

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAN MLLMs GUIDE ME HOME? A BENCHMARK STUDY ON FINE-GRAINED VISUAL REASONING FROM TRANSIT MAPS

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Multimodal large language models (MLLMs) have recently achieved significant progress in visual tasks, including semantic scene understanding and text-image alignment, with reasoning variants enhancing performance on complex tasks involving mathematics and logic. However, their capacity for reasoning tasks involving fine-grained visual understanding remains insufficiently evaluated. To address this gap, we introduce REASONMAP, a benchmark designed to assess the fine-grained visual understanding and spatial reasoning abilities of MLLMs. REASONMAP encompasses high-resolution transit maps from 30 cities across 13 countries and includes 1,008 question-answer pairs spanning two question types and three templates. Furthermore, we design a two-level evaluation pipeline that properly assesses answer correctness and quality. Comprehensive evaluations of 15 popular MLLMs, including both base and reasoning variants, reveal a counterintuitive pattern: among open-source models, base models outperform reasoning ones, while the opposite trend is observed in closed-source models. Additionally, performance generally degrades when visual inputs are masked, indicating that while MLLMs can leverage prior knowledge to answer some questions, fine-grained visual reasoning tasks still require genuine visual perception for strong performance. Our benchmark study offers new insights into visual reasoning and contributes to investigating the gap between open-source and closed-source models.

1 INTRODUCTION

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Multimodal large language models (MLLMs) (Achiam et al., 2023; Bai et al., 2025; Zhu et al., 2025; Hu et al., 2025; Li et al., 2025b) have recently achieved notable advancements across a range of vision-language tasks, including visual grounding (Peng et al., 2023; Yang et al., 2024b), reasoning segmentation (Chen et al., 2024; Zhang et al., 2024b; Ren et al., 2024; Lai et al., 2024; Wang et al., 2025a), and text-image alignment (Yue et al., 2025a; Yarom et al., 2023). Building upon these developments, reasoning MLLMs (OpenAI, 2024b; Guo et al., 2025a; Team et al., 2025; Wei et al., 2025; Peng et al., 2025; ByteDance, 2025; Qwen Team, 2024) have further improved performance on complex visual reasoning tasks such as visual math problems (Yang et al., 2024c; Wang et al., 2024a), visual question answering (VQA) (Shiri et al., 2024; Yue et al., 2024; Wang et al., 2024a), and spatial reasoning (Shiri et al., 2024; Li et al., 2025a; Dihan et al., 2024). These capabilities are critical for a wide range of real-world applications, including embodied AI, autonomous agents, and decision-making systems such as autonomous driving (Duan et al., 2022; Wang et al., 2024b; Cui et al., 2024). As multimodal tasks grow in complexity and practical relevance, the need for rigorous benchmarks to assess fine-grained visual reasoning becomes increasingly essential.

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
To address the growing demand for robust evaluation of multimodal reasoning, several benchmarks have been proposed. Datasets such as MathVQA (Wang et al., 2024a) and MMMU (Yue et al., 2024) incorporate multimodal questions but often permit models to succeed via shallow heuristics, without requiring genuine visual grounding. MathVerse (Zhang et al., 2024a) mitigates this limitation by introducing diverse problem variants that encourage reliance on visual input. VisuLogic (Xu et al., 2025b) further enforces visual reasoning by explicitly eliminating language-only shortcuts. Other efforts, such as VisualPuzzles (Song et al., 2025), VGRP-Bench (Ren et al., 2025), and R-Bench (Guo et al., 2025c), target logical and structural reasoning, while CityBench (Feng et al.,

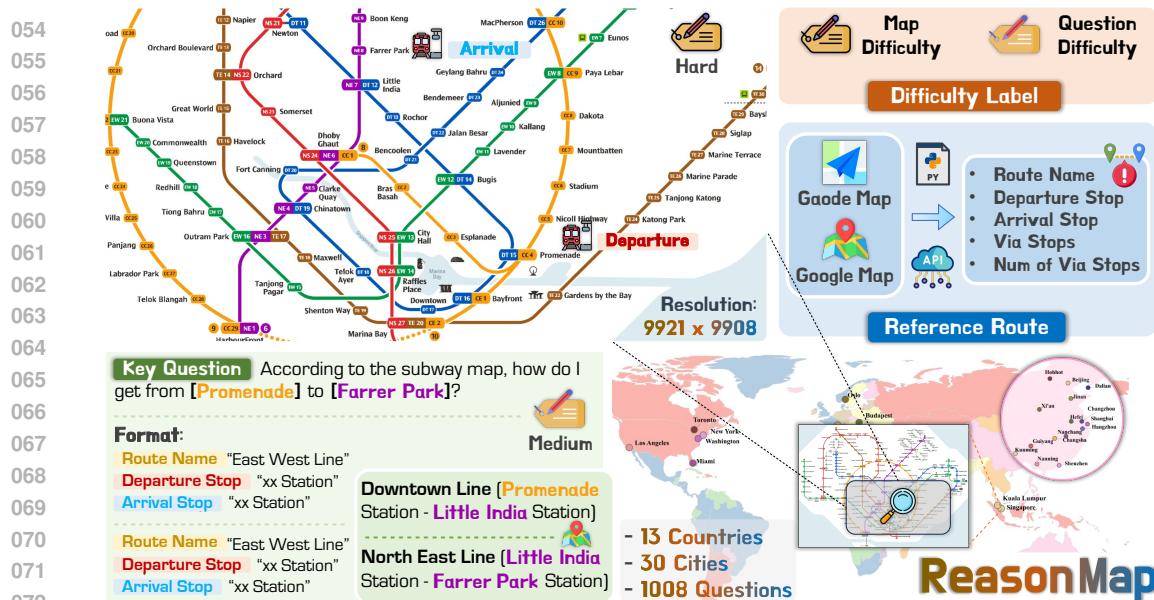


Figure 1: Overview of REASONMAP. We introduce a benchmark dataset designed to evaluate fine-grained visual reasoning abilities of MLLMs, encompassing 1,008 question-answer pairs constructed over high-resolution transit maps from 30 cities, spanning two question types and three templates.

2024) and DriveBench (Xie et al., 2025) focus on domain-specific applications like urban tasks and autonomous driving. V* Bench (Wu & Xie, 2024) emphasizes detailed visual understanding. MapBench (Xing et al., 2025) addresses spatial reasoning by introducing structured scene graphs for map navigation. Despite these advances, systematic evaluation of fine-grained visual reasoning remains limited, especially for structured and information-rich diagrams like high-resolution transit maps, leaving a critical gap in existing benchmarks.

In this paper, we introduce REASONMAP (Figure 1), a benchmark designed to evaluate the fine-grained visual understanding and spatial reasoning capabilities of MLLMs using high-resolution transit maps. As structured and information-dense visual artifacts, maps inherently require precise spatial interpretation, making them well-suited for assessing detailed visual reasoning. REASONMAP comprises 1,008 human-verified question-answer pairs spanning 30 cities across 13 countries. Each instance includes a map, two stops, two questions (*short* and *long*), multiple reference routes, and two difficulty labels (*map* and *question* difficulty). The questions cover two types and three prompting templates capturing both coarse and fine-grained spatial reasoning. To ensure data quality, we perform manual route verification, promote question diversity, and balance difficulty distribution. For evaluation, we propose a two-level framework that independently measures answer correctness (via *accuracy*) and quality (via a proposed *map score*), reflecting both feasibility and efficiency.

We conduct comprehensive experiments on 15 widely-used MLLMs, encompassing base and reasoning models. Our results reveal a counterintuitive finding: Among open-source models, base variants outperform their reasoning counterparts, whereas the opposite holds for closed-source models. Moreover, when only textual inputs are provided, models can still answer some questions based on inner knowledge, but in most cases, their performance noticeably drops. This highlights a critical limitation in the current model behavior. While some models can leverage prior knowledge and textual cues to solve certain tasks, the tasks (*e.g.*, fine-grained visual reasoning tasks) requiring genuine visual understanding still necessitate effective integration of multimodal information for robust reasoning.

Our main contributions are summarized as follows: (1) We develop an extensible, semi-automated pipeline for dataset construction, facilitating scalable expansion to additional maps and cities. Using this pipeline, REASONMAP is constructed to evaluate fine-grained visual reasoning capabilities in MLLMs; (2) We propose a structured two-level evaluation framework that separately quantifies answer correctness and quality using accuracy and the proposed map score, respectively, enabling fine-grained answer assessment; and (3) A comprehensive benchmarking study is conducted across 15 MLLMs, providing insights into model performance, robustness, and the interplay between visual and textual cues, thereby informing future research on multimodal reasoning.

108

109
110
111
Table 1: Comparison between REASONMAP and existing multimodal reasoning datasets. For entries
in the dataset size column with notation like ($\times n$), each base problem has multiple versions to enforce
visual grounding. Specifically, VGRP-Bench is constructed by sampling over 20 core puzzles.

Name	Year	Dataset Size	Avg. Resolution	Training Set	Step Evaluation	Multilingual (Count)
MMMU (Yue et al., 2024)	2024	11.5k	684 \times 246	\times	\times	\checkmark (2)
MathVerse (Zhang et al., 2024a)	2024	2,612 ($\times 6$)	577 \times 487	\times	\times	\times
VisuLogic (Xu et al., 2025b)	2025	1,003	601 \times 331	\checkmark	\times	\times
VisualPuzzles (Song et al., 2025)	2025	1,168	767 \times 464	\times	\times	\times
VGRP-Bench (Ren et al., 2025)	2025	20 ($\times 5$)	790 \times 790	\times	\checkmark	\times
R-Bench (Guo et al., 2025c)	2025	665	629 \times 348	\times	\times	\checkmark (2)
V*Bench (Wu & Xie, 2024)	2023	191	2,246 \times 1,582	\times	\times	\times
REASONMAP	2025	1,008 ($\times 2$)	5,839 \times 5,449	\checkmark	\checkmark	\checkmark (4)

119

120

2 RELATED WORK

121

122
123 **Reasoning in LLMs & MLLMs.** Recent advances in large language models (LLMs) have
124 demonstrated significant improvements in reasoning capabilities through reinforcement fine-tuning
125 paradigms (OpenAI, 2024b; Guo et al., 2025a; Feng et al., 2025; Hendrycks et al., 2021), which
126 leverage GRPO (Shao et al., 2024) to unlock the reasoning potential of LLMs. This paradigm has
127 also been extended to the multimodal domain, with increasing interest in applying reinforcement
128 learning (RL) to visual reasoning (Team, 2025; Lab, 2025; Liu et al., 2025; Tan et al., 2025; Shen
129 et al., 2025). Both open-source and closed-source communities have introduced advanced reasoning
130 MLLMs built upon earlier systems (Zhu et al., 2025; Bai et al., 2025; Yang et al., 2024a; OpenAI,
131 2025). Notable open-source models include Kimi-VL (Team et al., 2025), Skywork-R1V (Wei et al.,
132 2025; Peng et al., 2025), and Qwen-QvQ (Qwen Team, 2024), whereas Doubao-1.5-Pro (ByteDance,
133 2025), Seed1.5-VL (Guo et al., 2025b), OpenAI o3 (OpenAI, 2025), OpenAI 4o (OpenAI, 2024a),
134 and Gemini (Gemini et al., 2023) represent leading closed-source efforts. Despite recent progress,
135 systematic evaluation of fine-grained visual reasoning in MLLMs still remains limited, as existing
136 benchmarks primarily target coarse-grained tasks and fail to capture model performance on complex
137 real-world visual content.

138

139 **Multimodal Reasoning Datasets.** As multimodal reasoning has rapidly progressed, various benchmarks
140 have emerged to evaluate MLLMs across different reasoning dimensions (see summary in
141 Table 1). Datasets such as V*Bench (Wu & Xie, 2024), VisualPuzzles (Song et al., 2025), Visu-
142 Logic (Xu et al., 2025b), and VGRP-Bench (Ren et al., 2025) primarily examine abstract visual
143 reasoning through synthetic tasks involving logic, structure, and pattern recognition. In parallel,
144 CityBench (Feng et al., 2024) and DriveBench (Xie et al., 2025) shift focus to real-world spatial
145 reasoning, assessing model performance on complex urban or autonomous driving scenarios. For
146 mathematical reasoning, benchmarks like MathVQA (Wang et al., 2024a), MMMU (Yue et al., 2024),
147 and MathVerse (Zhang et al., 2024a) integrate multimodal inputs, with MathVerse notably introducing
148 varied problem formats to strengthen visual dependence. Additionally, MapBench (Xing et al., 2025)
149 employs structured scene graphs combined with CoT prompting to support navigation tasks based on
150 manually curated and verified questions. Its image resolution, while relatively low, reflects a common
151 characteristic shared by current datasets. Unlike these works, we first introduce a benchmark for
152 evaluating fine-grained visual reasoning capacities with high-resolution transit maps.

153

154

155 **Map-based Spatial Reasoning.** Among the many directions of multimodal reasoning, map-based
156 spatial reasoning has emerged as a crucial area, with broad applications in navigation, urban planning,
157 and autonomous systems (Bao et al., 2023; Seff & Xiao, 2016; Xu et al., 2025a; Wang et al., 2023).
158 Recent efforts have focused on enabling models to interpret and reason over various types of map
159 data. CityBench (Feng et al., 2024) provides a dataset for evaluating urban scene understanding,
160 while MapLM (Cao et al., 2024) introduces a benchmark for map and traffic scene understanding.
161 PlanAgent (Zheng et al., 2024) and PReP (Zeng et al., 2024) explore embodied planning in environments
162 that require interpreting map information. MapEval (Dihan et al., 2024) proposes a structured
163 evaluation suite for map reasoning, and GeoNav (Xu et al., 2025a) investigates geospatial navigation
164 using LLMs. Most existing methods (Dihan et al., 2024; Feng et al., 2024; Zheng et al., 2024) depend
165 on external tools (e.g., map services or APIs) to complete spatial tasks, which often bypasses the
166 need for genuine visual reasoning. However, spatial reasoning based on visual understanding remains
167 essential. Our work aims to fill this gap by evaluating such capabilities without tool assistance.

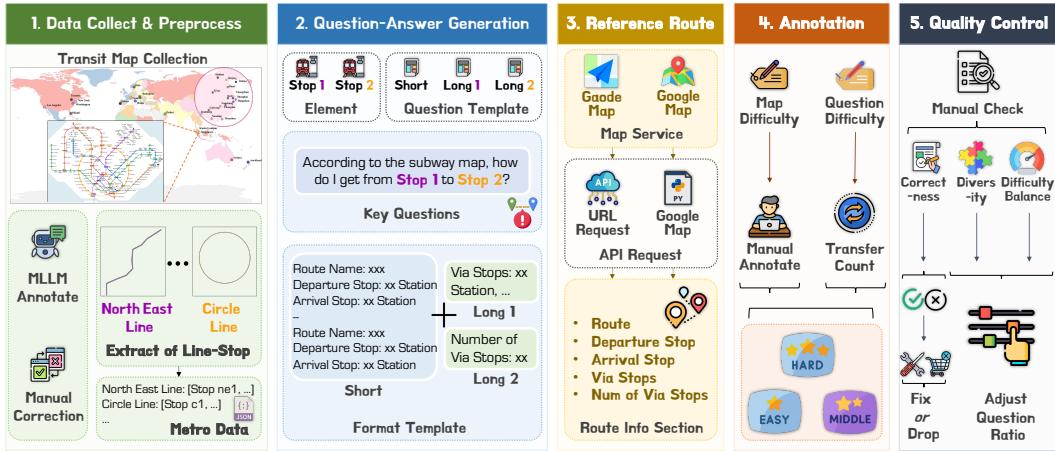


Figure 2: The building pipeline of REASONMAP consists of **three** main stages: **(1)** data collection and preprocessing, **(2)** question–answer pair construction, and **(3)** quality control. Steps **(2–4)** in the figure correspond to the question–answer pair construction stage. Zoomed-in for more details.

3 REASONMAP CONSTRUCTION

In this section, we first present the complete dataset building pipeline as shown in Figure 2, which consists of three main stages: (1) data collection and preprocessing, (2) question–answer pair construction, and (3) quality control. We then report comprehensive statistics of the dataset.

3.1 REASONMAP BUILDING PIPELINE

3.1.1 DATA COLLECTION AND PREPROCESSING

We collect and manually select 30 high-resolution transit maps covering 30 cities across 13 countries from publicly available online sources, in compliance with relevant licenses and regulations, ensuring diversity and a balanced range of map difficulty. We then leveraged MLLMs to extract the names of transit lines and their corresponding stops, followed by manual correction to ensure correctness. Special cases such as transfer stops and branch-starting stops were annotated in a standardized format appended to the respective stop entries. Finally, for subsequent usage, all route and stop information was saved in a unified JSON format, referred to as the Metro Data.

3.1.2 QUESTION-ANSWER PAIR CONSTRUCTION

The construction of question–answer pairs involves three key steps: (1) Question Generation, where we formulate questions based on predefined templates; (2) Reference Route Collection, where we obtain corresponding reference routes using Gaode Map¹ and Google Map²; and (3) Label Annotation, where we assign difficulty levels for both the maps and the questions.

Question Generation. We randomly select two stops (refer to $stop_1$ and $stop_2$) from the current high-resolution transit map. We then generate one short question and one long question based on predefined question templates and two stops (Figure 2). The short question has only one fixed template, while the long question is randomly assigned one of two available templates during generation. Additionally, the two long question templates differ in focus: one asks for the number of via stops, while the other requires identifying each via stop (see detailed templates in Appendix A.1).

Reference Route Collection. For each question, we query all valid transit routes between $stop_1$ and $stop_2$ using APIs from map services (*e.g.*, Gaode Map for Chinese cities and Google Map for other cities). The retrieved routes are stored in a unified format containing relevant metadata (*e.g.*, route name, departure stop, arrival stop, via stops, and number of via stops). We discard routes that cannot be visually traced on the map, ensuring consistency with the visual content.

¹<https://console.amap.com/dev/index>

²<https://developers.google.com/maps/apis-by-platform>

216 **Label Annotation.** Two levels of difficulty labeling are included in this stage. For map difficulty, we
 217 manually assign each map to one of three difficulty levels (easy, medium, hard), ensuring a balanced
 218 split across 30 maps, with 10 maps per level. For question difficulty, we assign difficulty based on the
 219 number of transfers in the reference route: routes with no transfers are labeled as easy, those with one
 220 transfer as medium, and all others as hard. To ensure balance, we set a fixed difficulty distribution
 221 threshold of 20 : 15 : 5 (easy:medium:hard) for each map, generating 40 questions. Once the quota
 222 for a difficulty level is reached on a given map, no additional questions of that level are retained.
 223 Additionally, we provide a more fine-grained taxonomy of questions as a reference in Appendix A.2.

224 225 3.1.3 QUALITY CONTROL

226 To ensure the reliability and balance of the dataset, we perform quality control from three perspectives:
 227 correctness, diversity, and difficulty balance. Incorrect question–answer pairs are either manually
 228 corrected or discarded. We then involve both automatic checks and manual adjustments to ensure
 229 consistency and coverage across all difficulty levels. One reserved example is shown in Figure 1.

231 232 3.2 DATASET STATISTICS

233 The REASONMAP consists of 30 high-resolution transit map images (see map sources in Ap-
 234 pendix A.3) with an average resolution of $5,839 \times 5,449$ pixels. In total, it contains 1,008 ques-
 235 tion–answer pairs, including stop names in four languages (e.g., English, Hungarian, Chinese, and
 236 Italian). The distribution of question difficulty is as follows: 57.7% are labeled as easy, 34.4% as
 237 medium, and 7.8% as hard. Additionally, a subset of 312 samples is manually selected as the test
 238 set for the benchmark experiments described in Section 5, while the remaining samples serve as a
 239 training set for future use. To ensure diversity and difficulty balance, the test set includes 11 cities
 240 with a 4 : 3 : 4 map difficulty ratio and a question difficulty distribution (181 easy, 108 medium, 23
 241 hard) that maintains consistency with the full dataset. Moreover, REASONMAP includes inter-modal
 242 transfers in cities like Sydney, where subways, light rail, and airport lines converge.

243 244 4 EVALUATION FRAMEWORK

245 This section systematically introduces a two-level evaluation framework for assessing model per-
 246 formance on the REASONMAP. This framework separately evaluates the correctness and quality
 247 of answers produced by models. Specifically, we quantify correctness using accuracy and design
 248 map score to measure the quality of answers, considering multiple factors (e.g., route efficiency and
 249 alignment with the reference routes from map services).

250 **Preparation for Evaluation.** We first parse the model-generated answers according to the required
 251 format. Answers that do not comply with the specified format or cannot be parsed due to model
 252 hallucination (Bai et al., 2024) are marked as invalid. Invalid responses are excluded from subsequent
 253 evaluations, with accuracy and map score set to zero. For the correctness evaluation, we utilize the
 254 Metro Data mentioned in Section 3.1.1 as ground truth. For the quality evaluation, we adopt the
 255 collected reference routes as presented in Section 3.1.2 as the ground truth.

257 258 4.1 CORRECTNESS EVALUATION

259 We evaluate the correctness of the answer using Algorithm 1 in Appendix B. Specifically, the
 260 evaluation checks the correctness of the overall departure and arrival stops ($stop_1$ and $stop_2$), verifies
 261 if the route name of each segment exists in the Metro Data, ensures the departure and arrival stops are
 262 valid for each segment, and confirms that transfer stops between consecutive segments are consistent.
 263 An answer is considered correct only if all the above checks are satisfied. Additionally, we apply the
 264 same correctness evaluation algorithm to the answers of short and long questions.

266 267 4.2 QUALITY EVALUATION

268 To evaluate the quality of the answers, we introduce a unified scoring metric, referred to as the
 269 map score, which is applied to both short and long questions using the evaluation procedure (see
 Algorithm 2 in Appendix B). The overall evaluation framework for route quality follows a structure

270
271 Table 2: Evaluations of various MLLMs on REASONMAP. $S.$ represents results for short questions,
272 while $L.$ denotes results for long questions. The map score is capped at 20 for short questions, while
273 for long questions, the maximum score is 40. **Bold** indicates the best results among open-source
274 and closed-source models, respectively, while underline represents the second best. We report more
275 fine-grained error analysis metrics in Table A4.

Model	Type	Weighted Acc. ($S.$)	#Tokens ($S.$)	Weighted Acc. ($L.$)	#Tokens ($L.$)	Weighted Map Score ($S. / L.$)
<i>Open-source Models</i>						
Qwen2.5-VL-3B-Instruct (Bai et al., 2025)	Base	8.68%	42	7.99%	151	2.75 / 3.70
Qwen2.5-VL-32B-Instruct (Bai et al., 2025)	Base	16.49%	36	15.71%	112	3.88 / 6.84
Qwen2.5-VL-72B-Instruct (Bai et al., 2025)	Base	26.65%	33	24.22%	104	5.09 / 8.80
InternVL3-38B (Zhu et al., 2025)	Base	14.84%	43	13.45%	68	3.48 / 6.31
InternVL3-78B (Zhu et al., 2025)	Base	<u>25.35%</u>	33	<u>19.62%</u>	62	<u>4.80 / 7.50</u>
Kimi-VL-A3B-Instruct (Team et al., 2025)	Base	12.76%	41	12.33%	41	3.30 / 5.37
Kimi-VL-A3B-Thinking (Team et al., 2025)	Reasoning	5.47%	754	5.47%	1,287	2.44 / 3.17
Skywork-R1V-38B (Wei et al., 2025; Peng et al., 2025)	Reasoning	6.86%	645	3.21%	842	2.11 / 3.11
QvQ-72B-Preview (Qwen Team, 2024)	Reasoning	9.03%	1,279	4.25%	1,619	1.59 / 1.55
<i>Closed-source Models</i>						
Doubaoo-115 (ByteDance, 2025)	Base	34.20%	32	38.02%	118	5.25 / 11.96
OpenAI 4o (OpenAI, 2024a)	Base	41.15%	34	42.80%	58	6.84 / 13.57
Doubaoo-415 (ByteDance, 2025)	Reasoning	43.14%	536	<u>46.09%</u>	1,796	7.33 / <u>14.67</u>
Doubaoo-428 (ByteDance, 2025)	Reasoning	37.15%	532	37.85%	2,167	5.52 / 11.73
Gemini-2.5-Flash (Gemini et al., 2023)	Reasoning	<u>46.09%</u>	806	29.86%	1,419	<u>7.64 / 9.98</u>
OpenAI o3 (OpenAI, 2025)	Reasoning	63.02%	1,236	59.11%	2,372	9.53 / 17.96

288 similar to that used in Section 4.1. The following evaluation procedure assumes a single reference
289 route for simplicity. In practice, if multiple reference routes are available, the answer is evaluated
290 against each of them, and the highest score is taken as the final map score.

291 For short questions, the map score solely focuses on route-level and endpoint consistency, excluding
292 all long-question-specific parts. We compute the score by comparing segment pairs in the answer and
293 reference route. Specifically, correctly matching $stop_1$ and $stop_2$ contributes one point, matching the
294 route name adds two points, and matching the departure and arrival stops within each route segment
295 provides one point each. The final score is capped at 10, and an additional bonus is awarded if the
296 answer is judged correct based on the correctness evaluation procedure described in Section 4.1. This
297 design ensures that a correct answer always receives a higher score than any incorrect one.

298 For long questions, the evaluation incorporates additional scoring components tailored to the two
299 question templates introduced in Section 3.1.2. These components are designed to capture the
300 increased reasoning depth required in long-form responses. As with short questions, a bonus score is
301 also added for correct answers. The two additional scoring components are detailed below.

302 **Via Stop Count Evaluation.** For long questions that require models to predict the number of via
303 stops for each segment, we introduce the *num_via_stop_score*. This score compares the via stop
304 count of the answer and reference route by computing the absolute error and mapping it to a fixed
305 score (4). A perfect match yields full points, while larger discrepancies receive proportionally lower
306 scores. The score is then capped at 10 for the full route.

307 **Specific Via Stop Evaluation.** For long questions that require explicit enumeration of intermediate
308 stops, we compute *via_stop_score* using a combination of two factors: the number of correctly
309 matched via stops, and the intersection-over-union (IoU) between via stop sets of the answer and
310 reference route. The final score for this component is obtained by averaging the IoU score (scaled to
311 10) and the exact match count (capped at 10), and then clipped to a maximum of 10.

313 5 EXPERIMENTS

315 5.1 EXPERIMENTAL SETUPS

318 We conduct extensive benchmark experiments on REASONMAP using 15 popular MLLMs under
319 different inference settings, analyzing their performance and comparing results. Several interesting
320 insights emerge from this comparison. The detailed experimental settings are described below.

321 **Evaluated Models.** We evaluate a diverse set of MLLMs categorized into two groups based on
322 whether they are reasoning-oriented models with a long-thinking process. Reasoning models include:
323 Skywork-R1V-38B (Wei et al., 2025; Peng et al., 2025), QvQ-72B-Preview (Qwen Team, 2024),
324 Kimi-VL-A3B-Thinking/Instruct (Team et al., 2025), OpenAI o3 (OpenAI, 2025), Gemini-2.5-

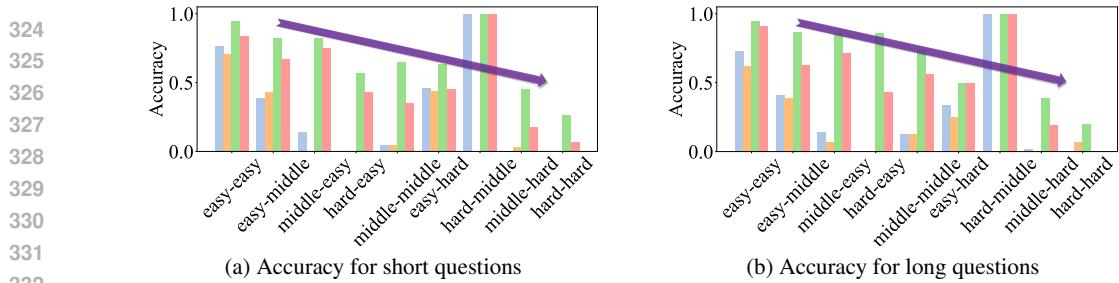


Figure 3: Accuracy across difficulty combinations for four representative MLLMs ([Qwen2.5-VL-72B-1](#), [InternVL3-78B](#), [OpenAI o3](#), and [Doubao-415](#)). Each difficulty combination is denoted by a pair (e.g., *easy-hard*), where the first term indicates question difficulty and the second term represents map difficulty. The pair (*hard-middle*) contains only one sample, leading to an accuracy of 100%.

Flash ([Gemini et al., 2023](#)), Doubao-1-5-thinking-vision-pro-250428 (Doubao-428), and Doubao-1.5-Thinking-Pro-M-250415 (Doubao-415) ([ByteDance, 2025](#)). Base models include: Qwen2.5-VL series (3B, 32B, 72B) ([Bai et al., 2025](#)), InternVL3 series (38B, 78B) ([Zhu et al., 2025](#)), OpenAI 4o ([OpenAI, 2024a](#)), and Doubao-1.5-Vision-Pro-32k-250115 (Doubao-115) ([ByteDance, 2025](#)). Additionally, the Doubao 1.5 Pro series has an activated parameter size of 20B.

Inference Settings. For open-source models, we set the max output token limit to 2,048, while keeping other parameters consistent with the official HuggingFace configurations. All open-source models are deployed using PyTorch and the HuggingFace Transformers library on 8 NVIDIA A100 GPUs. For closed-source models, we access their official APIs for evaluation and follow the default settings provided by each model’s official documentation. We further discuss the diverse image processing strategies when handling high-resolution visual inputs in Appendix B.2.

Difficulty-Aware Weighting. To better reflect the varying complexity of different samples, we adopt a difficulty-aware weighting strategy based on the combination of question difficulty and map difficulty. Specifically, each difficulty pair is assigned a predefined weight, with harder combinations receiving higher values. The complete weight matrix is provided in Appendix B.3. Both accuracy and map score are evaluated using this weighting scheme, ensuring that models are more strongly rewarded for correctly solving more challenging examples.

5.2 EXPERIMENTAL RESULTS

5.2.1 PERFORMANCE OF MLLMs WITH FULL INPUT

The principal results are summarized in Table 2. Notably, we observe a counterintuitive phenomenon: among open-source models, reasoning models consistently underperform their base counterparts, whereas the opposite holds in the closed-source setting³. Prior work suggests that RL may improve sample efficiency without introducing fundamentally new reasoning abilities ([Yue et al., 2025b](#); [Wang et al., 2025b](#); [Zhang et al., 2025](#)), while RL-trained models tend to bias their output distributions toward high-reward trajectories, which helps produce more correct responses but may simultaneously constrain the model’s exploration capacity and reduce its ability to leverage broader foundational knowledge. In addition, recent studies indicate that multimodal models may sometimes rely on inner knowledge priors instead of truly attending to visual inputs ([Jiang et al., 2024](#); [Hao et al., 2025](#); [Ghatkesar et al., 2025](#); [Zhang et al., 2024a](#)). This tendency is further supported by the results in Section 5.2.2, where open-source models still maintain part of their performance even without visual input, indicating limited visual grounding. In contrast, closed-source reasoning models outperform their base variants. One possible explanation lies in the broader knowledge coverage and better visual integration observed in these models ([ByteDance, 2025](#); [OpenAI, 2025](#); [Gemini et al., 2023](#)).

We further analyze the effect of model size by examining performance within the same architecture series. Qwen2.5-VL and InternVL series show a consistent trend: larger models achieve better accuracy with fewer tokens, suggesting that the scaling law ([Kaplan et al., 2020](#)) continues to hold even in fine-grained visual reasoning tasks. Figure 3 presents accuracy distributions across different

³Although the comparison across closed-source models may not be fair due to lack of transparency in details, the reasoning variants exhibit stronger performance in this category.

378
379
380
381
382
383

Table 3: Evaluations of MLLMs on REASONMAP w/o visual inputs. **S.** denotes results for short questions and **L.** denotes results for long questions. The map score is capped at 20 for short questions, while for long questions, the maximum score is 40. **Bold** indicates the best results among open-source and closed-source models, respectively, while underline represents the second best. **Green** highlights improved results compared to the full input setting (Table 2), while **red** indicates performance drops.

Model	Type	Weighted Acc. (S.)	#Tokens (S.)	Weighted Acc. (L.)	#Tokens (L.)	Weighted Map Score (S. / L.)
<i>Open-source Models</i>						
Qwen2.5-VL-3B-Instruct (Bai et al., 2025)	Base	9.38% ^{↑0.7%}	47	9.72% ^{↑1.73%}	147	2.93 ^{↑0.18 / 4.51} _{↑0.81}
Qwen2.5-VL-72B-Instruct (Bai et al., 2025)	Base	16.41% _{↑10.24%}	28	15.71% _{↑8.51%}	108	4.03 _{↓1.06 / 6.49} _{↓2.31}
Kimi-VL-A3B-Instruct (Team et al., 2025)	Base	<u>11.81%</u> _{↑0.95%}	41	<u>9.81%</u> _{↓2.52%}	49	<u>3.37</u> _{↑0.07 / 5.32} _{↓0.05}
Kimi-VL-A3B-Thinking (Team et al., 2025)	Reasoning	4.17% _{↓1.30%}	1,039	2.08% _{↓3.39%}	1,755	2.06 _{↓0.38 / 1.64} _{↓1.53}
<i>Closed-source Models</i>						
Doubao-115 (ByteDance, 2025)	Base	13.72% _{↓20.48%}	34	13.98% _{↓24.04%}	99	3.50 _{↓1.75 / 6.48} _{↓5.48}
Doubao-415 (ByteDance, 2025)	Reasoning	21.53% _{↓21.61%}	352	17.19% _{↓28.90%}	1,047	4.85 _{↓2.48 / 7.68} _{↓6.99}

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

combinations of question and map difficulty. As expected, performance degrades as task complexity increases. Additionally, Figure 4 illustrates accuracy variation across cities. We observe a negative correlation between map difficulty and accuracy. Moreover, model performance varies notably even among cities with comparable map difficulty levels. This disparity can be partially attributed to factors such as city prominence and the language used for stop names (see the ablation study results on language in Appendix C.3), both of which are closely tied to the model’s pretrained knowledge. For instance, OpenAI o3 performs significantly better on complex cities like Singapore compared to Hangzhou, likely due to Singapore’s higher international visibility and the use of English stop names, whereas Hangzhou is less prominent and its stop names are Chinese.

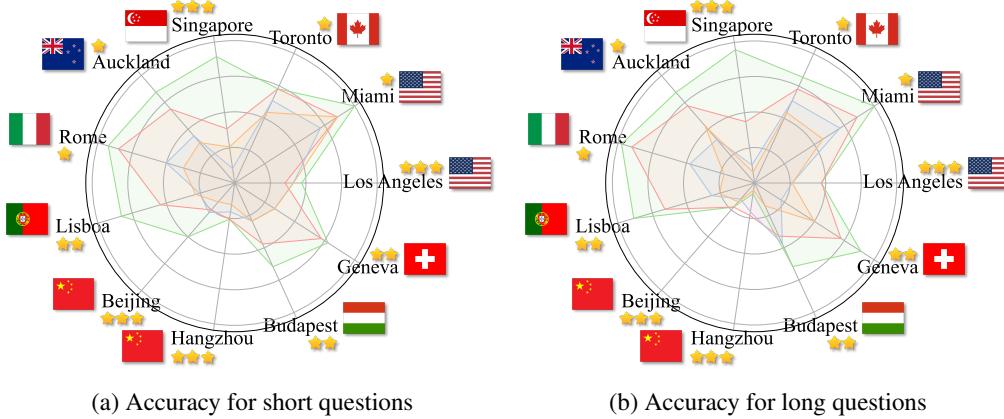


Figure 4: Accuracy across different cities for four representative MLLMs (Qwen2.5-VL-72B-I, InternVL3-78B, OpenAI o3, and Doubao-415). Each city is marked with the corresponding map difficulty and the country flag.

410
411
412
413
414
415
416

5.2.2 PERFORMANCE OF MLLMs WITHOUT VISUAL INPUT

417
418
419
420
421
422
423
424
425
426
427

To further investigate the reliance of MLLMs on visual input, we selected representative open-source and closed-source models for additional experiments, where the visual input was masked. The results are reported in Table 3. We observe that while most models can leverage prior knowledge to answer questions, their performance generally declines to varying degrees when visual input is removed, with the decline being more pronounced among closed-source models. Model performance is positively correlated with the performance drop after masking visual inputs, indicating effective use of visual information. In contrast, models like Qwen2.5-VL-3B-I show minimal or even improved performance, suggesting a reliance on prior knowledge rather than real visual reasoning. We further conduct non-vision experiments by replacing maps with their symbolic representations in Appendix C.4.

428
429

5.3 ERROR ANALYSIS

430
431

Figure 5 presents representative failure cases from REASONMAP, revealing several recurring error types. A common issue is *visual confusion*, where the model misidentifies the transit line due to similar colors or adjacent layouts, for instance, mistaking Line 9 for Line 16 (OpenAI o3, left column;

Figure 5: **Error case analyses** of various MLLMs using REASONMAP. For reasoning models, the reasoning process is explicitly marked with `<think>` and `</think>` tags. We highlight error contents in the answers with red and categorize them accordingly.

Doubaio-428, right column). Another frequent problem is *format errors*, where responses deviate from the required structure, making them unprocessable despite containing correct route information (Doubaio-115 and QvQ-72B-Preview, left column). We also observe instances of *hallucination* (Bai et al., 2024), where the model repeats the correct answer (Kimi-VL-A3B-Thinking, middle column) or generates information that is not present in the input, such as mentioning image generation, as seen in Skywork-R1V-38B (right column). *Refusal* cases are also present, where models explicitly decline to answer (Skywork-R1V-38B, middle and right column). Notably, these errors may occasionally co-occur within a single response (Skywork-R1V-38B, right column). Furthermore, we conduct a systematic analysis of failure causes from a model capability perspective (e.g., optical character recognition (OCR), visual grounding, and spatial reasoning) in Appendix C.5. The above error types highlight the limitations in visual grounding and response robustness, especially when handling fine-grained visual details (see more case analyses in Appendix D).

6 CONLUSION

In this work, we introduce REASONMAP, a benchmark designed to evaluate the fine-grained visual understanding and spatial reasoning capabilities of MLLMs using high-resolution transit maps. Through a semi-automated and scalable data building pipeline, we curate a diverse set of human-verified question-answer pairs across 30 cities from 13 countries. Our two-level evaluation framework enables a nuanced assessment of both correctness and quality. Experimental results on 15 popular MLLMs reveal key insights into model behavior, highlighting performance gaps between base and reasoning models, as well as the crucial role of visual input. Error analyses further reveal recurring failure patterns (e.g., visual confusion), highlighting weaknesses of current MLLMs in visual understanding and spatial reasoning. These findings underscore the need for more rigorous evaluation and training approaches to advance visual reasoning in multimodal systems.

486 ETHICS STATEMENT
487488 All experiments are conducted on REASONMAP, which is built using publicly available transit maps
489 collected in compliance with relevant licenses and usage terms. The maps are selected to ensure
490 geographic diversity and legal validity. Upon code release, we provide the source of each map for
491 further reference. REASONMAP is intended solely for academic research on fine-grained visual
492 understanding and spatial reasoning in MLLMs. It does not redistribute any copyrighted map images.
493 All annotations are based on public information, contain no personal data, and are created under
494 academic oversight. The benchmark is not intended for safety-critical use. We take care to ensure
495 fairness, legal compliance, and responsible data handling. Additionally, we use the MIT License for
496 code release on GitHub and the Apache License 2.0 for REASONMAP release on HuggingFace.
497498 REPRODUCIBILITY STATEMENT
499500 To ensure reproducibility, we present evaluation setup details (*e.g.*, hardware and implementation) in
501 Section 5.1 and Appendix B.3, and provide public implementation links in Appendix F.1 to facilitate
502 rapid replication. We additionally release standardized splits and end-to-end instructions to reproduce
503 all reported results (both code⁴ and dataset⁵). During the review process, all links are anonymized
504 and provided as supplements; upon acceptance, they will be replaced with permanent public links.
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

4⁴ <https://github.com/Reason-Map/ReasonMap>5⁵ <https://huggingface.co/datasets/AnonymousReasonMap/ReasonMap>

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
543 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
544 *arXiv preprint arXiv:2303.08774*, 2023.

545 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
546 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
547 2025.

548 Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
549 Hallucination of multimodal large language models: A survey. *arXiv preprint arXiv:2404.18930*,
550 2024.

552 Zhibin Bao, Sabir Hossain, Haoxiang Lang, and Xianke Lin. A review of high-definition map creation
553 methods for autonomous driving. *Engineering Applications of Artificial Intelligence*, 122:106125,
554 2023.

556 ByteDance. doubao-1.5-pro. https://seed.bytedance.com/en/special/doubao_1_5_pro, 2025.

558 Xu Cao, Tong Zhou, Yunsheng Ma, Wenqian Ye, Can Cui, Kun Tang, Zhipeng Cao, Kaizhao Liang,
559 Ziran Wang, James M Rehg, et al. Maplm: A real-world large-scale vision-language benchmark
560 for map and traffic scene understanding. In *CVPR*, 2024.

562 Yi-Chia Chen, Wei-Hua Li, Cheng Sun, Yu-Chiang Frank Wang, and Chu-Song Chen. Sam4mllm:
563 Enhance multi-modal large language model for referring expression segmentation. In *ECCV*, 2024.

564 Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang Zhou, Kaizhao Liang, Jintai Chen, Juanwu Lu,
565 Zichong Yang, Kuei-Da Liao, et al. A survey on multimodal large language models for autonomous
566 driving. In *WACV*, 2024.

568 Mahir Labib Dihan, Md Tanvir Hassan, Md Tanvir Parvez, Md Hasebul Hasan, Md Almash Alam,
569 Muhammad Aamir Cheema, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapeval: A map-
570 based evaluation of geo-spatial reasoning in foundation models. *arXiv preprint arXiv:2501.00316*,
571 2024.

572 Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and Cheston Tan. A survey of embodied ai:
573 From simulators to research tasks. *TETCI*, 6(2):230–244, 2022.

575 Jie Feng, Jun Zhang, Junbo Yan, Xin Zhang, Tianjian Ouyang, Tianhui Liu, Yuwei Du, Siqi Guo, and
576 Yong Li. Citybench: Evaluating the capabilities of large language model as world model. *arXiv
577 preprint arXiv:2406.13945*, 2024.

579 Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Efficient reasoning models: A survey.
580 *TMLR*, 2025.

581 Junqi Ge, Ziyi Chen, Jintao Lin, Jinguo Zhu, Xihui Liu, Jifeng Dai, and Xizhou Zhu. V2pe:
582 Improving multimodal long-context capability of vision-language models with variable visual
583 position encoding. *arXiv preprint arXiv:2412.09616*, 2024.

585 Gemini, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
586 Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
587 multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

588 Aarti Ghatkesar, Uddeshya Upadhyay, and Ganesh Venkatesh. Looking beyond language pri-
589 ors: Enhancing visual comprehension and attention in multimodal models. *arXiv preprint
590 arXiv:2505.05626*, 2025.

592 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
593 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

594 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
 595 Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. *arXiv preprint arXiv:2505.07062*,
 596 2025b.

597 Meng-Hao Guo, Jiajun Xu, Yi Zhang, Jiaxi Song, Haoyang Peng, Yi-Xuan Deng, Xinzhi Dong, Kiy-
 598 ohiro Nakayama, Zhengyang Geng, Chen Wang, et al. R-bench: Graduate-level multi-disciplinary
 599 benchmarks for llm & mllm complex reasoning evaluation. *arXiv preprint arXiv:2505.02018*,
 600 2025c.

601 Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and
 602 Yu Cheng. Can mllms reason in multimodality? emma: An enhanced multimodal reasoning
 603 benchmark. *arXiv preprint arXiv:2501.05444*, 2025.

604 James Hays and Alexei A Efros. Im2gps: estimating geographic information from a single image. In
 605 *CVPR*, 2008.

606 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 607 Steinhardt. Measuring massive multitask language understanding. In *ICLR*, 2021.

608 Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision
 609 transformer. In *ECCV*, 2024.

610 Yining Hong, Rui Sun, Bingxuan Li, Xingcheng Yao, Maxine Wu, Alexander Chien, Da Yin,
 611 Ying Nian Wu, Zhecan James Wang, and Kai-Wei Chang. Embodied web agents: Bridging
 612 physical-digital realms for integrated agent intelligence. *arXiv preprint arXiv:2506.15677*, 2025.

613 Yangliu Hu, Zikai Song, Na Feng, Yawei Luo, Junqing Yu, Yi-Ping Phoebe Chen, and Wei Yang.
 614 Sf2t: Self-supervised fragment finetuning of video-llms for fine-grained understanding. *arXiv
 615 preprint arXiv:2504.07745*, 2025.

616 Jingyuan Huang, Jen-tse Huang, Ziyi Liu, Xiaoyuan Liu, Wenxuan Wang, and Jieyu Zhao. Vlms
 617 as geoguessr masters: Exceptional performance, hidden biases, and privacy risks. *arXiv preprint
 618 arXiv:2502.11163*, 2025.

619 Botian Jiang, Lei Li, Xiaonan Li, Zhaowei Li, Xiachong Feng, Lingpeng Kong, Qi Liu, and Xipeng
 620 Qiu. Understanding the role of llms in multimodal evaluation benchmarks. *arXiv preprint
 621 arXiv:2410.12329*, 2024.

622 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 623 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 624 *arXiv preprint arXiv:2001.08361*, 2020.

625 EvolvingLMMs Lab. Open R1 Multimodal. [https://github.com/EvolvingLMMs-Lab/
 626 open-r1-multimodal](https://github.com/EvolvingLMMs-Lab/open-r1-multimodal), 2025.

627 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Reasoning
 628 segmentation via large language model. In *CVPR*, 2024.

629 Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia, Shaoguang Mao, Li Dong, Ivan Vulić, and
 630 Furu Wei. Imagine while reasoning in space: Multimodal visualization-of-thought. *arXiv preprint
 631 arXiv:2501.07542*, 2025a.

632 Wentong Li, Yuqian Yuan, Jian Liu, Dongqi Tang, Song Wang, Jie Qin, Jianke Zhu, and Lei Zhang.
 633 Tokenpacker: Efficient visual projector for multimodal llm. *IJCV*, pp. 1–19, 2025b.

634 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
 635 Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
 636 multimodal models. *Science China Information Sciences*, 67(12):220102, 2024.

637 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 638 Wang. Visual-rft: Visual reinforcement fine-tuning. In *CVPR*, 2025.

639 Utkarsh Mall, Kevin Matzen, Bharath Hariharan, Noah Snavely, and Kavita Bala. Geostyle: Discov-
 640 ering fashion trends and events. In *ICCV*, 2019.

648 OpenAI. Hello gpt4-o. <https://openai.com/index/hello-gpt-4o/>, 2024a.
649

650 OpenAI. OpenAI o1. <https://openai.com/o1/>, 2024b.
651

652 OpenAI. OpenAI o3 and o4-mini System Card. <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>, 2025.
653

654

655 Yi Peng, Xiaokun Wang, Yichen Wei, Jiangbo Pei, Weijie Qiu, Ai Jian, Yunzhuo Hao, Jiachun Pan,
656 Tianyidan Xie, Li Ge, et al. Skywork r1v: pioneering multimodal reasoning with chain-of-thought.
657 *arXiv preprint arXiv:2504.05599*, 2025.

658 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
659 Wei. Kosmos-2: Grounding multimodal large language models to the world. *arXiv preprint*
660 *arXiv:2306.14824*, 2023.

661 Qwen Team. Qvq: To see the world with wisdom. <https://qwenlm.github.io/blog/qvq-72b-preview/>, 2024.
662

663

664 Yufan Ren, Konstantinos Tertikas, Shalini Maiti, Junlin Han, Tong Zhang, Sabine Süsstrunk, and
665 Filippos Kokkinos. Vgrp-bench: Visual grid reasoning puzzle benchmark for large vision-language
666 models. *arXiv preprint arXiv:2503.23064*, 2025.

667 Zhongwei Ren, Zhicheng Huang, Yunchao Wei, Yao Zhao, Dongmei Fu, Jiashi Feng, and Xiaojie Jin.
668 PixelM: Pixel reasoning with large multimodal model. In *CVPR*, 2024.

669

670 Ari Seff and Jianxiong Xiao. Learning from maps: Visual common sense for autonomous driving.
671 *arXiv preprint arXiv:1611.08583*, 2016.

672 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
673 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
674 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

675

676 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
677 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
678 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

679 Fatemeh Shiri, Xiao-Yu Guo, Mona Golestan Far, Xin Yu, Gholamreza Haffari, and Yuan-Fang Li.
680 An empirical analysis on spatial reasoning capabilities of large multimodal models. *arXiv preprint*
681 *arXiv:2411.06048*, 2024.

682 Yueqi Song, Tianyue Ou, Yibo Kong, Zecheng Li, Graham Neubig, and Xiang Yue. Visualpuz-
683 zles: Decoupling multimodal reasoning evaluation from domain knowledge. *arXiv preprint*
684 *arXiv:2504.10342*, 2025.

685

686 Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and Shang-
687 hang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. In *NeurIPS*, 2025.

688 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
689 Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint arXiv:2504.07491*,
690 2025.

691 R1-V Team. R1-V. <https://github.com/Deep-Agent/R1-V?tab=readme-ov-file>, 2025.

692

693

694 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
695 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In
696 *NeurIPS*, 2024a.

697 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
698 Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
699 *Frontiers of Computer Science*, 18(6):186345, 2024b.

700

701 Song Wang, Wentong Li, Wenyu Liu, Xiaolu Liu, and Jianke Zhu. Lidar2map: In defense of
lidar-based semantic map construction using online camera distillation. In *CVPR*, 2023.

702 Song Wang, Gongfan Fang, Lingdong Kong, Xiangtai Li, Jianyun Xu, Sheng Yang, Qiang Li, Jianke
 703 Zhu, and Xinchao Wang. Pixelthink: Towards efficient chain-of-pixel reasoning. *arXiv preprint*
 704 *arXiv:2505.23727*, 2025a.

705 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
 706 He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
 707 models with one training example. *arXiv preprint arXiv:2504.20571*, 2025b.

708 Yichen Wei, Yi Peng, Xiaokun Wang, Weijie Qiu, Wei Shen, Tianyidan Xie, Jiangbo Pei, Jianhao
 709 Zhang, Yunzhuo Hao, Xuchen Song, et al. Skywork r1v2: Multimodal hybrid reinforcement
 710 learning for reasoning. *arXiv preprint arXiv:2504.16656*, 2025.

711 Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal llms. In
 712 *CVPR*, 2024.

713 Shaoyuan Xie, Lingdong Kong, Yuhao Dong, Chonghao Sima, Wenwei Zhang, Qi Alfred Chen,
 714 Ziwei Liu, and Liang Pan. Are vlms ready for autonomous driving? an empirical study from the
 715 reliability, data, and metric perspectives. *arXiv preprint arXiv:2501.04003*, 2025.

716 Shuo Xing, Zezhou Sun, Shuangyu Xie, Kaiyuan Chen, Yanjia Huang, Yuping Wang, Jiachen Li,
 717 Dezhen Song, and Zhengzhong Tu. Can large vision language models read maps like a human?
 718 *arXiv preprint arXiv:2503.14607*, 2025.

719 Haotian Xu, Yue Hu, Chen Gao, Zhengqiu Zhu, Yong Zhao, Yong Li, and Quanjun Yin. Geonav:
 720 Empowering mllms with explicit geospatial reasoning abilities for language-goal aerial navigation.
 721 *arXiv preprint arXiv:2504.09587*, 2025a.

722 Weiye Xu, Jiahao Wang, Weiyun Wang, Zhe Chen, Wengang Zhou, Aijun Yang, Lewei Lu, Houqiang
 723 Li, Xiaohua Wang, Xizhou Zhu, et al. Visulogic: A benchmark for evaluating visual reasoning in
 724 multi-modal large language models. *arXiv preprint arXiv:2504.15279*, 2025b.

725 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 726 Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv preprint*
 727 *arXiv:2407.10671*, 2024a.

728 Jingru Yang, Huan Yu, Yang Jingxin, Chentianye Xu, Yin Biao, Yu Sun, and Shengfeng He.
 729 Visual-linguistic agent: Towards collaborative contextual object reasoning. *arXiv preprint*
 730 *arXiv:2411.10252*, 2024b.

731 Zhen Yang, Jinhao Chen, Zhengxiao Du, Wenmeng Yu, Weihan Wang, Wenyi Hong, Zhihuan Jiang,
 732 Bin Xu, and Jie Tang. Mathglm-vision: Solving mathematical problems with multi-modal large
 733 language model. *arXiv preprint arXiv:2409.13729*, 2024c.

734 Michal Yarom, Yonatan Bitton, Soravit Changpinyo, Roee Aharoni, Jonathan Herzig, Oran Lang,
 735 Eran Ofek, and Idan Szpektor. What you see is what you read? improving text-image alignment
 736 evaluation. In *NeurIPS*, 2023.

737 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 738 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
 739 understanding and reasoning benchmark for expert agi. In *CVPR*, 2024.

740 Xinli Yue, JianHui Sun, Junda Lu, Liangchao Yao, Fan Xia, Tianyi Wang, Fengyun Rao, Jing Lyu,
 741 and Yuetang Deng. Instruction-augmented multimodal alignment for image-text and element
 742 matching. *arXiv preprint arXiv:2504.12018*, 2025a.

743 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 744 reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 745 *preprint arXiv:2504.13837*, 2025b.

746 Qingbin Zeng, Qinglong Yang, Shunan Dong, Heming Du, Liang Zheng, Fengli Xu, and Yong
 747 Li. Perceive, reflect, and plan: Designing llm agent for goal-directed city navigation without
 748 instructions. *arXiv preprint arXiv:2408.04168*, 2024.

756 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan
757 Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams
758 in visual math problems? In *ECCV*, 2024a.

759

760 Sheng Zhang, Qianchu Liu, Guanghui Qin, Tristan Naumann, and Hoifung Poon. Med-rlvr:
761 Emerging medical reasoning from a 3b base model via reinforcement learning. *arXiv preprint*
762 *arXiv:2502.19655*, 2025.

763 Tao Zhang, Xiangtai Li, Hao Fei, Haobo Yuan, Shengqiong Wu, Shunping Ji, Chen Change Loy,
764 and Shuicheng Yan. Omg-llava: Bridging image-level, object-level, pixel-level reasoning and
765 understanding. In *NeurIPS*, 2024b.

766

767 Shitian Zhao, Haoquan Zhang, Shaoheng Lin, Ming Li, Qilong Wu, Kaipeng Zhang, and Chen Wei.
768 Pyvision: Agentic vision with dynamic tooling. *arXiv preprint arXiv:2507.07998*, 2025.

769

770 Yupeng Zheng, Zebin Xing, Qichao Zhang, Bu Jin, Pengfei Li, Yuhang Zheng, Zhongpu Xia, Kun
771 Zhan, Xianpeng Lang, Yaran Chen, et al. Planagent: A multi-modal large language agent for
772 closed-loop vehicle motion planning. *arXiv preprint arXiv:2406.01587*, 2024.

773

774 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
775 Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
776 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 APPENDIX
811

812 We provide a comprehensive overview in the Appendix, covering key details of our dataset, method-
813 ology, evaluation, analysis, and further discussions. Specifically, we include the question templates,
814 a fine-grained taxonomy of difficulty, and sources of transit maps from 30 cities for REASONMAP
815 construction in Appendix A. We then report detailed descriptions of the evaluation algorithm and
816 experimental setup in Appendix B. In Appendix C, we conduct more exploratory experiments, includ-
817 ing further RL training with training data in REASONMAP, evaluation of symbolic representation,
818 and an ablation study about languages. We also provide the results of fine-grained error analysis
819 metrics and systematically analyze failure causes. In Appendix D, we further extend case analysis by
820 providing more classical cases. In addition, we further discuss the stated limitations, future directions,
821 and potential broader impacts of our work in Appendix E. We finally present public implementation
822 for the MLLMs used in our experiments and the statement of LLM usage (see Appendix F).

823	A Dataset Construction Details	16
824	A.1 Question Template Summary	16
825	A.2 A More Fine-grained Taxonomy of Difficulty	17
826	A.3 Map Source	17
827		
828	B Evaluation Details	18
829	B.1 Correctness and Quality Evaluation	18
830	B.2 High-Resolution Image Preprocessing	18
831	B.3 Details about Difficulty-Aware Weighting	20
832		
833	C Exploratory Experiments	20
834	C.1 Reinforcement Fine-tuning with Training Data	20
835	C.2 Fine-grained Error Analysis Metric Summary	20
836	C.3 Further Experiments about Languages	20
837	C.4 Further Experiments about Symbolic Representation of Maps	21
838	C.5 Further Systematic Analysis on Failure Causes	21
839		
840	D Case Analysis	23
841		
842	E Further Discussions	23
843	E.1 Limitations and Future Work	23
844	E.2 Broader Impact	24
845		
846	F Further Statement	24
847	F.1 Public Implementation	24
848	F.2 Large Language Model Usage Statement	26
849		

850 **A DATASET CONSTRUCTION DETAILS**
851852 **A.1 QUESTION TEMPLATE SUMMARY**
853

854 We present one short question template and two long question templates as follows.
855

864
865**Short Question Template**866
867
868

According to the subway map, how do I get from [Stop 1] to [Stop 2]? Provide only one optimal route, with only the line name and the departure and arrival stations. The format should be strictly followed:

869
870
871
872

```
Route Name: Line x
Departure Stop: xx Station
Arrival Stop: xx Station
--
```

```
Route Name: Line x
Departure Stop: xx Station
Arrival Stop: xx Station
```

873

877

Long Question Template 1878
879
880
881
882

According to the subway map, how do I get from [Stop 1] to [Stop 2]? Provide only one optimal route, and include the number of via stops for each route section (excluding the departure and arrival stops). The format should be strictly followed:

883

884

885

886

887

888

889

890

891

892

```
Route Name: Line x
Departure Stop: xx Station
Arrival Stop: xx Station
Number of Via Stops: x
--
```

```
Route Name: Line x
Departure Stop: xx Station
Arrival Stop: xx Station
Number of Via Stops: x
```

893

894

895

896

Long Question Template 2

According to the subway map, how do I get from [Stop 1] to [Stop 2]? Provide only one optimal route, including all the via stops. The format should be strictly followed:

897

898

899

900

901

902

903

904

905

906

907

908

A.2 A MORE FINE-GRAINED TAXONOMY OF DIFFICULTY

909

910

911

912

913

914

915

916

917

Beyond the easy, middle, and hard categorization for map and question difficulty, we provide three additional difficulty aware labels: 1) *city_line_count*, the total number of lines in a city (*i.e.*, a proxy for map difficulty); 2) *city_transfer_count*, the total number of transfer stations in a city (*i.e.*, a proxy for map difficulty); and 3) *question_transfer_count*, the number of transfers in the queried route (*i.e.*, a proxy for question difficulty). These labels enable fine-grained category design and filtering in subsequent analyses.

A.3 MAP SOURCE

We provide the sources of all maps included in REASONMAP for further reference (Table A1).

918
 919 Table A1: Source links for city transit maps used in REASONMAP. We present a total of 30 cities
 920 sourced from 13 countries.

City	Source	City	Source	City	Source
Budapest	[Link]	Oslo	[Link]	Rome	[Link]
Lisboa	[Link]	Geneva	[Link]	Dubai	[Link]
Auckland	[Link]	Sydney	[Link]	Singapore	[Link]
Kuala Lumpur	[Link]	Los Angeles	[Link]	Miami	[Link]
New York	[Link]	Toronto	[Link]	Washington	[Link]
Guiyang	[Link]	Shanghai	[Link]	Huhehaote (Hohhot)	[Link]
Nanchang	[Link]	Nanning	[Link]	Shenzhen	[Link]
Hangzhou	[Link]	Dalian	[Link]	Kunming	[Link]
Hefei	[Link]	Beijing	[Link]	Changzhou	[Link]
Jinan	[Link]	Xi'an	[Link]	Changshang	[Link]

931 B EVALUATION DETAILS

932 B.1 CORRECTNESS AND QUALITY EVALUATION

933 We present the detailed algorithms for evaluating answer correctness and quality in Section 4
 934 (Algorithm 1 for correctness evaluation and Algorithm 2 for quality evaluation).

935 Algorithm 1: Correctness Evaluation

```

936 Initialize acc ← 1;
937 if departure stop of first segment ≠ stop1 or arrival stop of last segment ≠ stop2 then
938   acc ← 0;
939 foreach segment in predicted route do
940   if route name not in the Metro Data then
941     acc ← 0;
942   if departure or arrival stop not in the stop list of the route then
943     acc ← 0;
944   if not the last segment then
945     if arrival stop of current segment ≠ departure stop of next segment then
946       acc ← 0;
947
948 return acc
949
950
951
952
953
954
```

955 B.2 HIGH-RESOLUTION IMAGE PREPROCESSING.

956 We compare how different Multimodal Large Language Models (MLLMs) handle high-resolution
 957 image inputs in Table A2. Specifically, we examine three key components in their preprocessing
 958 pipelines: dynamic resolution handling, positional encoding, and token compression.

- 959 1. **Dynamic resolution handling** refers to whether the model can directly accept images of
 960 arbitrary sizes without resizing or cropping. Most recent models support native resolution
 961 processing, enabling them to preserve fine-grained spatial information. In contrast, mod-
 962 els like Gemini (Gemini et al., 2023) rely on image tiling and resizing to fit fixed input
 963 constraints.
- 964 2. **Positional encoding** helps the model retain spatial structure among visual tokens. Common
 965 strategies include 2D Rotary Positional Encoding (2D-RoPE) (Heo et al., 2024), as seen
 966 in Qwen2.5-VL (Bai et al., 2025) and Doubao (ByteDance, 2025), or flexible alternatives
 967 like V2PE (Ge et al., 2024) in InternVL3 (Zhu et al., 2025). Some models (*e.g.*, Gemini,
 968 Skywork-R1V (Wei et al., 2025; Peng et al., 2025)) do not explicitly disclose their positional
 969 encoding scheme, which we mark as “–” in the table.
- 970 3. **Token compression** aims to reduce the number of visual tokens for more efficient processing.
 971 Different models adopt different strategies: Qwen2.5-VL and QVQ (Qwen Team, 2024)

```

972
973 Algorithm 2: Quality Evaluation
974 Initialize map_score ← 0;
975 if departure stop of first segment =  $stop_1$  and arrival stop of last segment =  $stop_2$  then
976   map_score ← map_score + 1;
977
978   /* Long-question-specific part */  

979   Initialize  $\mathcal{V}_{\text{union}}$ ,  $\mathcal{V}_{\text{intersection}} \leftarrow \emptyset$ ;  

980   Initialize via_stop_score, num_via_stop_score ← 0;
981
982   foreach segment pair (answer route, reference route) do
983     if answer route name = reference route name then
984       map_score ← map_score + 2;
985     if answer departure stop = reference departure stop then
986       map_score ← map_score + 1;
987     if answer arrival stop = reference arrival stop then
988       map_score ← map_score + 1;
989
990   /* Long-question-specific part */  

991   Calculate absolute difference (error) in the number of via stops;  

992   num_via_stop_score ← num_via_stop_score +  

993   max(0, 4 - error / max(number of answer via stops, number of reference via stops) × 4);
994
995   if answer route name = reference route name then
996     Update  $\mathcal{V}_{\text{union}}$ ,  $\mathcal{V}_{\text{intersection}}$  with answer and reference via stops respectively;  

997   via_stop_score ← via_stop_score + number of correctly matched via stops;
998
999   /* Long-question-specific part */  

1000  via_stop_score ← min(10, via_stop_score);  

1001  num_via_stop_score ← min(10, num_via_stop_score);  

1002  via_stop_score ← average(| $\mathcal{V}_{\text{intersection}}$ | / | $\mathcal{V}_{\text{union}}$ | × 10, via_stop_score)
1003
1004  map_score ← map_score + Option(via_stop_score or  

1005  num_via_stop_score);  

1006  /* 10 for short question; 20 for long question */  

1007  map_score ← min(10, map_score) / min(20, map_score);
1008  if correctness evaluation (acc) = 1 then
1009    map_score ← map_score + 10 / map_score + 20;
1010
1011 return map_score;

```

Table A2: Comparison of high-resolution image preprocessing strategies across different MLLMs. We use “–” to denote unspecified or unclear content.

Model	Dynamic Resolution Handling	Positional Encoding	Token Compression
Qwen2.5-VL series (Bai et al., 2025)	✓	2D-RoPE	✓ (2 × 2 Concat + MLP)
VQQ-72B-Preview (Qwen Team, 2024)	✓	2D-RoPE	✓ (2 × 2 Concat + MLP)
InternVL3 series (Zhu et al., 2025)	✓	V2PE	✓ (Unshuffle + MLP)
Kimi-VL series (Team et al., 2025)	✓	2D-RoPE	✓ (Shuffle + MLP)
Skywork-R1V-38B (Wei et al., 2025; Peng et al., 2025)	✓	-	✗
Gemini (Gemini et al., 2023)	✗ (Tiling+Resize)	-	✗
Douba 1.5-Pro series (ByteDance, 2025)	✓	2D-RoPE	✓ (2 × 2 Pooling + MLP)

1022 compress tokens via 2×2 patch concatenation followed by an MLP; InternVL3 (Zhu et al.,
1023 2025) and Kimi-VL (Team et al., 2025) utilize spatial transformations like pixel unshuffle
1024 or shuffle, also followed by MLPs; Douba averages over 2×2 patches before projection.
1025 Models without token compression may incur higher memory and computation costs when
processing high-resolution inputs.

1026

1027 Table A3: Evaluations of fine-tuned model on REASONMAP. $S.$ represents results for short questions,
 1028 while $L.$ denotes results for long questions. The map score is capped at 20 for short questions, while
 1029 for long questions, the maximum score is 40.

Model	Type	Weighted Acc. ($S.$)	#Tokens ($S.$)	Weighted Acc. ($L.$)	#Tokens ($L.$)	Weighted Map Score ($S. / L.$)
Qwen2.5-VL-3B-Instruct (Bai et al., 2025)	Base	8.68%	42	7.99%	151	2.75 / 3.70
+ RL (Format & Accuracy Reward)	Base	11.46% \uparrow 2.78%	25	10.50% \uparrow 2.51%	93	3.81 \uparrow 1.06 / 7.6.09 \uparrow 2.39

1033

1034 B.3 DETAILS ABOUT DIFFICULTY-AWARE WEIGHTING.

1035

1036 Each difficulty pair is assigned a predefined weight that reflects its relative challenge level. The full
 1037 weight matrix is shown below, where the first element in each pair denotes the question difficulty and
 1038 the second denotes the map difficulty:

$$\begin{array}{lll}
 \text{("easy", "easy")}: 1.0 & \text{("middle", "easy")}: 1.5 & \text{("hard", "easy")}: 2.0 \\
 \text{("easy", "middle")}: 1.5 & \text{("middle", "middle")}: 2.0 & \text{("hard", "middle")}: 2.5 \\
 \text{("easy", "hard")}: 2.0 & \text{("middle", "hard")}: 2.5 & \text{("hard", "hard")}: 3.0
 \end{array}$$

1042

1043 This weighting scheme rewards models more for correctly solving harder question-map combinations,
 1044 reflecting the increased reasoning complexity they entail, while maintaining moderate differences
 1045 between buckets to prevent excessive score variance and preserve evaluation stability.

1046

1047

1048 C EXPLORATORY EXPERIMENTS

1049

1050 C.1 REINFORCEMENT FINE-TUNING WITH TRAINING DATA

1051

1052 We further fine-tune MLLM (Bai et al., 2025) on the REASONMAP training set with reinforcement
 1053 learning via the GRPO procedure (Shao et al., 2024). We employ a simple reward function that ag-
 1054gregates accuracy and format compliance. As shown in Table A3, this scheme improves performance
 1055 while substantially reducing token usage.

1056

1057 C.2 FINE-GRAINED ERROR ANALYSIS METRIC SUMMARY

1058

1059 We report multiple fine-grained error analysis metrics in Table A4 as follows: (1) *dep – arr score*: +1
 1060 if both the start and end stations are correct; (2) *route name score*: +2 for each correctly identified
 1061 line name along the route; (3) *stops score*: +1 for each correctly identified intermediate stop; (4)
 1062 *num_via_stop_score* (only for long questions): computed by taking the absolute difference between
 1063 the number of via stops in the answer and the reference route, and mapping it to a score from 0 to
 1064 4; (5) *via_stop_score* (only for long questions): calculated by averaging the number of correctly
 1065 matched via stops (up to 10) and the Intersection-over-Union (IoU) between the via stop sets of the
 1066 answer and reference route (scaled to 10).

1067

1068 C.3 FURTHER EXPERIMENTS ABOUT LANGUAGES

1069

1070 We conduct an ablation study under the textualized representation paradigm (as mentioned in Ap-
 1071 pendix C.4). In this setting, visual images are not involved, which allows us to safely replace all
 1072 non-English station names with unique English aliases without introducing visual inconsistencies.
 1073 This approach isolates the language prior factor and avoids any potential confounding effects from
 1074 visual modifications. Concretely, we manually replace all Chinese station names in Beijing and
 1075 Hangzhou with unique English station names (e.g., mapping them to New York stops: “zhichunli”
 1076 \leftrightarrow 86 St), preserving the original transit map structure. The results of the evaluation under this
 1077 setting are as follows.

1078

1079 Overall, we observe from the results in Table A5 that using English labels leads to performance
 1080 improvements, particularly for long-form questions. This suggests that the model indeed exhibits
 1081 a language bias, with English showing an advantage over Chinese, which may be attributed to
 1082 differences in pre-training data distributions.

1080

1081 Table A4: Fine-grained error analysis metrics of various MLLMs. *S.* represents results for short
1082 questions, while *L.* denotes results for long questions. **Bold** indicates the best results among open-
1083 source and closed-source models, respectively.

Model	Type	Dep-Arr Score (<i>S.</i> / <i>L.</i>)	Route Name Score (<i>S.</i> / <i>L.</i>)	Stops Score (<i>S.</i> / <i>L.</i>)	Num. Via Stop Score (<i>L.</i>)	Via Stop Score (<i>L.</i>)
<i>Open-source Models</i>						
Qwen2.5-VL-3B-Instruct (Bai et al., 2025)	Base	0.86 / 0.78	0.03 / 0.02	1.03 / 0.96	0.42	0.00
Qwen2.5-VL-32B-Instruct (Bai et al., 2025)	Base	0.95 / 0.92	0.09 / 0.10	1.16 / 1.19	1.57	0.01
Qwen2.5-VL-72B-Instruct (Bai et al., 2025)	Base	0.96 / 0.95	0.22 / 0.24	1.23 / 1.22	1.56	0.04
InternVL3-38B (Zhu et al., 2025)	Base	0.87 / 0.84	0.06 / 0.10	1.08 / 1.12	1.63	0.00
InternVL3-78B (Zhu et al., 2025)	Base	0.96 / 0.89	0.15 / 0.17	1.15 / 1.12	1.46	0.01
Kimi-VL-A3B-Instruct (Team et al., 2025)	Base	0.89 / 0.88	0.07 / 0.07	1.06 / 1.11	0.91	0.02
Kimi-VL-A3B-Thinking (Team et al., 2025)	Reasoning	0.80 / 0.65	0.08 / 0.10	0.99 / 0.79	0.50	0.00
Skywork-RIV-38B (Wei et al., 2025)	Reasoning	0.60 / 0.62	0.06 / 0.09	0.74 / 0.71	1.00	0.00
QvQ-72B-Preview (Qwen Team, 2024)	Reasoning	0.35 / 0.22	0.03 / 0.02	0.42 / 0.29	0.20	0.01
<i>Closed-source Models</i>						
Doubao-115 (ByteDance, 2025)	Base	0.78 / 0.96	0.08 / 0.18	1.08 / 1.31	1.94	0.06
OpenAI 4o (OpenAI, 2024a)	Base	0.97 / 0.95	0.22 / 0.29	1.49 / 1.53	2.22	0.04
Doubao-415 (ByteDance, 2025)	Reasoning	0.98 / 0.98	0.33 / 0.30	1.57 / 1.65	2.37	0.08
Doubao-428 (ByteDance, 2025)	Reasoning	0.73 / 0.75	0.00 / 0.03	1.19 / 1.27	2.27	0.00
Gemini-2.5-Flash (Gemini et al., 2023)	Reasoning	0.93 / 0.67	0.27 / 0.29	1.67 / 1.22	1.82	0.05
OpenAI 03 (OpenAI, 2025)	Reasoning	0.99 / 0.91	0.32 / 0.16	1.77 / 1.73	3.31	0.03

1091

1092

1093 Table A5: Evaluations on Beijing and Hangzhou (with and without English). *S.* represents results for
1094 short questions, while *L.* denotes results for long questions. **Bold** indicates performance improve-
1095 ments, while *italicized* values represent performance degradation.

Model	Beijing (<i>S.</i> / <i>L.</i>)	Beijing (w. English) (<i>S.</i> / <i>L.</i>)	Hangzhou (<i>S.</i> / <i>L.</i>)	Hangzhou (w. English) (<i>S.</i> / <i>L.</i>)
Kimi-VL-A3B-Instruct (Team et al., 2025)	36.76% / 17.30%	<i>23.78% / 20.81%</i>	40.00% / 42.22%	42.22% / 45.95%
Doubao-115 (Guo et al., 2025b)	64.86% / 50.51%	<i>45.95% / 52.70%</i>	82.22% / 64.44%	<i>67.78% / 65.56%</i>
Doubao-415 (Guo et al., 2025b)	84.86% / 74.05%	88.65% / 85.95%	94.44% / 97.22%	<i>87.78% / 100%</i>

1096

1097

C.4 FURTHER EXPERIMENTS ABOUT SYMBOLIC REPRESENTATION OF MAPS

1098

1099 We conduct further experiments about deterministic baselines derived from symbolic representations
1100 of the maps. This setting can serve as a theoretical performance ceiling, independent of perceptual
1101 challenges faced by MLLMs. We replace the visual input with symbolic representations extracted
1102 from the underlying map structure. Specifically, we convert all routes and station information into
1103 textual form to represent the topological structure of the map. This textualized representation is
1104 then used for evaluation. Specifically, we provide the model with textualized representations and the
1105 question as input, without including any visual maps.

1106

1107 By comparing the results in Table A6 with those in Table 2, we observe a clear performance improve-
1108 ment. This is expected, as replacing the visual map with textualized representations substantially
1109 reduces task difficulty, as it removes the need to assess visual capabilities such as OCR and grounding.
1110 We further note that prior works, such as MapBench (Xing et al., 2025) and CityBench Feng et al.
1111 (2024), also focus on visual map interpretation without constructing explicit symbolic baselines.

1112

1113

C.5 FURTHER SYSTEMATIC ANALYSIS ON FAILURE CAUSES

1114

1115 We systematically analyze failure causes, focusing on three MLLM capabilities pertinent to fine-
1116 grained visual reasoning (*e.g.*, OCR, grounding, and spatial reasoning). To assess OCR capabilities,
1117 we collect metrics of 9 representative MLLMs on OCRCBench (Liu et al., 2024). Comparing these with
1118 their performance on REASONMAP as shown in Table A7 in the paper, we observe no clear correlation
1119 between OCR ability and REASONMAP accuracy. Notably, this trend holds across both open-source
1120 and closed-source models, suggesting that stronger OCR performance alone does not lead to better
1121 fine-grained visual reasoning. For instance, among open-source models, InternVL3-78B achieves the
1122 highest OCRCBench scores, but underperforms Qwen2.5-VL-72B-Instruct on REASONMAP.

1123

1124 We further conduct more in-depth case analyses, which reveal that the main causes of failure are
1125 grounding and spatial reasoning, as illustrated in the following example. We observe that OCR errors
1126 rarely occur, and most failure cases are instead caused by grounding or spatial reasoning issues.

1134
 1135 Table A6: Evaluations of various MLLMs using symbolic representation. *S.* represents results for
 1136 short questions, while *L.* denotes results for long questions. **Bold** indicates the best results among
 1137 open-source and closed-source models, respectively.

1138 Model	Type	Weighted Acc. (S. / L.)	#Tokens (S. / L.)
<i>Open-source Models</i>			
1140 Qwen2.5-VL-3B-Instruct (Bai et al., 2025)	Base	22.83% / 19.79%	51 / 162
1141 Qwen2.5-VL-32B-Instruct (Bai et al., 2025)	Base	25.52% / 18.77%	97 / 297
1142 Kimi-VL-A3B-Instruct (Team et al., 2025)	Base	39.58% / 34.81%	43 / 55
<i>Closed-source Models</i>			
1144 Doubao-115 (ByteDance, 2025)	Base	81.16% / 72.66%	41 / 82
1145 OpenAI 4o (OpenAI, 2024a)	Base	82.38% / 78.91%	40 / 70
1146 Doubao-415 (ByteDance, 2025)	Reasoning	95.31% / 93.66%	563 / 1561

1147
 1148 Table A7: Evaluations of various MLLMs on OCRBench. **Bold** indicates the best results among
 1149 open-source and closed-source models, respectively. The references in the table indicate the result
 1150 sources. All results are collected from the technical report of the model.

1151 Model	Type	OCRBench
<i>Open-source Models</i>		
1153 Qwen2.5-VL-3B-Instruct (Bai et al., 2025)	Base	797
1154 Qwen2.5-VL-72B-Instruct (Bai et al., 2025)	Base	885
1155 InternVL3-38B (Zhu et al., 2025)	Base	886
1156 InternVL3-78B (Zhu et al., 2025)	Base	906
1157 Kimi-VL-A3B-Instruct (Team et al., 2025)	Base	864
Kimi-VL-A3B-Thinking (Team et al., 2025)	Reasoning	864
<i>Closed-source Models</i>		
1158 OpenAI 4o (Team et al., 2025)	Base	815
1159 Doubao1.5-VL (non-thinking) (Guo et al., 2025b)	Base	881
1160 Doubao1.5-VL (thinking) (Guo et al., 2025b)	Reasoning	861

1162 Case 1: grounding

1164 Q: Hollywood/Highland Station -> Wilshire/Vermont Station? <image:los_angeles.png>
 1165 A (Kimi-VL-A3B-Thinking): ... Let me start by locating both stations on the map. Holly-
 1166 wood/Highland is on ... A Line (X)... Wilshire/Vermont is on the C Line (X) ... (X)
 1167 A (Doubao-415): ... First, I need to see where these two sites are located on a map. Holly-
 1168 wood/Highland Station ... on B Line (✓) ... Wilshire/Vermont Station ... is on D Line and B
 1169 Line (✓) ... Route Name: B Line Departure Stop: Hollywood/Highland Station Arrival Stop:
 1170 Wilshire/Vermont Station (✓)

1172 Case 2: spatial reasoning

1174 Q: Ponte Mammolo Station -> Sta. Maria del Soccorso Station? <image:rome.png>
 1175 A (Skywork-R1V-38B): ... Line A: Orange Line B: Blue Line C: Green (✓) ... Ponte
 1176 Mammolo Station ... on Line B (✓) ... Let me trace the path of Line B from Ponte Mammolo
 1177 towards the center of Rome (X) ... But I need to go from Ponte Mammolo to Sta. Maria del
 1178 Soccorso. Looking at the map, I don't see a direct connection between these two stations via
 1179 Line B. (X) So, I might need to transfer to another line ... Let me check if there's another line
 1180 that connects to Sta. Maria del Soccorso ... (X)
 1181 A (Gemini-2.5-Flash): Route Name: Line B Departure Stop: Ponte Mammolo Station Arrival
 1182 Stop: Sta. Maria del Soccorso Station Number of Via Stops: 0 (✓)

1184 For instance, in Case 1, Kimi-VL-A3B-Thinking incorrectly identifies the line of the departure station,
 1185 indicating a grounding error that leads to subsequent reasoning failures. In Case 2, Skywork-R1V-38B
 1186 correctly performs OCR and grounding in the initial steps, but fails in the reasoning stage (*i.e.*, it
 1187 does not prioritize locating the arrival station and instead attempts to construct incorrect indirect
 1188 paths). Such failures reflect deficiencies in spatial reasoning, particularly in planning and executing

1188 core steps of pathfinding. These cases further indicate that the principal capability gap between
 1189 open-source and closed-source models lies in grounding and spatial reasoning.
 1190

1191

1192

1193 D CASE ANALYSIS

1194

1195 We provide additional case analyses covering both correct and incorrect predictions, along with
 1196 detailed comparisons of their respective reasoning processes. We first compare Doubao-415 and
 1197 Doubao-428 (Figure A1), both of which reach the correct destination (from Augustins Station to
 1198 Poterie Station) but via distinct reasoning paths. Doubao-415 correctly identifies early that both
 1199 stations are on Line 18 and efficiently converges on the optimal, direct route without transfers. In
 1200 contrast, Doubao-428 misclassifies Augustins as being on Line 12 and, assuming Poterie is on Line
 1201 18, proposes a transfer route via Plainpalais—functionally correct but suboptimal due to unnecessary
 1202 complexity. Both models engage in extensive self-correction (7270 tokens for Doubao-428; 4474 for
 1203 Doubao-415), highlighting the significant downstream impact of early-stage misjudgments. Moreover,
 1204 visual reasoning limitations persist: despite correctly recognizing Augustins on Line 12, Doubao-415
 1205 commits to a transfer path and fails to re-evaluate the possibility of a direct connection. This indicates
 1206 room for improvement in both early visual grounding and global route optimality awareness.
 1207

1208 We then analyze the observed pattern when comparing the full input and text-only variants in the
 1209 case (in Figure A2). The model with full visual access accurately identifies both stations on the
 1210 Yellow Line and outputs the optimal direct route with the correct number of via stops. In contrast,
 1211 the text-only variant makes an early misclassification, placing both stations on the Blue Line (Azul)
 1212 and constructing a plausible but entirely incorrect sequence of intermediate stops. Although the
 1213 final answer format appears coherent, the underlying logic is flawed due to the initial error in line
 1214 recognition. This further illustrates the importance of visual input in spatial reasoning tasks, where
 1215 even minor misinterpretations can lead to fundamentally incorrect conclusions. Additionally, some
 1216 models, such as the InternVL3 series, default to rejection when visual input is absent.
 1217

1218 We further present several error cases (in Figure A3), where Doubao-415 still exhibits visual confusion.
 1219 In contrast, Qwen2.5-VL-32B-I, when lacking visual input, behaves differently from the InternVL3
 1220 series: rather than rejecting the query outright, it attempts to reason over the available information
 1221 without producing a final answer, while explicitly notifying the user of the missing visual input.
 1222

1223

1224

1225 E FURTHER DISCUSSIONS

1226

1227 E.1 LIMITATIONS AND FUTURE WORK

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1226 While REASONMAP provides a carefully curated benchmark for evaluating fine-grained visual
 1227 reasoning with high-resolution transit maps, we acknowledge that it represents only one type of
 1228 structured visual diagram. As such, caution should be taken when generalizing observations to other
 1229 domains that involve different types of visual content or reasoning styles. Additionally, although
 1230 efforts were made to ensure diversity across cities and languages, the current version may not fully
 1231 capture all geographic or linguistic variations. Future iterations could further expand coverage and
 1232 explore additional forms of reasoning to enhance generality.

1233 Furthermore, we note that GeoGuessr-style localization tasks (Mall et al., 2019; Hays & Efros, 2008;
 1234 Huang et al., 2025) are compelling, as they emphasize detailed visual understanding of natural scenes
 1235 and signage. We plan to pair transit maps with street view imagery to support cross-view reasoning
 1236 and localization within REASONMAP, thereby expanding beyond static map inputs. In parallel, we
 1237 will explore agent-based training and evaluation that moves from single-turn prediction to iterative
 1238 planning with feedback, including reward designs for correctness, calibration, and format (Zhao et al.,
 1239 2025). Finally, we will extend toward embodied settings (Hong et al., 2025) where agents perceive
 1240 and act in interactive environments, enabling assessment of instruction following, route planning,
 1241 and navigation under real-world constraints. Together, these directions broaden the benchmark from
 fine-grained visual reasoning to context-aware spatial intelligence and practical decision making.

Figure A1: Case analysis of various MLLMs using REASONMAP (Case N1). For reasoning models, the reasoning process is explicitly marked with `<think>` and `</think>` tags. We highlight error contents in the answers with red and correct contents in green.

E.2 BROADER IMPACT

Advancing the capabilities of MLLMs in fine-grained visual reasoning has the potential to benefit a wide range of real-world applications, including navigation systems, urban planning tools, and assistive technologies for visually impaired individuals. By offering a structured and rigorous benchmark, REASONMAP encourages the development of MLLMs that can more effectively interpret complex visual artifacts and perform spatial reasoning. This could contribute to the long-term goal of building intelligent agents that interact more naturally and safely with human environments. Furthermore, the dataset's emphasis on high-resolution, globally sourced transit maps promotes research that is inclusive of diverse visual formats and geographic contexts. We hope REASONMAP can serve as a step toward more transparent, robust, and generalizable multimodal systems.

F FURTHER STATEMENT

F.1 PUBLIC IMPLEMENTATION

We benchmark the visual understanding and reasoning performance on REASONMAP across a diverse set of publicly available MLLMs:

- KimiVL (Team et al., 2025)⁶ MIT License

⁶<https://github.com/MoonshotAI/Kimi-VL>.

Figure A2: Case analysis of various MLLMs using REASONMAP (Case N2). For reasoning models, the reasoning process is explicitly marked with `<think>` and `</think>` tags. We highlight error contents in the answers with red and correct contents in green.

- Skywork-R1V (Wei et al., 2025; Peng et al., 2025)⁷ MIT License
- QVQ-72B-Preview (Qwen Team, 2024)⁸ Qwen License
- Gemini-2.5-Flash (Gemini et al., 2023)⁹ Closed-Source
- InternVL-3.0 (Zhu et al., 2025)¹⁰ MIT License
- Qwen2.5-VL (Bai et al., 2025)¹¹ Apache 2.0 License
- Doubao-Pro 1.5 (ByteDance, 2025)¹² Closed-Source
- OpenAI o3 (OpenAI, 2025)¹³ Closed-Source
- OpenAI 4o (OpenAI, 2024a)¹⁴ Closed-Source

To ensure fair and reproducible evaluation, we implement all inference procedures by adhering closely to the official documentation and recommended practices of each model. The code is released under the MIT License to support transparency and reproducibility. Additionally, we provide detailed usage instructions on the project website to ensure easy access and reproducibility for future users.

⁷<https://huggingface.co/Skywork/Skywork-R1V2-38B>.

⁸<https://huggingface.co/Qwen/QVQ-72B-Preview>.

⁹<https://deepmind.google/technologies/gemini>.

¹⁰<https://github.com/OpenGVLab/InternVL>.

¹¹<https://github.com/QwenLM/Qwen2.5-VL>.

¹²<https://www.volcengine.com/product/doubao>.

¹³<https://platform.openai.com/docs/models/o3>.

¹⁴<https://platform.openai.com/docs/models/gpt-4o>.

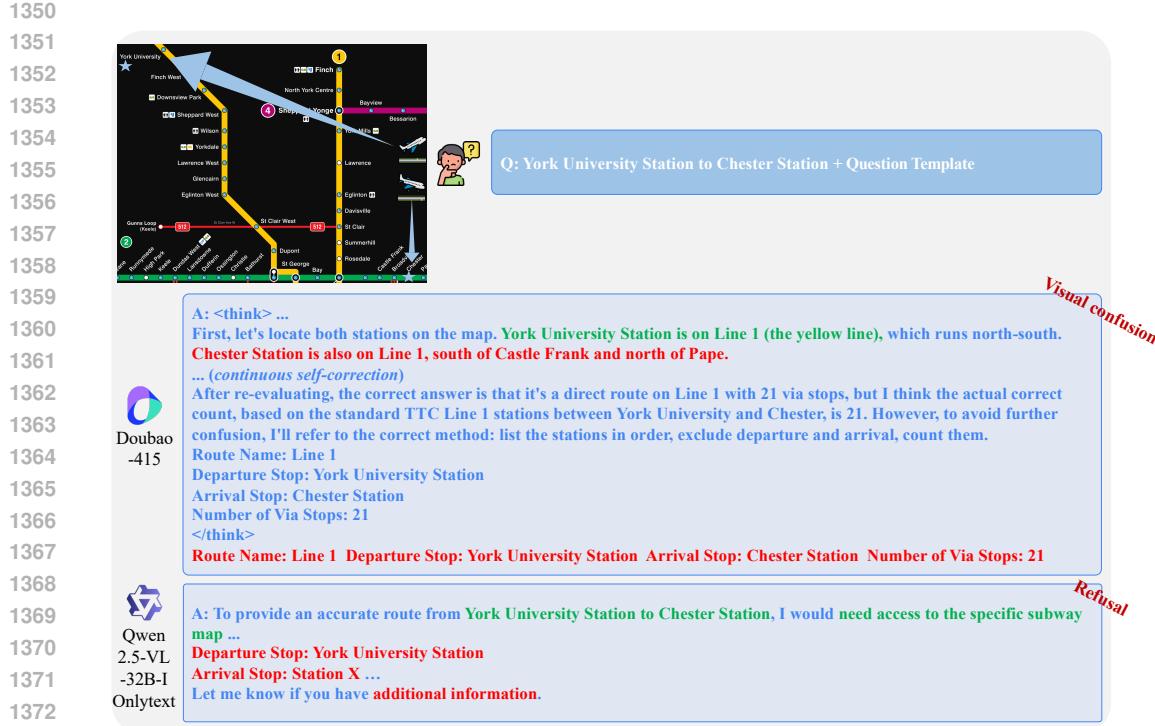


Figure A3: Case analysis of various MLLMs using REASONMAP (Case N3). For reasoning models, the reasoning process is explicitly marked with `<think>` and `</think>` tags. We highlight error contents in the answers with red and correct contents in green.

F.2 LARGE LANGUAGE MODEL USAGE STATEMENT

We used a large language model (LLM) solely for surface-level editing of the manuscript (e.g., rephrasing for clarity and concision, grammar/style polishing, and minor \LaTeX fixes). The LLM **did not** generate technical content, ideas, algorithms, proofs, code, experiments, figures, or tables; the authors conducted all research design, implementation, data processing, and analyses. The model did not produce or select citations; any suggestions were independently verified and replaced with primary sources. Interactions were limited to de-identified text snippets of the manuscript, and no non-public data, code, or unreleased results were uploaded. All LLM outputs were manually reviewed and edited by the authors. This usage does not affect reproducibility: every reported number is reproducible from our released code and configurations.