
Published as a conference paper at ICLR 2021

PLANNING FROM PIXELS USING INVERSE DYNAMICS
MODELS

Keiran Paster
Department of Computer Science
University of Toronto, Vector Institute
keirp@cs.toronto.edu

Sheila A. McIlraith & Jimmy Ba
Department of Computer Science
University of Toronto, Vector Institute
{sheila, jba}@cs.toronto.edu

ABSTRACT

Learning task-agnostic dynamics models in high-dimensional observation spaces
can be challenging for model-based RL agents. We propose a novel way to learn
latent world models by learning to predict sequences of future actions conditioned
on task completion. These task-conditioned models adaptively focus modeling
capacity on task-relevant dynamics, while simultaneously serving as an effective
heuristic for planning with sparse rewards. We evaluate our method on challeng-
ing visual goal completion tasks and show a substantial increase in performance
compared to prior model-free approaches.

1 INTRODUCTION

Deep reinforcement learning has proven to be a powerful and effective framework for solving a di-
versity of challenging decision-making problems (Silver et al., 2017a; Berner et al., 2019). However
these algorithms are typically trained to maximize a single reward function, ignoring information
that is not directly relevant to the associated task at hand. This way of learning is in stark contrast to
how humans learn (Tenenbaum, 2018). Without being prompted by a specific task, humans can still
explore their environment, practice achieving imaginary goals, and in so doing learn about the dy-
namics of the environment. When subsequently presented with a novel task, humans can utilize this
learned knowledge to bootstrap learning — a property we would like our artificial agents to have. In
this work, we investigate one way to bridge this gap by learning world models (Ha & Schmidhuber,
2018) that enable the realization of previously unseen tasks.

By modeling the task-agnostic dynamics of an environment, an agent can make predictions about
how its own actions may affect the environment state without the need for additional samples from
the environment. Prior work has shown that by using powerful function approximators to model en-
vironment dynamics, training an agent entirely within its own world models can result in large gains
in sample efficiency (Ha & Schmidhuber, 2018). However, learning world models that are both ac-
curate and general has largely remained elusive, with these models experiencing many performance
issues in the multi-task setting.

The main reason for poor performance is the so-called planning horizon dilemma (Wang et al.,
2019): accurately modeling dynamics over a long horizon is necessary to accurately estimate re-
wards, but performance is often poor when planning over long sequences due to the accumulation
of errors. These modeling errors are especially prevalent in high-dimensional observation spaces
where loss functions that operate on pixels may focus model capacity on task-irrelevant features
(Kaiser et al., 2020). Recent work (Hafner et al., 2020; Schrittwieser et al., 2019) has attempted
to side-step these issues by learning a world model in a latent space and propagating gradients
over multiple time-steps. While these methods are able to learn accurate world models and achieve
high performance on benchmark tasks, their representations are usually trained with task-specific
information such as rewards, encouraging the model to focus on tracking task-relevant features but
compromising their ability to generalize to new tasks.

In this work, we propose to learn powerful, latent world models that can predict environment dy-
namics when planning for a distribution of tasks. The main contributions of our paper are three-fold:
we propose to learn a latent world model conditioned on a goal; we train our latent representation to
model inverse dynamics — sequences of actions that take the agent from one state to another, rather

1

Published as a conference paper at ICLR 2021

Goal

State L S T M

ResNet

ResNet

Move
Down

Move
Down

Turn
Left

STOP

Linear Linear

Linear

Linear

Linear Linear Linear Linear

Figure 1: The network architecture for the inverse dynamics model used in GLAMOR. ResNets are
used to encode state features and an LSTM predicts the action sequence.

than training it to capture information about reward; and we show that by combining our inverse
dynamics model and a prior over action sequences, we can quickly construct plans that maximize
the probability of reaching a goal state. We evaluate our world model on a diverse distribution of
challenging visual goals in Atari games and the Deepmind Control Suite (Tassa et al., 2018) to as-
sess both its accuracy and sample efficiency. We find that when planning in our latent world model,
our agent outperforms prior, model-free methods across most tasks, while providing an order of
magnitude better sample efficiency on some tasks.

2 RELATED WORK

Model-based RL has typically focused on learning powerful forward dynamics models, which are
trained to predict the next state given the current state and action. In works such as (Kaiser et al.,
2020), these models are trained to predict the next state in observation space - often by minimizing
L2 distance. While the performance of these algorithms in the low data regime is often strong,
they can struggle to reach the asymptotic performance of model-free methods (Hafner et al., 2020).
An alternative approach is to learn a forward model in a latent space, which may be able to avoid
modeling irrelevant features and better optimize for long-term consistency. These latent spaces can
be trained to maximize mutual information with the observations (Hafner et al., 2020; 2019) or even
task-specific quantities like the reward, value, or policy (Schrittwieser et al., 2019). Using a learned
forward model, there are several ways that an agent could create a policy.

While forward dynamics models map a state and action to the next state, an inverse dynamics model
maps two subsequent states to an action. Inverse dynamics models have been used in various ways
in sequential decision making. In exploration, inverse dynamics serves as a way to learn represen-
tations of the controllable aspects of the state (Pathak et al., 2017). In imitation learning, inverse
dynamics models can be used to map a sequence of states to the actions needed to imitate the trajec-
tory (Pavse et al., 2019). Christiano et al. (2016) use inverse dynamics models to translate actions
taken in a simulated environment to the real world.

Recently, there has been an emergence of work (e.g., Ghosh et al., 2020; Schmidhuber, 2019; Srivas-
tava et al., 2019) highlighting the relationship between imitation learning and reinforcement learn-
ing. Specifically, rather than learn to map states and actions to reward, as is typical in reinforcement
learning, Srivastava et al. (2019) train a model to predict actions given a state and an outcome, which
could be the amount of reward the agent is to collect within a certain amount of time. Ghosh et al.
(2020) use a similar idea, predicting actions conditioned on an initial state, a goal state, and the
amount of time left to achieve the goal. As explored in Appendix A.1, these methods are perhaps
the nearest neighbors to our algorithm.

In our paper, we tackle a visual goal-completion task due to its generality and ability to generate
tasks with no domain knowledge. Reinforcement learning with multiple goals has been studied

2

Published as a conference paper at ICLR 2021

since Kaelbling (1993). Most agents that are trained to achieve multiple goals are trained with off-
policy reinforcement learning combined with a form of hindsight relabeling (Andrychowicz et al.,
2017), where trajectories that do not achieve the desired goal are relabeled as a successful trajectory
that achieves the goal that was actually reached. Andrychowicz et al. (2017) uses value-based rein-
forcement learning with a reward based on the euclidean distance between physical objects, which
is only possible with access to an object-oriented representation of the state. In environments with
high-dimensional observation spaces, goal-achievement rewards are more difficult to design. Nair
et al. (2018) use a VAE (Kingma & Welling, 2014) trained on observations to construct a latent space
and uses distances in the latent space for a reward. These distances, however, may contain features
that are uncontrollable or irrelevant. Warde-Farley et al. (2019) attempt to solve this issue by fram-
ing the goal-achievement task as maximizing the mutual information between the goal and achieved
state I(sg, sT). Our method differs from these approaches since we aim simply to maximize an
indicator reward 1(sT = sg) and do not explicitly learn a value or Q-function.

3 METHOD

3.1 PROBLEM FORMULATION

Reinforcement learning is a framework in which an agent acts in an unknown environment and
adapts based on its experience. We model the problem with an MDP, defined as the tuple
(S,A, T,R, γ). S is a set of states; A is a set of actions; the transition probabilities T : S×A×S →
[0, 1] defines the probability of the environment transitioning from state s to s′ given that the agent
acts with action a; the reward function R : S × A× S → R maps a state-action transition to a real
number; and 0 ≤ γ ≤ 1 is the discount factor, which controls how much an agent should prefer
rewards sooner rather than later. An agent acts in the MDP with a policy π : S ×A→ [0, 1], which
determines the probability of the agent taking action a while in state s.

The expected return of a policy is denoted:

JRL(π) = Eτ∼P (τ |π)

[∑
t

γtR(st, at, s
′
t)

]
, (1)

that is the averaged discounted future rewards for trajectories τ = {(st, at)}Tt=1 of states and actions
sampled from the policy. A reinforcement learning agent’s objective is to find the optimal policy
π∗ = argmaxπ JRL(π) that maximizes the expected return.

In goal-conditioned reinforcement learning, an agent’s objective is to find a policy that maximizes
this return over the distribution of goals g ∼ p(g) when acting with a policy that is now also
conditioned on g. In our work, g ∈ S and we consider goal achievement rewards of the form
Rg(s) = 1(s = g). Additionally, we consider a trajectory to be complete when any Rg(st) = 1 and
denote this time-step t = T . With these rewards, an optimal goal-achieving agent maximizes:

J(π) = Eg∼p(g)[EsT∼p(sT |πg)[γ
TRg(sT)]]. (2)

Note that unlike prior works, we consider both the probability of goal achievement as well as the
length of the trajectory T in our objective.

3.2 PLANNING

We consider the problem of finding an optimal action sequence a1, . . . , ak−1 to maximize expected
return J(s, g, a1, . . . , ak−1):

J(s, g, a1, . . . , ak−1) = Esk∼p(sk|s,a1,...,ak−1)[γ
krg(sk)] = γT p(sk = g|s, a1, . . . , ak−1) (3)

Thus, the optimal action sequence is found by solving the following optimization problem:

a∗1, . . . , a
∗
k−1 = argmax

a1,...,ak−1

γkp(sk = g|s1, a1, . . . , ak−1) (4)

Even with access to a perfect model of p(sk = g|s1, a1, . . . , ak−1), solving this optimization may
be difficult. In many environments, the number of action sequences that reach the goal are vastly
outnumbered by the action sequences that do not. Without a heuristic or reward-shaping, there is
little hope of solving this problem in a reasonable amount of time.

3

Published as a conference paper at ICLR 2021

3.3 GLAMOR: GOAL-CONDITIONED LATENT ACTION MODELS FOR RL

Inspired by sequence modeling in NLP, we propose to rewrite Equation 4 in a way that permits
factoring across the actions in the action sequence. By factoring, planning in our model can use the
heuristic search algorithms that enable sampling high quality language sequences that are hundreds
of tokens long. First, note that12:

p(sk = g|s1, a1, . . . , ak−1) ∝
k−1∏
i=1

p(sk = g|s1, a<i, ai)
p(sk = g|s1, a<i)

(5)

Let z(s1, g, a<i, ai) , p(sk=g|s1,a<i,ai)
p(sk=g|s1,a<i)

. Intuitively, these terms are equal to the relative gain in
probability of reaching state g conditioned on taking action ai versus the marginal probability of
reaching the goal without conditioning on that action. These terms provide useful information3 that
can guide search towards high scoring action sequences when constructing a plan.

To learn the values of the z(s1, g, a<i, ai), we use Bayes’ rule to show that we can equivalently learn
two auto-regressive behavioral models:

p(sk = g|s1, a≤i)
p(sk = g|s1, a≤i−1)

=
p(ai|sk = g, s1, a≤i−1)p(sk = g, s1, a≤i−1)p(s1, a≤i−1)

p(s1, a≤i)p(sk = g, s1, a≤i−1)
(6)

=
p(ai|s1, sk = g, a≤i−1)

p(ai|s1, a≤i−1)
(7)

We refer to p(a1, . . . , ak|s1, sk = g) as the inverse dynamics model and p(a1, . . . , ak|s1) as the
action prior. Using these models, we can find an optimal plan by optimizing the following objective:

a∗1, . . . , a
∗
k−1 = argmax

a1,...,ak−1

γk
p(a1, . . . , ak−1|s1, sk = g)

p(a1, . . . , ak−1|s1)
(8)

3.4 LEARNING INVERSE DYNAMICS MODEL AND ACTION PRIOR

We parameterize both the inverse dynamics model and the action prior model with LSTMs (Hochre-
iter & Schmidhuber, 1997) parameterized by θ and φ. Please refer to section 4.2 for more informa-
tion about our architecture.

From the training data we construct a new dataset D of (s1, a1, . . . , ak−1, sk) tuples for all possible
combinations of s1 and sk. Note that this is similar to hindsight relabeling (Andrychowicz et al.,
2017). In training, we find parameters to maximize the likelihood of the training data using AdamW
(Loshchilov & Hutter, 2019) to optimize the following loss, where α controls the relative weight of
the losses when the two models share parameters:

L(θ, φ) =E(s,a1,...,ak−1,sk)∼D[− log pθ(a1, . . . , ak−1|s1, sk)]
+ α · E(s,a1,...,ak−1)∼D[− log pφ(a1, . . . , ak−1|s1)].

(9)

While there are many heuristic search algorithms that could be used to optimize Equation 8, we opt
to use random shooting (RS) (Richards, 2005) due to ease of parallelization and strong empirical
performance. RS samples N candidate action sequences, evaluates the value of the sequences using
the learned models, and takes the first action of the winning action sequence. Rather than sampling
action sequences uniformly, we sample them auto-regressively using a Boltzmann distribution of the
scores z.

1Here we assume that all goals have a non-zero probability of being achieved under the training distribution.
2The notation a<i denotes a1, . . . , ai−1.
3By upper-bounding each term z, any individual factor being small bounds the rest of the score and allows

for early pruning of bad action sequences. An upper-bound can be achieved by assuming some support over all
actions in the training policy, which is a common requirement for the convergence of many RL algorithms.

4

Published as a conference paper at ICLR 2021

In order to be able to re-plan at every step, our model must be able to model action sequences with
variable length. By predicting variable length action sequences using end-tokens, our model is able
to plan to both maximize goal-achievement probability and find a shortest path.

Algorithm 1: GLAMOR
Initialize inverse dynamics model pθ(a1, . . . , ak−1|s1, sk);
Initialize action prior model pφ(a1, . . . , ak−1|s1);
Initialize dataset D((s, a));
for training iteration k = 1, 2, 3, . . . do

Sample t trajectories with training policy πk and goals sampled from p(g);
Add tuples (s1, a1, . . . , ak−1, sk) to dataset D;
Update θ, φ by descending the gradient of Equation 9;

end

3.5 DATA COLLECTION

While training data need not be collected on-policy, we note that using an arbitrary data-collection
policy may result in a causally-incorrect model (Rezende et al., 2020). In our experiments, we use
our open-loop planner to generate a sequence of actions given just the initial state s1 and a sampled
goal g and follow this sequence for the rest of the episode. For a discussion of the types of errors
that may occur with a causally incorrect model, see Appendix A.2.

For exploration and in order to ensure support over all actions, we use an ε-greedy exploration policy
where the ith action in the plan is taken with probability 1 − ε and an action is randomly sampled
with probability ε. We decay ε to a small final value over time. We store trajectories in a circular
replay buffer, meaning dataset D contains trajectories from multiple past versions of the planner.

3.6 COMPARISON TO PRIOR METHODS

Prior methods for goal-conditioned RL include DISCERN (Warde-Farley et al., 2019) and Goal-
Conditioned Supervised Learning (GCSL) (Ghosh et al., 2020). DISCERN learns a goal discrimi-
nator and Q-network and rewards the agent for ending up in states where its discriminator can easily
guess the desired goal. GCSL learns a policy with supervised learning by iteratively imitating its
own relabeled trajectories. While GLAMOR outputs a sequence of actions using an LSTM, these
prior works only output a single action for the current time-step.

While GLAMOR shows strong empirical performance in benchmark tasks, we believe that there are
several other key advantages over prior goal-conditioned RL algorithms:

• GLAMOR learns a world model, which is more flexible than the Q-networks or policies
that prior methods use. For example, despite only being trained to find shortest paths
to a goal state, the latent world model learned in GLAMOR contains information about
many different paths to the goal. One implication is that during planning, the agent can
be modified to select action sequences that reach the goal at a specific time-step. This is
experimentally verified in section 4.7.

• Q-learning is well known (Fujimoto et al., 2019) to perform poorly with purely off-policy
data and GCSL relies on many iterations of training and data-collection to converge to
an optimal policy. As shown in Appendix A.4.1, GLAMOR performs well even with a
completely random training policy, often still achieving SOTA performance. Strong off-
policy performance may enable the use of offline datasets or more sophisticated exploration
policies.

• GCSL does not estimate the prior probability of taking an action sequence and therefore
fails to converge to an optimal policy when action sequences that are optimal for one goal
may land the agent in another goal state. By using the action prior to disentangle the
probability of reaching a goal from the probability of taking an action sequence, GLAMOR
avoids this issue. For a more detailed comparison of GLAMOR and GCSL, see section
Appendix A.1.

5

Published as a conference paper at ICLR 2021

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
oa

ls
A

ch
ie

ve
d

Atari

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
oa

ls
A

ch
ie

ve
d

Control

algo DISCERN GCSL GLAMOR (Ours)

Figure 2: Both in Atari and on tasks from the Deepmind Control Suite, GLAMOR outperforms prior
methods. The goal achievement rate is averaged over all games / control tasks and over three seeds.
See Figure 9 and Figure 10 in the appendix for more detailed training curves.

4 EXPERIMENTS

In our experiments, we aim to answer the following questions:

• How accurate is our world model? Can the agent plan using its model to achieve a diverse
set of goals even in high-dimensional domains?

• How sample efficient are our agents? In the low sample regime, is it better to use GLAMOR
or use model-free reinforcement learning?

• How effective is our planning procedure? Can the planner discover how to achieve goals
with shortest paths or paths with a specific length?

4.1 ENVIRONMENTS

We evaluate our method on two types of environments: Atari games and control tasks in the Deep-
mind Control Suite (Tassa et al., 2018). In both environments, visual observations are converted to
grayscale and down-scaled to (80, 104) pixels. In order to incorporate historical information, we
opt to concatenate the four most recent frames to form an observation, as introduced by Mnih et al.
(2015). However, we opt to use only a single frame for specifying visual goals. We calculate goal
achievement in both environments using extracted low dimensional features.

ARCADE LEARNING ENVIRONMENT (ALE). We run experiments on a subset of the available ALE
games, chosen by the availability of labeling methods and the suitability of the games to the goal-
achieving tasks. In all games we use a frame-skip of 4, and all Atari environments used a random
number of initial noops and sticky actions to introduce stochasticity.

DEEPMIND CONTROL SUITE. We choose to use the subset of the Deepmind Control Suite (Tassa
et al., 2018) chosen by Warde-Farley et al. (2019). We also adopt the same method of dis-
cretization, discretizing most of the A-dimensional continuous control tasks into 3A actions. For
manipulator, we adopt DISCERN’s diagonal discretization. In point mass we apply a
frame-skip of 4 frames, with no frame-skip for any other control environment.

Table 1: Goal Achievement Rates at 500k Agent Steps in Atari

Atari GLAMOR (Ours) DISCERN GCSL

Bowling 0.14 (0.07) 0.11 (0.09) 0.21 (0.11)
Boxing 0.06 (0.04) 0.01 (0.01) 0.01 (0.02)
Breakout 0.12 (0.05) 0.02 (0.02) 0.04 (0.03)
Frostbite 0.35 (0.06) 0.04 (0.04) 0.20 (0.05)
Montezuma 0.13 (0.07) 0.03 (0.02) 0.30 (0.07)
MsPacman 0.28 (0.07) 0.04 (0.02) 0.30 (0.05)
Pitfall 0.40 (0.08) 0.07 (0.04) 0.26 (0.07)
Pong 0.44 (0.20) 0.21 (0.08) 0.28 (0.06)
PrivateEye 0.26 (0.07) 0.04 (0.04) 0.16 (0.06)
Qbert 0.83 (0.03) 0.26 (0.04) 0.56 (0.17)
Riverraid 0.80 (0.05) 0.27 (0.03) 0.79 (0.09)
Seaquest 0.57 (0.06) 0.04 (0.04) 0.48 (0.08)
Skiing 0.30 (0.09) 0.02 (0.02) 0.38 (0.08)
Tennis 0.10 (0.04) 0.00 (0.00) 0.05 (0.03)

(a)

DM Control GLAMOR (Ours) DISCERN GCSL

ball in cup 0.20 (0.08) 0.01 (0.02) 0.03 (0.04)
cartpole 0.97 (0.03) 0.01 (0.01) 0.09 (0.02)
finger 0.09 (0.05) 0.01 (0.01) 0.03 (0.02)
manipulator 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
pendulum 0.83 (0.09) 0.20 (0.05) 0.14 (0.05)
point mass 0.76 (0.16) 0.03 (0.02) 0.82 (0.05)
reacher 0.27 (0.08) 0.08 (0.06) 0.07 (0.04)

(b)

6

Published as a conference paper at ICLR 2021

re
ac

he
d

1 trials 5 trials 10 trials 50 trials

sh
or

te
st

 p
at

h

1 trials 5 trials 10 trials 50 trials

0.0

0.2

0.4

0.6

0.8

1.0

(a) Goal achievement rates for a 7x7 grid-world.

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

1.0

G
oa

ls
A

ch
ie

ve
d

cartpole/balance

GLAMOR (Ours) naive-end plan-end

(b) Goal achievement rates for different termination
strategies.

Figure 3: (a) The agent starts in the center and must travel to the goal tile. Top shows the rate at
which the agent eventually achieved the goal and bottom shows the rate at which the agent achieved
the goal with the shortest available path. The amount of compute used for planning is shown on
the x-axis. As the planning budget increases, both the number of successfully reached goals and the
number of goals achieved optimally improves substantially. Brighter means a higher achievement
rate. (b) In “naive-end”, the agent greedily tries to take a shortest path to the goal for T timesteps
and is evaluated at the end. In “plan-end”, the agent explicitely constructs a plan to achieve the goal
state at the end of its trajectory. GLAMOR (Ours) can choose to terminate its episode early.

4.2 IMPLEMENTATION DETAILS

We parameterize our models with two convolutional encoders, similar to the large model in Espe-
holt et al. (2018), and an LSTM model (Hochreiter & Schmidhuber, 1997) for action prediction. See
Figure 1 for a visual description of our architecture. We opt to share parameters only in the encoders
for the inverse dynamics model and action prior. In DISCERN and GCSL, we represent the time
remaining with a periodic representation (sin(2πt/T), cos(2πt/T)). Detailed training hyperparam-
eters are available at Appendix A.3.

The code for training agents on both Atari and DM Control Suite along with evaluation code can be
found at https://github.com/keirp/glamor.

4.3 BASELINES

We evaluate our method against both GCSL and DISCERN. We chose DISCERN due to its reported
high performance on our benchmark tasks, and GCSL due to its similarity to our own algorithm.
GCSL was implemented within our code-base, ensuring that any differences are due to algorithmic
differences rather than implementation details. Our implementation was checked against publicly
available code. For DISCERN, due to the lack of available source code, we made a best effort at-
tempt to reproduce the algorithm. We built our implementation on top of rlpyt’s (Stooke & Abbeel,
2019) Rainbow implementation (Hessel et al., 2018). All algorithms use the same encoder architec-
ture, and hyperparameters were fixed between GCSL and GLAMOR.

4.4 EVALUATION

To evaluate the degree to which an agent achieved its desired goal, we extract the positions of the
various entities in the scene. For Atari, we extract state entity labels using code from Anand et al.
(2019). In the Deepmind Control Suite environments, we use the position information from the non-
visual representation. Information from both of these agents is kept private from the agents at both
train and evaluation time. As in DISCERN, a goal is considered to be achieved if the positions of
the entities are within 10% of their feasible range. Positions are evaluated at the end of the episode
(T = 50 in Atari and T = 100 in control tasks) or when the agent decides to terminate the episode.
In order to inform GLAMOR of the time remaining until evaluation, we limit the length of the plan
in the planner after t steps to T − t.
Agents are evaluated on a set of 30 fixed goals per environment. These goals are generated similarly
to the diverse goal buffer described in Warde-Farley et al. (2019): goals are repeatedly sampled and

7

https://github.com/keirp/glamor

Published as a conference paper at ICLR 2021

a goal is only added to the buffer if it is farther away from the closest goal in feature space than the
goal that it is replacing is. We found this procedure to generate a good coverage of possible goals
for evaluation.

4.5 ACHIEVING VISUALLY-SPECIFIED GOALS

In order to test our model’s accuracy, we evaluate our agent’s performance in achieving visually-
specified goals in all of our test environments. Figure 2 shows that by planning in its latent world
model, our agent learns to achieve goals with at least as much accuracy as DISCERN and GCSL
in 17 out of 21 tasks, often achieving as much as twice as many goals. See Figure 9 and Figure 10
in the appendix for individual training curves for each environment. Despite not being explicitly
trained to only focus on controllable features as in Warde-Farley et al. (2019), Figure 12 shows our
agent learning to control the position of its finger even when it can’t exactly match the orientation
of the spinner. Overall, we conclude that since planning under our agent’s world model results in a
high goal-achievement rate relative to previous state-of-the-art algorithms, our model is sufficiently
accurate. Videos of GLAMOR agents achieving goals in all environments are available at https:
//sites.google.com/view/glamor-paper.

4.6 SAMPLE EFFICIENCY

Model-based reinforcement learning is known for having better sample efficiency than model-free
algorithms. We found this to be true for GLAMOR as well. In Table 1, we show the performance
of our algorithm trained with only 500k agent steps. GLAMOR achieves decidedly more goals than
DISCERN and GCSL. Of particular note is that DISCERN is sample inefficient4, learning to control
almost none of the control tasks at 500k steps while GLAMOR has already converged.

4.7 PLANNING

We ran several experiments to test properties of our planning procedure.

4.7.1 PLANNING COMPUTE

One benefit of model-based reinforcement learning is that the agent can improve its performance
or even adapt its policy at test-time simply by changing its planning procedure. In order to test the
performance of GLAMOR with various levels of compute used to construct a plan, we used an empty
grid-world environment where shortest-paths are known. We evaluate the percentage of trajectories
that reach the goal in an optimal amount of time for each goal. Figure 3a shows a heatmap of
the optimal goal-completion rates for different amounts of compute used during planning. As the
amount of samples in the planner is increased, both the rate of achieving goals and the rate of
achieving goals with an optimal path increase.

4.7.2 EARLY TERMINATION

We also test the flexibility of the learned model by slightly changing the task. While GLAMOR
is trained to find shortest paths to the goal state, we ran an additional experiment evaluating its
performance if the agent is evaluated on its ability to get to the goal state in exactly T steps. For this
experiment, we use the cartpole/balance environment, since terminating early when the cart
is in the correct position is significanly easier than manipulating it to reach that position at a specific
time. In Figure 3b, we show that while early termination achieves the highest goal-achievement
rate, explicitly planning to achieve the goal at the end of the trajectory outperforms naively taking
shortest paths towards the goal state for T time-steps. All three experiments used the exact same
learned model and the only difference is in the planning procedure, where “plan-end” does not
sample the termination token until the last time-step. Videos of the different termination strategies
are also available on the website.

4Warde-Farley et al. (2019) trained DISCERN for 200M steps in their paper.

8

https://sites.google.com/view/glamor-paper
https://sites.google.com/view/glamor-paper

Published as a conference paper at ICLR 2021

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

G
oa

ls
A

ch
ie

ve
d

Frostbite

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

G
oa

ls
A

ch
ie

ve
d

Pitfall

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

G
oa

ls
A

ch
ie

ve
d

Pong

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

G
oa

ls
A

ch
ie

ve
d

PrivateEye

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

G
oa

ls
A

ch
ie

ve
d

Qbert

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

G
oa

ls
A

ch
ie

ve
d

Seaquest

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

G
oa

ls
A

ch
ie

ve
d

Skiing

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

G
oa

ls
A

ch
ie

ve
d

Tennis

GLAMOR (Ours) Sparse Planner

Figure 4: Using intermediate information to guide the planning process helps GLAMOR achieve
more goals than when it only looks at the estimated probability of reaching a goal at the end of the
episode.

4.7.3 SPARSE PLANNING

Prior works such as MuZero (Schrittwieser et al., 2019) and the Predictron (Silver et al., 2017b)
also learn latent dynamics models and are similar to GLAMOR in that they predict rewards given
a starting state and action sequence. The reward (probability of reaching the goal state) predicted
in GLAMOR however is in the form of the inverse dynamics model and action prior, as shown in
Equation 8, and the intermediate probabilities predicted by the auto-regressive models are used to
guide the search for a good action sequence. To test the contribution of this guidance, we compare
GLAMOR to a version where candidate action sequences are generated randomly and the highest
scoring one under Equation 8 is selected. Figure 4 shows that performance is significantly worse in
the tested environments.

5 CONCLUSION

We have presented a novel way to learn latent world models by modeling inverse dynamics. These
models learn to track task-relevant dynamics for a diverse distribution of tasks and provide a strong
heuristic that enables efficient planning. We also demonstrate strong performance in both the low
and high sample regime on 21 challenging visual benchmark tasks.

Goal-achievement tasks already have significant practical value. A next step is to extend GLAMOR
to general reward functions. GLAMOR also learns a non-reactive policy. While combining non-
reactive planning with Model Predictive Control has proven to be sufficient in many benchmark
tasks, a natural future direction is to account for these types of stochastic environments.

ACKNOWLEDGEMENTS

We gratefully acknowledge funding from the Natural Sciences and Engineering Research Council
of Canada (NSERC), the Canada CIFAR AI Chairs Program, and Microsoft Research. Resources
used in preparing this research were provided, in part, by the Province of Ontario, the Government
of Canada through CIFAR, and companies sponsoring the Vector Institute for Artificial Intelligence
(www.vectorinstitute.ai/partners).

REFERENCES

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R. Devon
Hjelm. Unsupervised state representation learning in atari. In Advances in Neural Information

9

www.vectorinstitute.ai/partners

Published as a conference paper at ICLR 2021

Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pp. 8766–8779, 2019.

Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 5048–5058, 2017.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv: 1912.06680, 2019.

Paul F. Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin,
Pieter Abbeel, and Wojciech Zaremba. Transfer from simulation to real world through learning
deep inverse dynamics model. arXiv preprint arXiv: 1610.03518, 2016.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
scalable distributed deep-rl with importance weighted actor-learner architectures. In Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pp. 1406–1415. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research, pp. 2052–2062. PMLR,
2019. URL http://proceedings.mlr.press/v97/fujimoto19a.html.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach, and
Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint arXiv:
1912.06088, 2020.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-
man Garnett (eds.), Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada, pp. 2455–2467, 2018.

Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research, pp. 2555–2565. PMLR,
2019.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pp. 3215–3222. AAAI Press, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:1735–
80, 12 1997.

10

http://proceedings.mlr.press/v97/fujimoto19a.html

Published as a conference paper at ICLR 2021

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=rygGQyrFvH.

Leslie Pack Kaelbling. Learning to achieve goals. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence (IJCAI-93), pp. 1094–1098, 1993.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann
LeCun (eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, 2014.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:
1711.05101, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nat., 518(7540):529–533, 2015.

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual re-
inforcement learning with imagined goals. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pp. 9209–9220, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 2778–2787, 2017.

Brahma S. Pavse, Faraz Torabi, Josiah P. Hanna, Garrett Warnell, and Peter Stone. RIDM: reinforced
inverse dynamics modeling for learning from a single observed demonstration. arXiv preprint
arXiv: 1906.07372, 2019.

Danilo J. Rezende, Ivo Danihelka, George Papamakarios, Nan Rosemary Ke, Ray Jiang, Theophane
Weber, Karol Gregor, Hamza Merzic, Fabio Viola, Jane Wang, Jovana Mitrovic, Frederic Besse,
Ioannis Antonoglou, and Lars Buesing. Causally correct partial models for reinforcement learn-
ing. arXiv preprint arXiv: 2002.02836, 2020.

A. Richards. Robust constrained model predictive control. PhD thesis, Massachusetts Institute of
Technology, 2005.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards – just map them
to actions. arXiv preprint arXiv: 1912.02875, 2019.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. arXiv
preprint arXiv: 1911.08265, 2019.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. arXiv preprint arXiv: 1712.01815, 2017a.

11

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH

Published as a conference paper at ICLR 2021

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David P. Reichert, Neil C. Rabinowitz, André Barreto, and Thomas Degris. The
predictron: End-to-end learning and planning. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Re-
search, pp. 3191–3199. PMLR, 2017b. URL http://proceedings.mlr.press/v70/
silver17a.html.

Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and Jürgen Schmid-
huber. Training agents using upside-down reinforcement learning. arXiv preprint arXiv:
1912.02877, 2019.

Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning in
pytorch. arXiv preprint arXiv: 1909.01500, 2019.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A.
Riedmiller. Deepmind control suite. arXiv preprint arXiv: 1801.00690, 2018.

Josh Tenenbaum. Building machines that learn and think like people. In Elisabeth André, Sven
Koenig, Mehdi Dastani, and Gita Sukthankar (eds.), Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July
10-15, pp. 5. International Foundation for Autonomous Agents and Multiagent Systems Rich-
land, SC, USA, 2018.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. arXiv preprint arXiv: 1907.02057, 2019.

David Warde-Farley, Tom Van de Wiele, Tejas D. Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019.

A APPENDIX

A.1 COMPARISON TO GOAL CONDITIONAL SUPERVISED LEARNING

Ghosh et al. (2020) propose a similar algorithm where a policy is trained by imitation learning with
a maximum-likelihood loss:

L(π) = ED[− log πt(a|s, g, h)] (10)

Here h is the time remaining until evaluation. GCSL iterates between training a policy to clone the
behavior of the previous policy conditioned on achieving goal g and gathering new training data.

The key differences between GCSL and GLAMOR are: (i) To act, GLAMOR solves an optimiza-
tion problem while GCSL samples directly from the policy; (ii) GLAMOR learns both an inverse
dynamics model and the action prior while GCSL only learns a policy π(s, a, g, h); and (iii) Data
for GCSL is collected with a reactive policy while GLAMOR uses an open-loop plan.

In our experiments, we found that GCSL performed surprisingly well on visual goal-achievement
tasks despite the original implementation by Ghosh et al. (2020) only being tested on control tasks
with low-dimensional observations.

Ghosh et al. (2020) provide a theoretical analysis of GCSL, and show that their behavioral cloning
objective is a bound on the RL objective, with looseness induced by both how off-policy the training
distribution is and the relabeling step. To illustrate the sub-optimal behavior of GCSL caused by
relabeling, consider a simplified setting of a one-step MDP and on-policy training data.

Proposition A.1. Let a∗(g) be an action that maximizes the probability p(s = g|·). If there exist
two goals g, g′ such that p(g) > 0, p(g′) > 0, and p(s = g|a∗(g)) > p(s = g|a∗(g′)) > 0, then
one-step GCSL does not converge to an optimal policy.

12

http://proceedings.mlr.press/v70/silver17a.html
http://proceedings.mlr.press/v70/silver17a.html

Published as a conference paper at ICLR 2021

As an example, consider a game with state space S = {1, 2, 3, 4, 5, 6} and action space {roll fair
die, roll loaded die}. Rolling the fair die will result in the state being uniformly set to the number
that the die lands on, while the loaded die will always land on 1. The optimal goal-achieving policy
is evident: the agent should roll the loaded die with probability one only when the goal is to land on
1. Otherwise the agent should always roll the fair die. In this example, GCSL will fail to converge
but GLAMOR will find the correct policy.

Proof. We consider a one-step MDP with goal distribution p(g). In this MDP, we assume a deter-
ministic initial state and denote the state the agent transitions to after taking action a as s.

For simplicity, we assume the policy πθ is powerful enough to perfectly match its training distri-
bution when trained with maximum-likelihood. Therefore, GCSL consists of the following iterated
steps:

• Gather trajectories with πt. This gives an empirical distribution of goal-conditioned actions
pt+1(a|s = g) = p(s=g|a)pt(a)

p(s=g) .

• Distill pt+1(a|s = g) into πt+1(a|g).

The update to the policy π at each iteration depends both on the relative likelihood of transitioning
to the goal with the environment dynamics and the probability of taking action a, pt(a). Clearly,
pt(a) is a function of the previous policy πt and the goal distribution p(g):

pt(a) =
∑
g′

p(g′)πt(a|g′) (11)

Assuming the distillation is exact, the policy evolves like:

πt+1(a|s = g) =
p(s = g|a)
p(s = g)

∑
g′

p(g′)πt(a|g′) (12)

We then analyze the ratio of the probability of any sub-optimal action a to the probability of the
optimal action a∗: πt(a|g)

πt(a∗(g)|g) .

If there is goal interference, goals g, g′ exist such that p(g′)p(s = g|a∗(g′)) > 0 and p(s =
g|a∗(g)) > p(s = g|a∗(g′)) > 0.

Assume πt−1 is optimal. Then,

πt(a∗(g
′)|g)

πt(a∗(g)|g)
=
p(s = g|a∗(g′))

∑
g′′ p(g

′′)πt−1(a∗(g
′)|g′′)

p(s = g|a∗(g))
∑
g′′ p(g

′′)πt−1(a∗(g)|g′′)
(13)

≥ p(s = g|a∗(g′))p(g′)
p(s = g|a∗(g))

(14)

> 0 (15)

Therefore, if πt−1 is optimal, πt will again be sub-optimal and the policy will never converge.

A.2 CAUSALLY CORRECT MODELS

Rezende et al. (2020) explore the connection between model-based reinforcement learning and
causality. A model is causally correct if a learned model qθ(x) ≈ p(x) with respect to a set of
interventions. In model-based RL, a model is trained to predict some aspect of an environment. In
order to use the learned model to predict the affect of a new policy in the environment, the model
must be causally correct with respect to changes in the policy. Rezende et al. (2020) show that
some partial models, including MuZero, are not causally correct with respect to action sequence
interventions.

13

Published as a conference paper at ICLR 2021

Hyper-parameter value
optimizer AdamW
weight-decay 0.01
normalization GroupNorm
learning-rate 5e-4
replay-ratio 4
eps-steps 3e5
eps-final 0.1
min-steps-learn 5e4
buffer size 1e6
policy trials 50
state size 512
clip-p-actions -3.15
lstm-hidden-dim 64
lstm-layers 1
train tasks 1000

Figure 5: Hyperparameters used to train GLAMOR.

As an example, consider training a model to predict whether a sequence of actions wins in the
game of Simon Says. The model is trained to predict p(win|s0, a1, . . . , ak) on data produced
by some training policy. If this training policy is good at the game, the conditional probability
p(win|s0, a1, . . . , ak) = 1 for all action sequences, even though using the action sequence blindly in
the real game would result in a much lower win-rate. This happens because the true data-generating
process is actually dependent on intermediate states s1, . . . , sk, which the training policy has ac-
cess to. By conditioning on some action sequence s0, a1, . . . , ak without modeling the intermediate
states, these states become confounding variables. In order to predict the affect of taking a certain
action sequence on the environment, what we really want to do is find p(win|s0, do(a1, . . . , ak)).
To learn causally correct models with GLAMOR, we opt to simplify the data-generating process
by using training policies that are independent of intermediate states. While this may hurt training
in some stochastic environments, we find that in our multi-task setting with relabeling, using non-
reactive exploration has a negligible effect.

A.3 EXPERIMENTAL DETAILS

Figure 5 shows the hyperparameters that were used to train our method. While our method is
substantially more simple than value-based methods like DISCERN, there are still a few important
hyperparameters. We found that tuning the replay ratio is important to balance between sample
efficiency and over-fitting in our models. We also find that GLAMOR works best with a large replay
buffer and a large model. We also found that avoiding selecting action sequences which have too
low a probability, similar to tricks used in beam search in NLP (Holtzman et al., 2020), increases the
performance of our planner. To achieve this, we introduce a hyperparameter clip-p-actions,
and only expand an action sequence if the immediate log-probability under the inverse dynamics
model is over this value.

A.4 ABLATIONS

In order to find which parts of GLAMOR contribute to its performance, we ran an ablation study.

A.4.1 TRAINING POLICY

In Figure 6, we vary the way we construct the open-loop action sequence that is followed to collect
training data. We vary it in two ways: the amount of compute used to create the plan and whether
we consider the action prior. While the performance is poor when using only one planning sample,
GLAMOR seems to work well on Pong with as little as 5 samples. More interestingly, disabling the
action prior during training seems to increase the variance of GLAMOR significantly. Without the
action prior, the planning procedure will select action sequences that may have shown up more in

14

Published as a conference paper at ICLR 2021

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
oa

ls
A

ch
ie

ve
d

1 Planning Trial

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
oa

ls
A

ch
ie

ve
d

5 Planning Trials

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
oa

ls
A

ch
ie

ve
d

10 Planning Trials

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
oa

ls
A

ch
ie

ve
d

50 Planning Trials

No Action Prior With Action Prior

Figure 6: In this experiment, we test how changing the training policy affects performance in Pong.
As the amount of compute used in the planner during training increases, so does the performance of
the evaluated agent. Using the action prior decreases the variance of the agent’s performance.

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

1.0

G
oa

ls
A

ch
ie

ve
d

Pitfall

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

1.0

G
oa

ls
A

ch
ie

ve
d

Pong

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

1.0

G
oa

ls
A

ch
ie

ve
d

Qbert

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.2

0.4

0.6

0.8

1.0

G
oa

ls
A

ch
ie

ve
d

Seaquest

GCSL GLAMOR (Ours) default random

Figure 7: When training agents with off-policy data collected with a random policy, GLAMOR
outperfoms GCSL and can achieve most goals.

the training data simply due to the training policy. We hypothesize that this effect can significantly
hurt exploration and performance.

We also test the performance of both GLAMOR and GCSL when using a uniform training policy in
Figure 7. We found that GLAMOR performs very well even when trained on completely off-policy
data, while GCSL struggles.

A.4.2 PLANNER

We also evaluate whether the planner is necessary at test-time to achieve strong goal-achievement
performance. To test this, we ran an experiment where the planner simply takes 1 trajectory sample
and takes the first action5. Figure 8 shows that while the agent still surprisingly achieves many goals
in this setting, using the planner results in a stronger policy. We interperate this result as showing that
the heuristic search guided by the factored inverse dynamics and action prior is strong and additional
compute simply chooses a plan among already good options.

A.5 ADDITIONAL FIGURES

In Figure 9 and Figure 10, we plot the learning curves of GLAMOR, GCSL, and DISCERN trained
for 5M agent steps. GLAMOR learns quickly compared to the other algorithms and performs better
asymptotically with the exception of a few environments (MsPacman, point-mass). Figure 11 and
Figure 12 show the states achieved by GLAMOR attemping to reach a specific goal. As noted by
Warde-Farley et al. (2019), the manipulator environment is difficult and no algorithm learned to

5Note that this is exactly equivalent to lowering the planning compute in our implementation.

15

Published as a conference paper at ICLR 2021

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
oa

ls
A

ch
ie

ve
d

Atari

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
oa

ls
A

ch
ie

ve
d

Control

1 Search Trial 50 Search Trials

Figure 8: Goal achievement rates for DM Control and Atari. Searching for a high scoring action
sequence results in more goals achieved. However, even when using compute equivalent to a model-
free agent, GLAMOR performs remarkably well.

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Bowling

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Boxing

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Breakout

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Frostbite

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

MontezumaRevenge

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

MsPacman

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Pitfall

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Pong

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

PrivateEye

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Qbert

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Riverraid

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Seaquest

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Skiing

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

Tennis

DISCERN GCSL GLAMOR (Ours)

Figure 9: Training Curves for Atari Tasks. GLAMOR achieves more goals (often with many fewer
steps) than both GCSL and DISCERN.

achieve goals within 5M steps. The low achievement rate on the finger task is due to the agent’s
inability to reliably control the angle of the spinner.

16

Published as a conference paper at ICLR 2021

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

ball in cup/catch

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

cartpole/balance

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

finger/spin

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

manipulator/bring ball

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

pendulum/swingup

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

point mass/easy

0 1 2 3 4 5

Agent Steps (Millions)

0.0

0.5

1.0

G
oa

ls
A

ch
ie

ve
d

reacher/hard

DISCERN GCSL GLAMOR (Ours)

Figure 10: Training Curves for Control Tasks. GLAMOR achieves more goals (often with many
fewer steps) than both GCSL and DISCERN.

Figure 11: Goal states (above) and states achieved by the fully trained GLAMOR agent (below)
averaged over 5 trials for each Atari game tested. Variance comes from environment and planning
stochasticity. Note that on most games, GLAMOR learns to control the positions of both directly
and indirectly controllable objects in the frame.

17

Published as a conference paper at ICLR 2021

Figure 12: Goal states (above) and states achieved by the fully trained agent (below) averaged over 5
trials for each control task tested. Variance comes from planning stochasticity since the environment
dynamics are deterministic. In most environments, GLAMOR learns to control the agent’s state to
match the visually specified goal. Note that in the finger environment, GLAMOR learns to control
the position of the finger despite not often being able to control the angle of the spinner.

18

	Introduction
	Related Work
	Method
	Problem Formulation
	Planning
	GLAMOR: Goal-conditioned Latent Action MOdels for RL
	Learning Inverse Dynamics Model and Action Prior
	Data Collection
	Comparison to Prior Methods

	Experiments
	Environments
	Implementation Details
	Baselines
	Evaluation
	Achieving Visually-Specified Goals
	Sample Efficiency
	Planning
	Planning Compute
	Early Termination
	Sparse Planning

	Conclusion
	Appendix
	Comparison to Goal Conditional Supervised Learning
	Causally Correct Models
	Experimental Details
	Ablations
	Training Policy
	Planner

	Additional Figures

