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Abstract

While language models have exceptional capabil-
ities at text generation, they lack a natural induc-
tive bias for emitting numbers and thus struggle
in tasks involving quantitative reasoning, espe-
cially arithmetic. One fundamental limitation is
the nature of the cross-entropy (CE) loss, which
assumes a nominal scale and thus cannot convey
proximity between generated number tokens. In
response, we here present a regression-like loss
that operates purely on token level. Our proposed
Number Token Loss (NTL) comes in two flavors
and minimizes either the Lp norm or the Wasser-
stein distance between the numerical values of
the real and predicted number tokens. NTL can
easily be added to any language model and extend
the CE objective during training without runtime
overhead. We evaluate the proposed scheme on
various mathematical datasets and find that it con-
sistently improves performance in math-related
tasks. In a direct comparison on a regression task,
we find that NTL can match the performance of a
regression head, despite operating on token level.
Finally, we scale NTL up to 3B parameter mod-
els and observe improved performance, demon-
strating its potential for seamless integration into
LLMs. We hope that this work can inspire LLM
developers to improve their pretraining objectives.
The code is available via: https://tum-ai.
github.io/number-token-loss/.
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Figure 1. (a) Number Token Loss (NTL). The NTL allows com-
puting a regression-like loss directly on a language modeling head.
We propose two schemes: LNTL-MSE uses a dot product of number
token values and their probabilities; LNTL-WAS uses the Wasserstein-
1 distance between label and prediction distributions. (b) CE is
nominal-scale and thus assigns equal loss to all incorrect predic-
tions whereas NTL increases with distance from ground truth like
a regression loss.
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The Number Token Loss

1. Introduction
As coined by Thawani et al. (2021), numbers in natural
texts are ubiquitous and important, yet systematically ne-
glected by language models (LMs). Even worse, while
Transformers (Vaswani et al., 2017) were invented for NLP,
they have permeated various scientific domains (Jumper
et al., 2021; Boiko et al., 2023), where tabular/numerical
data is more prevalent than in NLP and often governs task
definitions: Molecules are labeled with drug efficacy, chem-
ical reactions with yield, and synthesis procedures are natu-
ral text interspersed with quantities and times. Prior art for
joint language-number modeling suggested the use of veri-
fiers (Cobbe et al., 2021; Li et al., 2023), chain-of-thought
(CoT) reasoning (Zhong et al., 2024; Wei et al., 2022; Lee &
Kim, 2023), calculators or code interpreters (Qu et al., 2025;
Gao et al., 2023) to yield improved performance in LMs.
On a model-level, customized ideas such as reverting num-
bers (Zhang-Li et al., 2024), right-to-left tokenization (Singh
& Strouse, 2024; Lee et al., 2023), or joint prediction of
multiple number tokens have been proposed (Bachmann &
Nagarajan, 2024). Still, LMs notoriously struggle even with
simple arithmetic tasks like three-digit multiplication (Dziri
et al., 2024). We argue that all these strategies – reformu-
lating the task, trying to correct answers a posteriori with
calculators, or using significantly more compute (CoR) –
avoid the fundamental, underlying problem: number repre-
sentation in LMs is poor, for multiple reasons:

1. Tokenization: Standard subword tokenization splits
numbers into arbitrary tokens, disrupting their structure
and losing a significant amount of numerical informa-
tion (Wallace et al., 2019). Mitigation strategies include
scientific notation (Zhang et al., 2020) or digit-level tok-
enization (Geva et al., 2020), which may also preserve
the decimal order of each digit (Born & Manica, 2023).

2. Embedding: Canonically, LMs have to recover the struc-
ture of numbers from data because number token em-
beddings are learned like any other. To mitigate that,
many flavors of numeracy-preserving word embeddings
exist (Sundararaman et al., 2020; Born & Manica, 2023;
Golkar et al., 2023), often akin to positional encodings
and sometimes adapted for special cases like angular em-
beddings for modular arithmetics (Stevens et al., 2024;
Saxena et al., 2024).

3. Sequential prediction: Token-wise decoding fails to
account for the greater significance of higher-order digits
in a number. Zhang-Li et al. (2024) find that reversing the
digit order and human-inspired, step-by-step calculations
for addition and multiplication improve accuracy.

4. Training objective: The standard cross-entropy (CE)
loss assumes a nominal scale, thus it fails to convey the
proximity between numbers, effectively inducing a semi-
supervised setting. For example, predicting a 3 instead
of a 2 token will not generally induce lower loss than

a 9. This general issue has been surprisingly neglected
and is the focus of this work.

In this paper, we aim to equip LMs with better inductive
biases to handle combinations of textual and numerical data,
such as math word problems or scientific datasets. We pro-
pose two versions of a regression loss on number tokens
that respect numerical proximity and can be effectively com-
bined with standard CE (Figure 1a). The first version of
the number token loss (NTL) computes the Mean Squared
Error (MSE) between the numerical value of the label and
the predicted class probabilities weighted by their numerical
token value. The second version computes the Wasserstein
distance between the distribution of the predicted number
probabilities and the ground truth distribution, which is the
one-hot encoding of the label.

In both cases, the NTL has the following key characteris-
tics. (1) NTL is model agnostic. It can be applied to any
language model (Transformer, Mamba, etc.) in any style
(encoder-decoder, decoder-only etc). (2) NTL is plug-and-
play for any LM because it makes minimal assumptions
about the vocabulary. It only requires a map between to-
kens (strings) and their numerical value (float) and is thus
compatible with digit-level as well as multi-digit tokeniza-
tion1. (3) NTL does not add computational overhead.
The most capable NTL version (NTL-WAS) slows down
the loss calculation only by 1% compared to cross-entropy.
This difference becomes negligible over the whole training
step (see later in Figure 3).

Our empirical analysis further shows that: (4) NTL con-
sistently improves performance in mathematical tasks
across architectures, compared to cross-entropy alone. (5)
On a real regression task, a LM with NTL performs on-
par with a regression head and improves by 10% over
a LM with standard CE. (6) NTL does not hamper per-
formance on text-only tasks and (7) NTL scales well to
billion-size models. Therefore nothing speaks against using
it during LLM pretraining.

2. Number Token Loss (NTL)
Inevitably, some tokens of any LM correspond to digits or
numbers, not to text. Our basic idea is to combine the log-
its of these number tokens with their numerical values to
compute a loss. Such a loss can effectively augment cross-
entropy by taking numerical proximity of number tokens
into account. Note that outside NLP, some systematic stud-
ies of ”regression by classification” exist (Shah & Aamodt,
2023; Stewart et al., 2023), yet a principled approach that

1digit-level, e.g.: LLaMA2 (Touvron et al., 2023), DeepSeek-
V2 (DeepSeek-AI et al., 2024) and PaLM (Chowdhery et al.,
2022); multi-digit, e.g. LLaMA3 (Grattafiori et al., 2024) or
T5 (Raffel et al., 2020).
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facilitates seamless integration into LLMs lacks entirely.

NTL with Lp norm (e.g., NTL-MSE) This loss maps
the predicted token probabilities to a real-valued output by
calculating the dot product of the probabilities and their
corresponding numerical token value (cf. Figure 1a). This
transformation enables the application of standard regres-
sion losses, such as the MSE, to compare the predicted
output against the numerical value of the ground truth token.
Assume a model f(·), input tokens x≤i (i ≤ N ) and a vo-
cabulary V . Let ŷi := f(x≤i) be the predicted probability
distribution, yi the one-hot label with yi as the numerical
value of the ground truth token and V : V → R a map to
convert tokens (strings) to their numerical values (floats),
with the index range s...t representing the number tokens.
Then we compute NTL-MSE:

LNTL-MSE =
1

N

N∑
i

(yi − ŷs:t
i ◦ Vs:t)2 (1)

By changing the p-order in NTL-MSE, different Lp-norm
losses can be obtained (e.g., NTL-MAE). Huber loss is also
compatible. Notably, instead of a nominal-scale loss like
CE, the NTL-MSE effectively conveys proximity between
numbers. For example, if the label is 4 and the LM predicts
5 instead of 9, the loss will be lower, matching our intu-
itive expectation. This is in contrast to the CE which gives
constant loss regardless of the proximity of the number due
to its nominal nature (cf. Figure 1b). This is sufficient for
the vast majority of cases, however, since the minimum of
the NTL is non-unique, it can return spuriously low loss for
incorrect predictions. Consider e.g., a sample with label 4
where 50% of the mass is on 0 and 50% on token 8, then
NTL will be zero (see Figure 2). While such cases are rare
due to the softmax emphasizing logit differences, combin-
ing NTL with CE loss helps correct spurious cases. But
to address the non-unique minima more systematically we
propose a second, refined version.

NTL with Wasserstein-1 Distance (NTL-WAS) To mea-
sure the similarity of a predicted probability distribution
of number tokens and a ground truth distribution, we take
inspiration from Optimal Transport (OT) and leverage the
discrete Wasserstein-1 distance, generally defined as:

Wc(P,Q) = min
γ∈Γ(P,Q)

∑
i

∑
j

γijc(ui − vj) (2)

where ui and vj are points, P and Q their associated proba-
bilities respectively, and c a function specifying the transport
costs. γ is a coupling between P and Q, where γij specifies
the mass to be transported from ui to vj . We apply OT to
measure the difference between the distributions ŷi and yi

by defining the cost function c as the Euclidean distance

between the numerical token values:

WLM(P,Q) = min
γ∈Γ(ys:t

i ,ŷs:t
i )

t∑
j=s

t∑
k=s

γjk∥Vj − Vk∥ (3)

Note on Cost Function: Equation 3 is very flexible –
by changing the cost function c, NTL can be applied even
when the number tokens lie in arbitrary, non-Euclidean
spaces. The cost function does not need to adhere to the
definition of a distance metric and can instead be specified
as a pairwise matrix between number tokens. NTL could
thus find utility also in exotic cases such as modular arith-
metics (Charton, 2023; Kera et al., 2024; Gromov, 2023). In
this paper, we mainly assume standard Euclidean distance
due to its general applicability. A practical example where
a non-euclidean cost is useful are multi-digit tokenizers
which often contain individual tokens for very large number
(Section 4.5 contains explicit results on non-euclidean cost).

Computing the quantity in Equation 3 requires solving a
linear program and is thus not generally differentiable. Ap-
proximations could be made for the general case via en-
tropic regularization (Cuturi, 2013), but our application of
Wc entails two special cases that enable its efficient and
differentiable computation: First, if yi is one-hot, LNTL-WAS
coincides with the weighted sum of the absolute differences
from the label and the numerical token values:

LNTL-WAS =
1

N

N∑
i=1

t∑
j=s

ŷj
i |yi − V

j | (4)

Second, if the number token indices s...t are sorted by nu-
merical value Vs:t and the values are equidistantly spaced,
the Wasserstein-1-distance can be computed using the cu-
mulative distribution function CDF(·):

LNTL-WAS-CDF =
1

N

N∑
i=1

∣∣CDF
(
ys:t
i

)
− CDF

(
ŷs:t
i

)∣∣ (5)

The advantage of LNTL-WAS-CDF is that it does not require
the label yi to be one-hot – instead it supports arbitrary
target distributions obtained e.g., via label smoothing on
number tokens (Wang et al., 2025). In practice, unless
mentioned otherwise, we compute LNTL-WAS via Equation 4
because it is 230x faster than Equation 5 and does not re-
quire sorting or equidistant spacing and is thus applicable
beyond digit-level tokenization. As one can see in Figure 1b,
LNTL-WAS not only conveys proximity between numbers cor-
rectly but also eliminates the problem of non-unique minima
in LNTL-MSE (Figure 2). Both versions of the NTL are scaled
with λ (default 0.3) and added to the standard CE loss:

L = LCE + λLNTL (6)

Note that both versions of the NTL yield zero loss for all
non-numerical tokens (see Appendix A.2 for pseudo-code).
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Figure 2. The heatmap plot shows the respective loss for a given
combination of the class probabilities for tokens 3 and 5, where
the ground truth is token 4. The behavior of the NTL-WAS is
closest to the intuitive desired behavior of the loss function, while
the NTL-MSE does not have a unique minimum.

3. Experiment Setup
3.1. Backbone T5 and Model Variants

We use a T5 backbone (Raffel et al., 2020) (Appendix A.3)
for most of our experiments, unless stated otherwise, due to
its flexible encoder-decoder architecture and its success in
various natural language processing tasks. We built upon
the T5 implementation and language modeling trainer from
transformers (Wolf et al., 2020). For the multitask
mathematics experiments in Section 4.1 we use T5-Base
with 220M parameters. For the scaling experiment in Sec-
tion 4.7 we use T5-3B. For ablation studies and other exper-
iments, we use T5-Small with 60M parameters. To illustrate
the model-agnostic nature of NTL, we evaluate it on both
GPT-2 and IBM Granite model variants. We always initial-
ize the models with their pre-trained weights. Building up
on prior work (Geva et al., 2020), we adapt the tokenization
scheme to tokenize all numbers on the digit level, while
leaving all other tokens unchanged. Although both NTL
versions are compatible with any tokenizer, single-digit tok-
enization improves performance for both CE and NTL on
mathematical tasks in our experiments (see subsection 4.5).

3.2. Baselines

We compare to three related methods.

First, the Regression Transformer (Born & Manica, 2023)
which tokenizes numbers on digit level (considering both
the position and value of each digit) and leverages a fixed
number embedding that preserves relative proximity of the
numbers (details in Appendix A.4).

Second, xVal (Golkar et al., 2023) which encodes real num-
bers using a single [NUM] token multiplied by their numer-
ical value. For decoding, a number/regression head predicts
the value while the token head outputs the sequence, re-
placing [NUM] during inference. However, this scheme is
incompatible with T5 (see Appendix A.5) and problematic
for beam search decoding. We thus use the xVal encoder
and masked language modeling in our experiments.

Third, Gaussian Cross Entropy (or Gaussian label smooth-

ing; Wang et al. (2025)) which addresses the limitations of
standard CE for continuous-valued tokens. Instead of one-
hot encoded labels, a Gaussian distribution is centered on the
true numeric label. In this scheme, nearby numeric tokens
receive partial probability mass, reflecting the continuous
nature of numerical values. Given a numeric label yi, its
one-hot vector yi is replaced with a Gaussian distribution:

ỹj
i =

1√
2π σ2

exp
(
− (Vj−yi)

2

2σ2

)
, ∀j ∈ [s..t] (7)

where σ governs the smoothing width. The objective re-
mains the cross-entropy, but now between the modified
labels ỹi and the predicted distribution ŷi:

LGCE = − 1

N

N∑
i=1

t∑
j=s

ỹj
i log ŷj

i , (8)

The obvious disadvantage is that the smoothing is entirely
fabricated: there is no real uncertainty in the label. While
this technically provides incorrect labels, it ensures that the
inherent similarity among nearby numeric tokens is cap-
tured and continuity in numeric space is preserved. Wang
et al. (2025) finds that this does not alter classification per-
formance on strictly categorical tokens.

4. Experimental Results
Across all experiments, we always optimize NTL jointly
with CE (cf. Equation 6; default λ = 0.3). For brevity we
refer to this as just NTL-MSE or NTL-WAS.

4.1. NTL Improves Performance in Arithmetics

To test the mathematical capabilities of our models, we use
more than 25 million samples from the mathematical Q&A
dataset from DeepMind (Saxton et al., 2019). The dataset
comes with two sets of tests: interpolation tests, one for each
type of question occurring in the training set, and extrapola-
tion tests, which measure generalization along various axes
of difficulty beyond that seen during training. We provide
more information about the dataset in Appendix A.6.1.

4.1.1. MULTITASK MATHEMATICS DATASET

We evaluated all models on the two test sets of this dataset
and report the accuracy (the proportion of exactly predicted
numbers), as well as the Mean Absolute Error (MAE) and
the R2-score. Since the dataset is skewed with some very
high values, we perform a log10 transformation on the pre-
dicted and ground truth numbers before calculating MAE
and R2-score. All models were trained for ∼ 1M steps with
a batch size of 32. More details on the models’ training
hyperparameters can be found in Appendix A.6.

The results in Table 1 and Figure A1 show that vanilla T5
clearly benefits from both NTL variants. In fact, the accu-
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Table 1. Evaluation on Mathematics Dataset

Table 1. (a) Interpolated Test Data

Model Loss Accuracy MAE R2

T5 CE 0.64 0.13 0.97
T5 NTL-MSE 0.72 0.11 0.97
T5 NTL-WAS 0.75 0.10 0.98
T5 NTL-MAE 0.74 0.10 0.97
RT CE 0.71 0.11 0.97
xVal MSE 0.10 0.26 0.97

Table 1. (b) Extrapolated Test Data

Model Loss Accuracy MAE R2

T5 CE 0.367 0.785 0.913
T5 NTL-MSE 0.428 0.779 0.909
T5 NTL-WAS 0.432 0.744 0.913
T5 NTL-MAE 0.427 0.792 0.906
RT CE 0.404 0.987 0.738
xVal MSE 0.058 0.826 0.819

racy increases by more than 10% for NTL-WAS compared
to vanilla T5 in the interpolation tasks. The NTL-WAS was
found to have the best performance across all three metrics
and both interpolation and extrapolation tasks. Moreover,
NTL consistently outperforms competing methods such as
the RT and xVal. This confirms our hypothesis that number
representation in LMs can be effectively improved through
a minor, architecture-agnostic loss modification.

Since xVal is equipped with a regression head, numbers
are never predicted exactly, so the accuracy value for xVal
refers to the predictions rounded to two decimal places. The
poor performance of xVal can likely be explained by the
extensive range of numbers in the used dataset. The effec-
tive number range of xVal is limited to [−5, 5] due to the
combination of its scaling of the number token embeddings
and the pre-layer-norm in the backbone (Xiong et al., 2020;
Golkar et al., 2023). To take this into account, we scale our
dataset for xVal with log(1 + x). However, this means that
large numbers can no longer be adequately distinguished by
the model, as their embeddings become very similar. For
a direct comparison without any modifications to the xVal
processing, we repeated the 3-digit multiplication experi-
ment from Golkar et al. (2023). Again, our method beats
xVal. Details can be found in Appendix A.5.

4.1.2. ABLATION STUDIES

In order to investigate the impact of variations in loss func-
tions, we conducted extensive experiments testing nine dif-
ferent configurations: standard cross entropy loss, NTL-
MSE and NTL-WAS (both with λ ∈ {0.3, 0.8, 2}), NTL-

MAE and NTL-Huber. Training of these models was done
on a subtask of the original dataset (100k samples), consist-
ing of basic integer arithmetic Q&A pairs, where the input
is a short natural language question containing an arithmetic
expression, and the output is a single integer. A comparison
of their performances on the interpolation and extrapolation
test sets is shown in Table 2.

Table 2. Evaluation of NTL Loss Variants

Table 2. (a) Interpolated Test Data

Loss λ Accuracy MAE R2

CE 0.34±0.01 2.15±0.08 0.95±0.01

NTL-MSE

0.15 0.44±0.02 0.92±0.05 0.99±0.00

0.3 0.41±0.01 1.02±0.06 0.99±0.00

0.8 0.37±0.02 1.29±0.11 0.99±0.00

2.0 0.33±0.01 1.67±0.20 0.97±0.01

NTL-WAS

0.15 0.44±0.02 0.93±0.01 0.99±0.00

0.3 0.43±0.05 0.91±0.06 0.99±0.00

0.8 0.43±0.04 0.94±0.07 0.99±0.00

2.0 0.41±0.06 1.01±0.08 0.99±0.00

NTL-Huber 0.3 0.44±0.02 0.89±0.03 1.00±0.00

NTL-MAE 0.3 0.45±0.02 0.89±0.07 0.99±0.00

Table 2. (b) Extrapolated Test Data

Loss λ Accuracy MAE R2

CE 0.05±0.00 61.91±1.31 0.61±0.01

NTL-MSE

0.15 0.09±0.01 57.13±1.51 0.68±0.01

0.3 0.09±0.01 60.99±1.35 0.65±0.01

0.8 0.08±0.01 58.35±1.06 0.68±0.01

2.0 0.07±0.01 59.48±2.72 0.66±0.02

NTL-WAS

0.15 0.09±0.00 57.31±0.57 0.68±0.00

0.3 0.10±0.01 58.18±1.89 0.68±0.02

0.8 0.10±0.02 59.46±1.38 0.66±0.01

2.0 0.10±0.01 62.29±1.04 0.64±0.01

NTL-Huber 0.3 0.10±0.01 58.81±1.67 0.67±0.01

NTL-MAE 0.3 0.10±0.01 57.99±1.48 0.67±0.01

First, it is evident that all flavors of NTL are consistently
better than a standard CE loss. Mean and standard deviation
were calculated over 4 different training runs. Details and
additional metrics can be found in Appendix A.6.2. The
ablation studies in Table 2 support our finding that both
variants of the NTL improve arithmetic performance com-
pared to using the CE loss alone. Additionally, NTL-WAS
mostly outperforms NTL-MSE across both interpolation
and extrapolation test sets. Among the tested weights for
the NTL, λ = 0.3 yields the best performance for both loss
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variants. Interestingly, we find that NTL-Huber achieves
competitive and NTL-MAE sometimes even superior results
to NTL-WAS. Across all experiments, the R2 achieves high
values, seemingly in contrast to the accuracy. A closer in-
vestigation of the error distribution revealed that this can
be attributed to many predictions being numerically very
close to the ground truth, despite not being strictly accurate.
These smaller errors have a very limited impact on R2, while
still affecting accuracy.

4.1.3. GAUSSIAN CROSS ENTROPY

The Gaussian Cross Entropy (GCE) proposed by Wang
et al. (2025) constitutes an alternative, yet complimentary
means to convey proximity between number tokens. We
argue that it is less principled because it essentially blurs
the labels and assigns mass to technically incorrect tokens.
Yet, we assessed its performance by replacing the vanilla
CE objective with a GCE objective. We found σ = 0.5 to
yield the best results (Table A6).

The experiments on both the interpolation and extrapola-
tion sets suggest that while both NTL and GCE improve
model performance, NTL is generally preferable, as it leads
to larger improvements. Furthermore, we investigated the

Table 3. Gaussian Cross Entropy (GCE). Standalone and com-
binatory effect of GCE and NTL. Means and standard deviations
across four runs.

GCE NTL Accuracy MAE R2

Interpolation

✗ ✗ 0.34 2.15 0.95
✗ ✓ 0.43 0.91 0.99
✓ ✗ 0.42 0.95 0.99
✓ ✓ 0.48 0.76 0.99

Extrapolation

✗ ✗ 0.05 61.92 0.61
✗ ✓ 0.10 58.18 0.68
✓ ✗ 0.10 58.55 0.65
✓ ✓ 0.10 66.67 0.59

performance of using NTL and GCE in combination. Since
the labels are no longer one-hot encodings in this setting,
we employed the NTL-WAS-CDF formulation (Equation 5)
which allows for training with arbitrary target distributions.
On the interpolation set, the combination of NTL and GCE
yields the best results. These experiments suggest that NTL
and GCE can be mutually beneficial for certain tasks.

4.2. Training with NTL Is Efficient

To assess potential computational overhead, we performed a
comprehensive benchmarking across four distinct loss con-
figurations: CE loss serving as the baseline, CE with NTL-
MSE, CE with NTL-Wasserstein implemented according to
Equation 5 (NTL-WAS-CDF), and CE with its optimized
variant (NTL-WAS, Equation 4). We evaluated these loss
functions under two different scenarios to quantify both the
standalone computational overhead of the loss calculation
and its impact within a complete training step, including
the forward pass, backpropagation and optimizer step. We
standardized the number of tokens in the input for both for-
ward passes and training steps, along with maintaining a
consistent proportion of number tokens across all experi-
ments, although their positions were randomized. Each loss
function was evaluated through 100 iterations on a GPU.
The results in Figure 3 demonstrate that NTL-MSE and
NTL-WAS introduce only marginal computational overhead
across both benchmark scenarios, as each benchmark in-
cludes the runtime of the CE loss combined with the runtime
of the respective NTL variant.

Figure 3. Runtime Comparison. Benchmarking of the four loss
functions in two configurations: standalone execution (top) and
a complete training step (bottom), with a mean number token
proportion of 80 percent, highlighting computational overheads.

Notably, computing NTL-WAS alone is around 125x faster
than computing CE alone. This is achieved because only
a tiny fraction of tokens in the vocab are number tokens.
When assessing only the loss computation time, augmenting
the CE loss with NTL introduces a computational overhead
ranging from a 1% (NTL-WAS) over 2.9% (NTL-MSE) and
up to a substantial 286% for the less efficient NTL-WAS-
CDF. However, during the full training step, the relative
overhead becomes negligible as the overall computational
effort consisting of the forward pass, backpropagation and
optimizer step becomes dominant. For instance, the relative
overhead of NTL-WAS-CDF compared to the CE decreases
to 4.4%.
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4.3. NTL Can Match Regression Models

Ideally, LMs should be able to solve even tasks that are
focused solely on predicting numerical values, such as es-
timating a property of a molecule. Such tasks are often
approached with regression heads on LMs which allow to
use appropriate loss functions such as the MSE. To test the
ability of NTL to solve a regression task solely token-based,
we train on the rJokes dataset (Weller & Seppi, 2020) that
poses the challenge to predict the level of humor in a joke.
A train-test split is provided with the dataset.

In Table 4, we show the results of the T5 model with CE,
NTL-WAS and combined with a regression head, as well
as the results from the rJokes benchmark (Weller & Seppi,
2020). We evaluated all flavors of the T5 model over three
independent runs to ensure robust metrics. NTL signifi-
cantly improves over standard CE and performs on-par with
the regression-head model. This is remarkable considering
that it operates on a token-level and can still be utilized
for non-numeric tasks, unlike models that rely on a dedi-
cated regression head. Even though BERT, RoBERTA, and
XLNet with a regression head outperform T5 trained with
NTL-WAS, the performance gap is not significant consider-
ing the difference in the number of parameters. We attribute
this to the fact that these models have nearly twice as many
parameters as our T5-small model. Details and additional
metrics can be found in Appendix A.6.3.

Table 4. NTL Performance on a Regression Task. NTL performs
on-par with a regression-head model. Mean and standard devia-
tions across five runs. BERT, RoBERTA and XLNet values are
taken from Weller & Seppi (2020).

Model Loss Reg. Head RMSE Pearson

T5 CE ✗ 2.01±0.01 0.41±0.00

T5 NTL-WAS ✗ 1.81±0.01 0.44±0.00

T5 MSE ✓ 1.82±0.01 0.45±0.00

BERT MSE ✓ 1.62 0.47
RoBERTA MSE ✓ 1.61 0.47
XLNet MSE ✓ 1.74 0.46

4.4. NTL Is Model-Agnostic

As a loss function, NTL can be applied to train arbitrary
models, including LMs beyond Transformers like Mamba.
The experiments described so far were conducted with the
T5 model, which is based on an encoder-decoder Trans-
former architecture. In this section, we demonstrate the ef-
fectiveness of training the decoder-only models GPT-2 (Rad-
ford et al., 2019) and IBM Granite (IBM Research, 2024)
with NTL. We test model sizes from 125M to 2B.

To this end, we constructed an arithmetic multiplication
task, much akin to the length generalization task (Jelassi

et al., 2023). This tasks consists of multiplying two num-
bers with k and l digits, with k, l ∈ [1, .., 5] in training
and k, l ∈ [1, .., 6] in testing. We report the mean absolute
percentage error (MAPE) separately for unseen interpola-
tion samples, which involve multiplying numbers with up
to 5 × 5 digits, and extrapolation samples, which involve
multiplications with at least one six-digit factor. The re-
sults presented in Table 5 demonstrate the effectiveness of
training decoder-only models with NTL, as it consistently
improves performance on the multiplication task in terms
of MAPE.

Interpolation Extrapolation
Model Size CE NTL CE NTL

GPT2 Small 125M 0.55 0.49 1.11 1.00
GPT2 Medium 350M 0.43 0.42 0.82 0.82
GPT2 Large 774M 0.39 0.37 0.76 0.75
GPT2 XL 1.5B 0.43 0.40 0.83 0.82
Granite 3.2 2B 0.35 0.21 0.60 0.42
Granite 3.1 MOE 1B 0.28 0.15 0.68 0.23

Table 5. NTL Performance for Decoder-only Models. MAPE
for training GPT-2 and IBM Granite variants with CE and NTL on
the multiplication task. All values are error percentages.

The positive impact of NTL is evident across all model
scales. Notably, the improvements from NTL are more pro-
nounced in the extrapolation setting than in interpolation,
indicating that training with NTL enhances a model’s ability
to generalize beyond the training distribution. This is partic-
ularly relevant due to the poor extrapolation capabilities in
mathematical tasks (Razeghi et al., 2022). Some models,
such as Granite 3.1, benefit particularly from training with
NTL, showing the largest performance gains among the
evaluated models (full evaluation in Appendix Figure A2).
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Figure 4. Sample Efficiency. Number of epochs needed to reach a
MAPE below 0.5 on the multiplication task (GPT2 Small). NTL
particularly improves sample efficiency for samples with longer
factors.

Furthermore, we analyzed the sample efficiency of training
with NTL on the multiplication task compared to using CE
only. As revealed by Figure 4, GPT2 Small trained with
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NTL requires significantly fewer epochs to achieve a MAPE
below 0.5. This effect is more pronounced for challenging
samples consisting of larger factors.

Similarly, we observe that the average number output dis-
tributions are more sharply centered on the correct token
when using NTL (see Appendix Figure A4).

4.5. NTL Is Effective for Different Tokenizations

Our standard implementation of NTL-WAS for the T5
model relies on a custom single-digit tokenizer derived
from the standard T5 tokenizer, which is based on
SentencePiece and includes some tokens consisting
of multiple-digits. We conducted additional ablation studies
to disentangle the effect of the custom tokenizer and the loss
function. To this end, we performed further experiments on
the rJokes and the mathematical Q&A datasets, in which
we also evaluated the effect of using the single-digit tok-
enizer without the NTL-WAS and a more general version
of NTL-WAS that supports multi-digit tokens. The results
on the rJokes dataset in Table 6 confirm the effectiveness
the NTL-WAS loss across both tokenization schemes, with
the combination of single-digit tokenization and NTL-WAS
performing best.

Table 6. Tokenizer Comparison on rJokes Datset. T5-small used
across all experiments. Mean and standard deviation across four
runs.

Loss Custom
Tokenizer RMSE Pearson

CE ✗ 2.01±0.01 0.41±0.00

NTL-WAS ✗ 1.97±0.01 0.41±0.00

CE ✓ 2.02±0.01 0.41±0.00

NTL-WAS ✓ 1.81±0.01 0.44±0.00

MSE ✗ 1.82±0.01 0.45±0.00

A similar trend is observed in the extrapolation test set of
the mathematical Q&A task in Table 7, where the NTL-
WAS improves accuracy for both tokenization strategies.
In the interpolation test set in Table A5, the NTL-WAS

Table 7. Extrapolation Performance for Different Models and
Tokenizers

Loss Custom
Tokenizer

Accuracy
(Extrapolate)

Pearson
(Extrapolate)

CE ✗ 0.05±0.00 0.81±0.01

NTL-WAS ✗ 0.06±0.00 0.76±0.01

CE ✓ 0.09±0.01 0.87±0.01

NTL-WAS ✓ 0.10±0.01 0.88±0.01

enhances performance for the standard tokenizer, while the

single-digit tokenizer performs slightly better without NTL-
WAS. Since the extrapolation task and the rJokes task more
closely resemble real-world scenarios, we argue that these
experiments further reinforce the overall benefits of the NTL,
particularly when combined with single-digit tokenization.

Furthermore, we observed a practical issue with models
that tokenize numbers into multiple digits: some tokens
have large numerical values, which disproportionately affect
the loss, especially when the number tokens are irregularly
spaced. For digit-level tokenization and NTL with euclidean
distance (as used thus far) the loss for the farthest incorrect
number token cannot exceed 9x of the loss for the nearest
incorrect number token2. But a single, large number token
in the vocabulary, say 1001, can distort this ratio to 1000x
and may even destabilize training. NTL can intrinsically
mitigate such edge cases because it is not limited to us-
ing Euclidean distances between numbers (cf. Equation 2).
This can be accomplished through an optional rescaling fac-
tor that squashes the distances between tokens. Note that,
with digit-level tokenization, the implicit squashing factor
is 9 while setting it to 1 effectively recovers standard cross-
entropy. Thus squashing allows to smoothly interpolate
between vanilla NTL and CE. On the integer multiplication
dataset (Jelassi et al., 2023), we found that GPT2-Large
with a squashing factor of 3 improves over CE but performs
worse than NTL as measured by MAPE (Table A7). Overall,
we recommend to enforce digit-level tokenization as this
ensures NTL is well-behaved.

4.6. NTL Does Not Hamper Text Learning

To ensure that training with NTL does not introduce draw-
backs for normal text generation tasks, we conduct exper-
iments on the MultiRC dataset (Khashabi et al., 2018), a
question-answering dataset testing reading comprehension.
We reformat the dataset to train the model to generate the
answer based on the question, rather than evaluating it as a
multiple-choice task. To this end, we preprocess the dataset
by extracting passages along with their corresponding ques-
tions and concatenating them to construct the input. The
answer field consists of all correct answers concatenated
with a delimiter. The NTL was only applied to the number
tokens in the answers, which account for only 1.5% of all
answer tokens – a propotion we believe to be roughly rep-
resentative of real-world text datasets. In Table 8 the mean
and standard deviation over three runs evaluated on the vali-
dation set are shown. Token accuracy as well as BLEU and
ROUGE-1 score remain unaffected by the addition of the
NTL and remain on the same level as when only using CE.
These results demonstrate that training with NTL does not
hamper performance on text comprehension in a task where

2For a ground truth of 0, the nearest/farthest incorrect tokens are 1
and 9.
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Table 8. NTL on a Standard Language Modeling Task. NTL
does not impact performance on a pure textual task.

Loss Token Acc. BLEU ROUGE-1

CE 0.36±0.00 0.13±0.00 0.32±0.00

NTL-WAS 0.36±0.00 0.13±0.00 0.32±0.00

its benefits for numerical data are limited or absent. These
findings underline that NTL can be integrated as a standard
enhancement in LM training, without compromising general
text understanding and generation.

4.7. NTL Scales Well to LLM-Size

To demonstrate the potential to integrate NTL into LLMs,
we train the 3B parameter version of the T5 model on the
GSM8k dataset (Cobbe et al., 2021), a benchmark for math-
ematical reasoning based on school math problems. This
dataset poses a significant challenge for standard LLMs; for
instance, 6B-parameter models initially achieved only 22%
accuracy after fine-tuning (Cobbe et al., 2021). In our exper-
iments, the T5-3B model trained on GSM8K with CE loss
attains a top-1-accuracy of 13.5% on GSM8K (see Table 9).
Training with the NTL loss improves accuracy to 17.7%,
matching the performance of LLMs that are more suitable
for mathematical reasoning, such as Gemma-2B (Team et al.,
2024), and surpassing larger models such as LLaMA-2 7B
(14.6%). A qualitative example of a GSM8K task and pre-
dicted solutions is provided in Appendix Example 1.

Table 9. Results with T5-3B on GSM8k

Loss Accuracy Pearson

CE 13.5% 0.67
NTL-WAS 17.7% 0.72

Notably, specialized training approaches can significantly
boost performance. For example, tailored fine-tuning strate-
gies have enabled even a 1.3B model to reach 81.5% ac-
curacy (Liu et al., 2023). Future work should explore how
NTL can further enhance such specialized models.

5. Conclusion
We introduced the Number Token Loss (NTL) for Language
Models as a novel approach to enhance their intrinsic ability
to handle numerical data by considering the numerical prox-
imity between tokens. By augmenting the standard cross
entropy loss with NTL, we provide a simple yet effective
method that integrates seamlessly into existing architectures
without requiring additional computational overhead. Our

experiments unambiguously demonstrate the effectiveness
of the NTL for encoder-decoder and decoder-only architec-
tures. Experiments on several datasets related to mathemat-
ics, arithmetics and reasoning showed significant improve-
ments in numerical reasoning, especially in models without
specialized numerical embeddings. Furthermore, our re-
sults on regression datasets revealed that training with NTL
allows a LM with a token-head to compete with models de-
signed specifically for regression tasks. We also verified that
NTL does not compromise capabilities on standard text-only
tasks like reading comprehension. Finally, the scalability
of NTL was demonstrated by successfully applying it to
a 3B-parameter model on the challenging GSM8k dataset,
opening the door for integration into LLMs.

From the two proposed NTL flavors (NTL-WAS and NTL-
Lp) the NTL-WAS is a preferable loss since it avoids the
undesired local minima of NTL-Lp caused by errors can-
celing out. However, unlike in NTL-WAS, the dot product
inside NTL-Lp yields a quantity in the original number
space which can be useful to compute more complex losses
incorporating multiple tokens. For example, a current lim-
itation of NTL is to treat each digit-level token as equally
important, thereby ignoring the higher relevance of digits
with higher decimal places. This limitation could be ad-
dressed by computing the loss at the number level rather
than at the digit level, e.g., by naive scaling by decimal
place or by leveraging the dot-product idea of NTL-Lp to
calculate a number-level prediction. Furthermore, future
research should focus on exploring synergies with addi-
tional arithmetic-specific training adaptations. Particularly
exciting will be the fine-tuning of mid- and large-scale open-
source models, such as LLaMA or Gemma, to further assess
its scalability and generalization potential. Overall, this
approach offers a practical solution for enhancing language
models in numerically rich domains, contributing towards
more accurate and reliable applications of LMs in mathe-
matics and science.

Impact Statement
The introduction of the NTL enhances the ability of LMs
to handle numerical data and can improve performance in
tasks involving quantitative reasoning and arithmetic. This
advancement has potential implications across fields like
scientific research, finance, and engineering, where precise
numerical outputs are essential for data-driven decision-
making and automated analysis. However, this capability
also raises potential risks, including misuse of generated
numerical data or biased predictions in sensitive areas, such
as healthcare or economics. As with any AI methods, care-
ful implementation and human oversight are necessary to
ensure model transparency and accuracy.

9



The Number Token Loss

References
Bachmann, G. and Nagarajan, V. The pitfalls of next-token

prediction, 2024. URL https://arxiv.org/abs/
2403.06963.

Boiko, D. A., MacKnight, R., Kline, B., and Gomes, G. Au-
tonomous chemical research with large language models.
Nature, 624(7992):570–578, 2023.

Born, J. and Manica, M. Regression transformer enables
concurrent sequence regression and generation for molec-
ular language modelling. Nature Machine Intelligence, 5
(4):432–444, 2023.

Charton, F. Learning the greatest common divisor: explain-
ing transformer predictions. In The 3rd Workshop on
Mathematical Reasoning and AI at NeurIPS’23, 2023.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., Garcia, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,
H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S.,
Pellat, M., Lewkowycz, A., Moreira, E., Child, R., Polo-
zov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz,
M., Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K.,
Eck, D., Dean, J., Petrov, S., and Fiedel, N. Palm:
Scaling language modeling with pathways, 2022. URL
https://arxiv.org/abs/2204.02311.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information
processing systems, 26, 2013.

Dai, A. M. and Le, Q. V. Semi-supervised sequence learning.
Advances in neural information processing systems, 28,
2015.

DeepSeek-AI, Liu, A., Feng, B., Wang, B., Wang, B., Liu,
B., Zhao, C., Dengr, C., Ruan, C., Dai, D., Guo, D., Yang,
D., Chen, D., Ji, D., Li, E., Lin, F., Luo, F., Hao, G.,
Chen, G., Li, G., Zhang, H., Xu, H., Yang, H., Zhang,
H., Ding, H., Xin, H., Gao, H., and et al. Deepseek-v2:
A strong, economical, and efficient mixture-of-experts
language model, 2024.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin, B. Y.,
Welleck, S., West, P., Bhagavatula, C., Le Bras, R., et al.
Faith and fate: Limits of transformers on compositionality.
Advances in Neural Information Processing Systems, 36,
2024.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Geva, M., Gupta, A., and Berant, J. Injecting numerical
reasoning skills into language models. In Proceedings
of the 58th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computational
Linguistics, 2020.

Golkar, S., Pettee, M., Eickenberg, M., Bietti, A., Cranmer,
M., Krawezik, G., Lanusse, F., McCabe, M., Ohana, R.,
Parker, L., et al. xval: A continuous number encoding for
large language models. arXiv preprint arXiv:2310.02989,
2023.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., Yang, A., Fan, A., and et al. The Llama 3
herd of models, 2024.

Gromov, A. Grokking modular arithmetic. arXiv preprint
arXiv:2301.02679, 2023.

IBM Research. Granite 3.0 language models, 2024.

Jelassi, S., d’Ascoli, S., Domingo-Enrich, C., Wu, Y., Li, Y.,
and Charton, F. Length generalization in arithmetic trans-
formers, 2023. URL https://arxiv.org/abs/
2306.15400.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
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A. Appendix
A.1. Statement on code

The code for this paper is available at https://github.com/tum-ai/number-token-loss.

A.2. Algorithm for the Number Token Loss

Algorithm A1 Pseudo-code to compute NTL-MSE

1: Initialize: n vocab←

[{
int(vocab[i]) if vocab[i] ∈ R
NaN otherwise

]V

i=1
2:
3: function FORWARD(logits ∈ RB×T×V , labels ∈ RB×T ) : Float
4: ntl← 0
5: n logits← logits[:, :,¬n vocab.isnan()] ▷ Ignore non-number tokens
6: n probs← Softmax(logits)
7: ŷ ←

∑
i n probs[:, :, i] · n vocab ▷ ŷ is B × T

8: y ← n vocab[labels] ▷ y is B × T
9: ntl← MSE(y, ŷ) ▷ Can be any regression loss

10: return ntl
11: end function

Algorithm A2 Pseudo-code to compute NTL-WAS

1: Initialize: n vocab←

[{
int(vocab[i]) if vocab[i] ∈ R
NaN otherwise

]V

i=1
2: if order numbers is True then
3: Sort the numbers in n vocab by their numerical values
4: end if
5:
6: function FORWARD(logits ∈ RB×T×V , labels ∈ NB×T ) : Float
7: n logits← logits[:, :,¬n vocab.isnan()] ▷ Ignore non-number tokens
8: n probs← Softmax(logits)
9: y ← n vocab[labels] ▷ Retrieve true numerical values

10: if using CDF version of NTL-WAS then
11: y distr[b, t]← one hot(y[b, t], num classes=len(n vocab)) ▷ One hot encode y
12: wasserstein distance[b, t] =

∑V
v=1 |CDF(n probs[b, t])[v]− CDF(y distr[b, t])[v]|

13: end if
14: if using absolute difference version of NTL-WAS then
15: wasserstein distance[b, t] =← 1

V

∑V
v n probs[b, t, v] · |n vocab[v]− y|

16: end if
17: ntl← Mean(wasserstein distance[¬y.isnan()])
18: return ntl
19: end function

A.3. T5 Architecture

The T5 model is built upon the Transformer architecture (Vaswani et al., 2017), consisting of stacked self-attention and
feed-forward layers in both the encoder and decoder. The encoder processes the input tokens to create contextualized
representations, while the decoder generates the output tokens autoregressively, attending to both the encoder’s outputs
and the previously generated tokens. The model can be trained with both Masked Language Modelling (MLM) (Kenton &
Toutanova, 2019) and Causal/Auto-Regressive Language Modelling (CLM) (Dai & Le, 2015), whereby we chose to use
CLM.
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A.4. Regression Transformer

The Regression Transformer (Born & Manica, 2023) preserves the inherent structure of numbers by inducing information
on relative proximity through numerical encodings that are set deterministically for all tokens. For every combination of a
decimal place and digit value, a corresponding numerical token is added to the vocabulary. For instance, the number 11.4 is
tokenized to [1 1, 1 0, 4 -1].

Non-numeric tokens are set to zero vectors. The numerical encodings are designed so that their pairwise distances are
symmetric and monotonically decreasing with the float value. The final encoding of the input tokens is obtained by summing
over numerical and regular word encodings. The Regression Transformer numerical encodings NE at dimension j for
numerical token tv,p with value v and decimal place p can be determined by

NEFloat(v, p, j) = (−1)j · v · 10
p

j + 1
. (9)

A.5. Challenges with Integrating xVal in Transformer Models like T5

In transformer models like T5, integrating numerical encoding schemes like xVal presents challenges. xVal multiplyies
the [NUM] token embedding X by the number value a. In T5, however, a per-sample pre-layer normalization is applied
immediately after the embedding, which effectively removes the scaling by a. Specifically:

aX − E[aX]

σ(aX)
=

aX − aE(X)√
a2E(X2)− a2E(X)2

=
X − E(X)

σ(X)
(10)

Hence, under T5’s architecture, all numbers collapse to the same embedding, making xVal incompatible with T5.

Even in the original xVal architecture, the range of values xVal can process meaningfully is limited by the layer normalization
that follows the positional embedding step. Please see Golkar et al. (2023) under ”Implicit normalization via layer-norm”
for more information. Therefore, xVal normalizes each value to [−5, 5] prior to training to mitigate this issue.

We argue that this approach cannot be applied in practice, since in real texts the range of numbers is not known in advance,
and thus a simple min-max normalisation to [−5, 5] prior to training or inference is not really practical.

Therefore we opted for a simpler approach in our experiments: Applying a signed log(1 + x) transformation to all numeric
inputs. This avoids the overhead of parsing and re-scaling each number to [−5, 5] prior to training, but it also has the
drawback that large numbers are squashed in the embedding space, making fine-grained distinctions difficult for the model.

For a direct comparison without any modifications to the xVal processing, we repeated the 3-digit multiplication experiment
from Golkar et al. (2023). The results can be seen in Table A1.

Encoding R2 Value

P10 0.9989
P1000 0.9997
B1999 0.9998
FP15 0.7119
xVal 0.9986
T5 CE 0.999934
T5 NTL-WAS 0.999997
T5 regression head 0.999891

Table A1. R2 scores for various number encoding methods on the 3-digit multiplication experiment from Golkar et al. (2023).

A.6. Experiments

For all trainings, we use transformers (Wolf et al., 2020) 4.42.4. We train with a batch size of 32, a learning rate of
1e-4 and a weight decay of 0.01. All models were trained on single graphics processing units (GPUs) of type NVIDIA RTX
A6000, NVIDIA A100 or NVIDIA A40.
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A.6.1. MULTITASK MATHEMATICS DATASET

To test the mathematical capabilities of the methods, we use a subset of the mathematical question-answer dataset from
DeepMind (Saxton et al., 2019). The dataset was generated synthetically and therefore contains limited linguistic variability,
but is sufficient for our purposes to compare the mathematical capabilities of the different methods.

The dataset contains different modules and difficulty levels. For training and testing the models, we chose all difficulty levels
but excluded modules where the answer contains complex fractions or variables. This allows us to focus on purely numeric
answers to simplify the evaluation of the model and still leaves us with a large enough dataset of ∼26 million samples.

For training, validation, and interpolation tests, we selected the following modules from the DeepMind mathematical
question-answer dataset:

• algebra linear 1d.txt

• algebra linear 1d composed.txt

• algebra linear 2d.txt

• algebra linear 2d composed.txt

• algebra sequence next term.txt

• arithmetic add or sub.txt

• arithmetic add sub multiple.txt

• arithmetic mul.txt

• numbers div remainder.txt

• numbers div remainder composed.txt

• numbers place value.txt

• numbers round number.txt

• numbers round number composed.txt

For extrapolation tests, we selected the following modules:

• arithmetic add or sub big.txt

• arithmetic add sub multiple longer.txt

• arithmetic mixed longer.txt

• arithmetic mul big.txt

• arithmetic mul div multiple longer.txt

• numbers place value big.txt

• numbers round number big.txt

This resulted in a training dataset of 25,986,948 samples, a validation dataset of 13,026 samples, an interpolation test set of
130,000 samples, and an extrapolation test set of 70,000 samples.

We train each model for 1050000 iterations. For these experiments, we used the T5-base architecture (220M parameters). For
the Number Token Loss, we trained with the hyperparameter λ set to 0.3. The results can be seen in Table 1 and Figure A1.

A.6.2. ABLATION STUDIES AND NTL-WAS-CDF WITH GAUSSIAN SMOOTHING

For training and validation, we selected a subset of the DeepMind mathematical Q&A dataset, in all three diffi-
culty levels: arithmetic add sub multiple.txt. Similarly, interpolation and extrapolation tests were done
on arithmetic add sub multiple.txt and arithmetic add sub multiple longer.txt, respectively.
This resulted in a training set of 100,000 examples, a validation set of 3,000 examples, and two test sets of 10,000 examples
each.
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Figure A1. Comparison of evaluation metrics on interpolated and extrapolated test data.

For these experiments, we used the T5-small architecture (60M parameters). The mean and standard deviation were taken
over 4 different runs for the ablation studies and 3 different runs for the studies on GCE. We trained each run for 2.5M
iterations.

In addition to accuracy, mean absolute error and R2 given in Table 2 and Table 3, the achieved Pearson correlation and
Spearman’s rank correlation coefficient are shown in Table A2.

A.6.3. NTL FOR REGRESSION AND NORMAL NLP TASK

We trained and evaluated the NTL on two tasks: a regression task using the rJokes dataset (Weller & Seppi, 2020) and a test
generation task using the transformed MultiRC dataset (Khashabi et al., 2018). In both cases, each model was trained for
2.5M iterations. The mean and standard deviation were taken over 3 different runs. When using T5 with NTL-WAS, we set
the hyperparameter λ to 2.0.

In addition to RMSE and Pearson correlation given in Table 6, mean squared error, accuracy and Spearman’s rank correlation
coefficient are shown in Table A3.

A.6.4. NTL IS EFFECTIVE FOR DIFFERENT TOKENIZATIONS

To evaluate the effect of the tokenizer we trained T5-small again for 2.5M iterations. For the NTL-WAS loss we set the
hyperparameter λ to 2.0. A comparison of the achieved number accuracies and Pearson correlation of the models is shown
in Table A5, Table 7 and Table A3.
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Table A2. Pearson and Spearman Correlation Coefficients on the Interpolation and Extrapolation Test Sets

Loss λ Pearson Spearman
Interpolation Extrapolation Interpolation Extrapolation

CE 0.98±0.00 0.81±0.01 0.98±0.00 0.86±0.01

NTL-MSE
0.3 1.00±0.00 0.86±0.00 1.00±0.00 0.89±0.00

0.8 0.99±0.00 0.87±0.00 1.00±0.00 0.90±0.00

2.0 0.99±0.00 0.86±0.01 0.99±0.00 0.89±0.01

NTL-WAS
0.3 1.00±0.00 0.88±0.01 1.00±0.00 0.91±0.01

0.8 1.00±0.00 0.86±0.00 1.00±0.00 0.89±0.00

2.0 0.99±0.00 0.85±0.01 1.00±0.00 0.88±0.01

NTL-MAE 0.3 1.00±0.00 0.87±0.01 1.00±0.00 0.90±0.01

NTL-Huber 0.3 1.00±0.00 0.87±0.01 1.00±0.00 0.90±0.01

GS + CE 0.49±0.38 0.20±0.22 1.00±0.00 0.90±0.01

GS + NTL-WAS 0.3 1.00±0.00 0.87±0.01 1.00±0.00 0.90±0.01

Table A3. Full Evaluation on the rJokes Dataset. Evaluation metrics (mean ± std).

Model MSE Number accuracy Pearson Spearman

Standard T5 (CE) 4.03 ± 0.03 0.30 ± 0.00 0.41 ± 0.00 0.35 ± 0.00
T5 + NTL 3.27±0.04 0.30 ± 0.00 0.44 ± 0.00 0.40 ±0.00

T5 + Regression Head (MSE) 3.32 ± 0.04 0.00 ± 0.00 0.45 ±0.00 0.40 ±0.00

T5 + NTL + Standard tokenizer 3.88 ± 0.02 0.30 ± 0.00 0.41 ± 0.00 0.35 ± 0.00
Standard T5 (CE) + Custom Tokenizer 4.09 ± 0.04 0.30 ± 0.00 0.41 ± 0.00 0.37 ± 0.00

A.6.5. ERROR ANALYIS

we conducted a detailed error analysis on the GSM8K dataset to examine predictions for numbers ending with specific digits
(0–9), comparing CE and NTL. The error histograms shown in Figure A3 reveal a consistent pattern across all digit groups:
NTL error distributions are narrower and concentrated around zero, confirming improved numerical reasoning compared to
CE.

We further analyzed model predictions for numbers near digit boundaries, focusing particularly on numbers ending with 0 or
9 as well as powers of 10. Table A4 reveals how often predictions are overestimations, underestimations and exact matches.
The results show, that NTL achieves a more balanced error distribution. The exact match accuracy is consistently higher, but
particularly so for samples ending with the 9 token, implying that NTL leads to a better handling on those digit boundaries.
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Table A4. Error Rates. Error Rates by Digit Boundary Sample Type on GSM8K.

Sample Type Metric CE (%) NTL (%)

Ends with 0
Overestimation Rate 28.4 29.4
Underestimation Rate 56.5 51.1
Exact Match Rate 15.0 19.4

Power of 10
Overestimation Rate 54.4 49.1
Underestimation Rate 24.6 24.6
Exact Match Rate 21.1 26.3

Ends with 9
Overestimation Rate 33.3 38.8
Underestimation Rate 46.7 32.6
Exact Match Rate 20.0 28.6

Table A5. Interpolation Performance for Different Models and Tokenizers

Loss Custom
Tokenizer

Accuracy
(Interpolate)

Pearson
(Interpolate)

CE ✗ 0.34±0.01 0.98±0.00

NTL-WAS ✗ 0.39±0.00 0.96±0.00

CE ✓ 0.45±0.01 1.00±0.00

NTL-WAS ✓ 0.43±0.05 1.00±0.00

Table A6. Gaussian Cross Entropy (GCE). Standalone and combinatory effect of GCE and NTL.

GCE σ NTL Accuracy MAE R2

Interpolation test set

✗ - ✗ 0.34 2.15 0.95
✗ - ✓ 0.43 0.91 0.99
✓ 1 ✗ 0.19 4.34 0.95
✓ 1 ✓ 0.34 3.14 0.96
✓ 0.5 ✗ 0.42 0.95 0.99
✓ 0.5 ✓ 0.48 0.76 0.99

Extrapolation test set

✗ - ✗ 0.05 61.92 0.61
✗ - ✓ 0.10 58.18 0.68
✓ 1 ✗ 0.03 126.74 0.08
✓ 1 ✓ 0.06 111.09 0.25
✓ 0.5 ✗ 0.10 58.55 0.65
✓ 0.5 ✓ 0.10 66.97 0.59

Loss MAPE

CE 0.502%
NTL-Squash-2 0.491%
NTL 0.485%

Table A7. Squashing NTL Loss. MAPE on the multiplication task using the GPT-2 model trained with a squashing NTL variant.
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Cross Entropy Number Token Loss (NTL) NTL Improvement

Integer multiplication: Train on up to 5x5 digits, test on up to 6x6
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Figure A2. Performance improvement on the multiplication task using NTL, evaluated on GPT-2 and Granite 3.1.
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Figure A3. Error histograms for all number tokens for the GSM8k task.
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Figure A4. Average number token distributions for simple arithmetic tasks with target token 2 and 3 after training on the arithmetic task
for 50k steps.
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Example 1: GSM8K sample – NTL vs. CE

Question:
Roberta wants to have a dinner party centered around soufflés. Each savory souffle calls for 8 eggs each and the dessert ones call for
6 eggs each. She wants to make 3 savory soufflés and 5 dessert soufflés for the party. How many eggs will she need?

Correct answer:
The savory soufflés need 8 eggs each and she wants to make 3 of these so she needs 8*3 = 24 eggs The dessert soufflés need 6 eggs
each and she wants to make 5 of these so she needs 6*5 = 30 eggs For the dinner party she will need 24+30 = 54 eggs in total ####
54

T5-CE:
Roberta wants to make 3 savory soufflés that are 8 eggs each for a total of 3*8=24 eggs. She wants to make 5 dessert soufflés that
are 6 eggs each for a total of 5*6=30 eggs. In total, she will need 24+30=62 eggs. #### 62

T5-NTL:
Roberta wants to make 3 savory soufflés that use 8 eggs each so that’s 3*8 = 24 eggs She wants to make 5 dessert soufflés that use 6
eggs each so that’s 5*6 = 30 eggs All total, she needs 24 + 30 = 54 eggs #### 54
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