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Abstract

We present MooseNet, a trainable speech metric that predicts
the listeners’ Mean Opinion Score (MOS). We propose a novel
approach where the Probabilistic Linear Discriminative Anal-
ysis (PLDA) generative model is used on top of an embed-
ding obtained from a self-supervised learning (SSL) neural
network (NN) model. We show that PLDA works well with
a non-finetuned SSL model when trained only on 136 utter-
ances (ca. one minute training time) and that PLDA consistently
improves various neural MOS prediction models, even state-
of-the-art models with task-specific fine-tuning. Our ablation
study shows PLDA training superiority over SSL model fine-
tuning in a low-resource scenario. We also improve SSL model
fine-tuning using a convenient optimizer choice and additional
contrastive and multi-task training objectives. The fine-tuned
MooseNet NN with the PLDA module achieves the best results,
surpassing the SSL baseline on the VoiceMOS Challenge data.
Index Terms: evaluation, metric learning, mean opinion score
prediction, speech synthesis

1. Introduction

We present the MooseNet metric, which predicts the Mean
Opinion Score (MOS) from a single utterance of synthe-
sized speech. Using MOS from recruited listeners is a well-
established standard for evaluating text-to-speech (TTS) and
voice conversion (VC) systems [1], and MOS prediction met-
rics [2] are a way to automate this process. The organizers
of the 2022 VoiceMOS Challenge [3] released a large dataset
with MOS annotations for TTS and VC systems’ outputs (called
BVCC), so that MOS prediction metrics can be trained in a su-
pervised manner. One of the aims of the VoiceMOS challenge
was investigating the use of self-supervised learning (SSL)
speech models [4, 5] finetuned for the MOS prediction task. Us-
ing SSL models requires fewer annotated utterances than train-
ing NN models from scratch, but fine-tuning on a limited num-
ber of examples may lead to overfitting to the audio channel
and speech properties of the training data, hurting performance
on non-matching examples. To investigate this, the VoiceMOS
challenge included two tracks: The main track with 4,974 train-
ing utterances and the Out-of-Domain (OOD) training set with
only 136 utterances, intended to evaluate the applicability of
MOS predictors trained on the main track to a new domain.
While the VoiceMOS main track data proved to be large
enough for building a robust SSL-based MOS predictor and
SSL-based models are the current state of the art on the
task [6, 7, 2, 8], it is still unclear how many MOS annotated ut-
terances are really needed for finetuning an SSL model. By ex-
perimenting on both VoiceMOS main and ODD track datasets,
we investigate if pretraining on a larger dataset is crucial for
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Figure 1: PLDA can use any layer after global pooling as utter-
ance level embedding as its features.

fine-tuning the MOS predictor to a new small dataset and how
much data is needed for it. We show in a simple ablation study
that even with 5% training data, SSL fine-tuning outperforms
the previous non-SSL state-of-the-art LDNet model [2]. In ad-
dition, we present an even more effective low-resource alter-
native approach to the traditional finetuning paradigm of SSL
models by reframing the MOS-prediction regression as clas-
sification and introducing Probabilistic Linear Discriminative
Analysis (PLDA). In contrast to previous systems, PLDA per-
forms very well even for a few hundred annotated utterances.
Furthermore, its projections are computed very fast on a single
CPU and thus require minimal resources for training and infer-
ence. Importantly, PLDA can be easily combined with existing
neural network models.

Our contributions are the following:

(1) We introduce a new SSL-based neural network MOS
prediction model, dubbed MooseNet, which is based on models
of Cooper et al. [6] and Saeki et al. [7] and further improves
model training, optimizing hyperparameters and introducing
multi-task learning. The MooseNet neural network reaches near
state-of-the-art performance on the VoiceMOS data.

(2) We introduce PLDA as a convenient method for adapt-
ing pre-trained models to downstream tasks. We demonstrate
the use of PLDA on several variants of SSL models [4, 5].

(3) In ablation studies on VoiceMOS data, we investigate
the performance of PLDA and several strong neural baselines
based on the amount of available data. We show that PLDA
consistently improves SSL models, matching state of the art on
VoiceMOS. Models without finetuning to the MOS prediction
task as well as specifically fine-tuned models benefit from using
PLDA.

(4) We release our implementation, experimental setup,
pre-trained models, and system outputs to ease future research.’

"https://github.com/oplatek/moosenet-plda



2. Related Work

Intrusive Metrics: Synthesized speech is hard to evaluate
automatically. Early works were inspired by de-noising au-
dio evaluation, which compares clean reference audio signal to
noisy input or denoised system output signal. The so-called in-
trusive metrics MCD [9] and STOI [10] reported a moderate
correlation with human judgment. Our approach follows the
most recent non-intrusive metrics and does not need any refer-
ences (see below). Still, we experimented with STOI prediction
on synthetic data as an additional criterion for multi-task learn-
ing (see §3).

Frechet Audio Distance: The first step towards trainable
metrics was Frechet Audio Distance (FAD), which showed
promising results for music recording evaluation [11]. FAD
measures the distance between a set of reference recordings and
an unpaired set of hypotheses using features from a music clas-
sifier. Binkowski et al. [12] extended FAD for evaluating syn-
thesized speech using features from the DeepSpeech2 speech
recognition model [13]. Similarly to FAD, PLDA uses an exist-
ing neural model for its features. However, PLDA is a trainable
model and can be fine-tuned to the task on top of the neural
features. Note also that the self-supervised learning (SSL) ap-
proach proved to be superior to purely ASR-trained models like
DeepSpeech? for transfer learning to MOS prediction [4, 5].

Trainable MOS Predictors: Trainable neural metrics di-
rectly predicting MOS dominate in automatic speech evalua-
tion as they show a high correlation with human evaluation, not
only on the system level but also on the utterance level [6].
Furthermore, they generalize well to diverse speech proper-
ties such as tempo variation or different prosody when trained
on enough data. The MOSNet metric became the first widely
adopted trainable neural network metric for synthesized speech
that does not use references [14]. The MOSNet neural network
was trained from scratch on the Voice Conversion Challenge
(VCC) 2016 and 2018 datasets [15], unlike SSL-based methods
described below.

SSL-based MOS Predictors: Strong self-supervised learn-
ing pre-trained models [4, 5] improved many downstream tasks
when fine-tuned on them including speech MOS prediction.
SSL-based MOS predictors are currently state-of-the-art for the
task [3, 7, 8].> The organizers of the VoiceMOS challenge re-
leased a simple yet well-performing SSL baseline (BO1 in [3])
based on the Wav2vec model, which outperforms MOSNet and
other prominent systems by a large margin. The SSL baseline
uses the architecture of the SSL encoder to obtain frame-level
representation, a global pooling to obtain utterance-level em-
beddings and adds a feed-forward (FF) neural network to per-
form regression for MOS predictions. The baseline initializes
the encoder weights from a checkpoint and fine-tunes all pa-
rameters of NN jointly. See §3 for the MooseNet architecture
and training description, which is inspired by UTMOS [7], the
winning VoiceMOS system which is based on the organizers’
baseline.
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Figure 2: MooseNet architecture is based on pre-trained SSL
models. Frame-level embeddings are transformed to utterance
level by global pooling. FF layers and final projections are the
only parameters trained from scratch.

3. MooseNet Neural Network

Network Architecture: Following the SSL VoiceMOS chal-
lenge baseline [6], the network architecture of MooseNet con-
sists of four main blocks depicted in Figure 2. The SSL en-
coder (we use Wav2vec [4] or XLSR [5]) extracts audio-frame-
level features. The max and average global pooling operations
project the 1" frame-level vectors vie1,.. 7 to two fixed-size vec-
tors representing the whole utterance.> We sum the vectors to-
gether before passing them to a simple feed-forward (FF) NN.
The last layer consists of projections to multiple single scalars
for regression and a single vector for classification. We always
initialize the encoder from its SSL pre-trained checkpoint. Only
the parameters of the FF network and the final linear projec-
tions are initialized randomly and trained from scratch. As a
result, only a negligible proportion of parameters are trained
from scratch.*

Improvements to the Training: We switch to using LAMB
optimizer [16] with Noam scheduler [17] and fine-tune the
needed warm-up steps and learning rate on development data.
Inspired by Saeki et al. [7], we adapted contrastive loss to boost
ranking performance. We hypothesize that contrastive loss per-
forms well since contrastive training is known to be less sen-
sitive to overfitting than cross-entropy loss or regression. [7]
Following Lakshminarayanan et al. [18], we also observe that
using Gauss loss stabilizes and improves the training which we

2Consistently with literature, we found out training MooseNet with
weight initialization from a SSL model is superior to the random initial-
ization.

3Compared to the VoiceMOS baseline, we added the max operation
in addition to the average operation.

4For Wa2vec-small the ratio is 0.001, and for XLSR itis 0.0003.



explain as better modeling the MOS variance.

Data Augmentation and Multi-Task Training: We use au-
dio data augmentation to generate data for multi-task training
— we create degraded versions of the MOS-annotated synthe-
sized speech data, mixing clean utterance together with noise
from a database with a known signal-to-noise ratio (SNR). We
then use the original-degraded pairs of synthesized speech in a
multi-task training setting with four different tasks, depicted in
blue in Figure 2, in addition to the Gauss and contrastive losses
described above: We train the model to predict (1) STOI [10]
and (2) MCD [9] objective metrics [19] where we use the orig-
inal synthesized speech as the reference and its noise-degraded
version as the hypothesis.> We also use (3) a regression task
to predict the SNR which was used during the noise augmenta-
tion. Finally, (4) the noise classification task predicts the type of
noise which was used for data augmentation, given the original
and degraded synthesized speech.

Compatible Methods: The UTMOS system focused on
achieving the best performance possible and combined many
methods. In our MooseNet NN implementation, we focus on
approaches that do not modify neural network architecture and
do not require additional annotation except for MOS for each
utterance. We avoid Listener Dependent (LD) modeling despite
multiple works reporting its benefits [7, 8, 20] because we can
achieve similar gains simply by improving the fine-tuning train-
ing procedure described in §3. Ensembles [21, 18] and larger
SSL models like XLSR [22] or Hubert Large [23] are obvious
approaches how to improve system performance but are com-
putationally demanding. Both methods are compatible with our
approach, but unlike Saeki et al.[7] we do not evaluate them in
our paper.

4. PLDA for MOS Prediction

PLDA is a classification generative probabilistic model, well-
known in face recognition [24] and speaker verification [25] for
its robust likelihood estimates. The PLDA in speaker verifica-
tion uses a fixed-size vector embedding of an utterance as its
features [25] and inspired us to evaluate PLDA for MOS pre-
dictions.

The PLDA estimates mean and covariance matrixes for its
Gaussian Mixture Model (GMM) and LDA projection matrix to
its latent space.® The GMM model is used at inference to com-
pute posterior probabilities for each class given the input. The
PLDA training minimizes intra-class variance and maximizes
the inter-class variance of the GMM model.

For PLDA, we frame MOS prediction as a classification
task from audio into bins representing the possible range of
MOS between 1 and 5. The bin boundaries are estimated on
training data to distribute MOS score samples in bins equally.
Note that we apply PCA to decorrelate the neural embedding
features before we use PLDA.

After training the PCA and PLDA, we keep the estimated
matrixes for inference. At inference, we project the NN embed-
ding using the PCA and PLDA matrixes to obtain the parame-
ters of the GMM model which predicts the posterior probability
for each class — a MOS bin. The final PLDA MOS score is

5Note that in this way, we can use STOI prediction in a non-intrusive
way as human reference outputs are not required for the setup.
6See Toffe [24, §3.2] for PLDA parameters learning details.

computed as a weighted sum of MOS-bin-centers values and
the posterior probability of each bin.

5. Experiments

We evaluate our experiments on VoiceMOS data using the
recommended system-level Spearman Rank Correlation Co-
efficient (SRCC) and Mean Squared Error (MSE) metrics.’
Both compare the system predictions to human-obtained scores:
MSE computes the mean distance between the predicted and
human scores, while SRCC compares how the predictor main-
tains ranking with respect to human scores.

We conducted all preliminary experiments and model selec-
tion on the development set and used the test set only to evaluate
experiments presented in Table 1. We run each experiment with
ten different random seeds and report the mean and standard
deviation from these ten runs. This improves on the VoiceMOS
challenge practice, where single system runs are reported and
the random seed effect is unknown.

Overall Experiment Plan: We train and evaluate our models
on the VoiceMOS main track and OOD track training and test
sets. By default, we train one model on the main track and
evaluate it on the main track test set. We then further finetune
this model on the OOD track and evaluate the result on the OOD
test set. However, we run more experiments summarized below
and in Figure 3, answering the following research questions:®

(RQ1) How do the individual MooseNet NN training meth-
ods help the fine-tuning performance on the main track? Com-
pare the first six experiments in Table 1.

(RQ2) How does the MooseNet NN perform on the OOD
track when fine-tuned only on the main track? See OOD:
W2V_main experiment.’

(RQ3) Does PLDA perform better when used on top of
MooseNet fine-tuned for a given dataset? Compare OOD:
W2V_main+PLDA _ood and OOD: W2V_ood+PLDA_ood.

(RQ4) How much does the performance drop if PLDA
uses an unmodified Wav2Vec model? See the Main:
W2V+PLDA _main, Main: W2V_main+PLDA _main, OOD:
W2V+PLDA _main, OOD: W2V+PLDA _ood experiments.

(RQS5) How does the performance of MooseNet NN change
for a reduced number of data? See ablation study experiments
W2V _main-X where X is 50%, 5%, 136 where 136 examples
correspond circa to 2.7% of the training data.

(RQ6) How does the performance change if we use a larger
XLSR model instead of a Wav2vec small model? Find all ex-
periments with XLSR and compare the same experiments with
the W2V variant.

Data Preparation: We augmented the input audio data dur-
ing training using time-domain volume and tempo augmenta-
tion. The Lhotse volume augmentation is used with 0.8 prob-
ability, and the scaled factor was sampled from range [0.5, 2].
The tempo perturbation factor is sampled from the [0.9, 1.08]
range. We filter out utterances shorter than 1s and longer than

7The KTAU and PCC metrics can be safely omitted because they are
highly correlated with SRCC [3].

8The experiments for ablation studies regarding (RQ1) and (RQS5)
were not included in the figure because they share the same overall
structure as the W2V_main experiment.

9The OOD: W2V _main experiment name denotes that the MooseNet
NN was initialized with the W2V checkpoint and further fine-tuned on
the main track but evaluated on the OOD test set. Other experiments are
labeled analogically.
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12s for training. We use bucketing with 20 buckets, and we let
our experiments stop early based on validation SRCCC with the
patience of 30 epochs.

Batching: The number of utterances in a batch differs accord-
ing to the bucketing strategy and random sampling, but it cannot
exceed 80s of audio. Half of them are clean utterances, and the
other half are noise-degraded variants as described in §3. The
utterances are degraded by mixing the clean audio with noises
from the MUSAN [26] dataset with the SNR sampled from
[10, 20] dB interval for each utterance. We use the Lhotse [27]
library for the mixing, bucketing utterances into 20 buckets, and
sampling the utterances.

MooseNet NN Fine-Tuning: Our best-performing NN mod-
els follow the training structure of a neural network SSL base-
line [6]. We first fine-tuned a pre-trained SSL model [4] [5] on
the main track. See W2V_main and W2V_main-XLSR. Later, we
use the pre-trained checkpoints on the main track for fine-tuning
the models on the OOD track. See W2V_ood and W2V _ood-
XLSR experiments. We also tried to fine-tune the Wav2vec
model directly on the OOD track in W2V_oodsolo experiment
which performed surprisingly well. In our second NN non-
standard experiment, we evaluated the MooseNet NN trained
only on the main track on the OOD test set which produced
poor results as expected.

MooseNet NN Fine-Tuning Hyperparameters: By using
Noam LR scheduler with 1500 warmup steps and LAMB opti-
mizer with a learning rate of 0.001 and weight decay of 0.0001,
we train faster, achieve better results for the NN model, and we

can utilize a larger pre-trained XLSR [22] model.'’ Following
Leng et al. [28], we clipped the logCosh and Gauss losses.

Based on informal experiments, we observed that using
only one hidden layer on top of global pooling is enough. We
also verified that reducing the hidden embedding size to 32 is
not inferior to a larger embedding size. The smaller embedding
size proved beneficial to train the PLDA backend.

PLDA Model Variants: We train PLDA in several se-
tups. In two experiments W2V_main+PLDA _main and
W2V_ood+PLDA _ood, we evaluate PLDA on OOD and main
test set and train it also on the main and test sets respec-
tively using fine-tuned NN model for the given set. We also
investigated how PLDA can perform when it uses a non-
finetuned model for given datasets because PLDA can be trained
much faster than the NN model. See W2V_main+PLDA_ood
and XLSR_main+PLDA _ood experiments. For the above men-
tion experiments, we used an NN embedding size of 32, we
discretized MOS scores to 32 bins, and we let PCA and
PLDA algorithms keep all found dimensions of their projec-
tions. Finally, we evaluated PLDA performance on unmodified
Wav2vec and XLSR SSL models.

PLDA Hyperparameters: For experiments where we di-
rectly used wav2vec_small (or XSLR) without fine-tuning for
PLDA, we kept the original embedding dimension of 768 vec-
tor size (or 1024). For this setup, we observed that it is crucial
to have enough training points for PLDA for each label —i.e.,

10For further fine-tuning of the MOS fine-tuned checkpoint on the
main set on the OOD set we used learning rate 0.0001 and weight decay
of 0.00001 which we estimated in informal experiments.



Table 1: Results of MooseNet NN variants and PLDA. We report
system-level MSE and SRCC on the VoiceMOS main and OOD
track test sets, averaged over 10 runs, with standard deviations.
See Figure 3 for core experiment setups; ablation experiments
are shown in italics with the same prefix as the core experiment.
We highlight the best results for each section (a group of similar

experiments) in bold.

Main test system-level: MSE SRCC
LDNet baseline 0.178 0.873
SSL-Baseline (B01) 0.148 0.921

W2V _main w/o contrast 0.14940.033  0.92240.007
W2V_main w/o augmnt. 0.1374+0.047  0.92240.005
W2V_main w/o STOI 0.140£0.033  0.9224+0.007
W2V_main_logCosh/Gauss  0.15940.035  0.92240.006
W2V _main 0.142£0.032  0.923+0.006
W2V_main 50% train 0.150+0.044  0.924+0.006
W2V_main 5% train 0.307+0.176  0.884+0.006
W2V_main 136 train 0.289+0.072  0.853+0.006
XSLR_main 0.117£0.035  0.929+0.007
W2V _main+PLDA _main 0.105+£0.009  0.922+0.006
XSLR_main+PLDA _main  0.101+0.010  0.929+0.005
W2V+PLDA _main 0.167£0.000  0.867+0.000
XLSR+PLDA _main 0.076+0.326  0.804+0.109
OOD test system-level: MSE SRCC
LDNet baseline 0.091 0.934
SSL-Baseline (B01) 0.099 0.975
W2V _main 2.657£0.399  0.710+0.040
XLSR_main 2.630+£0.301  0.7484+0.041
W2V _main+PLDA ood 0.190+0.061  0.860+0.042
XLSR_main+PLDA _ood 0.197£0.051  0.866+0.039
W2V _ood 0.263£0.128  0.955+0.013
XLSR_ood 0.058+0.011  0.942+0.007
W2V _ood+PLDA _ood 0.063£0.008  0.956+0.011
XLSR_00d+PLDA _ood 0.062+0.008  0.9454 0.004
W2V _solo-ood 0.265+0.144  0.927+0.023
W2V+PLDA _ood 0.057+0.009  0.955+0.001
XLSR+PLDA _ood 0.145+£0.012  0.886+0.018

have more than five MOS scores in each bin. See Figure 2(c)."!
We used whitening of input data,'> we reduced the number of

bins from 32 to 16 and used the first 64 PCA dimensions.

Training Process: The experiments run between 50 and 90

epochs on a single Nvidia A40. For the main track, the fine-
tuning took between 60 and 100 minutes. For the OOD track,
the fine-tuning runs for 20-40 minutes. We used the half-
precision floats during all experiments. The PLDA training and
inference use pre-computed embeddings, run on a single CPU
for under two minutes for both tracks.

https://github.com/oplatek/plda, a fork of https:
//github.com/RaviSoji/plda.
12We add Gaussian noise with 0.01 variance to NN embeddings.

6. Results

The results for both main and OOD tracks are summa-
rized in Table 1; we refer back to research questions from
Section 5 throughout the following text. Our MooseNet
NN achieves better performance over the strong SSL base-
line on the well-studied VoiceMOS challenge main track ex-
periment W2V_main with respect to MSE and SRCC met-
rics. When the MooseNet NN checkpoint trained on the
main track is fine-tuned to the OOD dataset, it matches
the SSL baseline in terms of MSE in W2V_ood experi-
ments. Interestingly, MooseNet PLDA improved those above-
mentioned high-performing models in terms of MSE (see
W2V_main+PLDA _main and W2V_ood+PLDA _ood).

The ablation study in the first six experiments in the table
shows that the methods used for MooseNet NN training perform
almost identically (RQ1). We observed that contrastive loss
and STOI prediction multi-task fine-tuning favor SRCC rank-
ing metric but produce inferior results for MSE. The difference
was clearer for less-tuned models during the early stages of the
training in our informal experiments.

As expected, the fine-tuned model on the main track,
W2V _main, performs poorly on the OOD track (RQ2). Interest-
ingly, PLDA trained on top this model’s features improves per-
formance both for MSE and SRCC by a large margin but does
not match PLDA trained on top of OOD-tuned models (RQ3):
PLDA consistently improves the W2V_ood and XLSR_ood mod-
els, which were first fine-tuned on the main and later on the
OOD train sets. PLDA shines when used with non-finetuned
neural models on the OOD track (RQ4). Refer to experiment
W2V+PLDA _ood, which is our best model in terms of MSE and
second best in terms of SRCC.

The MooseNet NN fine-tuning performs poorly if only the
0OD set (of size 136 utterances) is used for training W2V _solo-
ood models. The experiments with a reduced amount of training
examples and W2V_solo-ood show that 136 training examples
are enough for the SSL-finetuned models to reach performance
close to LDNet [2] and with 249 examples it is possible to beat
this baseline in terms of SRCC. With only 50% of training data,
the W2V_main 50% train model achieves the performance of
the strongest SSL baseline BO1 (RQ5).

Finally, using the XLSR model instead of W2V seems to
bring minor improvements on the main track but does not help
on the OOD track. In such a constraint setting, the larger base
model size loses its advantages (RQ6).

Note that our results averaged from ten runs are not directly
comparable with the VoiceMOS challenge results. The submis-
sions to the VoiceMOS scoreboard were selected based on the
best performance on the development set. We observed that
performance on the development set is well transferred to the
test set performance. As a result, VoiceMOS Challenge results
appear better, and the selection procedure favors models with
higher variance, such as W2V _solo-ood.

7. Conclusion

We trained and thoroughly evaluated the trainable metrics
MooseNet NN and MooseNet PLDA for Mean Opinion Score
(MOS) prediction. We showed that SSL pre-trained models
Wav2Vec-small and XLSR models learn useful representation
for evaluating synthesized speech. Despite the wide adoption of
the SSL model training for MOS prediction, we demonstrated
that the SSL model fine-tuning could be easily improved, sug-
gesting that the choice of data and training procedure is compli-



cated and likely an under-explored process. We experimented
with the PLDA generative model, which is very fast to train,
requires a minimum amount of data, and can be easily inte-
grated on top of any fixed-size NN layer. We showed that PLDA
consistently improves SSL speech models for MOS predictions
task. For models tuned for MOS prediction but on the other
dataset, PLDA improves both MSE and SRCC metrics by a
large margin. When the PLDA is applied on top of fine-tuned,
top-performing NN model, it tends to improve only the MSE
metric. Interestingly, we showed that PLDA could be trained
directly on top of an unmodified general-purpose SSL model
on very small datasets (OOD) and still achieves performance
comparable with LDNet VoiceMOS baseline [2].

8. Limitations and Future Work

Our work uses large SSL models which need a dedicated hard-
ware accelerator for practical use. We hypothesize most predic-
tion errors are due to inadequate training data on the extremes.
We plan to develop techniques for both NN and PLDA models
to predict epistemic uncertainty [29] in the future.
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