
Fascinating Supervisory Signals and Where to Find Them:
Deep Anomaly Detection with Scale Learning

Hongzuo Xu 1 2 Yijie Wang 1 2 Juhui Wei 3 Songlei Jian 2 Yizhou Li 1 2 Ning Liu 1 2

Abstract
Due to the unsupervised nature of anomaly de-
tection, the key to fueling deep models is find-
ing supervisory signals. Different from cur-
rent reconstruction-guided generative models and
transformation-based contrastive models, we de-
vise novel data-driven supervision for tabular data
by introducing a characteristic – scale – as data
labels. By representing varied sub-vectors of data
instances, we define scale as the relationship be-
tween the dimensionality of original sub-vectors
and that of representations. Scales serve as labels
attached to transformed representations, thus of-
fering ample labeled data for neural network train-
ing. This paper further proposes a scale learning-
based anomaly detection method. Supervised by
the learning objective of scale distribution align-
ment, our approach learns the ranking of represen-
tations converted from varied subspaces of each
data instance. Through this proxy task, our ap-
proach models inherent regularities and patterns
within data, which well describes data “normal-
ity”. Abnormal degrees of testing instances are ob-
tained by measuring whether they fit these learned
patterns. Extensive experiments show that our
approach leads to significant improvement over
state-of-the-art generative/contrastive anomaly de-
tection methods.

1. Introduction
Anomaly detection, the task of discovering exceptional
data that deviate significantly from the majority (Aggarwal,
2017), has been successfully applied in many real-world do-
mains when there is a need to identify both negative and pos-

1National Key Laboratory of Parallel and Distributed Comput-
ing 2College of Computer, National University of Defense Technol-
ogy 3College of Science, National University of Defense Technol-
ogy. Correspondence to: Yijie Wang <wangyijie@nudt.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

itive rare events (e.g., diseases, cyberspace intrusions, finan-
cial frauds, industrial faults, and marketing opportunities).
Deep learning has shown strong modeling capability, which
enables deep anomaly detection methods to yield drastic
performance improvement over traditional methods (Pang
et al., 2021). Due to the unsupervised nature of anomaly
detection, designing deep anomaly detection models is a
journey of finding reasonable supervisory signals .

Many deep anomaly detection methods (Xia et al., 2015;
Chen et al., 2017; Zhou & Paffenroth, 2017; Liu et al., 2019;
2021) construct various kinds of autoencoders, generative
adversarial networks, or prediction models. Their learning
objectives are adapted to anomaly detection by treating re-
construction errors of incoming data as abnormal degrees.
These generative methods are intuitive and show favorable
performance on several popular benchmarks. However, as
has been discussed in (Larsen et al., 2016; Ruff et al., 2018;
Wang et al., 2022), one imperfection is that their learning tar-
get is primarily designed to reconstruct/generate the whole
data. That is, they are forced to focus on reducing errors
in each fine-grained point, but overemphasizing low-level
details may make the model hard to converge when the nor-
mal class is complicated. Besides, some underlying hard
anomalies can be only identified by investigating high-level
pattern information in inlier data.

To address this limitation, recent efforts (Golan & El-Yaniv,
2018; Li et al., 2021; Wang et al., 2022; Ristea et al., 2022)
have been made to liberate deep anomaly detection from the
above reconstruction-based pipeline. They define various
transformations and design pretext tasks, learning to classify,
compare, or map these transformations. They either use
the learned representations for independent abnormality
estimators or utilize loss values as anomaly scores. These
models can embed high-level semantic information into the
learned representations, thus leading to stronger anomaly
detectors with promising detection accuracy. However, most
popular transformation operations (e.g., rotations, cropping,
and flip) can be only applied to image data. As for non-
perceptual tabular data, it is still a non-trivial task to define
suitable supervisory signals to actuate deep learning models.

To this end, we introduce a new data characteristic – scale –
to devise a novel kind of data-driven supervision. Generally,

1

Deep Anomaly Detection with Scale Learning

Data

Instance

 !! "" ## $

Sub-vectors Transformed Data Scales

Sampling Representing

 (3, !)

 (2, !)

 (4, !)

 (1, !)

 (2, !)

 (4, !)

 (3, !)

!

Figure 1. A toy example of scales in tabular data. For a tabular
data instance described by four features, sub-vectors with varied
feature subspaces are randomly sampled from the original space
and then transformed into h-dimensional representations. Scale is
computed as the mathematical relationship G between sub-vector
length and the representation dimensionality h.

scale indicates the ratio between the real size of something
and its size on a map, model, or diagram. This naturally
inspires us to define the scale concept in tabular data as:

Definition 1.1 (Scale in Tabular Data). Sub-vectors of tab-
ular data instances are transformed to representations. Scale
is defined as the mathematical relationship between the di-
mensionality of sub-vectors and that of the representations,
which indicates the level of detail in representations.
Figure 1 delineates a toy example. Scales serve as labels at-
tached to these transformed data, thereby supplying labeled
data for driving neural networks on tabular data.

However, it is still challenging to harness these labeled
data. Due to the feature diversity, some sub-vectors with
lower dimensionality are with more details than higher-
dimensional sub-vectors. Also, some randomly sampled
subspaces might be irrelevant or even noisy. These notorious
problems suggest that it is unfeasible to define canonical
proxy tasks like classification or simple prediction. Instead,
we define scale learning as follows.
Definition 1.2 (Scale Learning). Each individual data sam-
ple in scale learning is defined as a group of representations
transformed from varied sub-vectors of a data instance. The
predictions and corresponding labels are converted to two
distributions, and scale learning is defined as a distribution
alignment task.
Through optimizing distributions, the learning model is
forced to focus on the relative ranking of scales rather than
raw absolute values, and the increased sampling times also
dilute ineffective irrelevant/noisy subspaces. Our model
essentially learns the listwise ranking of representations
transformed from varied subspaces of each original data
instance, during which our model can capture inherent regu-
larities and patterns related to the data structure. This is a
novel kind of data-driven supervision that is different from

current point-wise generative methods and discriminative
models based on classification, comparison, or mapping.

Based on this supervision, this paper introduces a Scale
Learning-based deep Anomaly Detection method (termed
SLAD). Concretely, SLAD first specifies a transformation
function to represent sub-vectors and a labeling function
to calculate data scales. After creating scale-based labeled
data, SLAD performs scale learning, optimized by a distri-
butional divergence-based loss function. Through this proxy
task, SLAD embeds high-level information (i.e., underlying
regularities and patterns related to the data structure) into the
learned scale-based ranking mechanism. It is similar to self-
supervised learning models in vision and natural language
domains that embed data semantics into representations.
Such high-level information helps our model to tame data
complexity and reveal hard anomalies. We extend the inlier-
priority property proposed in (Wang et al., 2022) to our
model. That is, due to the imbalanced nature of anomaly
detection, the learning process can prioritize inliers, and
the learned regularities reflect “normality” shared in inliers.
Anomalies, by definition, show deviated behaviors, and they
cannot comply with these learned models. Hence, for iden-
tifying anomalies, errors computed by the loss function are
directly exploited to indicate abnormal degrees.

Our contributions are summarized as follows:

• Conceptually, we introduce the scale concept in tabu-
lar data. By defining scale learning as a distribution
alignment task, we appropriately harness scale-based
labeled data to actuate neural networks for tabular data.
Essentially, we devise a novel kind of data-driven su-
pervision, and neural networks can model intrinsic
regularities pertaining to the data structure.

• Methodologically, we propose SLAD, a scale learning-
based deep anomaly detection method. The loss values
are directly exploited to indicate abnormal degrees,
thus allowing SLAD to produce anomaly scores in an
end-to-end fashion. Our method also contributes a
novel self-supervised strategy to other tasks like repre-
sentation learning in tabular data.

• Theoretically, we analyze the shape of the created data
sample in scale learning to ensure its effectiveness in re-
vealing anomalies. To back up the application of scale
learning in anomaly detection, we examine gradient
magnitude to illustrate the inlier-priority property.

• Empirically, extensive experiments validate both the
contributions in detection accuracy and the superiority
in handling complicated training data. For example,
SLAD raised the state-of-the-art AUC-PR from 0.82
to 0.92 (+10 points) on a popular Thyroid benchmark.

2

Deep Anomaly Detection with Scale Learning

2. Related work
Deep learning-empowered anomaly detection has garnered
much interest recently (Pang et al., 2021; Ruff et al., 2021).
Due to the unsupervised nature of anomaly detection, with-
out readily accessible labeled training data, finding supervi-
sory signals becomes one crucial step to fuel deep learning
models for anomaly detection. This section reviews how
existing studies define their learning tasks.

One typical pipeline is based on generative methods. They
take reconstruction as the learning objective to construct
various kinds of autoencoders, generative adversarial net-
works, or prediction models and treat reconstruction errors
as anomaly scores (Chen et al., 2017; Zhou & Paffenroth,
2017; Liu et al., 2019; 2021; Wang et al., 2021). Albeit
intuitive, these methods overemphasize fine-grained recon-
struction errors at the point-wise level, and they may fail to
access high-level semantic information.

An alternative manner is to use one-class classification to
obtain a model (e.g., hypersphere or hyperplane) that can
accurately describe the “normality”. Many anomaly detec-
tors (Ruff et al., 2018; Goyal et al., 2020; Zhang & Deng,
2021; Liznerski et al., 2021) train neural networks to learn
a new representation space by posing one-class constraints.
However, the underlying one-class assumption might be
vulnerable since there is often more than one prototype in
inliers. Besides, some methods resort to additional label in-
formation. Self-training models exploit iteratively predicted
results of training data as supervisory signals while updating
the model parameters (Pang et al., 2020; Qiu et al., 2022),
whereas this process might be disturbed by mislabeled data.
It is also noteworthy that a recent method named outlier
exposure introduces labeled data from other datasets, thus
forming synthetically labeled data (Hendrycks et al., 2019).

The success of contrastive self-supervised learning in vision
and natural language domains sheds light on the potential
of discriminative models for embedding rich semantic in-
formation into representations. By using various transfor-
mation operations in image data (e.g., rotations, cropping,
flip, cutout, and interpolation), many insightful approaches
(Golan & El-Yaniv, 2018; Tack et al., 2020; Sehwag et al.,
2021; Li et al., 2021; Wang et al., 2022; Ristea et al., 2022)
create different views of initial data and employ classifica-
tion, comparison, or mapping as pretext tasks. To identify
anomalies, these methods perform independent abnormality
measurements upon the learned representations or directly
leverage the loss function. However, it is still non-trivial to
define transformation operations for non-image data.

There are very limited attempts that generalize the above
contrastive strategy to tabular data. GOAD (Bergman &
Hoshen, 2020) is the pioneer transformation-based method
that can handle non-image data, which generalizes the spa-

tial transformation to random affine transformation. Neu-
TraL (Qiu et al., 2021) employs learnable neural transfor-
mations and proposes a noise-free, deterministic contrastive
loss. The literature (Shenkar & Wolf, 2022) learns map-
pings that maximize the mutual information between each
sampled sub-vector and the part that is masked out.

We finally review a related field, i.e., self-supervised pre-
training for tabular data. These models also perform con-
trastive learning upon different views created by corrupting
random feature sub-spaces based on respective empirical
marginal distribution (Bahri et al., 2022) or feature correla-
tions (Yao et al., 2021). In addition to the corruption, the
study (Yoon et al., 2020) proposes “mask estimator” and
“feature estimator” heads on top of the encoder state.

3. Scale Learning for Anomaly Detection
Problem Formulation. Let X be the input tabular data
described by a D-dimensional feature space. Each data
instance x ∈ X is a vector x ∈ RD. By training on X , a
deep anomaly detection model builds a scoring function
τ : RD 7→R to quantitatively measure abnormal degrees of
incoming data instances.

Overview. Figure 2 depicts the overall framework of
SLAD. We take one data instance x as an example to illus-
trate the procedure of SLAD. There are two main compo-
nents in SLAD. The creation of scale-based supervisory sig-
nals consists of a transformation function T and a labeling
function G, which respectively define how to transform sub-
vectors of an original data instance x to representations U
and how to compute scales as labels y. SLAD treats each U
matrix that contains c transformed vectors as an individual
training sample, and labeled data O×Y = {(Uj ,yj)}rj=1

offer supervisory signals for neural network training. In
terms of scale learning, we construct a neural network Φ,
and network parameters are optimized via a distribution
alignment loss function L.

3.1. The Creation of Scale-based Supervisory Signals

Transformation Function T . T yields representations of
sub-vectors. A unified h-dimensional representation frame
is set since these transformed data serve as training samples
for downstream scale learning. T can be also understood as
a data preprocessing step. Some popular padding methods
or dimensionality reduction techniques may change infor-
mation contained in original sub-vectors. Instead, SLAD
employs neural transformation to define T . Complicated
neural transformations with non-linear activation may also
modify the intrinsic data structure of the input. Random
linear projection is a simple yet effective feature mapping
technique, which can achieve dimensionality modification.
Thus, T is defined as simple feed-forward layers that are

3

Deep Anomaly Detection with Scale Learning

Sub-vectors

 !" #$%

&

Data Instance

Sampling

 = !" "#$

%
& = '" "#$

%

Transformed

vectors

 ! "
#×$

Label

 ! "#

Distribution
Alignment-based Loss

Neural Network

Scale Learning

!

Labeling
Function

Transformation
Function

Creation of Scale-based Supervisory Signals

!",# $%&

'

(%&

)

*

+

- -

*

Figure 2. Overall framework of SLAD. For an original data in-
stance x, SLAD first generates a group of c sub-vectors {x(Si)}

c
i=1

via random sampling, where x(Si) is the sub-vector of x on the sub-
space Si ⊆ {1, · · · , D}. These sub-vectors are then transformed
to a unified h-dimensional representation frame by a Transforma-
tion function T , yielding a matrix U∈Rc×h. Labeling function
G measures scales as data labels y ∈Rc of transformed data in
U. Each U and corresponding y are treated as one training sam-
ple, and the above process is repeated r times, which produces
O ∈ Rr×c×h attached with labels Y ∈ Rr×c. A neural network
Φ : Rr×c×h 7→ Rr×c is trained via the loss function L to predict
scale-based distributions of transformed data.

randomly initialized, and each feature subspace corresponds
to a transformation layer. For a ν-dimensional sub-vector
x(Si)∈Rν , its representation is obtained via a weight matrix
Wν ∈ Rh×ν and bias b ∈ Rh, i.e.,

T (x(Si)) = Wνx(Si) + b. (1)

For c randomly sampled sub-vectors of a data instance x,
their transformations are denoted in a matrix U∈Rc×h. U
is treated as an individual data sample for scale learning.

Labeling Function G. SLAD further computes scales.
Each dimension derived via neural transformation T is with
equal status, so the representation dimensionality can be
directly exploited. However, as original tabular features
are varied, we intend to weigh each feature to capture this
kind of difference. For ease of learning, we also increase
the spacing of each scale value via a magnification factor.
Therefore, given the representation dimension h and the
feature subspace Si of a sub-vector, G is defined as

G(Si, h) = γ

∑
k∈Si

ωk

h
, (2)

where ωk is the weight of the kth feature and γ is a
magnification factor. The γ factor is a hyper-parameter.
In terms of the feature weight, a feature is more infor-
mative if it has strong interactions with other features.
Thus, Pearson product-moment correlation coefficient is
employed. Let uk = {x(i,k)}

|X |
i=1 denote the values of

the kth feature. The weight of kth feature is computed as
ωk=

1
|F|

∑|F|
k′=1

∣∣∣ cov(uk,uk′)
dev(uk)dev(uk′)

∣∣∣, where cov(·, ·) and dev(·)
denote the covariance and the standard deviation. ω ranges
from 0 to 1. High-dimensional feature space is often con-
taminated by noisy/irrelevant features, and this calculation
function might be biased. This function also induces consid-
erably heavy computational overhead when handling high-
dimensional data. Therefore, SLAD omits this step and sets
ω=1 for all features when the dimensionality of the original
feature space is high.

For the U matrix deriving from a group of sub-vectors with
feature subspaces {S1, · · · ,Sc}, its label is defined as a list
of scales, i.e., y = {G(S1, h), · · · , G(Sc, h)}.

3.2. Scale Learning

The above process is repeated r times for an original data in-
stance, creating labeled data O×Y={(Uj ,yj)}rj=1. SLAD
constructs a neural network Φ : Rc×h 7→ Rc that maps each
newly created data sample to a scale list, i.e., p= Φ(U).
Scale learning is defined as a distribution alignment task
to handle the feature diversity and irrelevant/noisy sampled
subspaces. Specifically, the predictions are processed by a
softmax layer σ, i.e., σ(p)= { exp(pi)∑

j exp(pj)
}ci=1, which gen-

erates a probability distribution. y is also processed by a
softmax function σ to produce target distribution. Listwise
prediction of c transformed vectors in U can be optimized
uniformly. This way allows the optimization to be super-
vised by the relative values. The distribution alignment task
substantially teaches the network to rank representations
transformed from different feature subspaces of the original
data instance via the predicted scale values.

After obtaining the prediction p̃ = σ(Φ(U)) and the target
ỹ = σ(y), loss value ℓ is defined by a distributional diver-
gence measure. We employ Jensen–Shannon divergence in
our implementation, i.e.,

ℓ(p̃∥ỹ)= 1

2

c∑
i=1

p̃i log(
p̃i

1
2
(p̃i+ỹi)

)+
1

2

c∑
i=1

ỹi log(
ỹi

1
2
(p̃i+ỹi)

).

(3)

The overall loss function of SLAD can be further defined as

L = Ex∼XE(U,y)∼Ox×Yx

[
ℓ
(
σ(Φ(U))

∥∥σ(y))], (4)

where Ox and Yx denote the supervisory signals created by
an original data instance x.

4

Deep Anomaly Detection with Scale Learning

3.3. Anomaly Detection

Scale learning is not directly related to anomaly detection,
and this is essentially a surrogate learning task to drive neu-
ral network training. SLAD embeds feature interactions,
patterns, and inherent regularities related to the data struc-
ture into the learned scale-based ranking mechanism. What
SLAD leverages for anomaly detection are these high-level
data abstractions.

We further present an inlier-priority property. It suggests
that the update of the neural network is inclined to prioritize
inliers due to the imbalanced nature of anomaly detection,
i.e., what SLAD derives are normal, common regularities in
inliers. Anomalies, by definition, are rare events and behave
differently, thereby showing deviation from these learned
regularities. This property is first proposed by (Wang et al.,
2022) in which a classification-based pretext task is defined.
We extend this property from the cross-entropy loss to our
distributional divergence loss (theoretical analysis and em-
pirical study in Section 3.4 and 4.2), which further supports
the application of scale learning in anomaly detection.

Therefore, errors computed through the loss function can in-
dicate abnormal degrees of incoming data. For a testing data
instance x, SLAD also creates transformed data samples O
and corresponding supervisory labels Y , and its anomaly
score is obtained via

τ(x) =
∑

(U,y)∈O×Y

ℓ
(
σ(Φ(U))

∥∥σ(y)). (5)

3.4. Theoretical Analysis

We explore two questions: (Q1) How to ensure the effective-
ness of the created data sample of scale learning in revealing
anomalies? (Q2) Does scale learning model normal regu-
larities of inliers, thus exposing anomalies? The training
sample in scale learning (the U matrix) is generated from
randomly sampled feature subspaces. Thus, to solve Q1, we
consider how to determine the shape of each transformed
data sample (the sampling times c) such that real anoma-
lies can still stand out in the transformed form. As for Q2,
we examine the inlier-priority property by analyzing the
gradients that determine the neural network optimization.

The Shape of the Data Sample of Scale Learning and
its Effectiveness in Revealing Anomalies. Let xa be an
anomaly, and U indicates its transformed matrix. We be-
low derive the relationship between the size of U and the
probability that U is useful to reveal xa as an anomaly. We
assume the abnormality of xa is reflected in a subspace G
of the whole feature space F , i.e., G ⊆ F , and |G| = β|F|,
β ∈ (0, 1]. The elements in G are effective features. Gen-
erally, a subset of G is sufficient to discover the anomaly,
and we denote this minimum size as α|G|, α ∈ (0, 1]. Let

S be one of the sampled subspaces when creating U. The
dimensionality of S is uniformly sampled from 1 to |F|.

We first give the following Lemma (proof in Appendix A)
to show the probability of S being effective.
Lemma 3.1. The probability of S containing at least α|G|
effective features of G (i.e., S is effective) is:

Pr(S is useful)=
1

|F|

|F|∑
j=α|G|

j∑
k=α|G|

(
j

k

)(|G|
|F|
)k(

1− |G|
|F|
)j−k

.

(6)

Based on the above Lemma, we further present an intriguing
fact in the following Theorem (proof in Appendix B), which
bounds the above probability.
Theorem 3.2. Given the effective feature space G and the
minimum size α|G| to reveal the anomaly , the lower bound
of the probability of the randomly sampled subspace S being
useful is inf

(
Pr(S is useful)

)
= 1− α.

Let the success probability of an individual sampling be the
lower bound, i.e., 1− α. We assume U is useful to disclose
the anomaly if it has at least one element that is transformed
from the effective sub-vectors. Consequently, similar to
Lemma 3.1, the probability of U being useful is:

Pr(U is useful) =
c∑

k=1

(
c

k

)
(1− α)k(α)c−k. (7)

Pr(U is useful) and c are positively related, whereas a large
number of useless elements in U may also disrupt the identi-
fication of xa. Thus, we use a size that is as small as possible
while ensuring Pr(U is useful) is large enough. In our de-
fault setting, we use c= 10, which makes the probability
exceed 0.999 when α=0.5 and 0.99 when α=0.6.

Inlier-priority Property in Scale Learning. The inlier-
priority property indicates that the network optimization is
inclined to prioritize inliers. Since the theoretical analysis of
DNNs is still intractable, we consider the same analyzable
case that has been used in (Wang et al., 2022), i.e., a feed-
forward structure with sigmoid activation. The penultimate
layer outputs u units, and the final softmax layer contains c
nodes. Network weights are initialized by a uniform distri-
bution [−1, 1]. Considering the kth element (1≤k≤ c) of
the prediction, the gradients w.r.t. the weights (denoted as
wk = {w(s,k)}us=1) are directly responsible for this output.
Let Lk be the kth position of the loss function of N training
data objects, and we can derive the expectation of gradient
magnitude of updating wk as follows:

E
[∥∥∇wkLk

∥∥2
2

]
=

u∑
s=1

E
[(N∑

i=1

∇w(s,k)
ℓ
(i)
k

)2]
=

u∑
s=1

N∑
i=1

N∑
j=1

E
[
∇w(s,k)

ℓ
(i)
k ∇w(s,k)

ℓ
(j)
k

]
.

(8)

5

Deep Anomaly Detection with Scale Learning

Table 1. Detection accuracy (AUC-ROC/AUC-PR ± standard deviation) of SLAD and its competing methods. The best detector per
dataset is boldfaced. ICL and GAAL run out of memory (OOM) on the ultra-high-dimensional dataset Thrombin.

DATA SLAD ICL NeuTraL GOAD RCA GAAL DSVDD iForest

A
U

C
-R

O
C

Thyroid 0.995 ± 0.001 0.974 ± 0.015 0.985 ± 0.002 0.952 ± 0.005 0.934 ± 0.005 0.768 ± 0.096 0.930 ± 0.032 0.988 ± 0.002
Arrthymia 0.825 ± 0.007 0.784 ± 0.048 0.805 ± 0.025 0.806 ± 0.008 0.767 ± 0.009 0.704 ± 0.082 0.807 ± 0.008 0.814 ± 0.007
Waveform 0.812 ± 0.047 0.649 ± 0.048 0.621 ± 0.023 0.604 ± 0.022 0.626 ± 0.019 0.732 ± 0.074 0.516 ± 0.012 0.718 ± 0.019
UNSW-NB15 0.941 ± 0.004 0.918 ± 0.010 0.916 ± 0.017 0.903 ± 0.003 0.935 ± 0.001 0.796 ± 0.060 0.902 ± 0.028 0.758 ± 0.016
Bank 0.730 ± 0.004 0.724 ± 0.014 0.720 ± 0.018 0.587 ± 0.006 0.699 ± 0.003 0.655 ± 0.032 0.608 ± 0.057 0.723 ± 0.008
Thrombin 0.939 ± 0.007 OOM 0.460 ± 0.033 0.839 ± 0.011 0.916 ± 0.000 OOM 0.520 ± 0.046 0.898 ± 0.008
PageBlocks 0.972 ± 0.004 0.909 ± 0.025 0.961 ± 0.002 0.670 ± 0.006 0.864 ± 0.002 0.765 ± 0.032 0.904 ± 0.009 0.927 ± 0.005
Amazon (tab) 0.605 ± 0.007 0.592 ± 0.005 0.570 ± 0.036 0.500 ± 0.000 0.538 ± 0.008 0.495 ± 0.032 0.539 ± 0.013 0.565 ± 0.008
Yelp (tab) 0.658 ± 0.014 0.664 ± 0.009 0.627 ± 0.027 0.501 ± 0.000 0.585 ± 0.008 0.584 ± 0.039 0.593 ± 0.032 0.609 ± 0.007
MVTec (tab) 0.812 ± 0.009 0.778 ± 0.010 0.788 ± 0.009 0.666 ± 0.030 0.663 ± 0.022 0.675 ± 0.026 0.806 ± 0.014 0.757 ± 0.011

A
U

C
-P

R

Thyroid 0.921 ± 0.012 0.726 ± 0.070 0.824 ± 0.018 0.778 ± 0.008 0.654 ± 0.012 0.429 ± 0.133 0.470 ± 0.030 0.783 ± 0.037
Arrthymia 0.604 ± 0.006 0.572 ± 0.038 0.589 ± 0.022 0.631 ± 0.005 0.562 ± 0.009 0.505 ± 0.071 0.646 ± 0.008 0.633 ± 0.021
Waveform 0.432 ± 0.132 0.123 ± 0.040 0.095 ± 0.014 0.079 ± 0.004 0.088 ± 0.008 0.148 ± 0.060 0.059 ± 0.002 0.111 ± 0.005
UNSW-NB15 0.858 ± 0.003 0.859 ± 0.005 0.811 ± 0.014 0.813 ± 0.005 0.542 ± 0.009 0.470 ± 0.230 0.794 ± 0.028 0.111 ± 0.006
Bank 0.470 ± 0.003 0.468 ± 0.015 0.445 ± 0.018 0.300 ± 0.006 0.423 ± 0.002 0.370 ± 0.050 0.315 ± 0.059 0.449 ± 0.013
Thrombin 0.625 ± 0.014 OOM 0.038 ± 0.002 0.648 ± 0.013 0.587 ± 0.003 OOM 0.074 ± 0.023 0.421 ± 0.017
PageBlocks 0.872 ± 0.016 0.799 ± 0.033 0.871 ± 0.008 0.449 ± 0.010 0.739 ± 0.004 0.500 ± 0.034 0.746 ± 0.017 0.705 ± 0.015
Amazon (tab) 0.120 ± 0.002 0.117 ± 0.001 0.114 ± 0.011 0.095 ± 0.000 0.105 ± 0.003 0.099 ± 0.008 0.107 ± 0.005 0.112 ± 0.002
Yelp (tab) 0.153 ± 0.005 0.153 ± 0.003 0.153 ± 0.015 0.097 ± 0.000 0.127 ± 0.005 0.125 ± 0.012 0.135 ± 0.013 0.132 ± 0.003
MVTec (tab) 0.778 ± 0.009 0.740 ± 0.009 0.751 ± 0.011 0.606 ± 0.032 0.604 ± 0.022 0.618 ± 0.028 0.771 ± 0.017 0.698 ± 0.011

E
[
∥∇wk

Lk∥22
]

essentially quantifies the influence of train-
ing data on network optimization. We respectively denote
the gradients induced by inliers and anomalies as∇inlier

wk
Lk

and ∇anom
wk

Lk. Based on Taylor series expansion and gradi-
ents computation, we derive the following approximation
(detailed derivation in Appendix D):

E
[
∥∇inlier

wk
Lk∥22

]
E
[
∥∇anom

wk Lk∥22
] ≈ N2

inlier
N2

anom
. (9)

Due to the imbalanced nature (i.e., Ninlier≫Nanom), inliers
govern the optimization process by inducing a significantly
larger gradient magnitude. Therefore, the neural network
can learn normal regularities and patterns in inliers, thereby
exposing anomalies in the inference stage.

4. Experiments
Datasets. Ten datasets are employed in our experiments.
Thyroid and Arrhythmia are two medical datasets out of four
popular benchmarks used in existing studies of this research
line (Bergman & Hoshen, 2020; Qiu et al., 2021). The other
two datasets in this suite are from KDD99, while KDD99 is
broadly abandoned as virtually all anomalies can be detected
via one-dimensional marginal distributions. Instead, a mod-
ern intrusion detection dataset, UNSW-NB15, is exploited.
Besides, our experiments also base on several datasets from
different domains including Waveform (physics), Bank (mar-
keting), Thrombin (biology), and PageBlocks (web). These
datasets are commonly used in anomaly detection literature
(Pang et al., 2021; Campos et al., 2016). We employ tabular
version of three vision/NLP datasets including MVTec (tab),
Amazon (tab), and Yelp (tab), which are provided by a recent
anomaly detection benchmark study (Han et al., 2022).

Evaluation Protocol. We follow the mainstream experi-
mental setting of this research line (Bergman & Hoshen,
2020; Qiu et al., 2021; Shenkar & Wolf, 2022) by using
50% of normal samples for training, while the testing set
contains the other half of normal samples as well as all the
anomalies Following (Campos et al., 2016; Pang et al., 2019;
Wang et al., 2022; Han et al., 2022; Xu et al., 2019), two
evaluation metrics, the area under the Receiver-Operating-
Characteristic curve (AUC-ROC) and the area under the
Precision-Recall curve (AUC-PR), are employed. These
two metrics can impartially evaluate the detection perfor-
mance, while not posing any assumption on the anomaly
threshold. Unless otherwise stated, the reported metrics are
averaged results over five independent runs.

Baseline Methods. Seven state-of-the-art baselines are uti-
lized. ICL (Shenkar & Wolf, 2022), NeuTraL (Qiu et al.,
2021), and GOAD (Bergman & Hoshen, 2020) are con-
trastive self-supervised methods. RCA (Liu et al., 2021)
and GAAL (Liu et al., 2019) are reconstruction-based gen-
erative methods. We also utilize DSVDD (Ruff et al., 2018),
which is a deep anomaly detection method based on one-
class classification. iForest (Liu et al., 2008) is a popular
traditional (non-deep) anomaly detection baseline.

4.1. Anomaly Detection Performance

Effectiveness in Real-world Datasets. Table 1 illustrates
the detection performance in terms of AUC-ROC and AUC-
PR, of our model SLAD and the competing methods. SLAD
outperforms its state-of-the-art competing methods on eight
out of ten datasets according to both two evaluation metrics.
SLAD averagely obtains 7%-21% AUC-ROC improvement
and 15%-61% AUC-PR gain over its seven contenders. Par-

6

Deep Anomaly Detection with Scale Learning

1 3 5 7 9
#Classes in normal data

0.5

0.6

0.7

0.8

0.9

1.0
AU

C-
RO

C

SLAD
ICL

NeuTraL
GOAD

RCA
GAAL

DSVDD
iForest

1 3 5 7 9
#Classes in normal data

60%

70%

80%

90%

100%

De
cr

ea
se

d
ra

tio

 = 10.4%

Figure 3. (Left) AUC-ROC with 95% confidence intervals on
datasets with different numbers of classes considered to be in-
liers. (Right) The proportion of decline compared to only one class
appeared in normal data.

ticularly, on the popular benchmark Thyroid, SLAD raises
the state-of-the-art AUC-PR by 10 points from 0.82 to
0.92. We also achieve over 190% AUC-PR leap (from
0.15 to 0.43) on Waveform. Contrastive self-supervised
counterparts also show more competitive performance than
reconstruction- or one-class-based methods. The superiority
of SLAD validates the effectiveness of our scale learning
task in accurately modeling normal regularities of the inher-
ent data structure. Note that SLAD performs less effectively
on Arrhythmia that has limited data instances (less than 500)
since the success of neural networks generally relies on suf-
ficient training data. Nevertheless, SLAD still obtains the
best AUC-ROC performance on Arrhythmia.

Capability to Handle Complicated Normal Data. This
experiment investigates whether discriminative models can
better handle complicated normal data than reconstruction-
or one-class-based baselines. Following (Qiu et al., 2021),
this question is empirically studied by increasing the vari-
ability of inliers. We use F-MNIST, a popular multi-class
dataset, by treating each pixel as one feature. A suite
of datasets is created by sampling data from one class as
anomalies and increasing the number of classes considered
to be inliers. For each case, we use nine different combina-
tions of selected normal classes and five random seeds per
class combination, producing 405 (9×9×5) datasets in total.

Figure 3 illustrates the AUC-ROC results and the decline
proportion w.r.t. the increasing of class numbers in normal
data. As each case corresponds to a group of datasets, we
also report the 95% confidence interval in addition to the
average performance in the left panel. Each detector has
a comparably good performance when only one original
class appears in inliers. The increased variety in the normal
class makes the task more challenging. SLAD downgrades
by about 10% and still achieves over 0.8 AUC-ROC when
the normal class contains nine prototypes, while over 30%
decline is shown in generative models. Reducing errors in
point-wise details is hard to converge when the normal class

#epochs

Lo
ss

 v
al

ue
s

Thyroid

inlier anomaly

#epochs

Arrhythmia

#epochs

Waveform

#epochs

UNSW-NB15

#epochs

Bank

#epochs

Lo
ss

 v
al

ue
s

Thrombin

#epochs

PageBlocks

#epochs

Amazon (tab)

#epochs

Yelp (tab)

#epochs

MVTec (tab)

Figure 4. Loss values of testing inliers/anomalies during training.

is complicated. The one-class assumption also does not
hold when there are more than two original classes consid-
ered to be inliers. By contrast, SLAD, ICL, NeuTraL, and
GOAD better handle the increased complexity of the nor-
mal class. The superiority over contrastive self-supervised
counterparts validates the technical advantages of learning
to rank subspace-based transformed data compared to only
learning the discrimination between transformations.

4.2. A Closer Look at Scale Learning

This experiment further investigates why scale learning can
be used for anomaly detection by specifically validating the
inlier-priority property and examining whether the learned
regularities and patterns are class-dependent.

Validating the Inlier-priority Property. To look into
the optimization process of scale learning, we illustrate
loss values of testing inliers and anomalies per training
epoch, which empirically examines the inlier-priority prop-
erty. Training data are contaminated by 2% anomalies. Loss
values ℓ of testing inliers and anomalies are respectively
calculated, and Figure 4 shows box plots of loss values.
Neural network inclines to model the inlier class, and test-
ing inliers generally yield lower errors. Compared to inliers,
anomalies present significantly higher distributional diver-
gence between derived predictions and targets, and thus two
classes can be gradually separated. On datasets Amazon
(tab) and Yelp (tab), anomalies also yield clearly reduced
loss values. It might be because we employ the adapted
tabular version of these two datasets, and their tabular rep-
resentations are not embedded with informative features to
distinguish anomalies. Other state-of-the-art competitors
also fail to produce good detection results on these two
datasets as shown in Table 1.

Validating the Class-dependency. The anomaly detec-
tion performance on the used ten datasets validates that the
learned regularities cannot apply to anomalies. We further
delve into this question by employing the multi-class F-

7

Deep Anomaly Detection with Scale Learning

Loss values

*class 0
class 1
class 2
class 3
class 4
class 5
class 6
class 7
class 8
class 9

Loss values

class 0
class 1
class 2
class 3
class 4
class 5
class 6
class 7
class 8

*class 9

Figure 5. Loss values of data from the trained class and other new
classes that only appear in the testing stage. * indicates the trained
class. The red dashed line marks the upper quartile loss values of
data instances from the trained class.

MNIST dataset. After training on one class, if data instances
from new classes do not comply with the learned regularities
and patterns embedded in the scale-ranking mechanism, the
learned network cannot make expected predictions for data
instances from new classes. Therefore, this experiment tests
whether the learned network generalizes to other classes by
calculating loss values of data instances in new classes com-
pared to the trained class. Two cases are set by employing
different original classes, i.e., class 0 (T-shirts) and class 1
(trousers), for training. As shown in Figure 5, loss values ℓ
per class are denoted in box plots. The data instances from
the trained class can well fit the learned network, deriving
obviously lower errors. By contrast, the loss values of other
classes are higher. The lower quartile of new classes is much
higher than or comparable to the upper quartile of the trained
class. These results further validate that our scale learning
is class-dependent, thus further supporting its application
in anomaly detection. Please note that, in the left panel of
Figure 5, loss values in class 3 are much lower than that in
other new classes since T-shirts in class 0 are semantically
similar to pullovers in class 3. It is more challenging to
distinguish this class. Nonetheless, data instances from this
new class still show observable higher divergence than the
trained class.

4.3. Ablation Study
This experiment answers two questions: (Q1) Can several
designs in the transformation function T and the labeling
function G be replaced with alternatives? (Q2) Is it neces-
sary to define scale learning as a distribution alignment task?
We first validate the choice of our random affine transforma-
tion function T by replacing it with a zero padding function
in w/ TZero and deeper feed-forward network structure in
w/ TMLP, and the feature weight of the labeling function is re-
moved in w/o Gω . We design another three ablated versions
(w/ Lce, w/ Lmse, and w/ Ldcl), which define scale learning
as classification, regression, and contrastive learning using
the cross-entropy loss, the mean-squared error, and the de-
terministic contrastive loss (Qiu et al., 2021), respectively.
SLAD is compared with the above six ablated versions. Ta-
ble 2 reports the AUC-ROC results. SLAD outperforms

Table 2. AUC-ROC performance with improvement rates of
SLAD over its ablation variants per dataset. Positive rates are
boldfaced. w/ TZero cannot handle the ultra-high-dimensional
data Thrombin. As SLAD only calculates feature weights on
low-dimensional data, w/o Gω is performed on three datasets.

Ablation on the Creation of Supervisory Signals

Data SLAD w/ TZero w/ TMLP w/o Gω

Thyroid 0.995 0.992 (0.3%) 0.995 (0.0%) 0.950 (4.7%)
Arrthymia 0.825 0.814 (1.4%) 0.821 (0.5%) -
Waveform 0.812 0.759 (7.0%) 0.767 (5.9%) 0.800 (1.5%)
UNSW-NB15 0.937 0.933 (0.4%) 0.907 (3.3%) -
Bank 0.730 0.724 (0.8%) 0.717 (1.8%) -
Thrombin 0.941 0.698 (34.8%) -
PageBlocks 0.972 0.971 (0.1%) 0.967 (0.5%) 0.966 (0.6%)
Amazon (tab) 0.608 0.552 (10.1%) 0.599 (1.5%) -
Yelp (tab) 0.661 0.612 (8.0%) 0.654 (1.1%) -
MVTec (tab) 0.812 0.775 (4.8%) 0.787 (3.2%) -

Ablation on Scale Learning

Data SLAD w/ Lce w/ Lmse w/ Ldcl

Thyroid 0.995 0.674 (47.6%) 0.983 (1.2%) 0.978 (1.7%)
Arrthymia 0.825 0.728 (13.3%) 0.813 (1.5%) 0.805 (2.5%)
Waveform 0.812 0.527 (54.1%) 0.473 (71.7%) 0.770 (5.5%)
UNSW-NB15 0.937 0.914 (2.5%) 0.900 (4.1%) 0.922 (1.6%)
Bank 0.730 0.517 (41.2%) 0.732 (-0.3%) 0.714 (2.2%)
Thrombin 0.941 0.704 (33.7%) 0.493 (90.9%) 0.626 (50.3%)
PageBlocks 0.972 0.742 (31.0%) 0.979 (-0.7%) 0.976 (-0.4%)
Amazon (tab) 0.608 0.536 (13.4%) 0.602 (1.0%) 0.610 (-0.3%)
Yelp (tab) 0.661 0.556 (18.9%) 0.666 (-0.8%) 0.676 (-2.2%)
MVTec (tab) 0.812 0.646 (25.7%) 0.764 (6.3%) 0.776 (4.6%)

w/ TZero and w/ TMLP on most of the used datasets, which
validates the choice of random affine transformation when
creating representations. Feature weights bring an approxi-
mate 5% improvement on the popular Thyroid benchmark.
Besides, our distribution alignment-based scale learning
illustrates better results than other canonical proxy tasks,
which illustrates its superiority. It is interesting to note that
w/ Lmse obtains superior average performance than w/ Lce,
which implies that using clear quantitative labels may better
teach the network than qualitative learning in classification.
w/ Ldcl achieves relatively better performance since it also
treats a group of transferred data as one training sample and
uses the contrastive loss, i.e., it also optimizes predictions
in a relative manner.

5. Conclusions
This paper introduces SLAD, a deep anomaly detection
method for tabular data. The core novelty of our work in-
cludes the scale concept in tabular data and a new kind of
data-driven supervisory signals based on scales. This super-
vision essentially learns the ranking of representations trans-
formed from varied feature subspaces. It is different from
current point-wise generative models and classification-,
comparison-, and mapping-based discriminative models,
presenting a new manner of self-supervised learning. By
harnessing this supervision, our model learns inherent regu-
larities and patterns related to the data structure, which of-

8

Deep Anomaly Detection with Scale Learning

fers valuable high-level information for identifying anoma-
lies. Theoretically, we analyze how to ensure the effec-
tiveness of the created data sample in revealing anomalies
by determining its shape, and we also examine the inlier-
priority property to support the application of scale learning
in anomaly detection. Extensive experiments manifest that
SLAD significantly outperforms various kinds of state-of-
the-art anomaly detectors (including generative, contrastive,
and one-class methods) and shows clear superiority when
handling complicated data with highly varied inliers.

Acknowledgements
This work was supported by the National Key R&D Pro-
gram of China (No.2022ZD0115302), the National Natural
Science Foundation of China (No.62002371, No.61379052),
the Science Foundation of Ministry of Education of
China (No.2018A02002), the Postgraduate Scientific Re-
search Innovation Project of Hunan Province (CX20210049,
CX20210028), the Natural Science Foundation for Distin-
guished Young Scholars of Hunan Province (No.14JJ1026),
and the Foundation of National University of Defense Tech-
nology (No. ZK21-17).

References
Aggarwal, C. C. Outlier analysis. Springer, 2017. doi:

https://doi.org/10.1007/978-1-4614-6396-2.

Anand, R., Mehrotra, K. G., Mohan, C. K., and Ranka, S.
An improved algorithm for neural network classification
of imbalanced training sets. IEEE Transactions on Neural
Networks, 4(6):962–969, 1993.

Bahri, D., Jiang, H., Tay, Y., and Metzler, D. Scarf: Self-
supervised contrastive learning using random feature cor-
ruption. In International Conference on Learning Repre-
sentations, 2022.

Bergman, L. and Hoshen, Y. Classification-based anomaly
detection for general data. In International Conference
on Learning Representations, 2020.

Campos, G. O., Zimek, A., Sander, J., Campello, R. J., Mi-
cenková, B., Schubert, E., Assent, I., and Houle, M. E.
On the evaluation of unsupervised outlier detection: mea-
sures, datasets, and an empirical study. Data mining and
knowledge discovery, 30(4):891–927, 2016.

Chen, J., Sathe, S., Aggarwal, C., and Turaga, D. Outlier
detection with autoencoder ensembles. In SIAM Inter-
national Conference on Data Mining, pp. 90–98. SIAM,
2017.

Golan, I. and El-Yaniv, R. Deep anomaly detection us-
ing geometric transformations. In Advances in Neural
Information Processing Systems, pp. 9758–9769, 2018.

Goyal, S., Raghunathan, A., Jain, M., Simhadri, H. V., and
Jain, P. DROCC: Deep robust one-class classification.
In Proceedings of the 37th International Conference on
Machine Learning, volume 119, pp. 3711–3721. PMLR,
2020.

Han, S., Hu, X., Huang, H., Jiang, M., and Zhao, Y. Ad-
bench: Anomaly detection benchmark. In Advances in
Neural Information Processing Systems: Datasets and
Benchmarks Track, 2022.

Hendrycks, D., Mazeika, M., and Dietterich, T. Deep
anomaly detection with outlier exposure. In International
Conference on Learning Representations, 2019.

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and
Winther, O. Autoencoding beyond pixels using a learned
similarity metric. In Proceedings of the 33rd Interna-
tional Conference on Machine Learning, volume 48, pp.
1558–1566. PMLR, 2016.

Li, C.-L., Sohn, K., Yoon, J., and Pfister, T. Cutpaste:
Self-supervised learning for anomaly detection and lo-
calization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9664–
9674, 2021.

Liu, B., Wang, D., Lin, K., Tan, P.-N., and Zhou, J. Rca: A
deep collaborative autoencoder approach for anomaly de-
tection. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, pp. 1505–
1511, 2021.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation forest. In
International Conference on Data Mining, pp. 413–422.
IEEE, 2008.

Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M., and
He, X. Generative adversarial active learning for unsuper-
vised outlier detection. IEEE Transactions on Knowledge
and Data Engineering, 32(8):1517–1528, 2019.

Liznerski, P., Ruff, L., Vandermeulen, R. A., Franks, B. J.,
Kloft, M., and Muller, K. R. Explainable deep one-class
classification. In International Conference on Learning
Representations, 2021.

Pang, G., Shen, C., and van den Hengel, A. Deep anomaly
detection with deviation networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pp. 353–362, 2019.

Pang, G., Yan, C., Shen, C., Hengel, A. v. d., and Bai, X.
Self-trained deep ordinal regression for end-to-end video
anomaly detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 12173–12182, 2020.

9

Deep Anomaly Detection with Scale Learning

Pang, G., Shen, C., Cao, L., and Hengel, A. V. D. Deep
learning for anomaly detection: A review. ACM Comput-
ing Surveys, 54(2), 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in Neural Information
Processing Systems, 32, 2019.

Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., and Rudolph,
M. Neural transformation learning for deep anomaly
detection beyond images. In Proceedings of the 38th
International Conference on Machine Learning, volume
139, pp. 8703–8714. PMLR, 2021.

Qiu, C., Li, A., Kloft, M., Rudolph, M., and Mandt, S. La-
tent outlier exposure for anomaly detection with contami-
nated data. In Proceedings of the 39th International Con-
ference on Machine Learning, volume 162, pp. 18153–
18167. PMLR, 2022.

Ristea, N.-C., Madan, N., Ionescu, R. T., Nasrollahi, K.,
Khan, F. S., Moeslund, T. B., and Shah, M. Self-
supervised predictive convolutional attentive block for
anomaly detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 13576–13586, 2022.

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Sid-
diqui, S. A., Binder, A., Müller, E., and Kloft, M. Deep
one-class classification. In Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80,
pp. 4393–4402, 2018.

Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Montavon,
G., Samek, W., Kloft, M., Dietterich, T. G., and Müller,
K.-R. A unifying review of deep and shallow anomaly
detection. Proceedings of the IEEE, 109(5):756–795,
2021.

Sehwag, V., Chiang, M., and Mittal, P. Ssd: A unified
framework for self-supervised outlier detection. In Inter-
national Conference on Learning Representations, 2021.

Shenkar, T. and Wolf, L. Anomaly detection for tabular
data with internal contrastive learning. In International
Conference on Learning Representations, 2022.

Tack, J., Mo, S., Jeong, J., and Shin, J. Csi: novelty detec-
tion via contrastive learning on distributionally shifted
instances. In Advances in Neural Information Processing
Systems, pp. 11839–11852, 2020.

Wang, S., Zeng, Y., Yu, G., Cheng, Z., Liu, X., Zhou, S.,
Zhu, E., Kloft, M., Yin, J., and Liao, Q. E 3 outlier: A
self-supervised framework for unsupervised deep outlier
detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(3):2952–2969, 2022.

Wang, Z., Wang, Y., Xu, H., and Wang, Y. Effective anomaly
detection based on reinforcement learning in network
traffic data. In Proceedings of the IEEE 27th International
Conference on Parallel and Distributed Systems, pp. 299–
306. IEEE, 2021.

Wolpert, D. H. and Macready, W. G. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, 1997.

Xia, Y., Cao, X., Wen, F., Hua, G., and Sun, J. Learning
discriminative reconstructions for unsupervised outlier re-
moval. In International Conference on Computer Vision,
pp. 1511–1519, 2015.

Xu, H., Wang, Y., Wang, Y., and Wu, Z. Mix: A joint learn-
ing framework for detecting both clustered and scattered
outliers in mixed-type data. In International Conference
on Data Mining, pp. 1408–1413. IEEE, 2019.

Xu, H., Wang, Y., Jian, S., Huang, Z., Wang, Y., Liu, N.,
and Li, F. Beyond outlier detection: Outlier interpretation
by attention-guided triplet deviation network. In Proceed-
ings of the Web Conference, pp. 1328–1339, 2021.

Xu, H., Pang, G., Wang, Y., and Wang, Y. Deep isola-
tion forest for anomaly detection. IEEE Transactions on
Knowledge and Data Engineering, pp. 1–14, 2023. doi:
10.1109/TKDE.2023.3270293.

Yao, T., Yi, X., Cheng, D. Z., Yu, F., Chen, T., Menon,
A., Hong, L., Chi, E. H., Tjoa, S., Kang, J., et al. Self-
supervised learning for large-scale item recommenda-
tions. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management,
pp. 4321–4330, 2021.

Yoon, J., Zhang, Y., Jordon, J., and van der Schaar, M. Vime:
Extending the success of self-and semi-supervised learn-
ing to tabular domain. Advances in Neural Information
Processing Systems, 33:11033–11043, 2020.

Zhang, Z. and Deng, X. Anomaly detection using improved
deep svdd model with data structure preservation. Pattern
Recognition Letters, 148:1–6, 2021.

Zhao, Y., Nasrullah, Z., and Li, Z. Pyod: A python tool-
box for scalable outlier detection. Journal of Machine
Learning Research, 20:1–7, 2019.

Zhou, C. and Paffenroth, R. C. Anomaly detection with
robust deep autoencoders. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 665–674, 2017.

10

Deep Anomaly Detection with Scale Learning

A. Proof of Lemma 3.1
Proof. The subspace S is uniformly sampled from the full feature space F . We assume the sampling process is with
replacement, and the probability of sampling one effective feature is |G|

|F| . The number of effective features in a subspace

with j elements is a variable that follows a binominal distribution, i.e., X ∼ b(j, |G|
|F|), and the probability function of X is:

Prj(X=k) =

(
j

k

)
(
|G|
|F|

)k(1− |G|
|F|

)j−k, (10)

The length of the sampled subspace follows a discrete uniform distribution of {1, · · · , |F|}. Therefore, the probability of
the subspace S being useful (i.e., S contains at least α|G| effective features of G) can be derived as follows.

Pr(S is useful) =
1

|F|

|F|∑
j=1

Prj(X ≥ α|G|). (11)

As Prj(X ≥ α|G|) is zero when j < α|G|, based on Equation 10, the probability of the sampled subspace S containing at
least α|G| effective features is:

Pr(S is useful) =
1

|F|

|F|∑
j=α|G|

j∑
k=α|G|

Prj(X = k)

=
1

|F|

|F|∑
j=α|G|

j∑
k=α|G|

(
j

k

)
(
|G|
|F|

)k(1− |G|
|F|

)j−k

. (12)

B. Proof of Theorem 3.2
Proof. In this proof, for the simplicity of notation, we write |F|, |G|, α|G| as n, m, and q, repetitively, and Pr(S is useful)
is abbreviated as Pr.

We first show that Pr monotonically decreases with the increase of n.

Prn − Prn+1 =
1

n

n∑
j=q

j∑
k=q

(
j

k

)
(
m

n
)k(1− m

n
)j−k − 1

n+ 1

n+1∑
j=q

j∑
k=q

(
j

k

)
(

m

n+ 1
)k(1− m

n+ 1
)j−k

=
1

n

n∑
j=q

j∑
k=q

(
j

k

)
(
m

n
)k(1− m

n
)j−k − 1

n+ 1

n∑
j=q

j∑
k=q

(
j

k

)
(

m

n+ 1
)k(1− m

n+ 1
)j−k

− 1

n+ 1

n+1∑
k=q

(
n+ 1

k

)
(

m

n+ 1
)k(1− m

n+ 1
)n+1−k

≥ 1

n

n∑
j=q

j∑
k=q

(
j

k

)
1

n
(
m

n
)k(1− m

n
)n−k −

n∑
k=q

(
n

k

)
1

n+ 1
(

m

n+ 1
)k(1− m

n+ 1
)n−k

− 1

n+ 1

n∑
k=q

(
n+ 1

k

)
(

m

n+ 1
)k(1− m

n+ 1
)n+1−k − 1

n+ 1
(

m

n+ 1
)n+1

≥ 1

n
(
m

n
)n(1− m

n
)n−n − 1

n+ 1
(

m

n+ 1
)n(1− m

n+ 1
)n−n

− n+ 1

n+ 1− n

1

n+ 1
(

m

n+ 1
)n(1− m

n+ 1
)n+1−n − 1

n+ 1
(

m

n+ 1
)n+1

≥0

(13)

11

Deep Anomaly Detection with Scale Learning

Therefore, we have

1

n

n∑
j=q

j∑
k=q

(
j

k

)
(
m

n
)k(1− m

n
)j−k ≥ lim

n→∞

1

n

n∑
j=q

j∑
k=q

(
j

k

)
(
m

n
)k(1− m

n
)j−k. (14)

We note that

lim
n→∞

1

n

n∑
j=q

q−1∑
k=0

(
j

k

)
(
m

n
)k(1− m

n
)j−k = lim

n→∞

n∑
j=q

q−1∑
k=0

j!mk

(j − k)!k!nk+1
(1− m

n
)j . (15)

In addition,

lim
n→∞

n∑
j=q

j!mk

(j − k)!k!nk+1
(1− m

n
)j =

1

k!m
lim
n→∞

n∑
j=1

j!

(j − k)!
(
m

n
)k+1(1− m

n
)j

=
1

k!m
lim
n→∞

n∑
j=1

jk(
m

n
)k+1(1− m

n
)j

=
e−m

k!m

(
k!em − k!− k!m−mk −O(mk−1)

)
≤ 1

m
.

(16)

According to the above inequality, we can derive the following results from Equation (15):

lim
n→∞

1

n

n∑
j=q

q−1∑
k=0

(
j

k

)
(
m

n
)k(1− m

n
)j−k ≤

q−1∑
k=0

1

m
≤ q

m
. (17)

Hence,

lim
n→∞

− 1

n

n∑
j=q

q−1∑
k=0

(
j

k

)
(
m

n
)k(1− m

n
)j−k ≥ − q

m

lim
n→∞

1

n

n∑
j=q

(
1−

q−1∑
k=0

(
j

k

)
(
m

n
)k(1− m

n
)j−k

)
≥ 1− q

m

lim
n→∞

1

n

n∑
j=q

j∑
k=q

(
j

k

)
(
m

n
)k(1− m

n
)j−k ≥ 1− q

m
,

(18)

As

lim
n→∞

1

n

n∑
j=q

j∑
k=q

(
j

k

)
(
m

n
)k(1− m

n
)j−k − (1− q

m
) =

e−m(q! +mq−1 +O(mq−1))

(q − 1)!m
, (19)

i.e., Equation (19) monotonically decreases when m is a large number.

Also,

lim
m→∞

(
lim

n→∞

1

n

n∑
j=q

j∑
k=q

(
j

k

)
(
m

n
)k(1− m

n
)j−k − (1− q

m
)

)
= 0. (20)

Based on Equation (18)(19)(20), we finally show the lower bound of the probability is

inf(Pr) = 1− q

m
= 1− α. (21)

12

Deep Anomaly Detection with Scale Learning

0 100 200 300 400
| |

0.75

0.77

0.79

0.81

Pr
(S

 is
 u

se
fu

l)

=0.25

0 100 200 300 400
| |

0.50

0.52

0.54

0.56

0.58
=0.5

0 100 200 300 400
| |

0.25

0.30

0.35

0.40 =0.75

0 100 200 300 400
| |

0.00
0.05
0.10
0.15
0.20
0.25 =1.0

=0.25 =0.5 =0.75 =1.0

Figure 6. Pr(S is useful) of different α and β settings w.r.t. the dimensionality of feature space.

C. Empirical Validation of Theorem 3.2
We further empirically inspect the lower bound of Pr(S is useful) in Theorem 3.2. Two ratios α and β are chosen from
{0.25, 0.5, 0.75, 1.0}, and the data dimensionality |F| ranges from 0 to 400. Figure 6 shows how probability Pr changes
w.r.t. different α, β, and |F|. The probability Pr monotonically decreases with the increase of |F|, which is also proved
in Appendix B. The function curves of Pr show a clear lower bound that is determined by the α value. As shown in four
represented α cases, the lower bound is shown to be 1− α, which is the same result as proved in Appendix B

D. Theoretical Derivation of the Inlier-Priority Property in Scale Learning
We first consider the gradient∇w(s,k)

ℓk in Equation (8). ℓk is the kth part of the summation in Equation (3), i.e.,

ℓk =
1

2
p̃k log(

p̃k
1
2 (p̃k + ỹk)

) +
1

2
ỹk log(

ỹk
1
2 (p̃k + ỹk)

). (22)

Thus, ∇w(s,k)
ℓk is given by

∇w(s,k)
ℓk =

∂ℓk
∂p̃k

∂p̃k
∂pk

∂pk
∂w(s,k)

=
1

2

(
log 2+log p̃k−log(ỹk+p̃k)

)
· p̃k(1−p̃k) · hs,

(23)

where pk is the prediction before the softmax layer, and hs is the output of the sth node in the penultimate layer.

We then consider E
[
∇w(s,k)

ℓ
(i)
k ∇w(s,k)

ℓ
(j)
k

]
. Let g(s,k)i,j (wk)=∇w(s,k)

ℓ
(i)
k ∇w(s,k)

ℓ
(j)
k . To simplify computation, we drive

the following function according to the second-order Taylor series expansion:

g
(s,k)
i,j (wk) ≈ g

(s,k)
i,j (µ) +∇wk

g
(s,k)
i,j (µ) · (wk − µ) +

1

2
(wk − µ)T · ∇2

wk
g
(s,k)
i,j (µ) · (wk − µ). (24)

where µ is the expectation of wk.

Given that the weights are initialized by a uniform distribution [−1, 1], we have µ(s,k)=0 and µ = 0, Hence,

E
[
g
(s,k)
i,j (wk)

]
≈ E

[
g
(s,k)
i,j (0)

]
+ E

[
∇wk

g
(s,k)
i,j (0)wk

]
+ E

[1
2
wT

k∇2
wk

g
(s,k)
i,j (0)wk

]
. (25)

The prediction pk is zero when network weights wk = 0, and after a softmax layer, p̃k = 1
c . As ỹk is a constant number, we

assume ỹk = 1
c here. In addition, E(w2

(s,k)) =
1
3 and E(w(s,k)w(t,k)) = 0 when s ̸= t. Hence, we have

E
[
g
(s,k)
i,j (wk)

]
≈ 1

6

u∑
t=1

c∑
l=1

∇2
wt,l

g
(s,k)
i,j (0). (26)

13

Deep Anomaly Detection with Scale Learning

To compute ∇2
wk

g
(s,k)
i,j (0), we first compute the following derivatives:

∇w(t,l)
p̃k = p̃k(δ(k, l)− p̃k) · ht,

∇w(t,l)
p̃l = p̃l(1− p̃l) · ht,

∇2
w(t,l)

p̃k = ht

(
(δ(k, l)− p̃l) · ∇w(t,l)

p̃k − p̃k · ∇w(t,l)
p̃l
)
.

(27)

where δ outputs whether two inputs are the same, i.e., δ(k, l) = 1 if k = l and δ(k, l) = 0 otherwise.

Therefore,

∇w(t,l)

(
p̃k(1− p̃k)(log 2 + log p̃k − log(

1

c
+ p̃k))

)
=
(
(1− 2p̃k)

(
log 2 + log p̃k − log(

1

c
+ p̃k)

)
+

1− p̃k
1 + c · p̃k

)
∇w(t,l)

p̃k,
(28)

and

∇2
w(t,l)

(
p̃k(1− p̃k)(log 2 + log p̃k − log(

1

c
+ p̃k))

)
=∇w(t,l)

((
(1− 2p̃k)

(
log 2 + log p̃k − log(

1

c
+ p̃k)

)
+

1− p̃k
1 + c · p̃k

)
∇w(t,l)

p̃k

)
=− 2

(
log 2 + log(p̃k)− log(

1

c
+ p̃k)

)(
∇w(t,l)

p̃k
)2

+ (1− 2p̃k)(
1

1 + c · p̃k
)
(
∇w(t,l)

p̃k
)2

−
(
1+c+c · p̃k

)(
∇w(t,l)

p̃k
)2 − c ·

(
∇w(t,l)

p̃k
)3

(1 + c · p̃k)2
+
(
(1−2p̃k)

(
log 2+log(p̃k)−log(

1

c
+p̃k)

)
+

1− p̃k
1+c · p̃k

)
∇2

w(t,l)
p̃k.

(29)

If k = l and w = 0, we have

∇w(t,l)

(
p̃k(1− p̃k)(log 2 + log p̃k − log(

1

c
+ p̃k))

)
=

(1− c)2

2c3
ht,

∇2
w(t,l)

(
p̃k(1− p̃k)(log 2 + log p̃k − log(

1

c
+ p̃k))

)
=

3(c− 3)(c− 1)2

4c4
(ht)

2.

(30)

If k ̸= l and w = 0, we have

∇w(t,l)

(
p̃k(1− p̃k)(log 2 + log p̃k − log(

1

c
+ p̃k))

)
=

1− c

2c3
ht,

∇2
w(t,l)

(
p̃k(1− p̃k)(log 2 + log p̃k − log(

1

c
+ p̃k))

)
=
−9 + 7c− 2c2

4c4
(ht)

2.

(31)

Hence,

1

6

u∑
t=1

c∑
l=1

∇2
wt,l

g
(s,k)
i,j (0)

=
1

6

1

4
h(i)
s h(j)

s

u∑
t=1

((c2 − c+ 1)(c− 1)3

4c6
h
(i)
t h

(j)
t

)
+

(c− 1)(3c3 − 14c2 + 16c− 9)

4c4
((h

(i)
t)2 + (h

(j)
t)2)).

(32)

The literature (Anand et al., 1993) has proved that the randomly initialized network have: E
[
h
(i)
s h

(j)
s

]
≈ 1

4 ,
E
[
(h

(i)
s)2(h

(j)
s)2

]
≈ 1

16 , and E
[
(h

(i)
s)3(h

(j)
s)

]
≈ 1

16 .

Therefore,

E
[
∥∇wk

Lk∥22
]
≈ N2u

((c3 + 1)(c− 1)3

1536c6(c+ 1)
+

(c− 1)(3c3 − 14c2 + 16c− 9)

768c4
)

≜ QN2,

(33)

14

Deep Anomaly Detection with Scale Learning

where Q is a constant related to c. The gradient magnitude is proportional to the size of training data.

We can then compare the magnitude induced by inliers and anomalies, i.e.,

E
[
∥∇inlier

wk
Lk∥22

]
E
[
∥∇anom

wk
Lk∥22

] ≈ Ninlier

Nanom
. (34)

E. Algorithms Details
We outline the detailed training procedure of SLAD in Algorithm 1. SLAD uses interactions between features to calculate
feature weights for the subsequent labeling function in Steps 4-5. This process is omitted by using a threshold δ in Steps 6-7
when handling high-dimensional data due to the huge computational overhead and the inaccuracy caused by irrelevant/noisy
features. SLAD creates scale-based supervisory signals via the transformation function T and labeling function G in Steps
9-20. Every c transformed vectors are contained in a U matrix in Steps 14-16, and finally creates r matrices in O attached
with labels in Y via Step 18. SLAD further trains a neural network Φ to rank scale values via the loss values ℓ and the loss
function L in Steps 21-28.

Algorithm 1 Training Procedure of SLAD
1: Input: Dataset X .
2: Output: Trained neural network Φ∗

3: Initialize ω ∈ RD as the a feature weight list.
4: if D < δ then
5: ω ←

{
1

|F|
∑|F|

k′=1

∣∣ cov(uk,uk′)
dev(uk)dev(uk′)

∣∣}D

k=1
6: else
7: ω ← 1
8: end if
9: Initialize O ← {}, Y ← {}

10: for j = 1 to r do
11: for x ∈ X do
12: Initialize a c× h matrix U for transferred data.
13: Initialize a c-dimensional vector y for scale-based labels.
14: for i = 1 to c do
15: Sample a feature subset from Si ⊆ F .
16: U(i,·) ← T (x(Si)), y(i) ← G(Si, h)
17: end for
18: O ← O ∪U, Y ← Y ∪ y
19: end for
20: end for
21: Initialize parameters in neural network Φ.
22: repeat
23: repeat
24: Sample mini-batch training data Bx ∼ O, By ∼ Y .

25: L← EU∼Bx,y∼By

[
ℓ
(
σ(Φ(U))∥σ(y)

)]
26: Update network parameters according to L
27: until Reach maximum number of mini-batches
28: until Reach maximum training epochs
29: return: Φ∗

F. Datasets
Table 3 reports the domains of the used datasets and their statistical information including data size, dimensionality, the
number of anomalies (#anom), and anomaly percentage to the whole data size (ratio). These datasets are publicly available
and they are broadly used in related literature (Han et al., 2022; Shenkar & Wolf, 2022; Bergman & Hoshen, 2020; Qiu
et al., 2021; Xu et al., 2023). In UNSW-NB15, we use the network traffic of “DoS” attack as anomalies.

15

Deep Anomaly Detection with Scale Learning

Table 3. Dataset information. Data size and dimensionality indicate the number of data instances, and the number of features. #anom and
ratio denote the number of anomalies and the abnormal percentage over all the data instances. The statistical information of MVTec (tab)
is the average value over its fifteen sub-datasets.

Dataset Domain Data size Dimensionality #anom ratio

Thyroid Healthcare 3,772 6 93 2.5%
Arrhythmia Healthcare 452 274 66 14.6%
Waveform Physics 3,443 21 100 2.9%
UNSW-NB15 Intrusion detection 96,000 196 3,000 3.1%
Bank Marketing 41,188 62 4,640 11.3%
Thrombin Biology 1,909 139,351 42 2.2%
PageBlocks Web 5,393 10 510 9.5%
Amazon (tab) NLP 10,000 768 500 5.0%
Yelp (tab) NLP 10,000 768 500 5.0%
MVTec (tab) CV 357 512 84 23.5%

G. Implementation Details
For SLAD, we use h=128 in the transformation function to represent sub-vectors to a unified 128-dimensional frame. Our
transformation function uses c and r to respectively control the number of transferred data in each training sample and
the repeat times. We use c=10 and r=20 by default. In the labeling function G, we use δ=50 as the threshold to omit
the correlation-based weighting function. The magnification factor γ in G is set as 200 by default. All the deep anomaly
detectors use a 1e-3 learning rate, and the mini-batch size is 128. Multi-layer perceptron network is exploited for these deep
detectors except GOAD which uses the default convolutional network. We use the LeakyReLU function as the non-linear
activation layer, and the hidden layer contains 100 neural units. For ICL, NeuTraL, GOAD, and RCA, the representation
dimensionality is set as 128, which is the same as h in SLAD. These datasets are split into three groups, i.e., datasets with
smaller sizes including Thyroid, Arrhythmia, and Waveform, transferred CV dataset MVTec (tab), and other datasets. We
vary the number of training epochs from {10, 20, 50, 100} for three categories and report empirically good results.

Our experiments are conducted on a workstation with Intel Xeon Silver 4210R CPU, a single NVIDIA TITAN RTX GPU,
and 64 GB RAM. All the anomaly detection methods used in our experiments are implemented in Python. Deep detectors
(SLAD, ICL, NeuTraL, GOAD, RCA) use the PyTorch framework (Paszke et al., 2019). We implement them in the DeepOD
package (https://github.com/xuhongzuo/deepod). The implementation of GAAL is taken from the PyOD
package (Zhao et al., 2019), and the non-deep baseline iForest is implemented in the Scikit-learn package. The source code
of SLAD is available at https://github.com/xuhongzuo/scale-learning.

H. Additional Empirical Results
H.1. Effectiveness on ADBench

We further employ ADBench (Han et al., 2022), the latest anomaly detection benchmark collection of tabular data, which
consists of 47 classical tabular datasets. These datasets are from various domains and contain varied sizes, dimensionality,
anomaly types, and noise levels. It is very challenging to be the universal winner in all cases, as has been suggested in the
no-free-lunch theorem (Wolpert & Macready, 1997). Therefore, we focus on the overall performance on this large-scale
benchmark. We employ the average rank and the number/percentage of cases that each anomaly detector ranks within the
Top2/Top4 positions among 8 anomaly detector candidates (our model and seven contenders). Table 4 shows the experiment
results. Our method SLAD successfully outperforms all of its seven state-of-the-art competing methods according to six
evaluation metrics. It is also noteworthy that iForest is a powerful baseline, even if its workflow is very simple. In addition,
the advanced self-supervised methods ICL and NeuTraL show competitive AUC-PR performance. Nevertheless, our method
still leads to new state-of-the-art detection accuracy across this comprehensive benchmark collection.

H.2. Robustness w.r.t. Different Contamination Levels in Training Data

Recall that we follow the commonly used experimental protocol (half of the normal samples for training and the rest of
normal data in addition to all the anomalies for testing) in Section 4.1. However, in real-world applications, training data
might be contaminated by unknown anomalies, Thus, we investigate the robustness w.r.t. different contamination ratios

16

https://github.com/xuhongzuo/deepod
https://github.com/xuhongzuo/scale-learning

Deep Anomaly Detection with Scale Learning

Table 4. Detection performance on a benchmark collection with 47 datasets. Avg. Rank indicates the average ranking of all the datasets.
#Top2 and #Top4 respectively count the times that each anomaly detector rank within the Top2 and Top4 positions, and %Top2 and
%Top4 denote the corresponding percentage. ↑ indicates that the higher the indicator, the better the detection performance, while ↓
denotes the lower the better.

Model AUC-ROC AUC-PR

Avg. Rank (↓) #Top2 (↑) %Top2 (↑) #Top4 (↑) %Top4 (↑) Avg. Rank (↓) #Top2 (↑) %Top2 (↑) #Top4 (↑) %Top4 (↑)
iForest 3.77 16 34.0% 27 57.4% 4.26 12 25.5% 24 51.1%
DSVDD 4.66 10 21.3% 20 42.6% 4.70 12 25.5% 19 40.4%
GAAL 6.23 4 8.5% 9 19.1% 6.21 4 8.5% 8 17.0%
RCA 4.13 13 27.7% 26 55.3% 4.21 11 23.4% 26 55.3%
GOAD 6.15 5 10.6% 10 21.3% 5.85 5 10.6% 10 21.3%
NeuTraL 3.68 16 34.0% 28 59.6% 3.77 17 36.2% 31 66.0%
ICL 4.09 12 25.5% 27 57.4% 3.64 16 34.0% 33 70.2%
SLAD (ours) 2.98 22 46.8% 39 83.0% 2.98 21 44.7% 38 80.9%

2% 4% 6% 8%10%
contamination rate

0.7

0.8

0.9

1.0

AU
C-

RO
C

Thyroid

2% 4% 6% 8%10%
contamination rate

0.65

0.70

0.75

0.80
Arrhythmia

2% 4% 6% 8%10%
contamination rate

0.2

0.4

0.6

0.8 Waveform

2% 4% 6% 8%10%
contamination rate

0.2

0.4

0.6

0.8

1.0
UNSW-NB15

2% 4% 6% 8%10%
contamination rate

0.5

0.6

0.7

0.8 Bank

2% 4% 6% 8%10%
contamination rate

0.2

0.4

0.6

0.8

1.0

AU
C-

RO
C

Thrombin

2% 4% 6% 8%10%
contamination rate

0.6

0.8

1.0
PageBlocks

2% 4% 6% 8%10%
contamination rate

0.40
0.45
0.50
0.55
0.60
0.65 Amazon (tab)

2% 4% 6% 8%10%
contamination rate

0.4

0.5

0.6

0.7 Yelp (tab)

2% 4% 6% 8%10%
contamination rate

0.60
0.65
0.70
0.75
0.80
0.85 MVTec (tab)

SLAD ICL NeuTraL GOAD RCA GAAL DSVDD iForest

Figure 7. AUC-ROC Performance of SLAD and its competing methods w.r.t. different contamination rate (the percentage of anomalies in
training data).

in training data. Half of the anomalies are used for testing, and the other half are candidate anomalies to contaminate the
training set. As anomalies are rare events, contamination rates are taken from 2% to 10%. Following (Xu et al., 2023; Pang
et al., 2019), if the number of candidate anomalies is insufficient to meet the target contamination ratio, we swap 5% features
in two randomly sampled real anomalies to synthesize new anomalies.

Figure 7 depicts the AUC-ROC performance of eight anomaly detectors w.r.t. contamination rate in training data. SLAD
shows consistent superiority over its contenders in different scenarios. As these deep anomaly detectors essentially model
normal conditions and identify anomalies by measuring the deviation to learned models, contaminated anomalies in training
data may mislead the modeling process, leading to the overfitting problem. Generally, detection performance is downgraded
with the increase of contamination rate. The increased anomalies may contain diverse behaviors, and thus the performance
of some anomaly detectors shows fluctuant trends. In addition, almost all anomaly detectors show stable performance
on Amazon (tab) and Yelp (tab). These two datasets are challenging, and all the anomaly detectors fail to yield sufficient
detection results as reported in Table 1. The anomalies in these data are similar to inliers and hard to distinguish since the
transferred tabular features may only describe semantic information and not be informative to identify anomalies. Therefore,
anomaly detectors might not suffer from the overfitting problem induced by anomaly contamination.

H.3. Scalability Test

We further conduct a scalability test to examine the time efficiency of SLAD. A group of synthetic datasets is produced
containing 5,000 data instances and varied dimensionality (i.e., {64, 128, 256, 1,024, 2,048, 4,096}). We create another

17

Deep Anomaly Detection with Scale Learning

64 256 1024 4096
Dimensionality

10 1

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
on

ds
)

4,000 16,000 64,000 256,000
Data Size

10 1

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(in
 s

ec
on

ds
)

SLAD
RCA
NeuTraL
ICL
GOAD
DSVDD

Figure 8. Scalability test results.

2 5 10 20 30
c

0.5
0.6
0.7
0.8
0.9
1.0

AU
C-

RO
C

2 5 10 20 30
r

0.5
0.6
0.7
0.8
0.9
1.0

8 64 128 256
h

0.5
0.6
0.7
0.8
0.9
1.0

Thyroid
Arrhythmia

Waveform
UNSW-NB15

Bank
Thrombin

PageBlocks
Amazon (tab)

Yelp (tab)
MVTec (tab)

1 100 200 500
0.5
0.6
0.7
0.8
0.9
1.0

Figure 9. Detection performance of SLAD with different hyper-parameter settings.

suite of data with different data sizes ranging from 4,000 to 256,000 and fixed dimensionality (i.e., 32). These two groups of
datasets are used to respectively examine the scalability w.r.t. dimensionality and data size. For the sake of fairness, SLAD is
compared with deep anomaly detectors implemented in the PyTorch framework. We report the execution time including the
training time of 10 epochs and the inference time. Figure 8 demonstrates the scalability test results. SLAD is less efficient
than other anomaly detectors on high-dimensional data. In our implementation, we employ subspaces of the original data,
and the neural transformation function T needs to prepare a number of neural layers to handle different subspace lengths.
This process may induce relatively heavy overhead. Nevertheless, thanks to the GPU acceleration power, all the anomaly
detectors take less than 25 seconds to handle 4,096-dimensional data. In addition, recall that we use a dataset Thrombin that
contains over one hundred thousand features, SLAD can process this ultra-high-dimensional data in 6 minutes. In terms of
the scalability w.r.t. data size, SLAD and contrastive models (ICL, NeuTraL, and GOAD) have comparable time efficiency.
DSVDD is faster since it maps all the input to a representation and poses a distance-based one-class constraint. However,
SLAD and contrastive self-supervised models can lead to superior detection accuracy.

H.4. Parameter Sensitivity

This experiment investigates the sensitivity of our model to four key hyper-parameters including c (the number of elements in
each created data sample of scale learning), r (the factor that adjusts the total size of training samples), h (the dimensionality
of representations), and γ (the magnification factor in the labeling function G), thereby guiding how to set them during
practical usages. In each experiment, the tested parameter takes different values, while others are fixed as default. Candidate
values for r and c are taken from {2, 5, 10, 20, 30}, the dimensionality h is chosen from 8 to 256, and γ uses values in
{1, 50, 100, 200, 500}. Figure 9 reports the AUC-ROC performance of SLAD with different settings. In terms of the
parameter c, the increase of c from 2 to 10 brings observable AUC-ROC gain on most of the datasets, while the performance
is clearly downgraded on two datasets when c continually raises. SLAD treats a whole list of transferred data as one training
sample, but simultaneously optimizing a very long list of predictions (i.e., a large c) may also harm the performance. In
terms of r, a larger r generally brings better results, which is also true in many similar ensemble scenarios. Based on
the above experimental results, we recommend using n = 10 and r = 20 in practical usage. Lower dimensionality h
cannot contain enough information, which downgrades the detection performance, especially on the high-dimensional
dataset Thrombin. On the contrary, a large h may be not always feasible. We set h = 128 by default in SLAD, which is

18

Deep Anomaly Detection with Scale Learning

frequently used as representation dimensionality in many deep models. As for the magnification factor γ, a larger γ can
enlarge the spacing between different scale values. We use a unified representation dimensionality h for datasets with varied
feature numbers, and thus raw scale values are very small and are hard to be differentiated when handling low-dimensional
data (their sub-vectors are short). By using a magnification factor, detection performance shows notable improvement on
Waveform and PageBlocks. SLAD performs stably on other datasets w.r.t. γ.

I. Future Directions
We propose scale learning as a novel self-supervised proxy task for anomaly detection in tabular data. This section notes
three future directions that are worth to be explored: (i) SLAD can be generalized to different learning tasks like pre-training
representation models on large-scale tabular data, as has been done in (Bahri et al., 2022; Yao et al., 2021; Yoon et al., 2020).
(ii) SLAD can be extended to handle other data types like time series, graph data, or even images by defining appropriate
sampling operation, the transformation function, and the labeling function. (iii) The intermediate results in SLAD can be
further processed for anomaly interpretation (Xu et al., 2021). As empirical errors derived from the loss function indicate
the deviation of the target data instance in different feature subspaces, and thus these fine-grained outputs can be further
utilized to yield a tailored feature subspace as an interpretation showing the anonymous part of the data instance.

19

