
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROCCO: ROTATION-AUGMENTED CLUSTERING-
BASED LOW-RANK APPROXIMATION FOR COMPRESS-
ING LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The immense size and computational cost of Large Language Models (LLMs)
present significant barriers to their widespread deployment. Low-Rank Approxi-
mation (LRA) offers a promising, hardware-friendly solution by factorizing large
weight matrices into more compact forms. A key insight is that the accuracy
of this factorization can be significantly enhanced by first applying a geomet-
ric transformation to the model’s weights. In this work, we introduce RoCCo
(Rotation-augmented Clustering for Compression), a novel LRA framework that
uses clustering to factorize weight matrices. We first apply an orthogonal trans-
form to shape restructure the weight geometry to be more suitable to clustering.
We then apply a group-wise clustering algorithm to the transformed weights to
achieve a precise approximation. Furthermore, we demonstrate that this factor-
ized representation enables a novel clustered attention mechanism, which reduces
the algorithmic complexity of inference by performing attention computations di-
rectly in the compressed domain. Through experiments on the LLaMA and OPT
model families, we show that RoCCo can compress models by 75% while retain-
ing over 96% of the original zero-shot accuracy on LLaMA2-13B achieving a
competitive compression-accuracy trade-off.

1 INTRODUCTION

Large Language Models (LLMs) have become foundational across a vast area of applications,
demonstrating remarkable performances in complex reasoning and generation tasks. However, this
success is built on top of immense scale, with models containing billions of parameters that demand
extensive computational and memory resources. The resulting costs create a significant barrier
to their widespread deployment, making inference expensive and hindering their use in resource-
constrained environments. Consequently, model compression has become a critical field of research
aimed at making these powerful models more accessible and efficient.

While element-wise compression methods like scalar quantization (Lin et al., 2024b; Zhao et al.,
2024; Frantar et al., 2023) have been heavily explored, our work focuses on the structural path of
Low-Rank Approximation (LRA) (Yuan et al., 2023; Tian et al., 2025; Chen et al., 2021; Wang
et al., 2025), specifically weight clustering to achieve a low-rank factorization of model weights,
having the advantage of capturing and preserving the high-dimensional structure. This approach
decomposes a weight matrix into a small set of learned centroids and corresponding matrix of integer
indices, producing a hardware-friendly dense representation. However, the primary challenge for
finding an accurate factorization is the presence of vector-wise outliers: a small number of out-of-
distribution weight vectors that greatly influence the clustering process. These vectors stretch the
geometric space, pulling cluster centroids away from dense regions and leading to a poor low-rank
approximation for the majority of the in-distribution data.

A key insight from recent work is the principle of computational invariance, which allows for the
application of orthogonal transformations to restructure a model’s internal representations. This
principle has been successfully leveraged to enable various compression goals, from reducing a
model’s embedding dimension (Ashkboos et al., 2024a) to improving uniform quantization perfor-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

mance (Ashkboos et al., 2024b; Liu et al., 2025). However, its potential to improve the performance
of clustering-based low-rank factorization remains a comparatively under-explored area.

In this work, we develop a methodology to address the vector-wise outliers that hinder the perfor-
mance of low-rank approximation. We demonstrate that the principle of computational invariance
can be adapted to this distinct problem by applying a random Hadamard transform to restructure the
high-dimensional geometry of the weight vectors themselves. This transformation mitigates the in-
fluence of high-leverage vector outliers, creating a distribution that is significantly more amenable to
being factorized by a clustering algorithm. This restructuring step allows us to find a more accurate
low-rank approximation, enabling robust performance at high compression ratios.

Our main contributions are as follows:

1. We identify and quantify the effect of out-of-distribution outlier vectors in LLM weight ma-
trices, showing they are a primary obstacle to effective low-rank approximation via weight
clustering.

2. We propose a novel, low-rank approximation based compression method that uses a random
Hadamard transform to restructure the weight geometry, mitigating the influence of outliers
and making the weights significantly more amenable to clustering.

3. We show that our low-rank factorization approach is orthogonal to element-wise methods
like quantization and can be combined to achieve further gains in efficiency and higher
compression ratios.

4. We introduce a novel clustered attention mechanism that leverages our factorized repre-
sentation to perform attention computation directly on the cluster centroids, offering an
algorithmic speedup.

5. We demonstrate through extensive experiments that RoCCo achieves a state-of-the-art
compression-accuracy trade-off. RoCCo is able to compress models by up to 75% while
retaining over 96% of the original zero-shot accuracy on LLaMA2-13B, outperforming
existing LLM low-rank approximation works.

2 BACKGROUND AND RELATED WORK

2.1 LOW-RANK APPROXIMATION OF LLM

Low-rank approximation (LRA) is a promising structural compression approach that aims to re-
duce model size by replacing large weight matrices with a more compact representation, often
through factorization. Unlike element-wise methods that can produce sparse matrix representa-
tions, LRA-based methods typically result in smaller, dense matrices, which have high efficiency
on modern hardware like GPUs. This approach has the advantage of capturing and preserving the
high-dimensional structure of the weight matrices. The primary LRA techniques in recent literature
can be categorized as follows:

SVD-based: A classic approach to LRA is through Singular Value Decomposition (SVD). Methods
like SVD-LLM (Wang et al., 2025) and ASVD (Yuan et al., 2023) factorize a weight matrix into its
constituent singular vectors and values, and then achieve compression by truncating the components
corresponding to the smallest singular values. While this theoretically grounded, the performance
of the approximation can degrade significantly at higher compression ratios.

PCA-based: Another family of methods uses Principal Component Analysis (PCA) on the weights
or activations directly to identify a low-rank subspace and operate within this more compact sub-
space. SliceGPT (Ashkboos et al., 2024a), for example, uses PCA to find the principal components
of the hidden states and then ”slices” off the dimensions corresponding to the least important com-
ponents, effectively reducing the model’s embedding dimension. Similarly, FLAT-LLM (Tian et al.,
2025) uses a fine-grained, head-wise PCA to achieve a more targeted low-rank transformation. Mod-
eGPT (Lin et al., 2024a)

While effective, these LRA methods operate on the fixed geometry of the pre-trained weights. How-
ever, this geometry may not be optimal for LRA, particularly due to the presence of outliers (Lin
et al., 2024b). This raises a critical question: rather than approximating the existing weights, can we
first transform them into a structure that is inherently more amenable to a low-rank approximation?

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

P
ri

n
c
ip

a
l
C

o
m

p
o

n
e

n
t

2

P
ri

n
c
ip

a
l
C

o
m

p
o

n
e

n
t

2

Principal Component 1 Principal Component 1

Before Rotation After Rotation

0

-0.2

-0.4

0.4

0.2

0

-0.2

-0.4

0.4

0.2

0.6

-0.6

0 1 2-2 -1 0 0.4 0.8-0.8 -0.4

Bottom 10%

Recon. Err.

Centroids

Bottom 10%

Recon. Err.

Centroids

Figure 1: The effect of the orthogonal transform (RHT) on the weight geometry of a LLaMA2
weight layer (layer[5].self attn.q proj). The plots show a 2D PCA projection of the weight vectors,
vectors with low 10% reconstruction errors, and 12 K-means centroids. (Left) The original distri-
bution is characterized by a dense core and several out-of-distribution outlier vectors. These outlier
vectors tend to have lower reconstruction errors. (Right) After the transformation, the distribution
becomes more homogeneous, and the influence of the original outliers is mitigated.

2.2 COMPUTATIONALLY INVARIANT TRANSFORMATIONS

A recent advance in LLM compression is the principle of computational invariance, which states that
an orthogonal transformation can be applied within the network without changing the model’s final
output, provided it is properly reversed. This allows for the restructuring of weights and activations
into a more compression-friendly format while preserving the model’s function. This invariance is
possible because an orthogonal matrix QTQ = QQT = I can be absorbed into adjacent weight
matrices, enabling a powerful, lossless manipulation of the network’s internal geometry

Specifically, if the output weight matrix of one block is Wout and the input weight matrix of the
subsequent block is Win, the transformation is absorbed by modifying the weights as follows: the
output matrix is post-multiplied by Q (Wout → WoutQ) , while the subsequent input matrix is
pre-multiplied by its inverse, QT (Win → QTWin). This ensures that the model’s end-to-end
computation remains unchanged (A(WoutQ)(QTWin) → AWout(QQT)Win = AWoutWin).
This principle has been successfully applied to restructure weights for various compression goals.
This principle has been successfully leveraged for various compression goals: SliceGPT (Ashkboos
et al., 2024a) uses it for structured pruning, methods like QuaRot (Ashkboos et al., 2024b) and
SpinQuant (Liu et al., 2025) use it to improve element-wise quantization, and QuIP# (Tseng et al.,
2024) applies it to enable vector quantization with a predefined lattice codebook.

3 PROPOSED METHOD

3.1 RESTRUCTURING WEIGHT GEOMETRY WITH ORTHOGONAL TRANSFORMS

A primary challenge in applying low-rank approximation to LLMs is the inherent geometry of their
weight matrices. While the weights contain significant structural redundancy due to the structured
computational graph of transformers (eg. Multi-head self-attention)(Vaswani et al., 2017), their dis-
tributions are often characterized by the existence of outliers. As shown in recent works (Lin et al.,
2024b; Xiao et al., 2023), these outliers stretch the geometric space, making the overall distribution
difficult to compress.

Recent works have successfully demonstrated that orthogonal transformations can mitigate this is-
sue. Methods like QuaRot (Ashkboos et al., 2024b) and SpinQuant (Liu et al., 2025) use rotations
to address element-wise outliers within activation and weight distributions. By applying a trans-
form like a Hadamard matrix, they create a more homogeneous, Gaussian-like distribution of scalar
values, which is ideal for low-bit uniform quantization.

Our work builds on this principle but re-frames the outlier problem for a different compression
paradigm: clustering-based low-rank approximation. For this approach, the primary challenge is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

not individual outlier values, but entire vector-wise outliers that distort the clustering process. As
visualized through PCA in Figure 1, the weight vectors are mostly organized in a dense clump, but
a small number of out-of-distribution (OOD) outlier vectors deviate significantly from this main
distribution.

A key finding from our analysis is that many of the out-of-distribution (OOD) outlier vectors (geo-
metrically distant from main distribution) are often found in the bottom 10% of vectors when ranked
by individual reconstruction error (marked red in Figure 1). However, when applying clustering to
the entire set of vectors, these OOD vectors act as powerful ”gravitational centers,” forcing the clus-
tering algorithm to allocate centroids to these few distant points. This distorts the placement of the
centroids, which are now less able to accurately represent the vast majority of the non-outlier vec-
tors in the dense core of the distribution. It is the high reconstruction error of these ”inlier” vectors
(responsible for more than 95% of the entire reconstruction error) that is most important and that
ultimately degrades the model’s performance. Therefore, our goal is to apply an orthogonal rotation
to restructure the weight geometry, mitigating the distorting influence of the outlier vectors to allow
the centroids to form a more accurate representation of the main data distribution.

To achieve this restructure of the weight geometry for better clustering performance, we leverage a
fixed random Hadamard transform (RHT) as shown by the right diagram of Figure 1. This choice
is motivated by several advantages. First, the fast Walsh-Hadamard transform allows the rotation to
be computed efficiently in O(n logn) time, instead of O(n2) of a regular transform in dimension
n. Second, as an orthogonal matrix, it is a norm-preserving operation that rotates the weight vectors
without distorting the relative distances between vectors. Finally, it has been shown to be an effective
method by creating a more incoherent, or homogeneous distribution. This restructuring through
RHT is a pre-processing step that does not alter the model’s output but significantly improves the
performance of the subsequent clustering-based compression method.

3.2 ORTHOGONAL TRANSFORM-BASED CLUSTERING

Inspired by the computationally invariant transformations in QuaRot (Ashkboos et al., 2024b), our
proposed framework achieves a low-rank approximation of a given weight matrix through a three-
stage process. This layer-wise method first regularizes the geometry of the weight distribution before
learning a compact, clustered representation.

Stage 1: Geometric restructuring via Hadamard transform.

First, for a given weight matrix W ∈ Rdin×dout , we apply a fixed, random Hadamard transform
to regularize its structure. The transformed matrix is computed as Wrot = WH , where H is a
random Hadamard matrix of size dout × dout. This preconditioning step mitigates the influence
of high-magnitude outlier vectors, creating a more well-conditioned distribution for the subsequent
clustering stage.

Stage 2: Low-rank approximations via group-wise clustering

The second stage performs the compression using a group-wise clustering algorithm, to split the
weight matrix into smaller, more manageable parts. The objective is to independently cluster the
columns within horizontal partitions of the weight matrix. First, the rotated weight matrix Wrot ∈
Rdin×dout is partitioned along its row dimension. The din rows are divided into G groups, where
each group contains k rows, such that din = G×k. Where the partition factor k is a hyperparameter.
Smaller values of k allow for a more fine-grained clustering at the cost of increased storage overhead
for the additional cluster indices. This creates G independent sub-matrices:

Wrot =

W
(1)
rot
...

W
(G)
rot

 (1)

where each sub-matrix W
(i)
rot ∈ Rk×dout contains the i-th group of k row.

We define our clustering process, ϕ(·), as the function that maps each sub-matrix to its compressed
representation. For each horizontal sub-matrix W

(i)
rot, the algorithm partitions its dout columns

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(each of row dimension k) into a dedicated set of c centroids. This results in G independent sets of
centroids, C(i) ∈ Rk×c, and G corresponding index vectors, I(i) ∈ Zdout .

The reconstruction process, ϕ−1(·), then uses these components to form the approximated weight
matrix Ŵrot. This reconstruction achieves a low-rank factorization of the original sub-matrix, given
by:

ˆ
W

(i)
rot = ϕ−1(C(i), I(i)) = C(i) · S(i) (2)

where S(i) is a selection matrix constructed from the index vector I(i).

The full approximated matrix is the vertical concatenation of these reconstructed sub-matrices. The
primary benefit is a significant reduction in storage. The original matrix requires din × dout values,
while the compressed form before the reconstruction requires storing a total of c × din values for
the centroids and G × dout × ⌈log2 c⌉ bits for the indices. For typical LLM configurations where
the number of clusters c/dout < 0.5 and the partition factor k > 8, the total storage cost of these
indices is minimal, typically accounting for less than 2% of the original weight matrix size (see
Appendix A.4).

Stage 3: Data-aware centroid update. The final stage calibrates the centroids obtained in Stage
2. We use a modified method based on GPTQ (Frantar et al., 2023) that updates the centroids to
minimize the layer’s output reconstruction error, using a small calibration set of data. The details on
the clustering-based low-rank approximation are explained in detail in Appendix A.2.

3.3 DIRECT COMPUTATION ON CLUSTERED WEIGHTS

Beyond significant storage savings, our group-wise clustering method enables a more efficient com-
putation path by avoiding the need to de-cluster, or reconstruct, the full weight matrix. Instead,
matrix multiplications can be performed directly in the compressed, clustered domain, which re-
duces both the number of floating-point operations (FLOPS).

In a standard linear layer, the computation is a matrix multiplication between the input activations
X ∈ Rn×din and the weight matrix W ∈ Rdin×dout . Our method reformulates this computation
into a two-step process:

Look-up Table Generation: For each of the G groups, we first perform a much smaller matrix
multiplication between the input activations X(i) and the corresponding centroid matrix C(i) ∈
Rk×c. This creates G small look-up tables, where each table contains the c possible outputs for that
cluster group.

X = [X(1),X(2), . . . ,X(G)] (3)

Y (i) = X(i) · C(i) (4)
Gather Operation: The final output matrix Y ∈ Rn×dout is then constructed by efficiently gathering
the appropriate values from these look-up table Y (i) using the stored indices I(i).

This reformulation avoids the costly reconstruction of the full din × dout weight matrix. The com-
putational cost is dominated by the initial look-up table generation, which is significantly cheaper
than the original multiplication. Reducing the required computation from O(ndindout) to O(ndinc)
where c≪ dout, decreasing linearly with the compression ratio (1− c/dout).

4 EXPERIMENTS

4.1 SETUP

We implement RoCCo using the QuaRot repository, which is built upon the HuggingFace(Wolf
et al., 2019) and PyTorch framework(Paszke et al., 2019). For the main results presented in Ta-
bles 1, 2, 3, RoCCo is configured with a partition factor k = 16. We use a simple K-means algorithm
for clustering, and the centroids are calibrated using 128 samples WikiText-2 (Merity et al., 2016)
with a 2048 sequence length with a modified algorithm based on GPTQ(Frantar et al., 2023)(Ap-
pendix A.2). We evaluate our work on single NVIDIA A100 and NVIDIA H200 GPU across the
OPT(Zhang et al., 2022), LLaMA1(Touvron et al., 2023a), and LLaMA2(Touvron et al., 2023b)
model families, covering both language generation and zero-shot evaluation tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison of WikiText-2 Perplexity (ppl) at various compression ratios across OPT and
LLaMA2 model families. We compare our method RoCCo, against several LRA baselines.

OPT LLaMA2

Method Ratio 125M 1.3B 2.7B 6.7B 13B 7B 13B

Dense - 27.65 14.63 12.47 10.86 10.13 5.47 4.88
DISP-LLM 20% 39.87 21.70 17.07 14.06 - 9.84 7.11
SliceGPT 20% 34.26 16.43 13.73 11.48 10.66 6.64 5.81
ProcrutesGPT 20% 36.08 - 13.95 - 10.67 6.54 5.71
SVD-LLM 20% - - - - - 7.84 7.37
RoCCo 20% 27.91 14.93 12.68 11.00 10.22 5.49 4.94
RoCCo 50% 31.19 16.11 12.93 11.12 10.29 5.56 4.99
RoCCo 75% 32.44 16.79 13.32 11.32 10.45 5.71 5.04

Table 2: Zero-shot results for LLaMA2-7B, LLaMA2-13B models. SliceGPT, SVD-LLM, FLAT-
LLM, ProcrutesGPT are evaluated with a compression ratio of 20%. RoCCo is evaluated with much
higher compression ratio of 75%.

Model Method Ratio ARC-c ARC-e HellaS. PIQA WinoG. Average

LLaMA2-7b

Dense 0% 46.25 74.58 75.99 79.11 68.82 68.95
SliceGPT 20% 35.15 56.10 53.04 65.78 62.98 54.61
SVD-LLM 20% 35.84 68.31 58.57 71.49 65.27 59.90
FLAT-LLM 20% 38.65 64.44 64.72 72.20 65.82 61.17
ProcrustesGPT 20% 41.98 68.35 69.72 73.94 67.40 64.28
RoCCo 75% 42.32 70.21 72.72 76.88 63.77 65.18

LLaMA2-13b

Dense 0% 49.23 77.53 79.36 80.52 72.30 71.79
SliceGPT 20% 39.51 62.92 56.98 67.25 67.64 58.86
SVD-LLM 20% 39.93 71.00 63.47 72.91 67.17 62.90
FLAT-LLM 20% 46.25 75.59 73.36 75.84 72.06 68.62
ProcrustesGPT 20% 44.97 73.19 73.43 77.58 70.48 67.93
RoCCo 75% 47.61 73.91 76.86 78.89 68.82 69.22

4.2 ACCURACY RESULTS

Language Generation Tasks: We evaluate the performance of RoCCo on the language generation
task using the WikiText-2 dataset (Merity et al., 2016). Table 1 shows a comparison of perplexity
for the OPT and LLaMA2 model families against several state-of-the-art low-rank approximation
(LRA) baselines.

At a 20% compression ratio, RoCCo demonstrates exceptional performance. Across all models, it
consistently and significantly outperforms other LRA methods like DISP-LLM(Gao et al., 2024),
SliceGPT(Ashkboos et al., 2024a), SVD-LLM(Wang et al., 2025), and ProcrustesGPT(Grishna
et al., 2025). Notably, for the LLaMA2 models, RoCCo at 20% compression achieves a perplexity
that remains comparable to that of the original dense model, which underscores the effectiveness of
the approximation.

The primary advantage of our approach, is its robustness at high compression ratios. This high
compression rate is possible because the selection matrix that maps the centroids to the original
column dimensions, a large and sparse matrix of zeros and ones, does not need to be stored explicitly.
Instead, it can be efficiently represented by a small vector of integer indices, where each index
specifies which cluster group a column belongs to. As shown in the table, RoCCo maintains very
strong performance even at 50% and 75% compression, a regime where other LRA based methods
are not typically evaluated or often degrade significantly. For instance, on OPT-6.7B, RoCCo at
75% compression (11.32 ppl) outperforms the other baselines at 20% compression (14.06 ppl). This
highlights that our geometric restructuring approach allows for high-ratio structural compression.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: An evaluation of combining RoCCo with GPTQ quantization. This hybrid approach sig-
nificantly outperforms standard GPTQ, particularly in the 2-bit regime where GPTQ alone fails,
demonstrating that RoCCo can be used as a method to compress models beyond what only quanti-
zation can do.

LLaMA1 LLaMA2

Method Effective bits 7B 13B 7B 13B

Dense 16 5.68 5.09 5.47 4.88
GPTQ 4 6.10 5.36 6.09 5.16
RoCCo (50%)+GPTQ(8b) 4.34 5.91 5.23 5.72 5.04
GPTQ 2 17920 4127 6064 1960
RoCCo (50%)+GPTQ(4b) 2.34 12.57 10.81 11.52 10.20

Zero-shot Tasks: We further evaluate RoCCo’s performance on a suite of five zero-shot common-
sense reasoning tasks: ARC-challenge (Clark et al., 2018), ARC-easy (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al., 2021).
Table 2 presents a comparison against several state-of-the-art LRA baselines including SliceGPT
(Ashkboos et al., 2024a), SVD-LLM (Wang et al., 2025), FLAT-LLM (Tian et al., 2025), and Pro-
crutesGPT (Grishna et al., 2025). All baselines are evaluated at a 20% compression ratio, while
RoCCo is evaluated at a much higher 75% compression ratio.

For the LLaMA2-7B model, RoCCo at 75% compression achieves an average accuracy of 65.18%,
which not only outperforms all other LRA methods at 20% compression but is also higher than
the next best baseline FLAT-LLM by nearly a full percentage point. This shows that our method
compressed by an additional 55% still retains more zero-shot capability.

This trend continues with the larger LLaMA2-13B model. RoCCo achieves an average score of
69.22%. Compared to the dense model’s performance, our 75% compressed LLaMA2-13B model
retains over 96% of the original zero-shot accuracy, demonstrating that our method is highly effective
at preserving the downstream task performance of LLMs even under high compression.

Joint Clustering & Quantization: To demonstrate that our structural compression method is or-
thogonal to and compatible with conventional element-wise compression techniques, we evaluate a
hybrid approach that combines RoCCo with a standard post-training quantization method, GPTQ
(Frantar et al., 2023). Table 3 shows the results of applying GPTQ to our already-compressed mod-
els.

At approximately 4.34-bit precision (0.34 additional bits accounting for cluster indices), the combi-
nation of RoCCo (50%) with 8-bit GPTQ significantly outperforms the standard 4-bit GPTQ base-
line. For the LLaMA2-13B model, our hybrid approach achieves a perplexity of 5.04, which is an
improvement over GPTQ’s 5.16 showing the complementary benefits of the two methods.

The most significant advantage, however, is observed in the extreme low-bit regime. As shown in
the table, standard 2-bit GPTQ fails completely, resulting in an unusable model with extremely high
perplexity. In contrast, our hybrid approach of RoCCo (50%) with 4-bit GPTQ, at a comparable
effective bit of 2.34 bits, produces a stable and functional model with a reasonable perplexity.

4.3 ABLATION STUDIES

To validate our key design choices, we conduct a series of ablation studies. Our analysis confirms
that our Hessian-based centroid calibration is a critical component, offering a clear improvement
over a simple k-means baseline. We also demonstrate our performance with regards to the choice
of the partition size, k. To further contextualize our contributions a detailed comparison with the
state-of-the-art method QuIP# (Tseng et al., 2024) is provided to contextualize the trade-offs of our
data-driven approach. Full results for all ablation studies can be found in the Appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

𝑄 𝐾𝑇

∗ =

𝑄𝐾𝑇

∗

∗

∗

∗

∗

∗

2(+ = ∗ ∗+ 4())

𝑄(𝑐)′ (𝐾(𝑐)′)𝑇

∗ =

𝑄 𝑐 ′(𝐾(𝑐)′)𝑇

2(+ = ∗ ∗+ 4())
∗

∗

2 4

2
4

2 2

4 4

Figure 2: An illustration of the clustered attention mechanism. The same colored vectors are identi-
cal vectors of the same centroid. (Top) The standard QKT computation where the Query and Key
matrices have a low-rank structure with matched QK clustering imposed. (Bottom) Our reformula-
tion, which shows that the full dot product is mathematically equivalent to a matrix multiplication
between smaller, scaled activation matrices Q(c)′ and K(c)′ , reducing the computational complexity.

R
e

la
ti
v
e

 W
ik

iT
e
x
t-

2
 P

e
rp

le
x
it
y
 (

%
)

Relative FLOPS Decrease (%)

85

82.5

92.5

90

95

17.5 205 15 22.57.5 10 12.5

87.5

80

OPT-13b

OPT-6.7b

OPT-2.7b

OPT-1.3b

OPT-125m

Figure 3: Performance trade-off for our clustered attention mechanism across the OPT model family.
The y-axis shows the perplexity relative to the dense baseline (higher is better), while the x-axis
shows the percentage decrease in computational FLOPs of the entire model.

5 EFFICIENT ATTENTION IN THE CLUSTERED DOMAIN

While RoCCo significantly reduces the model’s memory requirements, it also enables a more ef-
ficient computation of the multi-head self-attention mechanism. By leveraging the clustered rep-
resentation of the weight matrices, we can reformulate the attention score calculation to reduce its
complexity.

In a standard multi-head self-attention layer, the input activations X ∈ RN×dmodel are projected into
Query (Q), Key (K), and Value (V) matrices using their respective weights. The scaled dot-product
attention of a single head is then formulated as:

Attention(Q,K,V) = softmax
(

QKT

√
dhead

)
V (5)

The primary computational bottleneck in this operation is the QKT matrix multiplication, which
scales quadratically with the sequence length N. Our compressed representation avoids the need to
compute this large matrix multiplication directly.

To alleviate this high computational requirement, we introduce a matched query-key clustering
scheme. The core of this method is that for each attention head, the columns of the query weight
matrix (Wq) and the key weight matrix (Wk) are clustered into G clusters using the same cluster
index assignments. Figure 2 shows a sample illustration of the clustered attention through matched
query-key clustering.

This ”matching” imposes a specific low-rank structure on the resulting Query (Q) and Key (K)
activation matrices. All columns within a given group become identical copies of a corresponding
centroid vector. This allows the activation matrices to be factorized as:

Q = C(Q)S and K = C(K)S (6)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

where C(Q),C(K) ∈ RN×G are the matrices containing the effective activation values for each of
the G cluster groups. The matrix S ∈ RG×dhead is a selection matrix, determined by the shared
column clustering, that maps these group activations to the original head dimension.

This shared structure allows for a significant simplification of the QKT matrix multiplication. The
score between the i-th query token and the j-th key token can be shown to be a weighted sum of the
products of their group activation values:

QKT
i,j =

G∑
g=1

|G(g)| ·C(Q)
i,g ·C

(K)
j,g (7)

where |G(g)| is the size (number of column vectors) of the g-th cluster group.

Crucially, this entire N ×N matrix multiplication can be rewritten. The sum of weighted dot prod-
ucts is equivalent to a single, much smaller matrix multiplication involving only scaled centroids.
We define the scaled centroid matrices as:

Q(c)′ = C(Q) · diag(
√
|G(1)|, . . . ,

√
|G(G)|) ∈ RN×G (8)

K(c)′ = C(K) · diag(
√
|G(1)|, . . . ,

√
|G(G)|) ∈ RN×G (9)

Since this scaling is applied column-wise to the group activation matrices, it can be absorbed di-
rectly into the original weight matrices (WQ,WK) prior to test time without any change to the final
computation.

The full attention score matrix can now be computed efficiently as:

QKT = Q(c)′(K(c)′)T 1 (10)

This reduces the complexity of the score calculation from O(N2dhead) to O(N2G), where the
number of cluster groups G is significantly smaller than the head dimension dhead. This provides a
direct and substantial algorithmic speedup without any look-up or gather operations.

The results of the clustered attention mechanism is presented in Figure 3. The results demonstrate
a clear trade-off between computational savings and model performance for our clustered attention
mechanism. Larger models tend to be more resilient to the clustered attention approximation’s struc-
ture of matched QK clustering. For instance, OPT-13b retains over 95% of the original WikiText-2
perplexity while saving 5% of computation in the entire model. Smaller models, while more sensi-
tive to the approximation of clustered attention, can achieve much more significant computational
reductions. The OPT-125m model can reach a total FLOPS decrease of upto 22%. However, this
does come at the cost of a higher drop in relative model performance.

6 CONCLUSIONS

In this work, we introduce RoCCo, a compression framework that combines geometric restructuring
with clustering-based low-rank approximation. We demonstrate that pre-processing weights with a
random Hadamard transform makes them significantly more suitable for clustering, enabling robust
performance at high compression ratios where other structural methods often fail. Our experiments
show that RoCCo achieves a strong trade-off between model size and performance compared to other
low-rank approximation based compression techniques. Furthermore, we introduce two key benefits
of our approach. First, our structural compression is orthogonal to element-wise methods, and we
show that combining RoCCo with conventional quantization enables stable, low-bit representations
where standard quantization collapses. Second, we proposed a novel clustered attention mechanism,
which leverages our compressed format to reduce the algorithmic complexity of inference. RoCCo
presents a promising and efficient path toward developing smaller, faster Large Language Models.

1Architectures that apply non-linear operations like Rotary Position Embeddings to the Queries and Keys
before the dot product would require a different formulation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and Hens-
man James. Slicegpt: Compress large language models by deleting rows and columns. The
Twelfth International Conference on Learning Representations, 2024a.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximiliam L. Croci, Bo Li, Pashimina Cameron, Mar-
tin Jaggi, Dan Alistarh, Torsten Hoefler, and Hensman James. Quarot: Outlier-free 4-bit inference
in rotated llms. Advances in Neural Information Processing Systems, 2024b.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. Proceedings of the AAAI conference on artificial intelligence,
2020.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-rank
compression for large nlp models. Advances in neural information processing systems, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. The Eleventh International Conference on
Learning Representations, 2023.

Shangqian Gao, Chi-Heng Lin, Ting Hua, Tang Zheng, Yilin Shen, Hongxia Jin, and Yen-Chang
Hsu. Disp-llm: Dimension-independent structural pruning for large language models. Advances
in Neural Information Processing Systems, 2024.

Ekaterina Grishna, Mikhail Gorbunov, and Maxim Rakhuba. Procrustesgpt: Compressing llms with
structured matrices and orthogonal transformations. arXiv preprint arXiv:2506.02818, 2025.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen,
Hongxia Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model
compression. arXiv preprint arXiv:2408.09632, 2024a.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
2024b.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
tion with learned rotations. The Thirteenth International Conference on Learning Representa-
tions, 2025.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Jiayi Tian, Ryan Solgi, Jinming Lu, Hai Li, and Zheng Zhang. Flat-llm: Fine-grained low-
rank activation space transformation for large language model compression. arXiv preprint
arXiv:2505.23966, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip: Even
better llm quantization with hadamard incoherence and lattice codebooks. Forty-first International
Conference on Machine Learning, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 2017.

Xin Wang, Yu Zheng, Zhongwei Wan, and Zhang Mi. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. The Thirteenth International Conference
on Learning Representations, 2025.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087–38099. PMLR, 2023.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Victoria Lin, Mihaylov Todor, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. Proceedings of Machine Learning and Systems, 6:196–209, 2024.

A APPENDIX

A.1 OUTLIER PROJECTIONS FOR DIFFERENT WEIGHTS

Figure 4 presents an ablation study on the effect of vector outliers for several attention projection
matrices in the LLaMA2-7B model. The ablation study confirms that the out-of-distribution vectors
often account for the lower reconstruction error, harming the clustering performance by increasing
errors in the dense region. After applying our rotational transform, the influence of these outlier
vectors is effectively mitigated as they are homogenized into the main distribution.

A.2 CENTROID CALIBRATION WITH HESSIAN-BASED ERROR COMPENSATION

The initial centroids generated by k-means minimize the simple Euclidean distance, but this does
not guarantee minimal error in the layer’s output due to the input differences. Therefore, the final
stage of our method refines the centroids by directly minimizing the layer’s output reconstruction
error, using an iterative, data-aware algorithm inspired by GPTQ (Frantar et al., 2023).

The overall objective is to find a set of centroids C that minimizes the squared error of the layer’s
output, using a small calibration set of input activations X:

argmin
C
||XWrot −XŴrot||22 (11)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

P
ri

n
c
ip

a
l
C

o
m

p
o

n
e

n
t

2

P
ri

n
c
ip

a
l
C

o
m

p
o

n
e

n
t

2

Principal Component 1 Principal Component 1

Before Rotation After Rotation

0

-0.2

-0.4

0.4

0.2

0

-0.2

-0.4

0.4

0.2

0.6

-0.6

0 1 2-2 -1 0 0.5-0.5

Bottom 10%

Recon. Err.

Bottom 10%

Recon. Err.

-3 3

Layer[5].self_attn.k_proj

P
ri

n
c
ip

a
l
C

o
m

p
o

n
e

n
t

2

P
ri

n
c
ip

a
l
C

o
m

p
o

n
e

n
t

2

Principal Component 1 Principal Component 1

Before Rotation After Rotation

0

-0.05

-0.1

0.1

0.05

-0.1

-0.2

-0.3

0.1

0

0.2

-0.4

0 0.1 0.2-0.2 -0.1

Bottom 10%

Recon. Err.

Bottom 10%

Recon. Err.

0.3 0 0.05 0.1-0.1 -0.05 0.15-0.15

-0.15

0.15

Layer[5].self_attn.v_proj

P
ri

n
c
ip

a
l
C

o
m

p
o

n
e

n
t

2

P
ri

n
c
ip

a
l
C

o
m

p
o

n
e

n
t

2

Principal Component 1 Principal Component 1

Before Rotation After Rotation

0

-0.2

0.2

0

-0.2

-0.4

0.4

0.2

0.6

-0.6

0 1-2 -1

Bottom 10%

Recon. Err.

Bottom 10%

Recon. Err.

2 0 0.4-0.4 0.8-0.8

-0.4

0.4

Layer[10].self_attn.q_proj

Figure 4: Projected visualization of weight matrices and its bottom 10% reconstruction error vectors
before and after rotation.

where Ŵrot is the weight matrix reconstructed from the refined centroids. This objective can be
simplified to minimizing the error with respect to a proxy Hessian.

Our algorithm, detailed in Algorithm 1&2, solves this objective for each of the G sub-matrices
independently. For a given weight matrix, the algorithm processes its columns one by one in a
greedy, iterative fashion. In each step, it assigns a column to the corresponding centroid value and
then propagates the resulting error to all remaining, not-yet-processed columns. This ”assign-and-
update” procedure continues until all columns have been processed, ensuring that the final set of
centroids is refined to minimize the layer’s functional output error.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 Cluster Rotated Weight Wrot

Require: Rotated Weight Wrot, Cluster Number c, Partition Factor k.
1: W ′ ←Wrot

2: G← drow/k ▷ Determine group number based on partition factor
3: for i in G do
4: W

(i)
rot ←W ′

i·k:(i+1)·k−1,: ▷ Split rotated weight into groups

5: C(i), I(i) ← KMeans(columns of W (i)
rot, c) ▷ Cluster and obtain initial centroids & indices

6: end for
7: return C(i), I(i) ▷ Return the final result

Algorithm 2 Centroid Calibration for a Weight Matrix Wrot

Require: Weight Wrot, Hessian H, Initial centroid C, Cluster indices I
1: W′ ←(Wrot)

T ▷ Initialize a temporary matrix to hold the updatable weights
2: H−1 ← invert(H)
3: for j ← 1 to dcol do
4: cassigned ← C:,Ij ▷ Get the current centroid for column j

5: ∆:,j ← (W ′
:,j − cassigned)/H

−1
j,j ▷ Calculate the error for the current column

6: W ′
:,j+1:dcol

←W ′
:,j+1:dcol

−∆:,j ·H−1
j,j+1:dcol

▷ Update remaining columns with the error
7: C← recompute centroids from W ′ using the fixed indices I ▷ Update centroid
8: end for
9: return C, I

A.3 CENTROID CALIBRATION RESULTS

Table 4: Comparison of RoCCo with/without centroid calibration process

LLaMA1 LLaMA2

Method 7B 13B 7B 13B

Dense 5.68 5.09 5.47 4.88

RoCCo (20%) w/o calibration 35.46 28.27 31.10 27.36
RoCCo (20%) w/ calibration 5.73 5.14 5.49 4.94

RoCCo (50%) w/o calibration 60.92 48.33 55.42 48.97
RoCCo (50%) w/ calibration 5.77 5.18 5.56 4.99

Table 4 presents the ablation study on the effect of the centroid calibration process. We compare the
full RoCCo method against a baseline version that omits the final centroid calibration stage.

The results show that the centroid calibration step is critical to the success of our framework. The
baseline method, which relies solely on the initial k-means centroids, has performance degradations
at both 20% and 50% compression ratios, resulting in perplexity scores that are worse than the dense
model. This indicates that a simple Euclidean-distance-based clustering is insufficient to preserve
the output of the layer.

In contrast, our full RoCCo method, which includes the data-aware centroid calibration, yields a
dramatic improvement. At a 20% compression ratio, the calibration step reduces the perplexity on
the LLaMA2-7B model from 31.10 to 5.49, which is nearly identical to the dense model’s perfor-
mance. This demonstrates that our Hessian-based refinement is highly effective at compensating
for the initial clustering error, making it an essential component for achieving an accurate low-rank
approximation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

W
ik

iT
e

x
t-

2
 P

e
rp

le
x
it
y

Partition Factor

7

6

9

8

10

32 16128 64 8

75% Compression

50% Compression

20% Compression

In
d

e
x
 S

to
ra

g
e

 O
v
e

rh
e

a
d

 (
%

)

Partition Factor

3

1

5

7

32 16128 64 8

75% Compression

50% Compression

20% Compression

Figure 5: (Left) LLaMA2-7B model perplexity on varying row partition factor and compression
ratios. (Right) LLaMA2-7B index storage overhead relative to the dense model size on varying row
partition factor.

A.4 VARYING ROW PARTITION FACTOR SIZES AND INDEX STORAGE OVERHEAD

We conduct an ablation study to analyze the impact of the row partition factor size on compression
performance and index storage overhead. Figure 5 plots the perplexity at various compression ratios
for partition sizes ranging from 128 down to 8. A clear trend emerges from the results: smaller
partition sizes consistently yield better performance across all compression ratios.

This effect is most noticeable at the 75% compression ratio, where reducing the partition size from
128 to 16 decreases perplexity from 10.28 to 5.71. This suggests that a more fine-grained partitioning
allows the clustering algorithm to find a more accurate representation of the weight subgroups.
However, this performance gain comes with a trade-off in storage. Smaller partition sizes increase
the number of groups, which in turn increases the memory required for the cluster indices. For
example, at the same 75% compression ratio, reducing the partition size from 128 to 16 increases
the index overhead from 0.12% to 1.95% of the original weight matrix size.

We also observe that the performance gains begin to plateau at smaller partition sizes. For instance,
the difference in perplexity between a partition size of 16 and 8 is minimal but index storage almost
doubles. Based on these results, we select a partition size of 16 for our main experiments, as it
provides an excellent balance between high performance and minimal index storage overhead.

A.5 ANALYSIS OF LEARNED VS. PREDEFINED CODEBOOKS

Table 5: Comparison with QuIP#

LLaMA1 LLaMA2

Method Effective bits Codebook Entry # 7B 13B 7B 13B

Dense 16 - 5.68 5.09 5.47 4.88
QuIP# 4 232 5.76 5.17 5.56 4.95
RoCCo (75%) 4.16 218 5.89 5.27 5.71 5.04

To better situate our work, we provide a direct comparison with QuIP# (Tseng et al., 2024), a
state-of-the-art method that also uses a Hadamard transform followed by Vector Quantization (VQ).
This comparison is insightful as it highlights the trade-offs between two different philosophies for
VQ codebook design: a predefined, fixed codebook versus our learned, data-driven approach. The
effective bit is calculated as comp.modelsize∗orig.bitwidth

orig.modelsize

The fundamental difference between QuIP# and RoCCo lies in the nature of the codebook. QuIP#
maps the transformed weights to a predefined, fixed codebook derived from the highly structured E8
lattice. This allows them to generate a massive number of virtual codebook entries (232) from a very

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

small (1KiB) low-precision source codebook, which can be viewed as having a very high number
of quantization points but at a lower ”codebook resolution.” In contrast, RoCCo uses a data-driven,
learned codebook. We apply k-means clustering and a subsequent Hessian-based update process to
learn and optimize the centroids based on the specific distribution of the transformed weights. This
results in fewer total codebook entries (218 for LLaMA2-7b QKV), but each centroid is stored at a
higher precision, giving our method a higher ”codebook resolution.”

15

	Introduction
	Background and Related Work
	Low-Rank Approximation of LLM
	Computationally Invariant Transformations

	Proposed Method
	Restructuring Weight Geometry with Orthogonal Transforms
	Orthogonal Transform-based Clustering
	Direct Computation on Clustered Weights

	Experiments
	Setup
	Accuracy results
	Ablation Studies

	Efficient Attention in the Clustered Domain
	Conclusions
	Appendix
	Outlier Projections for Different Weights
	Centroid Calibration with Hessian-based Error Compensation
	Centroid Calibration Results
	Varying Row Partition Factor Sizes and Index Storage Overhead
	Analysis of Learned vs. Predefined Codebooks

