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ABSTRACT

Neural networks have become standard tools in many areas, yet many important
statistical questions remain open. This paper studies the question of how much
data are needed to train a ReLU feed-forward neural network. Our theoretical
and empirical results suggest that the generalization error of ReLU feed-forward
neural networks scales at the rate 1/

√
n in the sample size n rather than the usual

“parametric rate” 1/n. Thus, broadly speaking, our results underpin the common
belief that neural networks need “many” training samples.

1 INTRODUCTION

Neural networks have ubiquitous applications in science and business (Goodfellow et al., 2016;
Graves et al., 2013; LeCun et al., 2015; Badrinarayanan et al., 2017). However, our understanding of
their statistical properties remains incomplete. An important open question is the number of samples
required for training a neural network. More specifically: Can we improve the generalization error
rate of a feed-forward neural network from 1/

√
n to 1/n?

Over the past two decades, significant progress has been made in our theoretical understanding of
various aspects of deep neural networks. This progress includes a multitude of research papers
focusing on analyzing and deriving upper and lower bounds for the generalization error (L. Bartlett
et al., 2017; Arora et al., 2018; Kawaguchi et al., 2017; Neyshabur et al., 2018). The results in
Neyshabur et al. (2015); L. Bartlett et al. (2017); Arora et al. (2018); Neyshabur et al. (2017; 2018);
Nagarajan & Kolter (2019), highlight the relationship between the complexity of the model (for
example, the depth and width of the network) and the generalization error; however, a common
limitation is that the generalization bounds tend to exhibit a strong dependence, often exponential,
on either the depth of the network or the number of nodes per layer. Golowich et al. (2018) can do
away with this direct reliance on the network’s depth by assuming norm constraints on the parameter
matrix of each layer. Taheri et al. (2021) and Mohades & Lederer (2023), establish an upper bound
on the generalization error that exhibits a logarithmic growth in the total number of parameters
and the potential for decrease with more layers. Quite interestingly, our lower bound in this paper
matches their upper bound. Although these studies collectively contribute to our understanding of
the generalization error of deep neural networks, they do not develop matching lower bounds.

In parallel with the aforementioned fields of research, there is a body of research focused on investi-
gating the mini-max lower bounds for deep-Rectified Linear Unit (ReLU) networks (Suzuki, 2018;
Imaizumi & Fukumizu, 2019; Parhi & D. Nowak, 2022; Raskutti et al., 2009; Schmidt-Hieber &
Bos, 2022; Raskutti et al., 2012; Schmidt-Hieber, 2020; Zhang & Wang, 2023; Tsuji, 2021), but
their perspective differs from ours.

Our perspective in this paper, views neural networks as fundamental functions of interest and ex-
plores their statistical properties. In contract, they emphasize the distinction between function
classes and estimation methods, often comparing neural networks to alternatives like wavelet trans-
forms and kernel methods. The core of their research—which is very similar to Zhang et al. (2002);
Donoho & Johnstone (1998) that exploit wavelet threshold estimators— centers around the utiliza-
tion of deep neural networks to investigate the mini-max lower bounds for estimating nonparametric
regression models characterized by sparse additive structures and specific smoothness properties,
such as Lipschitz, Hölder, or Sobolev functions. Imaizumi & Fukumizu (2019) provides a compre-
hensive review of prior research related to function estimation using deep neural networks. Their
mini-max lower bounds for the function classes degrade either with the depth of the network or with
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the parameters of smoothness. These developments have provided valuable intuition, but establish-
ing comprehensive lower bounds in the mini-max setting for deep neural networks with non-linear
activation functions still remains open.

We establish a lower bound on the mini-max risk for deep-ReLU networks using information theory.
Our bound scales as

√
log(d)/n (with n as the number of training samples and d as the input

dimension) and is independent of the network depth or the number of parameters. We also show
empirically that this seems the learned rate in practice.

Our three main contributions are:

1. We establish that a mini-max risk lower bound for ReLU feed-forward neural networks
does not depend on the depth or width of the network except in logarithmic factor. This
bound decreases as 1/

√
n with the number of training samples n (Lemma 1).

2. We demonstrate that the space of shallow-ReLU feed-forward networks can be viewed as
a subspace of the deep-ReLU feed-forward networks (Lemma 7).

3. We show empirically that the generalization error rate for ReLU feed-forward neural net-
works can’t be improved beyond 1/

√
n-rate (Section 4), that supports our theoretical find-

ings.

Organisation: Section 2 provides the problem formulation and establishes a lower bound on the
mini-max risk for ReLU feed-forward neural networks (Theorem 1). Section 3 provides some tech-
nical results that form our main result’s foundation including, an upper bound for the mutual infor-
mation of the packing set of network space (Lemma 4) and a lower bound for the packing number of
shallow-ReLU network space (Lemma 6). Section B contains the proofs for Lemma 4. In Section 4,
we shift our focus to empirical findings to support our theories. We conclude our paper in Section 5.
More technical results, empirical details, and detailed proofs are deferred to the Appendix.

2 PROBLEM FORMULATION AND MAIN RESULT

This section provides an outline of the core elements of our study. We introduce the background
before presenting our main result. To start, we consider the following regression model

yi = f∗(xi) + ui for i ∈ {1, . . . , n} (1)

For an unknown neural network f∗ : Rd → R and i·i·d· noises ui ∼ N (0, σ2) with σ ∈ (0,∞).
We observe n i·i·d· data samples (x1, y1), (x2, y2), . . . , (xn, yn) ∈ Rd × R drawn independently
from a joint distribution Px,y with a fixed marginal distribution Px = N (0, Id). It is assumed that
ui and xi are independent and that the networks are of the form

fΘ : Rd → R
x 7→ fΘ(x) ··= WLϕL

(
. . .W 1ϕ1(W 0x)

) (2)

indexed by Θ = (WL, . . . ,W 0) summarizing the weight matrices W l ∈ Rhl+1×hl for
l ∈ {0, 1, . . . , L}. The number of hidden layers (the depth of the network) is L ∈ {1, 2, . . .},
and hl denotes the number of nodes in the l-th layer (the width of the l-th layer), where h0 = d and
hL+1 = 1. The function ϕl : Rhl → Rhl is the ReLU activation function of the l-th layer which is
defined as

x 7→ max{0, x} .
We then consider a sparse parameter space B with ℓ1-type constraints on the parameters of the
network. We consider ℓ1-type constraints as opposed to ℓ0-type constraints, primarily because ℓ0-
type constraints tend to make the problem hard to optimize and “combinatorial”, particularly in
high-dimensional settings (Lederer, 2022, Chapter 2). Then, we define a function class

F ··= {fΘ : Θ ∈ B} .

The mini-max risk for the function class F , can be defined as (Wainwright, 2019, Chapter 15)

R(n,d)(F ; Φ ◦ ρ) ··= inf
f̂

sup
f∗∈F

E(xi,yi)ni=1

[
Φ
(
ρ(f̂ , f∗)

)]
, (3)
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where ρ : F × F → [0,∞) is a semi metric1 and Φ : [0,∞) → [0,∞) an increasing function.
The expectation is taken with respect to the training data (xi, yi)

n
i=1 and the infimum runs over

all possible estimators f̂ (measurable functions) of f∗ on the training data (xi, yi)
n
i=1. Hence,

f̂(x) ≡ f̂(x, {(xi, yi)}ni=1), where x is a new data point with the same distribution Px. We use the
notation R(n,d)(F ; Φ ◦ ρ) to emphasize that the mini-max risk depends on the number of training
samples n, the input dimension d and the function space F .

In this paper, our focus is on the standard setting where ρ represents the L2(Px)-norm, and
Φ(t) = t2. Therefore, Φ(ρ(f̂ , f∗)) is the squared L2(Px)-norm, that is our mini-max risk

inf
f̂

sup
f∗∈F

E(xi,yi)ni=1

[
||f̂ − f∗||2L2

]
.

We assume that the distribution Px has a density h(x) with respect to the Lebesgue measure dx
which, implies that

||f̂ − f∗||L2
··=
(∫

x∈X

(
f̂(x)− f∗(x)

)2
h(x)dx

)1/2

.

We now present our mini-max risk lower bound for deep-ReLU neural networks. Considering the
regression model defined in Equation (1), where f∗ ∈ F (a ReLU neural network with L hidden
layers and ℓ1-bounded weights), then we have:

Theorem 1 (Mini-max risk lower bound for ReLU feed-forward neural networks) Using the
L2(Px)-norm as our underlying semi metric ρ, and x1, . . . ,xn ∼ N (0, Id), then for d ≥ 10 large
enough and any increasing function Φ : [0,∞) → [0,∞), it holds that

R(n,d)(F ; Φ ◦ ρ) ≥ 1

2
Φ

[
c
√
v1

( log(d)
n

)1/4]
, (4)

with c ··=
√
(σ)/(26κ), where κ ∈ [1,∞) is a constant that controls the size of the function space

F , and |||WL|||1 ··=
∑hL+1

k=1

∑hL

j=1 |WL
kj | ≤ v1. For Φ(·) = (·)2, we specifically obtain

inf
f̂

sup
f∗∈F

E(xi,yi)ni=1

[
||f̂ − f∗||2L2

]
≥ c2

2
v1

√
log(d)

n
. (5)

We consider κ as a scaling factor that determines the size of the function space F , and we construct a
2δ-packing such that, for all pairs of functions f, f ′ ∈ F , it holds that ρ(f, f ′) ≤ 2κδ for δ ∈ (0,∞)
and κ ∈ [1,∞).

Theorem 1 demonstrates that for all possible f̂ , risk scales at least as v1
√

log(d)/n, considering an
upper bound for E(xi,yi)ni=1

[||f̂ − f∗||2L2
]

E(xi,yi)ni=1

[
||f̂ − f∗||2L2

]
≤ ϵ2

Then, we can reformulate the result of Theorem 1 and conclude that one requires

n ≥
(c
ϵ

)4 v12 log(d)
4

,

samples to achieve an error of at most ϵ2.

A related work is M. Klusowski & R. Barron (2017), but there are two important distinctions. First,
we allow for ReLU, which is currently the most used activation function, rather than restricting to the
more exotic activation functions, such as Sinusoidal, as proposed in the mentioned paper. Second,
we consider deep feed-forward neural networks, whereas M. Klusowski & R. Barron (2017) focuses
primarily on shallow feed-forward neural networks.

1A semi metric satisfies all properties of a metric, except that there may exist pairs f ̸= f ′ for which
ρ(f, f ′) = 0.
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3 TECHNICAL RESULTS

Here, we provide technical results essential in proving our main theorem: (i) We leverage an ex-
tension of a classical result from information theory, Fano’s inequality (Lemma 3), which includes
the concept of packing number. This extension involves deriving an upper bound for the mutual
information (Lemma 4) and a lower bound for the log of the packing number of shallow-ReLU net-
works (Lemma 6). (ii) In Lemma 7, we demonstrate that, under certain constructions, a deep-ReLU
network can generate a shallow-ReLU network. Accordingly, we can conclude that the lower bound
for the packing number of shallow-ReLU neural network function space can apply to a deep-ReLU
neural network function space.

The following notation will be used throughout the paper. For vector v ∈ Rd, ℓ0-norm is defined
by ||v||0 ··= #{i ∈ {1, . . . , d} : vi ̸= 0}, ℓ1-norm is defined by ||v||1 ··=

∑d
i=1 |vi| and the

Euclidean norm is defined by ||v||2 ··=
√∑d

i=1(vi)
2. We define |||W l|||1 ··=

∑hl+1

k=1

∑hl

j=1 |W l
kj |,

for a matrix W l ∈ Rhl+1×hl where l ∈ {0, 1, . . . , L}. The cardinality of the 2δ-packing of the
corresponding neural network function space F for δ ∈ (0,∞) and with respect to L2(Px)-norm
is defined as M ··= M(2δ,F , || · ||L2

). We define [M] ··= {1, . . . ,M} as the index set. And we
define Xn ··= (x1, . . . ,xn)

⊤ and Y n ··= (y1, . . . , yn)
⊤.

We now proceed to provide the definition of packing and covering number (Vaart & Wellner, 1996),
which are of great importance in our study.

Definition 2 (Covering and packing number) Consider a metric space consisting of a set F and
a semi metric ρ as defined in Section 2, then,

A) An 2δ-covering of F in the semi metric ρ is a collection {fΘ1 , . . . , fΘM} ⊆ F such that
for all f ∈ F , there exists some i ∈ [M] with ρ(f, fΘi) ≤ 2δ. The 2δ-covering number
N(2δ,F , ρ), is the cardinality of the smallest 2δ-covering.

B) An 2δ-packing of F in the semi metric ρ is a collection {fΘ1 , . . . , fΘM} ⊆ F such that
ρ(fΘj , fΘk) ≥ 2δ for all j, k ∈ [M] and j ̸= k. The 2δ-packing number M(2δ,F , ρ), is
the cardinality of the largest 2δ-packing.

Now, we provide the technical results. Based on the concept of packing and covering number,
assume that {PfΘ1 , . . . ,PfΘM} is a family of distributions for the corresponding neural networks
fΘ1 , · · · , fΘM which satisfy ρ(fΘj (x), fΘk(x)) ≥ 2δ for all j, k ∈ [M] and j ̸= k. Then,
assume that J is uniformly distributed over the index set [M] and the conditional distribution of
(Y n|Xn) given J defined by ((Y n|Xn) | J = j) ∼ PfΘj . Then, Fano’s inequality (Wainwright,
2019, Proposition 15.12) can be formalized as:

Lemma 3 (Fano’s Inequality) Let {fΘ1 , . . . , fΘM} ⊆ F be a 2δ-packing set respect to ρ. Then,
for any increasing function Φ : [0,∞) → [0,∞), the mini-max risk is lower bounded by

R(n,d)(F ; Φ ◦ ρ) ≥ Φ(δ)

(
1− I(J ;Y n|Xn) + log 2

logM
(
2δ,F , || · ||L2

)) .
The symbol I(J ;Y n|Xn) represents the mutual information between a random index J , which is
drawn uniformly from the index set [M] and the samples (Y n|Xn) drawn from the prior distribution
PfΘj corresponding to fΘj ··= fΘJ . The mutual information, measures how much information can
be revealed about the index J of a 2δ-packing set by drawing the samples (Y n|Xn).

To apply Fano’s inequality, we need the following three lemmas to find 1. an upper bound for the
mutual information of the 2δ-packing of ReLU-neural network function space F (Lemma 4) and 2. a
lower bound for the log of the packing number (logM) for ReLU-neural networks (the combination
of Lemma 6 and Lemma 7). We start with upper bounding I(J ;Y n|Xn) of the 2δ-packing of neural
network function space F as follows:

Lemma 4 (Upper bounding I(J ;Y n|Xn) of the 2δ-packing of neural network function space F)
For all possible pairs of two distinct networks fΘj , fΘk ∈ F satisfy ρ(fΘj (x), fΘk(x)) ≥ 2δ, the
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mutual information I(J ;Y n|Xn) is upper bounded by

I(J ;Y n|Xn) ≤ 2n(κδ)2

σ2
,

for a suitable κ ∈ [1,∞), such that ρ(fΘj (x), fΘk(x)) ≤ 2κδ.

In the subsequent lemma, our objective is to establish a lower bound for the packing number of
shallow-ReLU network function space. Subsequently, we will extend this result to encompass deep-
ReLU networks. Consider a shallow neural network with ReLU activation function, denoted as
f (W 1,W 0), where

f (W 1,W 0)(x) =W 1ϕ1(W 0x) .

Recall thatW 1 andW 0 are the weight matrices. We then define a sparse collection of shallow-ReLU
networks as FBSh

, characterized by

FBSh
··= Fv0,v1

··=
{
f (W 1,W 0) |(W 1,W 0) ∈ Bv0,v1

}
,

where

BSh ··= Bv0,v1
··=
{
||W 0

j,·||1 ≤ v0, |||W 1|||1 ≤ v1

}
for all j ∈

{
1, . . . , h1

}
,

denotes as the corresponding parameter space, where v0 ∈ [1,∞) and v1 ∈ (0,∞).

Remark 5 (Assumption: v0 = 1) For simplicity in the proof of Lemma 6, we assume v0 = 1.

This assumption is useful for constructing a subclass of function space FBSh
in the proof of Lemma 6

to establish a lower bound for the packing number of a shallow-ReLU network function space. This
assumption basically determines the structure of the inner weight (the weight between the input
layer and the hidden layer of a shallow neural network). It also guarantees that the number of input
dimensions d, matches the width of the constructed subclass of FBSh

.

Based on the structure of a shallow-ReLU network and the defined corresponding parameter space,
our aim for the next lemma is to derive a lower bound for the log of the packing number (log(M)) of
a shallow-ReLU neural network function space. The key components of this bound are the ℓ1-norm
control on the parameters of the two layers and the parameter δ, which determines the minimum
distance between all possible pairs of two distinct networks fΘj , fΘk ∈ F for j ̸= k ∈ [M].
Taking these factors into account, we can conclude the following lemma:

Lemma 6 (Lower bounding the packing number of shallow-ReLU feed-forward network function space)
For a sparse collection of shallow-ReLU feed-forward network function space FBSh

, there exist
δ ∈ (0,∞) such that

logM
(
2δ,FBSh

, || · ||L2

)
≥
( v1
13δ

)2
log(d) .

By quantifying the lower bound of the packing number, it provides valuable insights into the capacity
and potential complexity of these networks. For small values of δ, a sufficiently wide network
becomes necessary. This observation is particularly interesting as it provides valuable insights into
selecting an appropriate width for the network based on the input dimension. The larger the input
dimension d, the wider the network should be.

We then define a sparse collection of deep-ReLU networks denotes as FBL , as follows:

FBL
··= FvL,...,v0

··=
{
f (WL,...,W 0) |(WL, . . . ,W 0) ∈ BL

}
,

where BL, denotes the sparse parameter space for deep-ReLU networks and can be defined by

BL ··=

{
L−1∑
l=0

|||W l|||1 ≤ vs, |||WL|||1 ≤ v1

}
.

We define vs = h1v0 + (L − 1)ω. It’s important to emphasize that we are focusing on deep-
ReLU neural networks with equal widths for all hidden layers, and this width is equal to that of
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the shallow-ReLU neural networks, denoted as ω. Furthermore, based on Remark 5, it holds that
vs = h1 + (L− 1)ω.

In the next lemma, we demonstrate that the function space of shallow-ReLU networks is a subspace
of the function space of deep-ReLU networks and establish a lower bound for the packing number of
deep-ReLU networks function space, drawing from the earlier established lower bound for shallow-
ReLU network function space.

Lemma 7 (Generating a shallow-ReLU feed-forward network using a deep-ReLU feed-forward network)
For ReLU activation functions and defined the shallow and deep function spaces FBSh

and FBL , it
holds that FBSh

⊂ FBL . That implies

logM
(
2δ,FBL

, || · ||L2

)
≥ logM

(
2δ,FBSh

, || · ||L2

)
.

3.1 PROOF OF LEMMA 4

Proof The aim of this proof is to establish an upper bound on the mutual information I(J ;Y n|Xn),
for the 2δ-packing within the neural network function space F . To achieve this, we invoke the result
of Lemma 10, which establishes a connection between the mutual information and the Kullback-
Leibler divergence (KL divergence). In this paper, we use the notation DKL(PfΘj ||Pf

Θk
) to

denote the KL divergence between two probability distributions PfΘj and Pf
Θk

. We then ap-
ply the result obtained from Lemma 9. Finally, we employ the same re-scaling procedure as
demonstrated in Wainwright (2019, Example 15.14) and Wainwright (2019, Example 15.16) to
construct a 2δ-packing in such a way that, for a suitable constant κ ∈ [1,∞), we ensure that
ρ(fΘj (x), fΘk(x)) ≤ 2κδ holds for all pairs fΘj (x) and fΘk(x) corresponding to j ̸= k ∈ [M].

We can 1. use the result provided by Lemma 10, 2. use the fact that
∑M

j,k=1DKL(PfΘj || Pf
Θk

) ≤(M
2

)
sup
k,j

(DKL(PfΘj || Pf
Θk

)) for all j ̸= k ∈ [M], 3. calculate the permutation, 4. some arithmetic

calculation, 5. use the fact that M ≥ 1, so 0 ≤ (M− 1)/M < 1, 6. use the view of Lemma 9,
7. invoke the definition of ρ as L2(Px)- norm, 8. employ the re-scaling procedure and 9. simplify
the factor 2 to obtain

I(J ;Y n|Xn) ≤ n

M2

M∑
j,k=1
j ̸=k

DKL

(
PfΘj || Pf

Θk

)

≤ n

M2

(
M
2

)
sup

j,k∈[M]
j ̸=k

(
DKL

(
PfΘj || Pf

Θk

))

=
n

M2

M!

(M− 2)!
sup

j,k∈[M]
j ̸=k

(
DKL

(
PfΘj || Pf

Θk

))

=
n(M− 1)

M
sup

j,k∈[M]
j ̸=k

(
DKL

(
PfΘj || Pf

Θk

))
≤ n sup

j,k∈[M]
j ̸=k

(
DKL

(
PfΘj || Pf

Θk

))

=
n

2σ2
sup

j,k∈[M]
j ̸=k

(∫
x∈X

(
fΘj (x)− fΘk(x)

)2
h(x)dx

)

=
n

2σ2
sup

j,k∈[M]
j ̸=k

(
ρ
(
fΘj (x), fΘk(x)

)2)

≤ n(2κδ)2

2σ2

=
2n(κδ)2

σ2
,
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as desired.

4 EMPIRICAL STUDIES

The primary objective of this empirical section is to provide concrete evidence to support our the-
oretical findings. To achieve this, we investigate whether the generalization error of a deep-ReLU
neural network scales more significantly with a 1/n-rate or a 1/

√
n-rate. We use “test error” as an

estimate of the “generalization error” of a trained deep-ReLU network. We consider both classifi-
cation and regression tasks, using the MNIST and CIFAR− 10 dataset for classification and the
California Housing Prices (CHP) dataset for regression analysis. We consider ReLU feed-forward
neural networks trained with Cross-entropy (CE) loss and Mean-squared (MS) error for classifi-
cation and regression dataset, respectively as loss functions (Appendix C). The implementation of
these neural networks was carried out using the neural network (nn) package of PyTorch.

We then conduct our empirical studies in two steps: In the first step, we compute the test error
of a trained network. In the second step, we determine the appropriate curve (either 1/

√
n or

1/n scales) that best fits the test error values. To address the impact of various hyper-parameters
of the ReLU neural networks, including the number of training samples (n), network depth (L),
and the width of hidden layers, we consider appropriate curves (c1 + α/

√
n) and (c2 + β/n) with

α, β, c1, c2 ∈ (0,∞). Optimizing these parameters is achieved through the Sequential Least
Squares Quadratic Programming (SLSQP) method (Kraft, 1988). The “minimize” function from
scipy.optimize is employed for SLSQP implementation.

4.1 MNIST

The MNIST dataset contains 60,000 training images (28 × 28 pixels) and 10,000 testing images
(28×28 pixels). According to the size of the images, we have 784 feature inputs. The batch size for
the training samples is equal to 100. And the batch size for testing data samples is 10,000. For this
dataset, we have increased the number of training samples by the factor of 100. In each step after
training the network, all the test data samples (10,000 test samples) have considered, and the loss
values are reported (accordingly, we have 600 loss values (it means 600 steps)).

We explore both shallow and deep-ReLU feed-forward neural networks in our experiments. Specif-
ically, we investigate shallow-ReLU neural networks with 5, 10, and 20 hidden nodes. Additionally,
we examine a four-hidden layer ReLU feed-forward neural network with a uniform width of 900.
As it has shown in Figure 1, Figure 2, Figure 3 and Figure 4, in comparison with (c2 + β/n),
(c1 + α/

√
n) provides a better fit to model the generalization error behavior of the neural networks.

Figure 1: Comparison of the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to model the

generalization error of a shallow-ReLU neural network (with the width of 5) for MNIST dataset
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Figure 2: Comparison of the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to model the

generalization error of a shallow-ReLU neural network (with the width of 10) for MNIST dataset

Figure 3: Comparison of the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to model the

generalization error of a shallow-ReLU neural network (with the width of 20) for MNIST dataset

Figure 4: Comparison of the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to model the

generalization error of a deep-ReLU neural network (a four-hidden-layer network with a uniform
width of 900) for MNIST dataset

4.2 CIFAR-10

TheCIFAR− 10 dataset contains 50,000 training images (32×32 color images) and 10,000 testing
images (32 × 32 color images). According to the size of the images, we have 3072 feature inputs.
The batch size for the training samples is equal to 100. And the batch size for testing data samples is
10,000. For this dataset, we have increased the number of training samples by the factor of 100. In
each step after training the network, all the test data samples (10,000 test samples) have considered,
and the loss values are reported (accordingly, we have 500 loss values (it means 500 steps)). we
examine shallow-ReLU feed-forward neural networks with the widths of 100 and 120. As it has
shown in Figure 5, in comparison with (c2 + β/n), (c1 + α/

√
n) provides a better fit to model the

generalization error behavior of the neural networks.
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Figure 5: Comparison of the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to model the

generalization error of a shallow-ReLU neural network for CIFAR− 10 dataset with the width of
100 and 120 (on the right and left, respectively).

4.3 CALIFORNIA HOUSING PRICES (CHP)

The version considered in this study comprises 8 numeric input attributes and a dataset of 20,640
samples. These samples were randomly divided into 75% for training data and the remaining 25%
for test data. The batch size for the training samples is set to 20. For this dataset, we increased
the number of training samples by a factor of 20. After training the network at each step, all test
data samples were considered, and the loss value was recorded. Consequently, we obtained 774
loss values, corresponding to 774 steps. As the testing error stabilized after 120 batches, we com-
pare the results specifically for the first 120 batches. Additionally, the objective function for the
SLSQP method also operates on these 120 batches. As it has shown in Figure 6, in comparison
with (c2 + β/n), (c1 + α/

√
n) provides a better fit to model the generalization error behavior of

the neural network. We consider a five-hidden layer ReLU neural network with a uniform width of
23.

The values for the parameters of the two curves for both dataset as well as the width of all the
hidden layers (ω), the number of hidden layers L and the Learning Rate (LR) are provided in Table 1
(Appendix C).

Figure 6: Comparison of the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to model the

generalization error of a deep-ReLU neural network (a five-hidden layer network with a uniform
width of 23) for CHP dataset

5 CONCLUSION

In this paper, we employ the results from information theory called “Fano’s inequality” to estab-
lish a mini-max risk lower bound for ReLU feed-forward neural networks that scales at the rate√
log(d)/n. This bound indicates that the generalization error of the deep-ReLU feed-forward

neural networks cannot be improved beyond a 1/
√
n-rate. Our empirical findings support this con-

clusion and indicate that for both regression and classification problems, the generalization error of
ReLU-neural networks scales at the rate 1/

√
n.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. https://arxiv.org/abs/1802.05296, 2018.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39(12):
2481–2495, 2017.

Alexei Botchkarev. Performance metrics (error measures) in machine learning regression, forecast-
ing and prognostics: Properties and typology. arXiv:1809.03006, 2018.

David L. Donoho and Iain M. Johnstone. Minimax estimation via wavelet shrinkage. Ann. Statis,
26(3):879–921, 1998.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. Proceedings of the 31st Conference On Learning Theory, PMLR, 75:297–299,
2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech recognition with deep
recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 6645–6649, 2013.

Satoshi Hayakawa and Taiji Suzuki. On the minimax optimality and superiority of deep neural
network learning over sparse parameter spaces. Neural Networks, 123:341–361, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: surpassing
human-level performance on imagenet classification. 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015.

Mohamed Hebiri and Johannes Lederer. Layer sparsity in neural networks.
https://arxiv.org/abs/2006.15604, 2020.

Yaoshiang Ho and Samuel Wooky. The real-world-weight cross-entropy loss function: modeling
the costs of mislabeling. IEEE Access, 8:4806–4813, 2019.

Masaaki Imaizumi and Kenji Fukumizu. Deep neural networks learn non-smooth functions effec-
tively. Proceedings of the 22nd Conference On Learning Theory, PMLR, 89:869–878, 2019.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
https://arxiv.org/abs/1710.05468, 2017.

Dieter Kraft. A software package for sequential quadratic programming. technical report, tech. DLR
German Aerospace Center — Institute for Flight Mechanics, Köln, Germany, 1988.
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A FURTHER TECHNICAL RESULTS

In this section, we present additional technical results from the work of others and our own, that are
essential for the proof of Theorem 1’s components but might also be of interest by themselves. We
divide the results into two main parts. The first part includes a few results from other works that are
contained in the proof of Lemma 4, and the second part includes a few results, both from our work
and others’ to prove Lemma 6.
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PART 1: PRELIMINARY RESULTS FOR UPPER BOUNDING THE MUTUAL INFORMATION

We present some auxiliary results that are contained in the proof of Lemma 4. To follow these re-
sults more conveniently, we explain the necessary steps briefly. After defining the KL divergence
as a measure of distance between two probability measures, we calculate the KL divergence be-
tween two multivariate normal distributions (Hayakawa & Suzuki, 2020, Lemma A.1). Then, we
calculate KL divergence of n-product of two multivariate normal distributions and finally, we find
the connection between the mutual information and KL divergence.

The KL divergence (Wainwright, 2019, Equation 3.57) between two different probability distribu-
tions P and Q on domain X with densities p(x) and q(x) can be defined as

DKL

(
P || Q

)
=

∫
x∈X

p(x) log
p(x)

q(x)
dx .

As we have n data samples, we are interested to find the KL divergence between two different n-
product distributions. Assume that (P 1, . . . , Pn) be a collection of n probability distributions, and
define P 1:n ··=

⊗n
i=1 P

i as the n-product distributions. Define another n-product distributionQ1:n

in a similar way. For the ease of notation, we define Pn ··= P 1:n and Qn ··= Q1:n. Then, the con-
nection between the KL divergence of n-product distributions Pn and Qn and the KL divergence
of the individual pairs (Wainwright, 2019, Equation 15.11a), can be formalized as the following
lemma:

Lemma 8 (Decomposition of the KL divergence for n-product distributions) For two n-
product distributions Pn and Qn, it holds that

DKL

(
Pn || Qn

)
=

n∑
i=1

DKL

(
P i || Qi

)
.

And in the case of i·i·d· product distributions — meaning that P i = P 1 and Qi = Q1 for all
i ∈ {1, . . . , n}— we have

DKL

(
Pn || Qn

)
= n×DKL

(
P 1 || Q1

)
.

We consider short-hands P and Q, for P 1 and Q1, respectively. So, the previous equation takes
form

DKL

(
Pn || Qn

)
= n×DKL

(
P || Q

)
.

We then proceed to calculate the KL divergence between two normal distributions. Consider the
regression model defined in Equation (1) and the network model defined in Equation (2). We assume
that the noise terms are i·i·d· and ui ∈ N (0, σ2). Recall that the explanatory variables xi follow
a fixed distribution Px and have the density h(x). Then, we define z ··= (x, y) ∈ Rd × R as the
joint variable of x and y. According to the conditional probability, the joint density can be written
as follows:

pfΘj (z) = pY |X(y|x)h(x)

=
1√
2πσ2

e−
(y−f

Θj (x))2

2σ2 h(x) ,
(6)

where j ∈ [M] and pfΘj (z) is the joint density of (x, y) with regression function fΘj (x). And
consider pf

Θk
(z) as another joint density of (x, y) in the same manner with regression function

fΘk(x) and two distinct corresponding normal distributions PfΘj and Pf
Θk

such that have densities
pfΘj (z) and pf

Θk
(z), respectively. Recall that fΘj and fΘk are any two distinct neural networks of

the neural network model defined in Section 2, which parameterized by Θj and Θk (j, k ∈ [M] as
any two distinct indices of the 2δ-packing set). Then, the KL divergence between any two normal
distributions PfΘj and Pf

Θk
can be calculated as the following lemma (Yang & Barron, 1999):

Lemma 9 (The KL divergence between two multivariate normal distributions) Assume any
two normal distributions PfΘj and Pf

Θk
for all j, k ∈ [M] and j ̸= k, then it holds that

DKL(PfΘj || Pf
Θk

) =
1

2σ2

∫
x∈X

(
fΘj (x)− fΘk(x)

)2
h(x)dx

12
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And that
DKL(Pn

fΘj
|| Pn

f
Θk

) =
n

2σ2

∫
x∈X

(
fΘj (x)− fΘk(x)

)2
h(x)dx .

To fulfill this part’s goal, we have just left to find a connection between the KL divergence and the
mutual information.

In the next lemma, we are interested to upper bounding the mutual information (Scarlett & Cevher,
2021) —which measures the dependence between the joint distributions and the product of the
marginals of two random variables— by describing it’s connection with the KL divergence. Assume
that under the Markov chain J → fΘJ → (Y n|Xn), a random index J is drawn uniformly from
{1, . . . ,M} and samples (Y n|Xn) are drawn from the prior distributions Pn

fΘj
corresponding to

fΘj ··= fΘJ . Note that if one sample (Y |X) drawn, then we have I(J ;Y |X).

There are many tools to upper bounding the mutual information and the most straight forward tools
is based on the KL divergence (Wainwright, 2019, Equation 15.34) as follows:

Lemma 10 (The connection between the mutual information and the KL divergence) For any
two distinct probability distributions PfΘj and Pf

Θk
for all j, k ∈ [M], it holds that

I(J ;Y |X) ≤ 1

M2

M∑
j,k=1
j ̸=k

DKL

(
PfΘj || Pf

Θk

)
.

For any two distinct n-product probability distributions Pn
fΘj

and Pn
f
Θk

, it holds that

I(J ;Y n|Xn) ≤ n

M2

M∑
j,k=1
j ̸=k

DKL

(
PfΘj || Pf

Θk

)
.

PART 2: PRELIMINARY RESULTS FOR DERIVING A LOWER BOUND FOR PACKING NUMBER OF
RELU NETWORKS

In this section, we present supporting lemmas that are included in the proof of Lemma 6 for deriving
the lower bound for the packing number of shallow-ReLU network function space. We start by
calculating the Gaussian integrals over a half-space. Assume that x is a realization of random
variableX that follows the d-dimensional Gaussian distribution, then we say that for k ∈ {1, . . . S},
b⊤k x > 0 and b⊤k x ≤ 0 are two half-spaces of hyperplane b⊤k x = 0 for bk ∈ Rd. We then can define
the probability density function of x with mean vector µ and the covariance matrix Σ as follows:

p(x,µ,Σ) =
1

(2π)d/2
√

|Σ|

∫
x∈X

e
−(x−µ)⊤Σ−1(x−µ)

2 dx ,

where |Σ| ≡ det(Σ), is the determinant of Σ.

If µ = 0, then we have

p(x,0,Σ) =
1

(2π)d/2
√
|Σ|

∫
x∈X

e
−x⊤Σ−1x

2 dx .

Accordingly, the probability density function of x on either half-space b⊤k x > 0 or b⊤k x ≤ 0 takes
the form

p(b⊤k x > 0,0,Σ) =
1

(2π)d/2
√
|Σ|

∫
b⊤
k x>0

e
−x⊤Σ−1x

2 dx ,

and can be calculated as the following lemma:

Lemma 11 (Gaussian integrals over a half-space) Assume that x, bk ∈ Rd and for a fixed vector
bk, we define a half-space b⊤k x > 0. Then, for the corresponding probability density function it
holds that

p(b⊤k x > 0,0,Σ) =
1

2
.

13
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In the next lemma we are motivated to employ the result of Lemma 11 to calculate E[(ϕ(b⊤k x))
2]

which is necessary for the proof of Lemma 6.

Lemma 12 Let x be a Gaussian random variable and b⊤k x > 0 is a half-space, then,

E
[(
ϕ(b⊤k x)

)2]
=

1

2
.

The aim of the next lemma is to find the joint probability density function of two uncorre-
lated random variables. This result is useful given that x ∼ N (0, Id) and bj , bk ∈ Rd for
j ̸= k ∈ {1, . . . , S}, where b⊤k x, b

⊤
j x ∈ R are standard normal variables. The joint probabil-

ity density function p(b⊤k x > 0 ∩ b⊤j x > 0) is calculated as presented in the following lemma:

Lemma 13 (Joint probability density function of two uncorrelated standard normal random variables)
Assume that x ∼ N (0, Id) is a random variable, then for b⊤k x and b⊤j x for all k ̸= j ∈ {1, . . . , S},
we can get

p(b⊤k x > 0 ∩ b⊤j x > 0) = E
[
ϕ(b⊤k x)ϕ(b⊤j x)

]
= 0 .

We use the result of this lemma in the proof of Lemma 6 to establish a lower bound for the logarithm
of the packing number of a shallow-ReLU network space. In the following lemma, we present
M. Klusowski & R. Barron (2017, Lemma1), which concerns the cardinality of a set and is integral
to the proof of Lemma 6. This lemma helps us define our desired set with a predefined Hamming
weight, and its elements can be interpreted as binary codes. Now, let state the lemma.

Lemma 14 For integers d and d′ with d ∈ [10,∞) and d′ ∈ [1, d/10], define a set

S ··=
{
w ∈ {0, 1}d : ||w||1 = d′

}
.

Then, there exists a subset A ⊂ S with cardinality at least S ··=
√
( d
d′) such that each element has

Hamming weight d′ and any pairs of elements have minimum Hamming distance d′/5.

B PROOFS

We begin by presenting the proof of our main theorem (Theorem 1). Subsequently, we provide the
proofs for Lemma 6 and Lemma 7. Additionally, the proofs of the lemmas in Appendix A will be
included.

B.1 PROOF OF THEOREM 1

Proof Our objective for this proof is to establish a lower bound on the mini-max risk for ReLU
neural networks. To accomplish this, we utilize a generic schema of Fano’s inequality (Lemma 3)
followed by the use of Lemma 4, Lemma 6 and Lemma 7. We begin by considering Fano’s inequal-
ity, where, intuitively by decreasing δ sufficiently, we may ensure that

I(J ;Y n|Xn) + log 2

logM
(
2δ,F , || · ||L2

) ≤ 1

2
,

which can be reformulated as

logM
(
2δ,F , || · ||L2

)
≥ 2
(
I(J ;Y n|Xn) + log 2

)
.

Accordingly, Fano’s inequality takes the form

R(n,d)(F ; Φ ◦ ρ) ≥ 1

2
Φ(δ) .

Then, considering Wainwright (2019, Equation 15.13b), we can 1. use the upper bound for
I(J ;Y n|Xn) obtained in Lemma 4 and 2. consider the fact that 2 log 2 > 0 to obtain

logM
(
2δ,F , || · ||L2

)
≥
(
4n(κδ)2

σ2
+ 2 log 2

)
≥
(
4n(κδ)2

σ2

)
.

14
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If we choose δ in a way that the inequality be verified by a lower bound of the logM(2δ,F , || · ||L2
),

then, we can also make sure that it will be verified in general. Collecting the results of Lemma 6 and
Lemma 7 for lower bounding the logM(2δ,F , || · ||L2

) for ReLU-neural networks, then it holds that

4

σ2
nκ2δ2 =

( v1
13δ

)2
log(d) .

To satisfy the lower bound for logM(2δ,F , || · ||L2), a suitable value for δ is

δ4 =
(v1σ)

2 log(d)

676nκ2
,

that implies

δ =

(
(v1σ)

2 log(d)

676nκ2

)1/4

.

Substituting the obtained value of δ into Fano’s inequality yields

R(n,d)(F ; Φ ◦ ρ) ≥ 1

2
Φ

[(
(v1σ)

2 log(d)

676nκ2

)1/4
]

=
1

2
Φ

[(
v1σ

26κ

)1/2(
log(d)

n

)1/4
]
.

We can plug the value of c— in the definition of Theorem 1— into this inequality and get

R(n,d)(F ; Φ ◦ ρ) ≥ 1

2
Φ

[
c
√
v1

( log(d)
n

)1/4]
,

which proves our first claim.

For the second claim, we simply use Φ(·) = (·)2 to obtain

R(n,d)(F ; Φ ◦ ρ) ≥ c2

2
v1

√
log(d)

n
.

Based on our mini-max risk setting (Section 2), the above expression can be presented as follows:

inf
f̂

sup
f∗∈F

E(xi,yi)ni=1

[
||f̂ − f∗||2L2

]
≥ c2

2
v1

√
log(d)

n
,

as desired.

B.2 PROOF OF LEMMA 6

Proof The core of this proof involves two steps: First, the construction of a subclass of functions
within function space Fv0,v1

, and then finding the lower bound for log of the cardinality of the
constructed class. Second, the fact that a lower bound for the cardinality of a smaller function space
can serve as a lower bound for the cardinality of the larger function space. Let us begin by discussing
the construction of the subclass of the function class Fv0,v1 .

STEP 1: CONSTRUCT A SUBCLASS OF FUNCTION CLASS Fv0,v1

Our first step is to construct a subclass of our defined function class Fv0,v1 and then find a lower
bound for the log of the packing number of the constructed class. To achieve this, we begin by
defining a set of binary vectors C ∈ {0, 1}d for d ∈ [10,∞) such that each element of this set has a
Hamming weight of d′, where d′ ∈ [1, d/10] and the cardinality of this set is denoted by S. Recall
that, we assume that v0 = 1, so, we can choose d′ = v0

2 = 1. Then, anyone can readily conclude
that S = d and we can consider the vector bi ∈ {0, 1}d as a vector with all the entries equal to zero
except for the ith entry, which is set to one. It implies that for all i ̸= j ∈ {1, . . . , S}

|b⊤i bj | = 0 .

15
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We can also conclude that for each bi with i ∈ {1, . . . , S}, we have

||bi||2 =

√(
(bi)1

)2
+ . . .+

(
(bi)d

)2
= 1 .

Following the same argument as above we have

||bi||1 =
∣∣(bi)1∣∣+ . . .+

∣∣(bi)d∣∣ = 1 .

Then, for an enumeration b1, . . . , bS of C, define a subclass of Fv0,v1
by

F0 ··=

{
f(w,b′)(x) :=

v1
λ

S∑
k=1

wkϕ
1(b⊤k x) : w ∈ A

}
,

where b′ ··= (v1/λ)b. The set A ··= {w ∈ {0, 1}S : ||w||1 = λ} is the set in Lemma 14 and
λ ∈ [1, S/10] is the Hamming weight of each element of the set A (M. Klusowski & R. Barron,
2017, Theorem 2). According to the above definition of F0, we have

E
[
||f(w,b′)(x)− f(w′,b′)(x)||2L2

]
=
(v1
λ

)2
E
[( S∑

k=1

(wk − w′
k)ϕ

1(b⊤k x)
)2]

,

where w,w′ ∈ A.

Note that, based on the structure of w and w′, for all k ∈ {1, . . . , S}, (wk − w′
k) falls within the

set {−1, 0, 1}. And if (wk − w′
k) = 0, the value of the expected term on the right-hand side –for

the corresponding k– is equal to 0; thus for the sake of convenience, we consider an integer value
S′ < S in such a way that |wk −w′

k| = 1 for all k ∈ {1, . . . , S′}. Based on the structure of all pairs
w,w′ ∈ A and Lemma 14, we can conclude that S′ ≥ λ/5. We will use S′ for the remainder of the
proof.

We then proceed with

E
[
||f(w,b′)(x)− f(w′,b′)(x)||2L2

]
=
(v1
λ

)2
E
[( S′∑

k=1

(
(wk − w′

k)ϕ
1(b⊤k x)

))2]
. (7)

Next, we are motivated to find a lower bound for E[||f(w,b′)(x) − f(w′,b′)(x)||2L2
]. We can 1. em-

ploy the result of Lemma 13, which shows that E[ϕ(b⊤k x)ϕ(b⊤j x)] = 0 for all distinct j and k,
to help us write the above variance over a sum, as a sum over the variance of individual entries,
2. invoke the above assumption that (wk − w′

k)
2 = 1, 3. use the result of Lemma 12, which shows

E[(ϕ(b⊤k x))
2] = 1/2 and the properties of sum, 4. apply the conclusion that S′ ≥ λ/5 and 5. per-

form some simplification to obtain

E
[
||f(w,b′)(x)− f(w′,b′)(x)||2L2

]
=
(v1
λ

)2 S′∑
k=1

E
[(
(wk − w′

k)ϕ
1(b⊤k x)

)2]

=
(v1
λ

)2 S′∑
k=1

E
[(
ϕ1(b⊤k x)

)2]
=
(v1
λ

)2S′

2

≥
(v1
λ

)2 λ
10

=
v1

2

10λ
.

So, a 2δ-separation implies

(2δ)2 =
v1

2

10λ
=⇒ λ = (v1/

√
40δ)2 .

Then, we can 1. use the result of Lemma 14 that log(#F0) denotes as the log of the cardinality of
F0 is at least log

(
S
λ

)
≥ (λ/4) log(S), 2. plugin the value of S, 3. use the fact that

√
169 >

√
160
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and 4. perform some simplification that gives

log(#F0) ≥
( v1√

160δ

)2
log(S)

=
( v1√

160δ

)2
log(d)

≥
( v1√

169δ

)2
log(d)

=
( v1
13δ

)2
log(d) .

Based on the formula λ = (v1/
√
40δ)2, when v1 is fixed, it is evident that as δ decreases, λ in-

creases. Moreover, since λ ≤ d/10, we need to assume that d is large enough. In particular, the
logarithmic dependence on the input dimension d, offers a perspective on how network growth re-
lates to the dimensionality of the problem at hand.

STEP 2: DERIVING A LOWER BOUND FOR log(#Fv0,v1)

For the second step, our aim is to lower bound the log of the cardinality of the function class Fv0,v1

using the result of the first step. Since we define F0 as a subclass of Fv0,v1 , we can conclude
that the lower bound established for log(#F0) in the first step also serves as a lower bound for
log(#Fv0,v1). We then can get

logM
(
2δ,Fv0,v1

, || · ||L2

)
≥
( v1
13δ

)2
log(d) ,

as desired.

B.3 PROOF OF LEMMA 7

Proof We claim that a deep-ReLU network can generate a shallow-ReLU network and the idea
is based on Hebiri & Lederer (2020, Theorem 1). The idea is as follows: For any two consec-
utive layers j and j − 1, we can redefine a network of depth L as a network of L − 1 through
a merged weight of these two layers and a merged activation function. Motivated by this idea,
we first apply it for a two-hidden-layer neural network. For a two-hidden-layer neural network
fΘ(x) ··= W 2ϕ2[W 1ϕ1[W 0x]] with W 1 ≥ 0 (by W 1 ≥ 0 we mean all coordinates of W 1 are
non-negative), it holds that

W 2ϕ2
[
W 1ϕ1[W 0x]

]
=W 2ϕ2,1[W 1,0x] ,

where W 1,0 = W 1W 0 and ϕ2,1 as the merged activation functions ϕ2 and ϕ1. For the ease of
comparison, define a shallow-ReLU network with different parameters as follows:

fSh[x] ··= γϕ[ψx] .

It basically means that for generating a shallow-ReLU network fSh using a two-hidden-layer ReLU
network, all we need to do is, decomposing the inner layer of a shallow-ReLU network in a way that

γϕ[ψx] = γϕ2
[
W 1ϕ1[W 0x]

]
,

where W 1 ≥ 0. To be sure that W 1 is a non-negative matrix, we consider W 1 = Iω (recall that
we consider neural networks with equal widths for all hidden layers denoted as ω). Now, we can
1. use the non-negativity of W 1, 2. employ the merged activation function’s property, 3. define
ψ ··=W 1W 0 and 4. define γ ··=W 2 to get

W 2ϕ2
[
W 1ϕ1[W 0x]

]
=W 2ϕ2

[
ϕ1[W 1W 0x]

]
=W 2ϕ2,1[W 1W 0x]

=W 2ϕ2,1[ψx]

= γϕ2,1[ψx] ,
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where ϕ ··= ϕ2,1. To establish that the equivalence also extends to deep-ReLU networks with
L > 2 and W i ≥ 0 for all i ∈ [1, (L − 1)], we employ a similar approach as applied in the case
of two-hidden-layer-ReLU networks. We begin with a deep-ReLU network with L hidden layers
and proceed by iteratively reducing the network’s depth by one layer in each step. By repeating this
process (L− 1) times, we consequently derive

fΘ(x) =WLϕL
[
WL−1ϕL−1

[
. . .W 1ϕ1[W 0x]

]]
=WLϕL

[
WL−1ϕL−1

[
· · ·W 2ϕ2,1[W 1,0x]

]]
= . . .

=WLϕL,...,1[WL−1,...,0x]

= γϕ[ψx] ,

where ϕ ··= ϕL,...,1 = ϕLϕL−1 . . .ϕ1 is a merged activation function, γ ··= WL and
ψ ··= WL−1,··· ,0 = WL−1WL−2 · · ·W 0, where W 1 =W 2 = · · · =WL−1 = Iω .

Assume that we have a ReLU neural network function space FBL
including the networks with L

hidden-layers and with width ω and the corresponding network parameters BL. Then, we claim
that such the network space can behave like a shallow-ReLU network function space FBSh

with
parameters BSh. That means, a shallow-ReLU network space parameterized by BSh is a subset of
the network space parameterized by BL. In other words

FBSh
⊂ FBL

,

as desired.

For our second claim, we know that for the common packing set (in our case 2δ separated set), the
packing number of a space would be proportional to its size. Thus, using the the view of the first
claim, we can conclude that a lower bound for the packing number of FBSh

can also be served as a
lower bound for the packing number of function space FBL

which gives logM(2δ,FBSh
, || · ||L2

) ≤
logM(2δ,FBL

, || · ||L2
). So, we can use our results in Lemma 6 to obtain that

logM
(
2δ,FBL

, || · ||L2

)
≥ logM

(
2δ,FBSh

, || · ||L2

)
≥
( v1
13δ

)2
log(d) ,

as desired.

Remark 15 (Compatibility with Leaky ReLU networks) According to the framework specified
in Hebiri & Lederer (2020) for activation functions, the first claim (FBSh

⊂ FBL
) holds true for

leaky ReLU networks as well.

Remark 16 (He initialization for weight parameters’ scaling) We claim that our weight param-
eters’ scaling is based on He weight initialization (He et al., 2015). He initialization method is
calculated as a random number with a Gaussian probability distribution with a mean of 0 and a
standard deviation of (

√
2/m), where m is the number of inputs to the node. In our deep network

setting with L hidden layers, it is assumed that W 1 = W 2 = . . . = WL−1 = Iω , where ω rep-
resents the width of a shallow network (a subset of the shallow network function space FBSh

), that
is also equal to the number of hidden nodes in each hidden layer. Based on this setting, it can be
readily concluded that |||W 1|||1 = |||W 2|||1 = . . . = |||WL−1|||1 = |||Iω|||1 = ω. Furthermore, by using
He initialization, we can achieve the following result:

|||W 1|||1 = |||W 2|||1 = . . . = |||WL−1|||1 ∼
√
2ω2

√
ω

=
√
2(ω3/2) .

B.4 PROOF OF LEMMA 9

Proof To calculate the KL divergence between two normal distributions PfΘj and Pf
Θk

of
a continuous random variable, each with the corresponding densities pfΘj (z) and pf

Θk
(z),
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for all j, k ∈ [M] where j ̸= k, we can 1. use the definition of the KL divergence, 2. plug the
value of pfΘj (z) and pf

Θk
(z) in, 3. perform some simplification, 4. apply the definition of expected

value, 5. the linearity of expectation, 6. use y = fΘj (x) + u, 7. perform further rewriting, 8. apply
the linearity of expected value, assuming independence between each ui and xi, 9. cancel out the
second term ( E[u] = 0) and 10. recognize that only x values remain, to get

DKL(PfΘj || Pf
Θk

) =

∫
X×Y

pfΘj (z) log
pfΘj (z)

pf
Θk

(z)
dz

=

∫
X×Y

pfΘj (z) log

((
1/
√
2πσ2

)
e−
(
(y−fΘj (x))

2/2σ2
)
h(x)(

1/
√
2πσ2

)
e−
(
(y−f

Θk (x))2/2σ2
)
h(x)

)
dz

=

∫
X×Y

pfΘj (z)
1

2σ2

((
y − fΘk(x)

)2 − (y − fΘj (x)
)2)

dz

= Ez∼pf
Θj

(z)

[
1

2σ2

((
y − fΘk(x)

)2 − (y − fΘj (x)
)2)]

=
1

2σ2
Ez∼pf

Θj
(z)

[(
y − fΘk(x)

)2 − (y − fΘj (x)
)2]

=
1

2σ2
Ez∼pf

Θj
(z)

[(
fΘj (x) + u− fΘk(x)

)2 − (u)2
]

=
1

2σ2
Ez∼pf

Θj
(z)

[(
fΘj (x)− fΘk(x)

)2 − 2u
(
fΘj (x)− fΘk(x)

)]
=

1

2σ2

(
Ez∼pf

Θj
(z)

[(
fΘj (x)− fΘk(x)

)2]− 2E[u]Ez∼pf
Θj

(z)

[
fΘj (x)− fΘk(x)

])
=

1

2σ2

(
Ez∼pf

Θj
(z)

[(
fΘj (x)− fΘk(x)

)2])
=

1

2σ2

∫
x∈X

(
fΘj (x)− fΘk(x)

)2
h(x)dx .

Furthermore, by combining this result with Lemma 8’s result, it holds that for all j, k ∈ [M] and
j ̸= k

DKL(Pn
fΘj

|| Pn
f
Θk

) =
n

2σ2

∫
x∈X

(
fΘj (x)− fΘk(x)

)2
h(x)dx ,

as desired.

B.5 PROOF OF LEMMA 10

Proof Consider a family of distributions {PfΘ1 , . . . ,PfΘM }, then I(J ;Y |X) with respect to
J → fΘJ → (Y |X), can be defined by using the KL divergence —as the underlying measure of
distance— (Wainwright, 2019, Equation 15.29)

I(J ;Y |X) ··= DKL

(
Q(X,Y ),J || Q(X,Y )QJ

)
,

where Q(X,Y ),J is the joint distribution of the pair ((X,Y ), J) and Q(X,Y )QJ is the product of their
marginals, and assume that Q ≡ Q(X,Y ) ··= 1/M

∑M
j=1 PfΘj is the mixture distribution. Then,

I(J ;Y |X) can be written in terms of component distributions {PfΘj , j ∈ [M]} as follows:

I(J ;Y |X) =
1

M

M∑
j=1

DKL

(
PfΘj || Q

)
.

Intuitively, it means the mean the KL divergence between PfΘj and Q- averaged over the choice of
index j- gives the mutual information. Furthermore, based on the definition of the KL divergence,
we can conclude that for j = k

DKL

(
PfΘj || Pf

Θk

)
= 0 .
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Accordingly, we can 1. employ the mixture distribution formula in the above equation, 2. use the
convexity of the KL divergence and apply Jensen inequality and 3. use the linearity property of sum
to obtain

I(J ;Y |X) =
1

M

M∑
j=1

DKL

(
PfΘj || 1

M

M∑
k=1

Pf
Θk

)

≤ 1

M

(M∑
j=1

(
1

M

M∑
k=1

DKL

(
PfΘj || Pf

Θk

)))

=
1

M2

M∑
j,k=1
j ̸=k

DKL

(
PfΘj || Pf

Θk

)
.

Consequently, if we can construct a 2δ-packing set such that all two distinct pairs of distributions
PfΘj and Pf

Θk
are close in average, then the mutual information can be controlled.

For the second claim, we employ the previous view with the result of Lemma 8 to get

I(J ;Y n|Xn) ≤ n

M2

M∑
j,k=1
j ̸=k

DKL

(
PfΘj || Pf

Θk

)
,

as desired.

B.6 PROOF OF LEMMA 11

Proof In this proof, we first define a rotation matrix R ∈ SO(d), which belongs to
the special orthogonal group. Then, based on the fact that R⊤ = R−1, we can write
b⊤k x = b⊤k R

−1Rx = (Rbk)
⊤Rx. Accordingly, we can obtain

p(b⊤k x > 0,0,Σ) =
1

(2π)d/2
√
|Σ|

∫
(Rbk)⊤Rx>0

e
−(Rx)⊤RΣ−1R⊤(Rx)

2 dx .

By defining G ··= Rx and b̃k ··= Rbk and dx = (dx/dG)× dG, we get

p(b⊤k x > 0,0,Σ) =
1

(2π)d/2
√

|Σ|

∫
b̃⊤
k G>0

e
−G⊤RΣ−1R⊤G

2

( dx
dG

)
× dG .

Then, 1. by setting Σ̃ ··= RΣ−1R⊤, (dx/dG) ··= |R| (|R| ≡ det(R)) and
b̃k = (||bk||2, 0, . . . , 0)⊤, 2. by factoring out the term |R|, 3. the fact that the probability den-
sity function of a Gaussian distribution for a random variable across its domain is 1 and 4. by noting
that |R| = 1, we can obtain

p(b⊤k x > 0,0,Σ) =
1

(2π)d/2
√

|Σ|

∫
b̃⊤
k G>0

e
−G⊤Σ̃−1G

2 |R|dG

=
|R|

(2π)d/2
√

|Σ|

∫
b̃⊤
k G>0

e
−G⊤Σ̃−1G

2 dG

=
|R|
2

=
1

2
,

as desired.
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B.7 PROOF OF LEMMA 12

Proof In this proof, our objective is to compute E[ϕ(b⊤k x)ϕ(b⊤k x)], which is a crucial component
of the proof presented in Lemma 6, helping us establish a lower bound for a shallow-ReLU neural
network. To achieve this, we can 1. employ the definition of expected value, 2. apply the definition
of ReLU function, 3. perform some rewriting, 4. take out b⊤k and bk, 5. exploit the symmetry of x
(Lemma 11), 6. employ the definition of expectation, 7. apply the fact that E[xx⊤] = Id, 8. apply
b⊤k Id bk = b⊤k bk and 9. use b⊤k bk = 1 to obtain

E
[
ϕ(b⊤k x)ϕ(b⊤k x)

]
=

∫
X
ϕ(b⊤k x)ϕ(b⊤k x)h(x)dx

=

∫
x:b⊤

k x>0

(b⊤k x)
2h(x)dx

=

∫
x:b⊤

k x>0

(b⊤k x)(b
⊤
k x)

⊤h(x)dx

= b⊤k

(∫
x:b⊤

k x>0

xx⊤h(x)dx

)
bk

= b⊤k

(∫
X xx⊤h(x)dx

2

)
bk

= b⊤k
E[xx⊤]

2
bk

=
1

2
b⊤k Id bk

=
1

2
b⊤k bk

=
1

2
,

as desired.

B.8 PROOF OF LEMMA 13

Proof Following the same approach as in the proof of Lemma 12, we can compute the term
E[ϕ(b⊤k x)ϕ(b⊤j x)] that is used in the proof of Lemma 6. To do this, we can 1. use the defini-
tion of expected value, 2. note that (b⊤j x) = (b⊤j x)

⊤ since b⊤j x ∈ R, 3. perform some sim-
plification, 4. take out the terms b⊤k and bj from both sides of the integral, 5. invoke the fact
that (b⊤k x > 0 ∩ b⊤j x > 0) ⊂ x, 6. apply the definition of expected value, 7. use the property
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E[xx⊤] = Id and 8. incorporate the fact that b⊤k bj = 0 to obtain

E
[
ϕ(b⊤k x)ϕ(b⊤j x)

]
=

∫
X
ϕ(b⊤k x)ϕ(b⊤j x)h(x)dx

=

∫
b⊤
k x>0

b⊤
j x>0

(
b⊤k x

)(
b⊤j x

)⊤
h(x)dx

=

∫
b⊤
k x>0

b⊤
j x>0

(
b⊤k xx

⊤bj
)
h(x)dx

= b⊤k

(∫
b⊤
k x>0

b⊤
j x>0

(
xx⊤) h(x)dx)bj

≤ b⊤k

(∫
X

(
xx⊤) h(x)dx)bj

= b⊤k E[xx⊤]bj

= b⊤k Idbj

= 0 .

According to the fact that the expected value of the product of two non-negative terms is always
non-negative, we can conclude that

E
[
ϕ(b⊤k x)ϕ(b⊤j x)

]
= 0 ,

as desired.

C EMPIRICAL DETAILS

Here, we first explain the two loss functions employed for training the network in both classification
and regression datasets. Then, we provide the values for the network’s hyper-parameters and the
parameters of those two curves corresponding to each dataset in Table 1.

C.1 LOSS FUNCTIONS:

In the training procedure of the deep-ReLU networks, we employ two different loss functions imple-
mented in PyTorch: “nn.MSELoss()” for regression and “nn.CrossEntropyLoss()” for classification.
Details of these loss functions are as follows:

Cross-entropy loss For classification purpose, we use (categorical) Cross-entropy and define it
as (Murphy, 2012; Ho & Wooky, 2019)

ℓCE (fΘ) ··= − 1

n

m−1∑
k=0

n−1∑
i=0

(
(yi)k log p

(
fΘ(xi), k

))
,

where (yi)k is the k-th element of the one-hot vector of the target label for the i-th data sample and

p(fΘ(x), k) ··=
e(fΘ(x))k∑m−1

i=0 e(fΘ(x))i
,

where (fΘ(x))k is the k-th output of a network indexed by Θ.

Mean-squared error For regression, we use Mean-squared (Botchkarev, 2018) and define it as

ℓMS (fΘ) ··=
1

n

n∑
i=1

m−1∑
k=0

(
(yi)k −

(
fΘ(x)

)
k

)2
m

,

where (yi)k, is the k-th element of the one-hot vector of the target label and (fΘ(x))k is the k-th
output of a network indexed by Θ.
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Table 1: Two curves’ parameters and the ReLU neural network’s hyper-parameters for MNIST ,
CHP and CIFAR− 10 datasets.

Parameters MNIST MNIST MNIST MNIST CHP CIFAR CIFAR
c1 1.002e-15 7.444e-01 2.145e-01 1.456e-15 5.340e-02 1.826e+00 1.657e+00
α 3.339e+01 8.900e+01 10.436e+01 8.756e+01 1.092e+00 2.175e+01 2.488e+02
c2 1.387e-01 1.191e+00 7.370e-01 3.381e-01 8.403e-02 1.941e+00 1.797e+00
β 1.370e+03 2.660e+03 3.340e+03 3.618e+03 5.006e+00 6.90e+02 7.954e+02
ω 9.000e+02 5 10 20 2.300e+01 100 120
LR 1.000e-03 1.000e-03 1.000e-03 1.000e-03 1.000e-02 1.000e-03 1.000e-03
L 4 1 1 1 5 1 1

C.2 THE STRUCTURE OF THE NEURAL NETWORK AND TWO CURVES’ COEFFICIENTS

The network hyper-parameters and the parameters of the curves for each dataset are provided in
Table 1.
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