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ABSTRACT

Multimodal large language models (MLLMs) have recently achieved significant
progress in visual tasks, including semantic scene understanding and text-image
alignment, with reasoning variants enhancing performance on complex tasks in-
volving mathematics and logic. However, their capacity for reasoning tasks in-
volving fine-grained visual understanding remains insufficiently evaluated. To
address this gap, we introduce REASONMAP, a benchmark designed to assess
the fine-grained visual understanding and spatial reasoning abilities of MLLM:s.
REASONMAP encompasses high-resolution transit maps from 30 cities across 13
countries and includes 1,008 question-answer pairs spanning two question types
and three templates. Furthermore, we design a two-level evaluation pipeline that
properly assesses answer correctness and quality. Comprehensive evaluations of 15
popular MLLMs, including both base and reasoning variants, reveal a counterintu-
itive pattern: among open-source models, base models outperform reasoning ones,
while the opposite trend is observed in closed-source models. Additionally, per-
formance generally degrades when visual inputs are masked, indicating that while
MLLMs can leverage prior knowledge to answer some questions, fine-grained vi-
sual reasoning tasks still require genuine visual perception for strong performance.
Our benchmark study offers new insights into visual reasoning and contributes to
investigating the gap between open-source and closed-source models.

1 INTRODUCTION

Multimodal large language models (MLLMs) (Achiam et al., 2023; Bai et al., 2025; Zhu et al., 2025;
Hu et al., 2025; Li et al., 2025b) have recently achieved notable advancements across a range of
vision-language tasks, including visual grounding (Peng et al., 2023; Yang et al., 2024b), reasoning
segmentation (Chen et al., 2024; Zhang et al., 2024b; Ren et al., 2024; Lai et al., 2024; Wang et al.,
2025a), and text-image alignment (Yue et al., 2025a; Yarom et al., 2023). Building upon these
developments, reasoning MLLMs (OpenAl, 2024b; Guo et al., 2025a; Team et al., 2025; Wei et al.,
2025; Peng et al., 2025; ByteDance, 2025; Qwen Team, 2024) have further improved performance
on complex visual reasoning tasks such as visual math problems (Yang et al., 2024¢; Wang et al.,
2024a), visual question answering (VQA) (Shiri et al., 2024; Yue et al., 2024; Wang et al., 2024a),
and spatial reasoning (Shiri et al., 2024; Li et al., 2025a; Dihan et al., 2024). These capabilities are
critical for a wide range of real-world applications, including embodied Al, autonomous agents, and
decision-making systems such as autonomous driving (Duan et al., 2022; Wang et al., 2024b; Cui
et al., 2024). As multimodal tasks grow in complexity and practical relevance, the need for rigorous
benchmarks to assess fine-grained visual reasoning becomes increasingly essential.

To address the growing demand for robust evaluation of multimodal reasoning, several benchmarks
have been proposed. Datasets such as MathVQA (Wang et al., 2024a) and MMMU (Yue et al.,
2024) incorporate multimodal questions but often permit models to succeed via shallow heuristics,
without requiring genuine visual grounding. MathVerse (Zhang et al., 2024a) mitigates this limitation
by introducing diverse problem variants that encourage reliance on visual input. VisuLogic (Xu
et al., 2025b) further enforces visual reasoning by explicitly eliminating language-only shortcuts.
Other efforts, such as VisualPuzzles (Song et al., 2025), VGRP-Bench (Ren et al., 2025), and R-
Bench (Guo et al., 2025¢), target logical and structural reasoning, while CityBench (Feng et al.,
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Figure 1: Overview of REASONMAP. We introduce a benchmark dataset designed to evaluate fine-
grained visual reasoning abilities of MLLMs, encompassing 1,008 question-answer pairs constructed
over high-resolution transit maps from 30 cities, spanning two question types and three templates.

2024) and DriveBench (Xie et al., 2025) focus on domain-specific applications like urban tasks
and autonomous driving. V*Bench (Wu & Xie, 2024) emphasizes detailed visual understanding.
MapBench (Xing et al., 2025) addresses spatial reasoning by introducing structured scene graphs
for map navigation. Despite these advances, systematic evaluation of fine-grained visual reasoning
remains limited, especially for structured and information-rich diagrams like high-resolution transit
maps, leaving a critical gap in existing benchmarks.

In this paper, we introduce REASONMAP (Figure 1), a benchmark designed to evaluate the fine-
grained visual understanding and spatial reasoning capabilities of MLLMs using high-resolution
transit maps. As structured and information-dense visual artifacts, maps inherently require precise
spatial interpretation, making them well-suited for assessing detailed visual reasoning. REASONMAP
comprises 1,008 human-verified question-answer pairs spanning 30 cities across 13 countries. Each
instance includes a map, two stops, two questions (short and long), multiple reference routes, and two
difficulty labels (map and question difficulty). The questions cover two types and three prompting
templates capturing both coarse and fine-grained spatial reasoning. To ensure data quality, we
perform manual route verification, promote question diversity, and balance difficulty distribution. For
evaluation, we propose a two-level framework that independently measures answer correctness (via
accuracy) and quality (via a proposed map score), reflecting both feasibility and efficiency.

We conduct comprehensive experiments on 15 widely-used MLLMs, encompassing base and reason-
ing models. Our results reveal a counterintuitive finding: Among open-source models, base variants
outperform their reasoning counterparts, whereas the opposite holds for closed-source models. More-
over, when only textual inputs are provided, models can still answer some questions based on inner
knowledge, but in most cases, their performance noticeably drops. This highlights a critical limitation
in the current model behavior. While some models can leverage prior knowledge and textual cues
to solve certain tasks, the tasks (e.g., fine-grained visual reasoning tasks) requiring genuine visual
understanding still necessitate effective integration of multimodal information for robust reasoning.

Our main contributions are summarized as follows: (1) We develop an extensible, semi-automated
pipeline for dataset construction, facilitating scalable expansion to additional maps and cities. Using
this pipeline, REASONMAP is constructed to evaluate fine-grained visual reasoning capabilities in
MLLMs; (2) We propose a structured two-level evaluation framework that separately quantifies
answer correctness and quality using accuracy and the proposed map score, respectively, enabling
fine-grained answer assessment; and (3) A comprehensive benchmarking study is conducted across
15 MLLMs, providing insights into model performance, robustness, and the interplay between visual
and textual cues, thereby informing future research on multimodal reasoning.
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Table 1: Comparison between REASONMAP and existing multimodal reasoning datasets. For entries
in the dataset size column with notation like (xn), each base problem has multiple versions to enforce
visual grounding. Specifically, VGRP-Bench is constructed by sampling over 20 core puzzles.

Name Year Dataset Size Avg. Resolution Training Set Step Evaluation Multilingual (Count)
MMMU (Yue et al., 2024) 2024 11.5k 684 x 246 X X v (2)
MathVerse (Zhang et al., 2024a) 2024 2,612 (x6) 577 x 487 X X X
VisuLogic (Xu et al., 2025b) 2025 1,003 601 x 331 v X X
VisualPuzzles (Song et al., 2025) 2025 1,168 767 x 464 X X X
VGRP-Bench (Ren et al., 2025) 2025 20 (x5) 790 x 790 X v X
R-Bench (Guo et al., 2025¢) 2025 665 629 x 348 X X v (2)
V*Bench (Wu & Xie, 2024) 2023 191 2,246 x 1,582 X X X
REASONMAP 2025 1,008 (x2) 5,839 x 5,449 v v v (4)

2 RELATED WORK

Reasoning in LLMs & MLLMs. Recent advances in large language models (LLMs) have
demonstrated significant improvements in reasoning capabilities through reinforcement fine-tuning
paradigms (OpenAl, 2024b; Guo et al., 2025a; Feng et al., 2025; Hendrycks et al., 2021), which
leverage GRPO (Shao et al., 2024) to unlock the reasoning potential of LLMs. This paradigm has
also been extended to the multimodal domain, with increasing interest in applying reinforcement
learning (RL) to visual reasoning (Team, 2025; Lab, 2025; Liu et al., 2025; Tan et al., 2025; Shen
et al., 2025). Both open-source and closed-source communities have introduced advanced reasoning
MLLMs built upon earlier systems (Zhu et al., 2025; Bai et al., 2025; Yang et al., 2024a; OpenAl,
2025). Notable open-source models include Kimi-VL (Team et al., 2025), Skywork-R1V (Wei et al.,
2025; Peng et al., 2025), and Qwen-QvQ (Qwen Team, 2024), whereas Doubao-1.5-Pro (ByteDance,
2025), Seed1.5-VL (Guo et al., 2025b), OpenAl 03 (OpenAl, 2025), OpenAl 40 (OpenAl, 2024a),
and Gemini (Gemini et al., 2023) represent leading closed-source efforts. Despite recent progress,
systematic evaluation of fine-grained visual reasoning in MLLMs still remains limited, as existing
benchmarks primarily target coarse-grained tasks and fail to capture model performance on complex
real-world visual content.

Multimodal Reasoning Datasets. As multimodal reasoning has rapidly progressed, various bench-
marks have emerged to evaluate MLLMs across different reasoning dimensions (see summary in
Table 1). Datasets such as V*Bench (Wu & Xie, 2024), VisualPuzzles (Song et al., 2025), Visu-
Logic (Xu et al., 2025b), and VGRP-Bench (Ren et al., 2025) primarily examine abstract visual
reasoning through synthetic tasks involving logic, structure, and pattern recognition. In parallel,
CityBench (Feng et al., 2024) and DriveBench (Xie et al., 2025) shift focus to real-world spatial
reasoning, assessing model performance on complex urban or autonomous driving scenarios. For
mathematical reasoning, benchmarks like MathVQA (Wang et al., 2024a), MMMU (Yue et al., 2024),
and MathVerse (Zhang et al., 2024a) integrate multimodal inputs, with MathVerse notably introducing
varied problem formats to strengthen visual dependence. Additionally, MapBench (Xing et al., 2025)
employs structured scene graphs combined with CoT prompting to support navigation tasks based on
manually curated and verified questions. Its image resolution, while relatively low, reflects a common
characteristic shared by current datasets. Unlike these works, we first introduce a benchmark for
evaluating fine-grained visual reasoning capacities with high-resolution transit maps.

Map-based Spatial Reasoning. Among the many directions of multimodal reasoning, map-based
spatial reasoning has emerged as a crucial area, with broad applications in navigation, urban planning,
and autonomous systems (Bao et al., 2023; Seff & Xiao, 2016; Xu et al., 2025a; Wang et al., 2023).
Recent efforts have focused on enabling models to interpret and reason over various types of map
data. CityBench (Feng et al., 2024) provides a dataset for evaluating urban scene understanding,
while MapLM (Cao et al., 2024) introduces a benchmark for map and traffic scene understanding.
PlanAgent (Zheng et al., 2024) and PReP (Zeng et al., 2024) explore embodied planning in environ-
ments that require interpreting map information. MapEval (Dihan et al., 2024) proposes a structured
evaluation suite for map reasoning, and GeoNav (Xu et al., 20252) investigates geospatial navigation
using LLMs. Most existing methods (Dihan et al., 2024; Feng et al., 2024; Zheng et al., 2024) depend
on external tools (e.g., map services or APIs) to complete spatial tasks, which often bypasses the
need for genuine visual reasoning. However, spatial reasoning based on visual understanding remains
essential. Our work aims to fill this gap by evaluating such capabilities without tool assistance.



Under review as a conference paper at ICLR 2026

1. Data Collect & Preprocess 2. Question-Answer Generation 4. Annotation 5. Quadlity Control
Transit Map Collection =
@ 5B B B 4 & & « @@

Stop1 St Short Long1 Lon
L kL) N - 9 Gaode Google

e T “ “7 X i . Element i Question Template ; Map Map Dif:‘ilglflfy g:::::ﬁ; Manual Check
W Map Service
T According to the subway map, how £ " N ™ \ ; /‘
do | get from Stop 1to ? o Correct Divers Difficulty
ey

0%0% -ness -ity  Balance
Key Questions 909 URL Google __ @ \ J {

== / Request Map
O ‘ . API Request i Manual Transfer

MLLM / Route Name: xx.x » Via Stops: XX v Arnotate ounk —_——
Departure Stop: xx Station  geation, ) SN S
Annotate Arrival Stop: xx Station o ° @@
North East i + Long 1 @ \ — ==
Line . * Route 7
Route Name: xxx NUTlaaEr & .
Extract of Line-Stop Departure Stop:xx Station (175" ° Departure Stop
¥ Arrival Stop: xx Station () Sy o ° Af"""“' Stop HARD %'@
= North East Line: [Stop ne1, ..] Short e ‘r::..umsoi: l:lsiu Stops x TP j
c "“"“:' Gircle Line: [Stop 1, -] |1 P *‘ Fix m"“’iusf
orrection = i ti
Metro Data Format Template Route Info Section |57 D‘:"(;p u;:ﬁl:n

Figure 2: The building pipeline of REASONMAP consists of three main stages: (1) data collection
and preprocessing, (2) question—answer pair construction, and (3) quality control. Steps (2-4) in the
figure correspond to the question—answer pair construction stage. Zoomed-in for more details.

3 REASONMAP CONSTRUCTION

In this section, we first present the complete dataset building pipeline as shown in Figure 2, which
consists of three main stages: (1) data collection and preprocessing, (2) question—answer pair
construction, and (3) quality control. We then report comprehensive statistics of the dataset.

3.1 REASONMAP BUILDING PIPELINE
3.1.1 DATA COLLECTION AND PREPROCESSING

We collect and manually select 30 high-resolution transit maps covering 30 cities across 13 countries
from publicly available online sources, in compliance with relevant licenses and regulations, ensuring
diversity and a balanced range of map difficulty. We then leveraged MLLMs to extract the names
of transit lines and their corresponding stops, followed by manual correction to ensure correctness.
Special cases such as transfer stops and branch-starting stops were annotated in a standardized format
appended to the respective stop entries. Finally, for subsequent usage, all route and stop information
was saved in a unified JSON format, referred to as the Metro Data.

3.1.2 QUESTION-ANSWER PAIR CONSTRUCTION

The construction of question—answer pairs involves three key steps: (1) Question Generation, where
we formulate questions based on predefined templates; (2) Reference Route Collection, where we
obtain corresponding reference routes using Gaode Map' and Google Map’; and (3) Label Annotation,
where we assign difficulty levels for both the maps and the questions.

Question Generation. We randomly select two stops (refer to stop; and stops) from the current high-
resolution transit map. We then generate one short question and one long question based on predefined
question templates and two stops (Figure 2). The short question has only one fixed template, while the
long question is randomly assigned one of two available templates during generation. Additionally,
the two long question templates differ in focus: one asks for the number of via stops, while the other
requires identifying each via stop (see detailed templates in Appendix A.1).

Reference Route Collection. For each question, we query all valid transit routes between stop; and
stops using APIs from map services (e.g., Gaode Map for Chinese cities and Google Map for other
cities). The retrieved routes are stored in a unified format containing relevant metadata (e.g., route
name, departure stop, arrival stop, via stops, and number of via stops). We discard routes that cannot
be visually traced on the map, ensuring consistency with the visual content.

'"https://console.amap.com/dev/index
zhttps ://developers.google.com/maps/apis-by-platform
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Label Annotation. Two levels of difficulty labeling are included in this stage. For map difficulty, we
manually assign each map to one of three difficulty levels (easy, medium, hard), ensuring a balanced
split across 30 maps, with 10 maps per level. For question difficulty, we assign difficulty based on the
number of transfers in the reference route: routes with no transfers are labeled as easy, those with one
transfer as medium, and all others as hard. To ensure balance, we set a fixed difficulty distribution
threshold of 20 : 15 : 5 (easy:medium:hard) for each map, generating 40 questions. Once the quota
for a difficulty level is reached on a given map, no additional questions of that level are retained.
Additionally, we provide a more fine-grained taxonomy of questions as a reference in Appendix A.2.

3.1.3 QUALITY CONTROL

To ensure the reliability and balance of the dataset, we perform quality control from three perspectives:
correctness, diversity, and difficulty balance. Incorrect question—answer pairs are either manually
corrected or discarded. We then involve both automatic checks and manual adjustments to ensure
consistency and coverage across all difficulty levels. One reserved example is shown in Figure 1.

3.2 DATASET STATISTICS

The REASONMAP consists of 30 high-resolution transit map images (see map sources in Ap-
pendix A.3) with an average resolution of 5,839 x 5,449 pixels. In total, it contains 1, 008 ques-
tion—answer pairs, including stop names in four languages (e.g., English, Hungarian, Chinese, and
Ttalian). The distribution of question difficulty is as follows: 57.7% are labeled as easy, 34.4% as
medium, and 7.8% as hard. Additionally, a subset of 312 samples is manually selected as the test
set for the benchmark experiments described in Section 5, while the remaining samples serve as a
training set for future use. To ensure diversity and difficulty balance, the test set includes 11 cities
with a4 : 3 : 4 map difficulty ratio and a question difficulty distribution (181 easy, 108 medium, 23
hard) that maintains consistency with the full dataset. Moreover, REASONMAP includes inter-modal
transfers in cities like Sydney, where subways, light rail, and airport lines converge.

4 EVALUATION FRAMEWORK

This section systematically introduces a two-level evaluation framework for assessing model per-
formance on the REASONMAP. This framework separately evaluates the correctness and quality
of answers produced by models. Specifically, we quantify correctness using accuracy and design
map score to measure the quality of answers, considering multiple factors (e.g., route efficiency and
alignment with the reference routes from map services).

Preparation for Evaluation. We first parse the model-generated answers according to the required
format. Answers that do not comply with the specified format or cannot be parsed due to model
hallucination (Bai et al., 2024) are marked as invalid. Invalid responses are excluded from subsequent
evaluations, with accuracy and map score set to zero. For the correctness evaluation, we utilize the
Metro Data mentioned in Section 3.1.1 as ground truth. For the quality evaluation, we adopt the
collected reference routes as presented in Section 3.1.2 as the ground truth.

4.1 CORRECTNESS EVALUATION

We evaluate the correctness of the answer using Algorithm | in Appendix B. Specifically, the
evaluation checks the correctness of the overall departure and arrival stops (stop; and stops), verifies
if the route name of each segment exists in the Metro Data, ensures the departure and arrival stops are
valid for each segment, and confirms that transfer stops between consecutive segments are consistent.
An answer is considered correct only if all the above checks are satisfied. Additionally, we apply the
same correctness evaluation algorithm to the answers of short and long questions.

4.2 QUALITY EVALUATION

To evaluate the quality of the answers, we introduce a unified scoring metric, referred to as the
map score, which is applied to both short and long questions using the evaluation procedure (see
Algorithm 2 in Appendix B). The overall evaluation framework for route quality follows a structure
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Table 2: Evaluations of various MLLMs on REASONMAP. S. represents results for short questions,
while L. denotes results for long questions. The map score is capped at 20 for short questions, while
for long questions, the maximum score is 40. Bold indicates the best results among open-source
and closed-source models, respectively, while underline represents the second best. We report more
fine-grained error analysis metrics in Table A4.

Model Type Weighted Acc. (S.) #Tokens (S.) Weighted Acc. (L.) #Tokens (L.) Weighted Map Score (S./ L.)
Open-source Models
Qwen?2.5-VL-3B-Instruct (Bai et al., 2025) Base 8.68% 42 7.99% 151 2.75/3.70
Qwen2.5-VL-32B-Instruct (Bai et al., 2025) Base 16.49% 36 15.71% 112 3.88/6.84
Qwen2.5-VL-72B-Instruct (Bai et al., 2025) Base 26.65% 33 24.22% 104 5.09/8.80
InternVL3-38B (Zhu et al., 2025) Base 14.84% 43 13.45% 68 3.48/6.31
InternVL3-78B (Zhu et al., 2025) Base 25.35% 33 19.62% 62 4.80/17.50
Kimi-VL-A3B-Instruct (Team et al., 2025 Base 12.76% 41 12.33% 41 3.30/5.37
Kimi-VL-A3B-Thinking (Team et : )25) Reasoning 5.47% 754 5.47% 1,287 2441317
Skywork-R1V-38B (Wei et al., 2025; Peng et al., 2025) Reasoning 6.86% 645 3.21% 842 2.11/3.11
QvQ-72B-Preview (Qwen Team, 2024) Reasoning 9.03% 1,279 4.25% 1,619 1.59/1.55
Closed-source Models
Doubao-115 (ByteDance, 2025) Base 34.20% 32 38.02% 118 5.25/11.96
OpenAl 40 (OpenAl, 20242) Base 41.15% 34 42.80% 58 6.84/13.57
Doubao-415 (ByteDance, 2025) Reasoning 43.14% 536 46.09% 1,796 7.33/14.67
Doubao-428 (ByteDance, 2025) Reasoning 37.15% 532 37.85% 2,167 5.52/11.73
Gemini-2.5-Flash (Gemini et al., 2023) Reasoning 46.09% 806 29.86% 1,419 7.64/9.98
OpenAl 03 (OpenAl, 2025) Reasoning 63.02% 1,236 59.11% 2,372 9.53/17.96

similar to that used in Section 4.1. The following evaluation procedure assumes a single reference
route for simplicity. In practice, if multiple reference routes are available, the answer is evaluated
against each of them, and the highest score is taken as the final map score.

For short questions, the map score solely focuses on route-level and endpoint consistency, excluding
all long-question-specific parts. We compute the score by comparing segment pairs in the answer and
reference route. Specifically, correctly matching stop; and stops contributes one point, matching the
route name adds two points, and matching the departure and arrival stops within each route segment
provides one point each. The final score is capped at 10, and an additional bonus is awarded if the
answer is judged correct based on the correctness evaluation procedure described in Section 4.1. This
design ensures that a correct answer always receives a higher score than any incorrect one.

For long questions, the evaluation incorporates additional scoring components tailored to the two
question templates introduced in Section 3.1.2. These components are designed to capture the
increased reasoning depth required in long-form responses. As with short questions, a bonus score is
also added for correct answers. The two additional scoring components are detailed below.

Via Stop Count Evaluation. For long questions that require models to predict the number of via
stops for each segment, we introduce the num_via_stop_score. This score compares the via stop
count of the answer and reference route by computing the absolute error and mapping it to a fixed
score (4). A perfect match yields full points, while larger discrepancies receive proportionally lower
scores. The score is then capped at 10 for the full route.

Specific Via Stop Evaluation. For long questions that require explicit enumeration of intermediate
stops, we compute via_stop_score using a combination of two factors: the number of correctly
matched via stops, and the intersection-over-union (IoU) between via stop sets of the answer and
reference route. The final score for this component is obtained by averaging the IoU score (scaled to
10) and the exact match count (capped at 10), and then clipped to a maximum of 10.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

We conduct extensive benchmark experiments on REASONMAP using 15 popular MLLMs under
different inference settings, analyzing their performance and comparing results. Several interesting
insights emerge from this comparison. The detailed experimental settings are described below.

Evaluated Models. We evaluate a diverse set of MLLMs categorized into two groups based on
whether they are reasoning-oriented models with a long-thinking process. Reasoning models include:
Skywork-R1V-38B (Wei et al., 2025; Peng et al., 2025), QvQ-72B-Preview (Qwen Team, 2024),
Kimi-VL-A3B-Thinking/Instruct (Team et al., 2025), OpenAl 03 (OpenAl, 2025), Gemini-2.5-
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Figure 3: Accuracy across difficulty combinations for four representative MLLM:s (

,and ). Each difficulty combination is denoted by a
pair (e g., easy-hard), where the first term indicates question difficulty and the second term represents
map difficulty. The pair (hard-middle) contains only one sample, leading to an accuracy of 100%.

Flash (Gemini et al., 2023), Doubao- 1-5-thinking-vision-pro-250428 (Doubao-428), and Doubao-
1.5-Thinking-Pro-M-250415 (Doubao-415) (ByteDance, 2025). Base models include: Qwen2.5-VL
series (3B, 32B, 72B) (Bai et al., 2025), InternVL3 series (38B, 78B) (Zhu et al., 2025), OpenAl
40 (OpenAl, 2024a), and Doubao-1.5-Vision-Pro-32k-250115 (Doubao-115) (ByteDance, 2025).
Additionally, the Doubao 1.5 Pro series has an activated parameter size of 20B.

Inference Settings. For open-source models, we set the max output token limit to 2,048, while
keeping other parameters consistent with the official HuggingFace configurations. All open-source
models are deployed using PyTorch and the HuggingFace Transformers library on 8 NVIDIA A100
GPUs. For closed-source models, we access their official APIs for evaluation and follow the default
settings provided by each model’s official documentation. We further discuss the diverse image
processing strategies when handling high-resolution visual inputs in Appendix B.2.

Difficulty-Aware Weighting. To better reflect the varying complexity of different samples, we
adopt a difficulty-aware weighting strategy based on the combination of question difficulty and map
difficulty. Specifically, each difficulty pair is assigned a predefined weight, with harder combinations
receiving higher values. The complete weight matrix is provided in Appendix B.3. Both accuracy
and map score are evaluated using this weighting scheme, ensuring that models are more strongly
rewarded for correctly solving more challenging examples.

5.2 EXPERIMENTAL RESULTS
5.2.1 PERFORMANCE OF MLLMS WITH FULL INPUT

The principal results are summarized in Table 2. Notably, we observe a counterintuitive phenomenon:
among open-source models, reasoning models consistently underperform their base counterparts,
whereas the opposite holds in the closed-source setting’. Prior work suggests that RL may improve
sample efficiency without introducing fundamentally new reasoning abilities (Yue et al., 2025b; Wang
et al.,, 2025b; Zhang et al., 2025), while RL-trained models tend to bias their output distributions
toward high-reward trajectories, which helps produce more correct responses but may simultaneously
constrain the model’s exploration capacity and reduce its ability to leverage broader foundational
knowledge. In addition, recent studies indicate that multimodal models may sometimes rely on inner
knowledge priors instead of truly attending to visual inputs (Jiang et al., 2024; Hao et al., 2025;
Ghatkesar et al., 2025; Zhang et al., 2024a). This tendency is further supported by the results in
Section 5.2.2, where open-source models still maintain part of their performance even without visual
input, indicating limited visual grounding. In contrast, closed-source reasoning models outperform
their base variants. One possible explanation lies in the broader knowledge coverage and better visual
integration observed in these models (ByteDance, 2025; OpenAl, 2025; Gemini et al., 2023).

We further analyze the effect of model size by examining performance within the same architecture
series. Qwen2.5-VL and InternVL series show a consistent trend: larger models achieve better
accuracy with fewer tokens, suggesting that the scaling law (Kaplan et al., 2020) continues to hold
even in fine-grained visual reasoning tasks. Figure 3 presents accuracy distributions across different

3 Although the comparison across closed-source models may not be fair due to lack of transparency in details,
the reasoning variants exhibit stronger performance in this category.
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Table 3: Evaluations of MLLMs on REASONMAP w/o visual inputs. S. denotes results for short
questions and L. denotes results for long questions. The map score is capped at 20 for short questions,
while for long questions, the maximum score is 40. Bold indicates the best results among open-source
and closed-source models, respectively, while underline represents the second best. Green highlights
improved results compared to the full input setting (Table 2), while red indicates performance drops.

Model Type Weighted Acc. (S.) #Tokens (S.) Weighted Acc. (L.) #Tokens (L.) Weighted Map Score (S./ L.)
Open-source Models

Qwen?2.5-VL-3B-Instruct (Bai et al., 2025) Base 9.38% 0.7 47 9.72%11.73 147 2.9310.18/4.51 108

Qwen2.5-VL-72B-Instruct (Bai et al., 2025)  Base 16.41% 110.24% 28 15.71%18.51% 108 4.0311.06/6.49 231

Kimi-VL-A3B-Instruct (Team et al., 2025) Base 11.81% 10.95% 41 9.81% |2.52 49 3.3710.07/5.320.05

Kimi-VL-A3B-Thinking (Team et al., 2025) Reasoning ~ 4.17% 11.30% 1,039 2.08% 13.39% 1,755 2.0610.38/1.6411.53
Closed-source Models

Doubao-115 (ByteDance, 2025) Base 13.72% 120.48% 34 13.98% 1 24.04% 99 3.5011.75/6.48 | 5.48

Doubao-415 (ByteDance, 2025) Reasoning  21.53% 121.61% 352 17.19% 1 28.90% 1,047 4.85 248/ 7.68 16.99

combinations of question and map difficulty. As expected, performance degrades as task complexity
increases. Additionally, Figure 4 illustrates accuracy variation across cities. We observe a negative
correlation between map difficulty and accuracy. Moreover, model performance varies notably even
among cities with comparable map difficulty levels. This disparity can be partially attributed to
factors such as city prominence and the language used for stop names (see the ablation study results
on language in Appendix C.3), both of which are closely tied to the model’s pretrained knowledge.
For instance, OpenAl 03 performs significantly better on complex cities like Singapore compared to
Hangzhou, likely due to Singapore’s higher international visibility and the use of English stop names,
whereas Hangzhou is less prominent and its stop names are Chinese.

Sin I I i I I
apore Singapore
g aronto * g aronto b

(a) Accuracy for short questions (b) Accuracy for long questions
Figure 4: Accuracy across different cities for four representative MLLMs ( ,
,and ). Each city is marked with the corresponding map

difficulty and the country flag.

5.2.2 PERFORMANCE OF MLLMS WITHOUT VISUAL INPUT

To further investigate the reliance of MLLMs on visual input, we selected representative open-source
and closed-source models for additional experiments, where the visual input was masked. The results
are reported in Table 3. We observe that while most models can leverage prior knowledge to answer
questions, their performance generally declines to varying degrees when visual input is removed, with
the decline being more pronounced among closed-source models. Model performance is positively
correlated with the performance drop after masking visual inputs, indicating effective use of visual
information. In contrast, models like Qwen2.5-VL-3B-I show minimal or even improved performance,
suggesting a reliance on prior knowledge rather than real visual reasoning. We further conduct non-
vision experiments by replacing maps with their symbolic representations in Appendix C.4.

5.3 ERROR ANALYSIS

Figure 5 presents representative failure cases from REASONMAP, revealing several recurring error
types. A common issue is visual confusion, where the model misidentifies the transit line due to
similar colors or adjacent layouts, for instance, mistaking Line 9 for Line 16 (OpenAl 03, left column;
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Figure 5: Error case analyses of various MLLMs using REASONMAP. For reasoning models, the
reasoning process is explicitly marked with <think> and </think> tags. We highlight error
contents in the answers with red and categorize them accordingly.

Doubao-428, right column). Another frequent problem is format errors, where responses deviate
from the required structure, making them unprocessable despite containing correct route information
(Doubao-115 and QvQ-72B-Preview, left column). We also observe instances of hallucination (Bai
et al., 2024), where the model repeats the correct answer (Kimi-VL-A3B-Thinking, middle column)
or generates information that is not present in the input, such as mentioning image generation, as seen
in Skywork-R1V-38B (right column). Refusal cases are also present, where models explicitly decline
to answer (Skywork-R1V-38B, middle and right column). Notably, these errors may occasionally
co-occur within a single response (Skywork-R1V-38B, right column). Furthermore, we conduct
a systematic analysis of failure causes from a model capability perspective (e.g., optical character
recognition (OCR), visual grounding, and spatial reasoning) in Appendix C.5. The above error types
highlight the limitations in visual grounding and response robustness, especially when handling
fine-grained visual details (see more case analyses in Appendix D).

6 CONLUSION

In this work, we introduce REASONMAP, a benchmark designed to evaluate the fine-grained visual
understanding and spatial reasoning capabilities of MLLMs using high-resolution transit maps.
Through a semi-automated and scalable data building pipeline, we curate a diverse set of human-
verified question-answer pairs across 30 cities from 13 countries. Our two-level evaluation framework
enables a nuanced assessment of both correctness and quality. Experimental results on 15 popular
MLLMs reveal key insights into model behavior, highlighting performance gaps between base
and reasoning models, as well as the crucial role of visual input. Error analyses further reveal
recurring failure patterns (e.g., visual confusion), highlighting weaknesses of current MLLMs in
visual understanding and spatial reasoning. These findings underscore the need for more rigorous
evaluation and training approaches to advance visual reasoning in multimodal systems.
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ETHICS STATEMENT

All experiments are conducted on REASONMAP, which is built using publicly available transit maps
collected in compliance with relevant licenses and usage terms. The maps are selected to ensure
geographic diversity and legal validity. Upon code release, we provide the source of each map for
further reference. REASONMAP is intended solely for academic research on fine-grained visual
understanding and spatial reasoning in MLLMs. It does not redistribute any copyrighted map images.
All annotations are based on public information, contain no personal data, and are created under
academic oversight. The benchmark is not intended for safety-critical use. We take care to ensure
fairness, legal compliance, and responsible data handling. Additionally, we use the MIT License for
code release on GitHub and the Apache License 2.0 for REASONMAP release on HuggingFace.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we present evaluation setup details (e.g., hardware and implementation) in
Section 5.1 and Appendix B.3, and provide public implementation links in Appendix F.1 to facilitate
rapid replication. We additionally release standardized splits and end-to-end instructions to reproduce
all reported results (both code” and dataset’). During the review process, all links are anonymized
and provided as supplements; upon acceptance, they will be replaced with permanent public links.
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APPENDIX

We provide a comprehensive overview in the Appendix, covering key details of our dataset, method-
ology, evaluation, analysis, and further discussions. Specifically, we include the question templates,
a fine-grained taxonomy of difficulty, and sources of transit maps from 30 cities for REASONMAP
construction in Appendix A. We then report detailed descriptions of the evaluation algorithm and
experimental setup in Appendix B. In Appendix C, we conduct more exploratory experiments, includ-
ing further RL training with training data in REASONMAP, evaluation of symbolic representation,
and an ablation study about languages. We also provide the results of fine-grained error analysis
metrics and systematically analyze failure causes. In Appendix D, we further extend case analysis by
providing more classical cases. In addition, we further discuss the stated limitations, future directions,
and potential broader impacts of our work in Appendix E. We finally present public implementation
for the MLLMs used in our experiments and the statement of LLM usage (see Appendix F).
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A DATASET CONSTRUCTION DETAILS

A.1 QUESTION TEMPLATE SUMMARY

We present one short question template and two long question templates as follows.
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Short Question Template

According to the subway map, how do I get from [Stop 1] to [Stop 2]? Provide only
one optimal route, with only the line name and the departure and arrival stations. The format
should be strictly followed:

Route Name: Line x
Departure Stop: xx Station
Arrival Stop: xx Station
Route Name: Line x
Departure Stop: xx Station
Arrival Stop: xx Station

Long Question Template 1

r
\.

According to the subway map, how do I get from [Stop 1] to [Stop 2]? Provide only
one optimal route, and include the number of via stops for each route section (excluding the
departure and arrival stops). The format should be strictly followed:

Route Name: Line x
Departure Stop: xx Station
Arrival Stop: xx Station
Number of Via Stops: x

Route Name: Line x
Departure Stop: xx Station
Arrival Stop: xx Station
Number of Via Stops: x

Long Question Template 2

According to the subway map, how do I get from [Stop 1] to [Stop 2]? Provide only
one optimal route, including all the via stops. The format should be strictly followed:

Route Name: Line x

Departure Stop: xx Station

Arrival Stop: xx Station

Via Stops: xx Station, xx Station, xx Station
Route Name: Line x

Departure Stop: xx Station

Arrival Stop: xx Station

Via Stops: xx Station

A.2 A MORE FINE-GRAINED TAXONOMY OF DIFFICULTY

Beyond the easy, middle, and hard categorization for map and question difficulty, we provide three
additional difficulty aware labels: 1) city_line_count, the total number of lines in a city (i.e., a proxy
for map difficulty); 2) city_transfer_count, the total number of transfer stations in a city (i.e., a
proxy for map difficulty); and 3) question_trans fer_count, the number of transfers in the queried
route (i.e., a proxy for question difficulty). These labels enable fine-grained category design and
filtering in subsequent analyses.

A.3 MAP SOURCE

We provide the sources of all maps included in REASONMAP for further reference (Table Al).
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Table Al: Source links for city transit maps used in REASONMAP. We present a total of 30 cities
sourced from 13 countries.

City Source City Source City Source
Budapest [Link] Oslo [Link] Rome [Link]
Lisboa [Link] Geneva [Link] Dubai [Link]
Auckland [Link] Sydney [Link] Singapore [Link]
Kuala Lumpur [Link] Los Angeles [Link] Miami [Link]
New York [Link] Toronto [Link] Washington [Link]
Guiyang [Link] Shanghai [Link] Huhehaote (Hohhot) [Link]
Nanchang [Link] Nanning [Link] Shenzhen [Link]
Hangzhou [Link] Dalian [Link] Kunming [Link]
Hefei [Link] Beijing [Link] Changzhou [Link]
Jinan [Link] Xi’an [Link] Changshang [Link]

B EVALUATION DETAILS

B.1 CORRECTNESS AND QUALITY EVALUATION

We present the detailed algorithms for evaluating answer correctness and quality in Section 4
(Algorithm 1 for correctness evaluation and Algorithm 2 for quality evaluation).

Algorithm 1: Correctness Evaluation

Initialize acc + 1;
if departure stop of first segment = stopy or arrival stop of last segment # stops then
L acc « 0;

foreach segment in predicted route do
if route name not in the Metro Data then
L acc + 0;

if departure or arrival stop not in the stop list of the route then
L acc <+ 0;

if not the last segment then
L if arrival stop of current segment # departure stop of next segment then
L acc + 0;

return acc

B.2 HIGH-RESOLUTION IMAGE PREPROCESSING.

We compare how different Multimodal Large Language Models (MLLMs) handle high-resolution
image inputs in Table A2. Specifically, we examine three key components in their preprocessing
pipelines: dynamic resolution handling, positional encoding, and token compression.

1. Dynamic resolution handling refers to whether the model can directly accept images of
arbitrary sizes without resizing or cropping. Most recent models support native resolution
processing, enabling them to preserve fine-grained spatial information. In contrast, mod-
els like Gemini (Gemini et al., 2023) rely on image tiling and resizing to fit fixed input
constraints.

2. Positional encoding helps the model retain spatial structure among visual tokens. Common
strategies include 2D Rotary Positional Encoding (2D-RoPE) (Heo et al., 2024), as seen
in Qwen2.5-VL (Bai et al., 2025) and Doubao (ByteDance, 2025), or flexible alternatives
like V2PE (Ge et al., 2024) in InternVL3 (Zhu et al., 2025). Some models (e.g., Gemini,
Skywork-R1V (Wei et al., 2025; Peng et al., 2025)) do not explicitly disclose their positional
encoding scheme, which we mark as “-~” in the table.

3. Token compression aims to reduce the number of visual tokens for more efficient processing.
Different models adopt different strategies: Qwen2.5-VL and QVQ (Qwen Team, 2024)
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Algorithm 2: Quality Evaluation

Initialize map_score « 0;
if departure stop of first segment = stop, and arrival stop of last segment = stop, then
map_score ¢ map_score + 1;

/* Long—-question—-specific part %/
Initialize Vuniona Vintersection <~ V);
Initialize via_stop_score, num_via_stop_score « 0;

foreach segment pair (answer route, reference route) do
if answer route name = reference route name then
| map_score < map_score + 2;

if answer departure stop = reference departure stop then
| map_score < map_score + 1;

if answer arrival stop = reference arrival stop then
| map_score < map_score + 1;

/+ Long-question-specific part %/
Calculate absolute difference (error) in the number of via stops;
num_via_stop_score ¢ num_via_stop_score +

max(0, 4 — error/ max(number of answer via stops, number of reference via stops) X 4);

if answer route name = reference route name then
L Update Vinion, Vintersection With answer and reference via stops respectively;

via_stop_score < via_stop_score + number of correctly matched via stops;

/+ Long—question—-specific part %/
via_stop_score «+ min(10,via_stop_score);

num_via_stop_score < min(10,num_via_stop_score);

via_stop_score < average( |Vinersection|/|Vanion| X 10, via_stop_score)

map_score < map_score + Option(via_stop_score or
num_via_stop_score);

/+ 10 for short question; 20 for long question */
map_score < min(10,map_score)/min(20,map_score) ;
if correctness evaluation (acc) = 1 then

L map_score < map_score + 10/map_score + 20;

return map_score;

Table A2: Comparison of high-resolution image preprocessing strategies across different MLLMs.

We use “—” to denote unspecified or unclear content.
Model Dynamic Resolution Handling Positional Encoding Token Compression
Qwen2.5-VL series (Bai et al., 2025) v 2D-RoPE v (2 x 2 Concat + MLP)
QVQ-72B-Preview (Qwen Team, 2024) 4 2D-RoPE v (2 x 2 Concat + MLP)
InternVL3 series (Zhu et al., 2025) v V2PE v (Unshuffle + MLP)
Kimi-VL series (Team et al., 2025) v 2D-RoPE v (Shuffle + MLP)
Skywork-R1V-38B (Wei et al., 2025; Peng et al., 2025) v - X
Gemini (Gemini et al., 2023) X (Tiling+Resize) - X
Doubao-1.5-Pro series (ByteDance, 2025) 4 2D-RoPE v (2 x 2 Pooling + MLP)

compress tokens via 2 x 2 patch concatenation followed by an MLP; InternVL3 (Zhu et al.,
2025) and Kimi-VL (Team et al., 2025) utilize spatial transformations like pixel unshuffle
or shuffle, also followed by MLPs; Doubao averages over 2 x 2 patches before projection.
Models without token compression may incur higher memory and computation costs when
processing high-resolution inputs.
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Table A3: Evaluations of fine-tuned model on REASONMAP. S. represents results for short questions,
while L. denotes results for long questions. The map score is capped at 20 for short questions, while
for long questions, the maximum score is 40.

Model Type Weighted Acc. (S.) #Tokens (S.) Weighted Acc. (L.) #Tokens (L.) Weighted Map Score (S./ L.)
Qwen2.5-VL-3B-Instruct (Bai ctal, 2029) Base _ _ 8.68% 42 __ 799% 11 2757370 .
+ RL (Format & Accuracy Reward) Base  11.46% 25 10.50% +2.51 93 381 716.09

B.3 DETAILS ABOUT DIFFICULTY-AWARE WEIGHTING.

Each difficulty pair is assigned a predefined weight that reflects its relative challenge level. The full
weight matrix is shown below, where the first element in each pair denotes the question difficulty and
the second denotes the map difficulty:

("easy", "easy"): 1.0 ("middle", "easy"): 1.5 ("hard", "easy"): 2.0
("easy", "middle"): 1.5 ("middle", "middle"): 2.0  ("hard", "middle"): 2.5
("easy", "hard"): 2.0 ("middle", "hard"): 2.5 ("hard", "hard"): 3.0

This weighting scheme rewards models more for correctly solving harder question—-map combinations,
reflecting the increased reasoning complexity they entail, while maintaining moderate differences
between buckets to prevent excessive score variance and preserve evaluation stability.

C EXPLORATORY EXPERIMENTS

C.1 REINFORCEMENT FINE-TUNING WITH TRAINING DATA

We further fine-tune MLLM (Bai et al., 2025) on the REASONMAP training set with reinforcement
learning via the GRPO procedure (Shao et al., 2024). We employ a simple reward function that ag-
gregates accuracy and format compliance. As shown in Table A3, this scheme improves performance
while substantially reducing token usage.

C.2 FINE-GRAINED ERROR ANALYSIS METRIC SUMMARY

We report multiple fine-grained error analysis metrics in Table A4 as follows: (1) dep—arr score: +1
if both the start and end stations are correct; (2) route name score: +2 for each correctly identified
line name along the route; (3) stops score: +1 for each correctly identified intermediate stop; (4)
num_via_stop_score (only for long questions): computed by taking the absolute difference between
the number of via stops in the answer and the reference route, and mapping it to a score from 0 to
4; (5) via_stop_score (only for long questions): calculated by averaging the number of correctly
matched via stops (up to 10) and the Intersection-over-Union (IoU) between the via stop sets of the
answer and reference route (scaled to 10).

C.3 FURTHER EXPERIMENTS ABOUT LANGUAGES

We conduct an ablation study under the textualized representation paradigm (as mentioned in Ap-
pendix C.4). In this setting, visual images are not involved, which allows us to safely replace all
non-English station names with unique English aliases without introducing visual inconsistencies.
This approach isolates the language prior factor and avoids any potential confounding effects from
visual modifications. Concretely, we manually replace all Chinese station names in Beijing and
Hangzhou with unique English station names (e.g., mapping them to New York stops: “zhichunli”
<-> 86 St), preserving the original transit map structure. The results of the evaluation under this
setting are as follows.

Overall, we observe from the results in Table A5 that using English labels leads to performance
improvements, particularly for long-form questions. This suggests that the model indeed exhibits
a language bias, with English showing an advantage over Chinese, which may be attributed to
differences in pre-training data distributions.
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Table A4: Fine-grained error analysis metrics of various MLLMs. S. represents results for short
questions, while L. denotes results for long questions. Bold indicates the best results among open-
source and closed-source models, respectively.

Model Type Dep-Arr Score (S./ L.)Route Name Score (S./ L.)Stops Score (S./ L.)Num. Via Stop Score (L.) Via Stop Score (L.)
Open-source Models
Qwen2.5-VL-3B-Instruct (Bai ct al., 2025)  Base 0.86/0.78 0.03/0.02 1.03/0.96 0.42 0.00
Qwen2.5-VL-32B-Instruct (Bai et al,, 2025)  Base 0.95/0.92 0.09/0.10 1.16/1.19 1.57 0.01
Qwen2.5-VL-72B-Instruct (Bai et al,, 2025)  Base 0.96/0.95 0.22/0.24 1.23/1.22 1.56 0.04
InternVL3-38B (Zhu et al., 2025) Base 0.87/0.84 0.06/0.10 1.08/1.12 1.63 0.00
InternVL3-78B (Zhu et al., 2025) Base 0.96/0.89 0.15/0.17 1.15/1.12 1.46 0.01
Kimi-VL-A3B-Instruct (Team et al,, 2025)  Base 0.89/0.88 0.07/0.07 1.06/1.11 0.91 0.02
Kimi-VL-A3B-Thinking (Team et al., 2025)Reasoning 0.80/0.65 0.08/0.10 0.99/0.79 0.50 0.00
Skywork-R1V-38B (Wei et al., 2025) Reasoning 0.60/0.62 0.06/0.09 0.74/0.71 1.00 0.00
QvQ-72B-Preview (Qwen Team, 2024) Reasoning 0.35/0.22 0.03/0.02 0.42/0.29 0.20 0.01
Closed-source Models
Doubao-115 (ByteDance, 2025) Base 0.78/0.96 0.08/0.18 1.08/1.31 1.94 0.06
OpenAl 40 (OpenAl, 2024a) Base 0.97/0.95 0.22/0.29 1.49/1.53 222 0.04
Doubao-415 (ByteDance, 2025) Reasoning 0.98/0.98 0.33/0.30 1.57/1.65 2.37 0.08
Doubao-428 (ByteDance, 2025) Reasoning 0.73/0.75 0.00/0.03 1.19/1.27 227 0.00
Gemini-2.5-Flash (Gemini et al., 2023) Reasoning 0.93/0.67 0.27/0.29 1.67/1.22 1.82 0.05
OpenAl 03 (OpenAl, 2025) Reasoning 0.99/0.91 0.32/0.16 1.77/1.73 3.31 0.03

Table AS: Evaluations on Beijing and Hangzhou (with and without English). S. represents results for
short questions, while L. denotes results for long questions. Bold indicates performance improve-
ments, while italicized values represent performance degradation.

Model Beijing (S./L.) Beijing (w. English) (S./L.) H: hou (S./L.) H: hou (w. English) (S./L.)
Kimi-VL-A3B-Instruct (Team et al., 2025) 36.76% / 17.30% 23.78% / 20.81% 40.00% / 42.22% 42.22% | 45.95%
Doubao-115 (Guo et al., 2025b) 64.86% /50.51% 45.95% 1 52.70% 82.22% / 64.44% 67.78% [ 65.56 %
Doubao-415 (Guo et al., 2025b) 84.86% / 74.05% 88.65% / 85.95% 94.44% | 97.22% 87.78% 1 100%

C.4 FURTHER EXPERIMENTS ABOUT SYMBOLIC REPRESENTATION OF MAPS

We conduct further experiments about deterministic baselines derived from symbolic representations
of the maps. This setting can serve as a theoretical performance ceiling, independent of perceptual
challenges faced by MLLMs. We replace the visual input with symbolic representations extracted
from the underlying map structure. Specifically, we convert all routes and station information into
textual form to represent the topological structure of the map. This textualized representation is
then used for evaluation. Specifically, we provide the model with textualized representations and the
question as input, without including any visual maps.

By comparing the results in Table A6 with those in Table 2, we observe a clear performance improve-
ment. This is expected, as replacing the visual map with textualized representations substantially
reduces task difficulty, as it removes the need to assess visual capabilities such as OCR and grounding.
We further note that prior works, such as MapBench (Xing et al., 2025) and CityBench Feng et al.
(2024), also focus on visual map interpretation without constructing explicit symbolic baselines.

C.5 FURTHER SYSTEMATIC ANALYSIS ON FAILURE CAUSES

We systematically analyze failure causes, focusing on three MLLM capabilities pertinent to fine-
grained visual reasoning (e.g., OCR, grounding, and spatial reasoning). To assess OCR capabilities,
we collect metrics of 9 representative MLLMs on OCRBench (Liu et al., 2024). Comparing these with
their performance on REASONMAP as shown in Table A7 in the paper, we observe no clear correlation
between OCR ability and REASONMAP accuracy. Notably, this trend holds across both open-source
and closed-source models, suggesting that stronger OCR performance alone does not lead to better
fine-grained visual reasoning. For instance, among open-source models, InternVL3-78B achieves the
highest OCRBench scores, but underperforms Qwen2.5-VL-72B-Instruct on REASONMAP.

We further conduct more in-depth case analyses, which reveal that the main causes of failure are
grounding and spatial reasoning, as illustrated in the following example. We observe that OCR errors
rarely occur, and most failure cases are instead caused by grounding or spatial reasoning issues.
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Table A6: Evaluations of various MLLMs using symbolic representation. S. represents results for
short questions, while L. denotes results for long questions. Bold indicates the best results among
open-source and closed-source models, respectively.

Model Type Weighted Acc. (S./L.) #Tokens (S./L.)

Open-source Models

Qwen2.5-VL-3B-Instruct (Bai et al., 2025) Base 22.83% / 19.79% 51/162

Qwen2.5-VL-32B-Instruct (Bai et al., 2025) Base 25.52% / 18.77% 9717297

Kimi-VL-A3B-Instruct (Team et al., 2025) Base 39.58% / 34.81% 43/55
Closed-source Models

Doubao-115 (ByteDance, 2025) Base 81.16% / 72.66% 41/82

OpenAl 40 (OpenAl, 2024a) Base 82.38% /78.91% 40/70

Doubao-415 (ByteDance, 2025) Reasoning 95.31% / 93.66 % 563 /1561

Table A7: Evaluations of various MLLMs on OCRBench. Bold indicates the best results among
open-source and closed-source models, respectively. The references in the table indicate the result
sources. All results are collected from the technical report of the model.

Model Type OCRBench
Open-source Models
Qwen2.5-VL-3B-Instruct (Bai et al., 2025) Base 797
Qwen2.5-VL-72B-Instruct (Bai et al., 2025) Base 885
InternVL3-38B (Zhu et al., 2025) Base 886
InternVL3-78B (Zhu et al., 2025) Base 906
Kimi-VL-A3B-Instruct (Team et al., 2025) Base 864
Kimi-VL-A3B-Thinking (Team et al., 2025) Reasoning 864
Closed-source Models
OpenAl 4o (Team et al., 2025) Base 815
Doubaol.5-VL (non-thinking) (Guo et al., 2025b) Base 881
Doubaol.5-VL (thinking) (Guo et al., 2025b) Reasoning 861

Case 1: grounding

Q: Hollywood/Highland Station -> Wilshire/Vermont Station? <image:los_angeles.png>

A (Kimi-VL-A3B-Thinking): ... Let me start by locating both stations on the map. Holly-
wood/Highland is on ... A Line (X)... Wilshire/Vermont is on the C Line (X) ... (X)

A (Doubao-415): ... First, I need to see where these two sites are located on a map. Holly-
wood/Highland Station ... on B Line (v') ... Wilshire/Vermont Station ... is on D Line and B
Line (v') ... Route Name: B Line Departure Stop: Hollywood/Highland Station Arrival Stop:
Wilshire/Vermont Station (v)

Case 2: spatial reasoning

Q: Ponte Mammolo Station -> Sta. Maria del Soccorso Station? <image:rome.png>

A (Skywork-R1V-38B): ... Line A: Orange Line B: Blue Line C: Green (v) ... Ponte
Mammolo Station ... on Line B (V') ... Let me trace the path of Line B from Ponte Mammolo
towards the center of Rome (X) ... But I need to go from Ponte Mammolo to Sta. Maria del
Soccorso. Looking at the map, I don’t see a direct connection between these two stations via
Line B. (X) So, I might need to transfer to another line ... Let me check if there’s another line
that connects to Sta. Maria del Soccorso ... (X)

A (Gemini-2.5-Flash): Route Name: Line B Departure Stop: Ponte Mammolo Station Arrival
Stop: Sta. Maria del Soccorso Station Number of Via Stops: 0 (V')

For instance, in Case 1, Kimi-VL-A3B-Thinking incorrectly identifies the line of the departure station,
indicating a grounding error that leads to subsequent reasoning failures. In Case 2, Skywork-R1V-38B
correctly performs OCR and grounding in the initial steps, but fails in the reasoning stage (i.e., it
does not prioritize locating the arrival station and instead attempts to construct incorrect indirect
paths). Such failures reflect deficiencies in spatial reasoning, particularly in planning and executing
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core steps of pathfinding. These cases further indicate that the principal capability gap between
open-source and closed-source models lies in grounding and spatial reasoning.

D CASE ANALYSIS

We provide additional case analyses covering both correct and incorrect predictions, along with
detailed comparisons of their respective reasoning processes. We first compare Doubao-415 and
Doubao-428 (Figure A1), both of which reach the correct destination (from Augustins Station to
Poterie Station) but via distinct reasoning paths. Doubao-415 correctly identifies early that both
stations are on Line 18 and efficiently converges on the optimal, direct route without transfers. In
contrast, Doubao-428 misclassifies Augustins as being on Line 12 and, assuming Poterie is on Line
18, proposes a transfer route via Plainpalais—functionally correct but suboptimal due to unnecessary
complexity. Both models engage in extensive self-correction (7270 tokens for Doubao-428; 4474 for
Doubao-415), highlighting the significant downstream impact of early-stage misjudgments. Moreover,
visual reasoning limitations persist: despite correctly recognizing Augustins on Line 12, Doubao-415
commits to a transfer path and fails to re-evaluate the possibility of a direct connection. This indicates
room for improvement in both early visual grounding and global route optimality awareness.

We then analyze the observed pattern when comparing the full input and text-only variants in the
case (in Figure A2). The model with full visual access accurately identifies both stations on the
Yellow Line and outputs the optimal direct route with the correct number of via stops. In contrast,
the text-only variant makes an early misclassification, placing both stations on the Blue Line (Azul)
and constructing a plausible but entirely incorrect sequence of intermediate stops. Although the
final answer format appears coherent, the underlying logic is flawed due to the initial error in line
recognition. This further illustrates the importance of visual input in spatial reasoning tasks, where
even minor misinterpretations can lead to fundamentally incorrect conclusions. Additionally, some
models, such as the InternVL3 series, default to rejection when visual input is absent.

We further present several error cases (in Figure A3), where Doubao-415 still exhibits visual confusion.
In contrast, Qwen2.5-VL-32B-I, when lacking visual input, behaves differently from the InternVL3
series: rather than rejecting the query outright, it attempts to reason over the available information
without producing a final answer, while explicitly notifying the user of the missing visual input.

E FURTHER DISCUSSIONS

E.1 LIMITATIONS AND FUTURE WORK

While REASONMAP provides a carefully curated benchmark for evaluating fine-grained visual
reasoning with high-resolution transit maps, we acknowledge that it represents only one type of
structured visual diagram. As such, caution should be taken when generalizing observations to other
domains that involve different types of visual content or reasoning styles. Additionally, although
efforts were made to ensure diversity across cities and languages, the current version may not fully
capture all geographic or linguistic variations. Future iterations could further expand coverage and
explore additional forms of reasoning to enhance generality.

Furthermore, we note that GeoGuessr-style localization tasks (Mall et al., 2019; Hays & Efros, 2008;
Huang et al., 2025) are compelling, as they emphasize detailed visual understanding of natural scenes
and signage. We plan to pair transit maps with street view imagery to support cross-view reasoning
and localization within REASONMAP, thereby expanding beyond static map inputs. In parallel, we
will explore agent-based training and evaluation that moves from single-turn prediction to iterative
planning with feedback, including reward designs for correctness, calibration, and format (Zhao et al.,
2025). Finally, we will extend toward embodied settings (Hong et al., 2025) where agents perceive
and act in interactive environments, enabling assessment of instruction following, route planning,
and navigation under real-world constraints. Together, these directions broaden the benchmark from
fine-grained visual reasoning to context-aware spatial intelligence and practical decision making.
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12 ' A: Route Name: Line 18
D

Departure Stop: Augustins Station
©Doubao Arrival Stop: Poterie Station ...
o115

®

A: <think> ... Is Augustins on Line 12? No. Again, is it on Line 12? Still no. Let’s check the stations on Line 12. Is Augustins
among them? Line 12 includes stations like Blanche, Augustins, Pont-d'Arve...
Is Augustins really on Line 12? ... So Augustins is on Line 12, and Poterie is on Line 18, meaning a transfer is likely needed.
So the route could be: Augustins (Line 12) — Transfer to Line 18 — Poterie. Or maybe there's a direct connection?
No, Augustins is on Line 12, and Poterie is on Line 18. So we must go from Augustins to a transfer station—maybe Place de
Neuve? ...
Steps: Augustins (Line 12) — Plainpalais (transfer) — Poterie (Line 18)
t Now let’s count the number of intermediate stations on each segment.
Line 12: ...
Doubao | So Augustins is or isn't on Line 122 ...
-428 | ... (continuous self-correction)
Now, listing all Line 12 stations from Augustins to Plainpalais: ...
Eventually, ...
</think>
Route Name: Line 12 Departure Stop: Augustins Station Arrival Stop: Plainpalais Station ...
Route Name: Line 18 Departure Stop: Plainpalais Station Arrival Stop: Poterie Station ...

A: <think> First, observe the stations passed by each line. Augustins Station is on Line 14 and Line 18...But Poterie Station is
on the purple Line 18...

Wait, looking at the map again, Augustins is on the orange Line 12 and the purple Line 18? No, carefully see the station
connections. In the map, Augustins is located on the line that ... Line 18. So Augustins is on Line 18, and Poterie is also on

Line 18.
' ... (continuous self-correction)

But I think the actual correct answer, based on the standard subway map reading, is that it's a direct route on Line 18 with
11 via stops. ... the correct answer should be as follows: Route Name: Line 18 Departure Stop: Augustins Station Arrival
Stop: Poterie Station Number of Via Stops: 11

</think>

Route Name: Line 18 Departure Stop: Augustins Station Arrival Stop: Poterie Station ...

Doubao
-415

Figure Al: Case analysis of various MLLMs using REASONMAP (Case N1). For reasoning models,
the reasoning process is explicitly marked with <think> and </think> tags. We highlight error
contents in the answers with red and correct contents in green.

E.2 BROADER IMPACT

Advancing the capabilities of MLLMs in fine-grained visual reasoning has the potential to benefit
a wide range of real-world applications, including navigation systems, urban planning tools, and
assistive technologies for visually impaired individuals. By offering a structured and rigorous
benchmark, REASONMAP encourages the development of MLLMs that can more effectively interpret
complex visual artifacts and perform spatial reasoning. This could contribute to the long-term
goal of building intelligent agents that interact more naturally and safely with human environments.
Furthermore, the dataset’s emphasis on high-resolution, globally sourced transit maps promotes
research that is inclusive of diverse visual formats and geographic contexts. We hope REASONMAP
can serve as a step toward more transparent, robust, and generalizable multimodal systems.

F FURTHER STATEMENT

F.1 PUBLIC IMPLEMENTATION

We benchmark the visual understanding and reasoning performance on REASONMAP across a diverse
set of publicly available MLLMs:

o KimiVL (Team et al., 2025)0 .o e MIT License

6https ://github.com/MoonshotAI/Kimi-VL.
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A: <think> ... Ameixoeira and Picoas are stations there... Ameixoeira is on the Blue Line (Linha Azul), and Picoas is also on
the Blue Line. Let me check the order of stations on the Blue Line. The Blue Line goes from ... Wait, no, actually, from
Ameixoeira, the next stations towards the city center would be ... No, wait, Picoas is on the Blue Line between Entre Campos
O and Marqués de Pombal? Wait, maybe I should list the stations in order. Let's see: ...
... (continuous self-correction)

Wait, maybe I got the direction wrong ... Let me confirm: Ameixoeira (departure), next is Sao Sebastido (1), Campo Grande

-415 (2), Alameda (3), Entre Campos (4), then Picoas (arrival). So number of via stops is 4. There's no need to transfer because
Onlytext | both are on the Blue Line, so it's a direct route. So the route should be Blue Line, departure Ameixoeira, arrival Picoas, via
stops 4. Route Name: Azul Departure Stop: Ameixoeira Station Arrival Stop: Picoas Station Number of Via Stops: 4
</think>
Route Name: Azul...

Doubao

A: <think> The user is asking for the optimal route from Ameixoeira Station to Picoas Station. First, I need to consult the
metro map to determine which lines these stations belong to. Ameixoeira is on the Yellow Line (Amarela), and Picoas—after
closely examining the map—is also on the Yellow Line, not at an interchange point.
Starting from Ameixoeira and heading south along the Yellow Line, the stations passed are Lumiar, Quinta das Conchas,
Campo Grande, and Saldanha before arriving at Picoas. This gives us 4 via stops (excluding the departure and arrival
O stations). No transfer is needed, as the entire trip is on the Yellow Line.
Doubao Thus, the correct route is:

415 Route Name: Amarela
Departure Stop: Ameixoeira Station
Arrival Stop: Picoas Station
Number of Via Stops: 4
</think>
Route Name: Amarela Departure Stop: Ameixoeira Station Arrival Stop: Picoas Station Number of Via Stops: 4

Figure A2: Case analysis of various MLLMs using REASONMAP (Case N2). For reasoning models,
the reasoning process is explicitly marked with <think> and </think> tags. We highlight error
contents in the answers with red and correct contents in green.

* Skywork-R1V (Wei et al., 2025; Peng et al., 2025) MIT License
* QVQ-72B-Preview (Qwen Team, 2024) .. ... . . . i, Qwen License
» Gemini-2.5-Flash (Gemini et al., 2023)7 ... ... .. Closed-Source
o InternVL-3.0 (Zhu et al., 2025)10 MIT License
o Qwen2.5-VL (Bai et al., 2025)" . Apache 2.0 License
 Doubao-Pro 1.5 (ByteDance, 2025)'% ... .. . Closed-Source
» OpenAl 03 (OpenAl 2025) Closed-Source
» OpenAl 4o (OpenAl, 2024a) o Closed-Source

To ensure fair and reproducible evaluation, we implement all inference procedures by adhering closely
to the official documentation and recommended practices of each model. The code is released under
the MIT License to support transparency and reproducibility. Additionally, we provide detailed usage
instructions on the project website to ensure easy access and reproducibility for future users.

7https://huggingface.co/Skywork/Skyworklev2f38B.
$https://huggingface.co/Qwen/QVQ-72B-Preview.
*https://deepmind.google/technologies/gemini.
Onttps://github.com/OpenGVlab/InternvL
llhttps://github.com/QwenLM/QwenZ.5—VL.
12https://www.volcengine.com/product/doubao.
Bhttps://platform.openai.com/docs/models/o3.
14https://platform.openai.com/docs/models/gptfﬁlo.
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I.Qq"i[
A: <think> ... C
First, let's locate both stations on the map. York University Station is on Line 1 (the yellow line), which runs north-south.
Chester Station is also on Line 1, south of Castle Frank and north of Pape.

... (continuous self-correction)

After re-evaluating, the correct answer is that it's a direct route on Line 1 with 21 via stops, but I think the actual correct
C count, based on the standard TTC Line 1 stations between York University and Chester, is 21. However, to avoid further

Doubao | confusion, I'll refer to the correct method: list the stations in order, exclude departure and arrival, count them.
415 Route Name: Line 1

Departure Stop: York University Station

Arrival Stop: Chester Station

Number of Via Stops: 21

</think>

Route Name: Line 1 Departure Stop: York University Station Arrival Stop: Chester Station Number of Via Stops: 21

s,
Iy,'n
l

Rey)
\/
{; A: To provide an accurate route from York University Station to Chester Station, I would need access to the specific subway Say
Qwen map ...
2.5-VL | Departure Stop: York University Station
_32B-] | Arrival Stop: Station X ...

Onlytext Let me know if you have additional information.

Figure A3: Case analysis of various MLLMs using REASONMAP (Case N3). For reasoning models,
the reasoning process is explicitly marked with <think> and </think> tags. We highlight error
contents in the answers with red and correct contents in green.

F.2 LARGE LANGUAGE MODEL USAGE STATEMENT

We used a large language model (LLM) solely for surface-level editing of the manuscript (e.g.,
rephrasing for clarity and concision, grammar/style polishing, and minor I&IEX fixes). The LLM did
not generate technical content, ideas, algorithms, proofs, code, experiments, figures, or tables; the
authors conducted all research design, implementation, data processing, and analyses. The model
did not produce or select citations; any suggestions were independently verified and replaced with
primary sources. Interactions were limited to de-identified text snippets of the manuscript, and no
non-public data, code, or unreleased results were uploaded. All LLM outputs were manually reviewed
and edited by the authors. This usage does not affect reproducibility: every reported number is
reproducible from our released code and configurations.
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