Liu et al. (2022), formulated as:

LSD = Eϵ∼N (0,I)

[
∥ϵθ(zt, t, c)− (z0 − ϵ)∥2

]
, (4)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Method Duration FID↓ FVD↓ mAPobj↑ mIoUr↑ mIoUv↑
DreamForge Mei et al. (2024) 20s 16 224.8 13.80 - -
UniScene Li et al. (2025) - 6.1 70.5 - - -
Glad Xie et al. (2025) - 11.2 118.0 - - -
DriveScape Wu et al. (2024a) - 8.3 76.4 - 64.43 28.86
MagicDrive2 Gao et al. (2024b) 5s 19.1 218.1 12.30 61.05 27.01
DriveSphere Yan et al. (2025) - - 103.4 21.45 - -
DiVE Jiang et al. (2024) 20s - 94.6 24.55 - -
UniMLVG Chen et al. (2024) 20s 5.8 36.1 22.50 70.81 29.12

CVD-STORM 20s 3.8 14.0 25.21 66.11 29.84

Table 1: Comparison of the generation quality and condition-following metrics on nuScenes
validation set. The best results are in bold, while the second best results are in underlined. Since
most of methods do not release their checkpoints, we list the results reported in their paper. −
represents the values not mentioned in the corresponding papers. mIoUr and mIoUv are the short of
the mean IoU of road and vehicle.

where ϵθ denotes the model, z represents the STORM-VAE latent, zt is the noisy latent, ϵ is the
noise, t is the timestep, and c is the conditioning information.

Different from UniMLVG, we replace the SD3.5 VAE with our STORM-VAE, which provides en-
hanced latent representations and the capability to estimate absolute depth. Furthermore, rather than
employing a multi-stage training process to progressively develop temporal and spatial generation
capabilities, we jointly train the temporal blocks, spatial blocks, and MM-DiT blocks in a single
stage. This integrated approach significantly simplifies the training procedure and reduces compu-
tational costs.

4 EXPERIMENTS

4.1 EXPERIMENT DETAILS

4.1.1 DATASETS

We adopt both single-view and multi-view datasets in our training: OpenDV-Youtube Yang et al.
(2024b) for single-view data, and nuScenes Caesar et al. (2020), Waymo Sun et al. (2020), and Ar-
goverse2 Wilson et al. (2023) for multi-view data. We set the sequence length of a single simple as
19. To enhance the extensibility and diversity of our model, we incorporate three different image
resolutions: 144× 256, 176× 304, and 256× 448, with sampling ratios of 0.1, 0.3, and 0.6, respec-
tively. All the models are trained on H100 with batch size 32. For diffusion training, we leverage
available dataset annotations, including 3D bounding boxes, HD maps, and camera parameters. For
nuScenes specifically, we utilize 12 Hz interpolated annotations. Text descriptions for all frames
and views are generated at 2 Hz (key frames for evaluation).

4.1.2 EVALUATION METRICS

To assess the effectiveness of our method in terms of realism, continuity, ad precise control, we
selected four key metrics to compare against existing multi-view image and video generation meth-
ods. We use the widely recognized Fréchet Inception Distance(FID) Heusel et al. (2017) for realism
evalution and Fréchet Video Distance (FVD) Unterthiner et al. (2018) for temporal coherence esti-
mation. To evaluate controllablity, we evaluate two perception tasks: 3D object detection and BEV
segmentation of road maps. These tasks serve as proxies for measuring the spatial accuracy and
consistent geometry of our generated content. We adopt BEVFormer Li et al. (2022) and cross-view
transformers Zhou & Krähenbühl (2022) to evaluate the performance on these two tasks respectively.

4.1.3 IMPLEMENTATION DETAILS

For STORM-VAE training, we designate the 1st, 7th, 13th and 19th frames as the context frames
while 3 timesteps are randomly sampled as targets. Since the Opendv-Youtube is a single-view
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Figure 3: Qualitative results of Depth Estimation. This figure illustrates the depth of the videos
generated by CVD-STORM at frame 0, 5, 10. Our GS decoder can successfully extract the depth
information of dynamic and static objects.

Table 2: Ablation Study

# Ref. frames FID FVD

0 8.7 39.0
1 3.6 17.2
3 3.8 14.0

(a) Ablation study of the number of reference
frames. The best results are in bold. The FID is about
the same with reference frame, while FVD strictly de-
creases with larger reference frame count.

VAE used FID FVD

w/o STORM-VAE 9.36 52.85
w/ STORM-VAE 7.92 34.37

(b) Ablation study of the use of VAE. The best results
are in bold. w/o STORM-VAE means using default vae
of SD3.5. Both models are trained for 40k steps with
Opendv, nuScenes, Waymo, Argoverse2. No pretarined
weight is loaded for diffusion for fair comparison.

dataset without LiDAR data, it is used exclusively to train the VAE image reconstruction branch.
The other three datasets are utilized for both VAE and STORM training. To address viewpoint in-
consistency across datasets, we standardize inputs to 6 views for all datasets and implement attention
masking to avoid redundant data fusion.

For diffusion training, we freeze the encoder of STORM-VAE. As discussed in Section 3.3, we
implement the single-stage training so we have to deal with the invariance across datasets. For
OpenDV-Youtube, the cross-view block is omitted due to its single-view nature. For multi-view
datasets, we randomly drop temporal and cross-view blocks to enhance the generative capability
of each individual block, thereby improving the overall model stability and robustness. During
inference, we use 3 frames as reference for autoregressive prediction. A cosine scheduler is used
with initial learning rate of 6× 10−5. The minimum learning rate is set to 1× 10−7. The optimize
is widely used AdamW. The inference steps are set to 50. All Experiments are conducted on H100
GPUs.

4.2 EXPERIMENT RESULTS

4.2.1 COMPARISON

Generation Tasks. Following the common evaluation protocols, we report quantitative metrics
on the nuScenes validation set, shown in Table 1. Our model demonstrates exceptional perfor-

7
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Reference frame  1

Generated frame  4

Generated frame  9

Generated frame 14

Generated frame 19

Generated frame 24

Generated frame 29

Figure 4: Qualitative Results of Video Prediction. We produce this example using three reference
frames. The first line is the first reference frame and the following lines are the predicted frames.
Our method demonstrates strong temporal consistency in the video prediction task.

mance compared to previous SOTA methods DiVE Jiang et al. (2024) and UniMLVG Chen et al.
(2024). Specifically, our approach achieves significant improvements of 34.48% in Fréchet In-
ception Distance (FID) and 61.21% in Fréchet Video Distance (FVD) relative to the second-best
method. Additionally, our model can generate high-quality videos with durations up to 20 seconds.
Regarding condition consistency, our approach outperforms competing methods on mAP of object
detection (mAPobj) and IoU of road (IoUr) of. It ranks second in IoU of vehicle (IoUv), performing
marginally below UniMLVG in this particular metric.

STORM-VAE Results. We provide the visualization of the depth maps of the generative images in
Figure 3. We put the more detailed evaluation and discussion in the Appendix.

4.3 ABLATION STUDY

Number of Reference Frames. The number of reference frames represents different types of
tasks in the generative model. Without reference frames, the model conducts pure video generation,
producing content based solely on conditional inputs. On the contrary, the model perform video pre-
diction when the reference frames are given. We present qualitative results in Figures 4 and 5, with
quantitative evaluations in Table 2a. As shown in the table, the FVD score is steadily improved as
the number of reference frames increases, indicating that additional reference frames provide richer
temporal information from the ground truth, thereby improving temporal consistency. Conversely,
when reference frames are provided, the model performs video prediction. For more results, please
refer to the Appendix.

Effect of STORM-VAE. Table 2b demonstrates that our STORM-VAE significantly improves gen-
eration quality over the standard VAE baseline. Specifically, STORM-VAE yields a 15.38% reduc-
tion in Fréchet Inception Distance (FID) and a 34.97% decrease in Fréchet Video Distance (FVD),
indicating substantial enhancements in both image and video generation quality. Furthermore, Fig-
ure 1 illustrates that our model accelerates convergence compared to the baseline. To ensure fair
evaluation in this ablation study, we compare models trained for the same number of steps.

8
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Figure 5: Qualitative Results of Video Generation. We provide the examples generated with the
conditons only, without any reference frame. For each scene, we list the 1st frame in the first line
and the 10th frame in the second line. The bounding boxes and road maps are overlapping over the
generative images. The object in the bounding boxes with the same color are should be of the same
class. For example, cars should be generated in the blue 3D bounding boxes.

5 CONCLUSION

We introduce CVD-STORM, a novel framework that unifies long-sequence, multi-view video gen-
eration with dynamic 4D scene reconstruction. Our approach extends the traditional VAE architec-
ture by incorporating a Gaussian Splatting Decoder, namely STORM-VAE. This design not only
enables high-quality 4D scene reconstruction but also substantially enhances representation learn-
ing, thereby improving the generative capabilities of our downstream diffusion model. Leveraging
the pre-trained STORM-VAE, we train CVD-STORM using multiple datasets and support various
conditioning types across diverse generative tasks. Experimental results demonstrate that CVD-
STORM surpasses SOTA methods, particularly in image quality and temporal coherence. Further-
more, the Gaussian Splatting Decoder directly estimates absolute depth through neural rendering,
providing richer 3D structural information than previous approaches.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are only used to help polish paper writing. The retrieval of references and ideation of research
are performed solely by human authors.

Table 3: Comparison of STORM and STORM-VAE

Method PSNR ↑ D-RMSE ↓
STORM 20.89 5.52

STORM-VAE 21.18 4.55
(a) Comparison of Reconstruction. We extend the
original STORM to a 6-view rendering model and eval-
uate the performance on NuScene. Our STORM-VAE
also slightly outperforms the STORM in the reconstruc-
tion task.

Method AbsRel ↓ δ1 ↑
UniMLVG + STORM 30.825 49.7

CVD-STORM 16.05 49.7
(b) Comparison of Zero-shot Depth Estimate. We
evaluate the performance of our models on depth esti-
mation in the generation results. We use the pesudo-
groundtruth produced by Depth Anything V2.

A.2 ADDITIONAL EXPERIMENTS

A.2.1 VIDEO RESULTS

We provide a video in the supplementary material for better visualization.

A.2.2 COMPARISON OF STORM AND STORM-VAE.

We evaluate the performance of STORM-VAE in comparison to STORM, as illustrated in Table 3.
Specifically, Table 3a demonstrates STORM-VAE’s reconstruction capabilities relative to STORM.
For quantitative assessment, we evaluate the reconstructed images and depth maps of STORM-
VAE on the nuScenes dataset using two metrics: Peak Signal-to-Noise Ratio (PSNR) for image
quality and Depth Root Mean Square Error (D-RMSE) for depth accuracy. Our experimental results
demonstrate that STORM-VAE even slightly exceeds its performance.

In generation task, we compare the performance of CVD-STORM against UniMLVG + STORM,
which first employs UniMLVG to generate videos and subsequently applies STORM to reconstruct
the 4D scene. During inference, we set the context timesteps equal to the target timesteps, which
are the four adjacent frames spanning the interval [t, t+3]. The GS Decoder processes frames [t+3,
t+6] as context in next iterations and continues this progressive reconstruction strategy until reaching
the end of the sequence. To assess its zero-shot depth estimation, we employ two metrics: Absolute
Relative Error (AbsRel) and δ1, where δ1 represents the percentage of pixels satisfying max(d

d̂
, d̂
d ) <

1.25, shown in Table 3b. Since ground truth depth is unavailable for generated results, we utilize
Depth Anything V2 Yang et al. (2024c) to produce pseudo ground-truth depth maps. While these
metrics provide valuable comparative insights, we acknowledge their limitation in assessing absolute
depth accuracy, which remains an open challenge in generative depth evaluation. We provide more
qualitative results in Figure 6,7.

A.2.3 MORE QUALITATIVE RESULTS

We provide more qualitative results in Figure 8, 9, 10, 11, 12.
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frame = 0

frame = 20

frame = 40

frame = 60

frame = 80
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frame = 140

Figure 6: Qualitative results of Depth Estimation.Figure 6: Qualitative results of Depth Estimation.
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frame = 0

frame = 20

frame = 40

frame = 60

frame = 80

frame = 100

frame = 120

frame = 140

Figure 7: Qualitative results of Depth Estimation.
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Figure 7: Qualitative results of Depth Estimation.
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Ground Truth Generation
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Figure 8: Qualitative results of Video GenerationFigure 8: Qualitative results of Video Generation
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Ground Truth Generation
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Figure 9: Qualitative results of Video Generation.Figure 9: Qualitative results of Video Generation
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Ground Truth Generation
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Figure 10: Qualitative results of Video Generation.Figure 10: Qualitative results of Video Generation
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Reference frame 1

Reference frame 2

Reference frame 3
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Figure 11: Qualitative results of Video Generation from 3 reference frames.
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Reference frame 1

Reference frame 2

Reference frame 3

Generated frame 4
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Figure 12: Qualitative results of Video Generation from 3 reference frames at night. Our model
imitated the blur of fast motion.
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