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Abstract
Realtime environments change even as agents perform action inference and learn-
ing, thus requiring high interaction frequencies to effectively minimize long-term
regret. However, recent advances in machine learning involve larger neural net-
works with longer inference times, raising questions about their applicability in
realtime systems where quick reactions are crucial. We present an analysis of lower
bounds on regret in realtime environments to show that minimizing long-term
regret is generally impossible within the typical sequential interaction and learning
paradigm, but often becomes possible when sufficient asynchronous compute is
available. We propose novel algorithms for staggering asynchronous inference
processes to ensure that actions are taken at consistent time intervals, and demon-
strate that use of models with high action inference times is only constrained by
the environment’s effective stochasticity over the inference horizon, and not by
action frequency. Our analysis shows that the number of inference and learning
processes needed scales linearly with increasing inference times while enabling
use of models that are multiple orders of magnitude larger than existing approaches
when learning from a realtime simulation of Game Boy games such as Pokémon
and Tetris.

1 Introduction
An often ignored discrepancy between the discrete-time RL framework and the real-world is the
fact that the world continues to evolve even while agents are computing their actions. As a result,
choosing a particular stochastic or deterministic time discretization rate is fundamental in shaping
the agent’s understanding of the scope of its impact on the environment in the presence of constant
change. Agents that take infrequent actions require some lower-level program to manage behavior
between actions, often through simple policies like remaining still or repeating the last action. Ideally,
intelligent agents would exert more control over their environment, but this conflicts with the trend of
using larger models, which have high action inference and learning times. Consequently, as typically
deployed with sequential interaction, large models, which are often found to be essential for complex
tasks, increasingly rely on low-level automation, reducing their control over realtime environments.
This paper examines this discrepancy and explores alternative asynchronous interaction paradigms,
enabling large models to act quickly and maintain greater control in high-frequency environments.

Figure 1a shows the standard sequential interaction paradigm of RL. In this setup, the agent receives
a state from the environment, learns from the state transition, and then infers an action. Each process
must be completed before the agent can process a new state, limiting the action frequency and
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Figure 1: Frameworks for Environment Interaction in RL. a) The typical sequential interaction
paradigm where both learning and action inference block the environment from moving forward.
b) The more realistic setting considered in this work where the environment, the agent’s inference
process, and agent’s learning process all proceed at their own rate and interact asynchronously.
Multiple self-loops are depicted for learning and inference to denote multiple asynchronous processes.

increasing reliance on low-level automation as the model size grows. In contrast, Figure 1b illustrates
the asynchronous, multi-process interaction paradigm we propose. Our key insight is that even models
with high inference times can act at every step using sufficiently many staggered inference processes.
Similarly, sufficiently many asynchronous learning processes can maintain rapid interaction without
blocking progress, despite high inference and learning times. This work formalizes and empirically
tests the benefits and limitations of this approach, making the following contributions:

1. We formalize how the choice of a particular time discretization induces a new learning
problem and how that problem relates to the original learning problem in Definition 1.

2. We derive worst-case lower bounds on regret for solving the new problem in terms of
the original problem in Theorem 1, leading us to conclude in Remark 1 that the typical
sequential interaction framework (Figure 1a) scales poorly with model size.

3. We propose novel approaches for staggering asynchronous inference in Algorithms 1 and 2,
addressing the poor scaling properties of sequential interaction (Remark 2).

4. We conduct comprehensive experiments to verify our theory, and demonstrate the application
of orders of magnitude larger models to realtime games like Pokémon and Tetris.

2 Formalizing Time Discretization in Realtime Reinforcement Learning
Background - Sequential Interaction: Most RL research focuses on agents interacting sequentially
with a Markov Decision Process (MDP) [1; 2]Mseq = ⟨S,A, p, r⟩, where S is a set of states, A is
a set of actions, r(s, a) is a reward function with outputs bounded by rmax, and p(s′|s, a) is a state
transition probability function. Agents take actions based on a policy πθ(a|s) that maps states to
action probabilities parameterized by θ. It is assumed that the time between decisions (which can
be denoted τM as it only depends on the MDP in this case) is constant and the environment can be
paused while the policy generates an action a from state s. The discrete decision step number t is
then given by t = ⌊τ/τM⌋, where τ is the elapsed time in seconds, excluding pauses.

Asynchronous Interaction Environments: The standard MDP formalism lacks a crucial element
for realtime settings where the environment cannot be "paused," and the agent interacts with it asyn-
chronously, as described by Travnik et al. [3]. In this case, it is necessary to define the environment’s
behavior when the agent has not selected an action. We believe the most general solution is to use a
preset default behavior if there is no available action at by the agent π at time-step t. This behavior
follows a ∼ β(s), where a ∈ Aβ is possibly from a different action space thanA, requiring p and r to
be defined overA∪Aβ . Now we can define an asynchronous MDPMasync = ⟨S,A, p, r, β⟩ as an ex-
tension of a sequential MDPMseq with the addition of the default behavior policy β. Note that β need
not be non-Markovian, because the state space should be defined to include any intermediate computa-
tions needed to generate the actions of the default behavior policy. Defining the default behavior as a
policy is equivalent to the environment following a Markov chain pβ(s′|s) when no action is available
where pβ(s′|s) :=

∑
a∈Aβ

p(s′|s, a)β(a|s) with expected reward rβ(s) =
∑

a∈Aβ
β(a|s)r(s, a).

Time Discretization Rates: The real environment evolves in continuous time, so we must define
time discretization rates to describe each component of the agent-environment interface in discrete
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steps. We treat the environment step time as a random variable TM with sampled values τM ∼ TM
and expected value τ̄M := E[TM]. Similarly, the environment interaction time (a.k.a. the action
cycle time or inverse of the interaction frequency) is a random variable TI with sampled values
τI ∼ TI and expected value τ̄I := E[TI ]. The action inference time of the policy is another random
variable Tθ with sampled values τθ ∼ Tθ and expected value τ̄θ := E[Tθ].1 This sets the stage for
defining the decision problem induced by these choices related to the agent-environment boundary.

Definition 1 (Induced Delayed Semi-MDP) Any configuration of random variables TM, TI ,
and Tθ applied to a asynchronous MDP Masync induces a delayed semi-MDP M̃delay :=
⟨S,A, p, r, β,TM,TI ,Tθ⟩ where the semi-MDP decision making steps t̃ associated with the
actual decisions of the agent π happen after ⌈τI/τM⌉ steps t in the ground asynchronous MDP
Masync. The semi-MDP is delayed with respect toMasync because semi-MDP actions ãt̃ ∈ A
generated by π are equivalent to actions that are delayed by ⌈τθ/τM⌉ in Masync such that
πθ(ãt̃|st̃) = πθ(at+⌈τθ/τM⌉|st) where st̃ = st. If ⌈τθ/τM⌉ > 1 the transition dynamics are pβ

and reward dynamics are rβ for ⌈τθ/τM⌉ − 1 steps inMasync until at+⌈τθ/τM⌉ is applied.

In general, the optimal policy and optimal reward rate will not be the same forMasync and M̃delay,
with M̃delay incurring additional sub-optimality because of the coarse nature of the decision problem.
That said, we have direct control over TI and Tθ, so it is of interest to understand how our design
decisions relate to the sub-optimality experienced. Chiefly, we are interested in understanding under
what scenarios the optimal reward rate ofMasync can still be achieved even when τ̄θ >> τ̄M. To do
this, we focus on worst case lower bounds on regret i.e. the unavoidable regret incurred because of
the interaction defined by M̃delay in the worst case scenario where β is always a suboptimal choice.

Theorem 1 (Realtime Regret Decomposition) The total accumulated realtime regret
∆realtime(τ) as a function of time τ of a delayed semi-MDP M̃delay relative to the oracle policy
in the underlying asynchronous MDPMasync can be decomposed into three independent terms.

∆realtime(τ) = ∆learn(τ) + ∆inaction(τ) + ∆delay(τ) (1)

∆learn(τ) is the regret experienced even in sequential environments as a result of necessary
learning and exploration. The lower bound on the regret of this term in the worst case is:2

∆learn(τ) ∈ Ω(
√

τ(τ̄I/τ̄M)) (2)

∆inaction(τ) expresses the regret as a result of following β rather than optimal actions inMasync.
The lower bound and upper bound on the regret of this term in the worst case is:

∆inaction(τ) ∈ Θ(τ(τ̄I − τ̄M)/τ̄M) (3)

∆delay(τ) expresses the regret as a result of the delay of actions by π in the underlying asyn-
chronousMasync. The lower bound on the regret of this term in the worst case is:

∆delay(τ) ∈ Ω(τ × E[(1− pminimax)
τθ/τM ]) (4)

where pminimax := mins∈S,a∈A maxs′∈S p(s′|s, a) is a measure of environment stochasticity.3

See Appendix B for a formal proof of Theorem 1 and our other findings. We believe this work is
the first to formally state the regret decomposition in Equation 1. Note that previous studies on
real-world RL have highlighted the challenges of learning from limited samples, realtime inference,
and managing system delays in scaling methods to realtime settings [5]. Equation 2 extends known
lower bounds on learning time [6], using the notation from Definition 1 to explicitly connect with
continuous time. Notably, this bound depends on τ̄I (not τ̄θ) and assumes learning can keep pace
with the environment to learn from every interaction. Equation 3 provides a novel regret bound,

1While policies in general could have adaptive computation times based on the state being processed, this is
relatively uncommon in the RL literature and will be left to future work for simplicity of the discourse.

2Known algorithms achieve regret upper bounds within a logarithmic factor of this lower bound [4].
3When the environment is deterministic, pminimax = 1 and ∆delay(τ) = 0. When the environment is uniformly

random, pminimax = 1/|S| and ∆delay(τ) is maximized such that as |S| → ∞, ∆delay(τ) ∈ Ω(τ).
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formalizing the known suboptimality of interacting with realtime environments at a slower pace
[3; 7; 8; 9; 10; 11]. This result highlights the limitations of the sequential interaction paradigm.

Remark 1 (Realtime Regret of Sequential Interaction) When π andMasync interact sequen-
tially, τI ∈ Ω(τθ) such that in the worst case ∆inaction(τ) ∈ Ω(τ(τ̄θ − τ̄M)/τ̄M). This implies
that even as τ →∞, in the worst case ∆realtime(τ)/τ ∈ Ω(∆inaction(τ)/τ) ∈ Ω((τ̄θ− τ̄M)/τ̄M).

This means a realtime framework with sequential interaction cannot ensure that regret will eventually
dissipate. Thus, we explore asynchronous alternatives in the next section. Finally, Equation 4
highlights the key limitation in minimizing regret using asynchronous compute. Previous work
established that suboptimality from delay in MDPs relates to the stochasticity in the underlying
undelayed MDP [12; 13], focusing on communication delays inherent to the environment. Our focus,
however, is on delays caused by the agent’s computations, which we can control. Thus, the emphasis
on regret associated with the decision that leads to a particular value of τθ is novel. Since this term
is the only part of regret that depends on τθ, it helps identify which environments are manageable
when τθ >> τM. In deterministic environments, there is no regret due to τθ as pminimax = 1, but
in stochastic environments, the degree and temporal horizon of stochasticity determine what values
of τθ are tolerable. For simplicity, we present a looser bound here; a tighter bound is available in
Appendix B. Stochasticity with respect to actual rewards (not just transitions) is what really matters.
3 Algorithms for Asynchronous Interaction and Learning
Figure 2 highlights key differences between the standard sequential RL framework and the asyn-
chronous multi-process framework we propose. In the sequential framework, interaction and learning
delay each other. In contrast, in the multi-process asynchronous framework that we propose, actions
and learning can occur at every step with enough processes. However, actions are delayed and reflect
past states, which may limit performance in some environments. Note that staggering processes
to maintain regular intervals is essential. For example, if inference processes took a deterministic
amount of time with no offset, all additional actions in the environment would be overwritten and
there would be no benefit of increasing compute. Meanwhile, with staggering we can experience
linear speedups.

Staggered Asynchronous Learning

Staggered Asynchronous Inference

Sequential Inference and Learning

Environment

Figure 2: Realtime Interaction Frequency. We illustrate the comparative interaction frequency of
methods that sequence learning and inference and those that maintain multiple staggered asynchronous
processing processes. Even when inference times are greater than the environment step time, it is
possible to use asynchronous compute to eliminate inaction and learn from every environment step.

3.1 Background: Staggered Asynchronous Learning
Parallel vs. Asynchronous Updates: Learning from a transition, i.e., computing gradients, usually
takes longer than inference. Thus, performing learning in separate processes is crucial to avoid
blocking inference [10], especially for models with a large number of parameters. For this use case,
one might be tempted to consider parallel learning processes to increase the effective batch size
without increasing wall-clock time per batch as this avoids wasted computation. Indeed, parallel
updates are better for training large language models when final performance and compute efficiency
are most important. In contrast, asynchronous learning can produce updates even faster than learning
from a single transition, making the model more responsive to exploration. However, lock-free
asynchronous approaches risk overwriting updates, potentially wasting computation that does not
contribute to the final performance. Our focus is on maximizing responsiveness in large models, not
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necessarily compute efficiency. As such, even overwritten updates are not wasted with respect to total
regret.

Round-Robin Asynchronous Learning: Langford et al. [14] laid the foundation for addressing
asynchronous update staggering for large neural network models using variants of stochastic gradient
descent (SGD). They showed that applying updates in a delayed, orderly fashion avoids wasted
compute on overwritten gradients. Their approach demonstrated convergence for delayed SGD, with
linear scaling limited only by the time taken to update parameters relative to computing gradients.
This method allows significant linear scaling with minimal compute waste for large models and the
delay in the updates will not be a significant source of regret in Theorem 1. While not our novel
contribution, this strategy is underexplored. We investigate its scaling properties in our experiments.

3.2 Our Contribution: Staggered Asynchronous Inference
In Remark 1 we highlighted that τ̄I within the sequential interaction framework is fundamentally
limited by τ̄θ, which results in persistent regret even as time goes on when τ̄θ > τ̄M. We will now
highlight two novel algorithms for staggering inference processes that can lead to a reduction in τ̄I
when the number of inference processes NI are increased. Algorithm 1 is capable of scaling the
expected interaction time with the number of processes by τ̄I = min(τmax

θ /NI , τ̄M) where τmax
θ is

the maximum encountered value of τθ. Meanwhile, algorithm 2 is capable of scaling the expected
interaction time with the number of processes by τ̄I = min(τ̄θ/NI , τ̄M). Both algorithms can
eliminate inaction.

Remark 2 (Inaction Regret of Asynchronous Interaction) For any τ̄θ when π and Masync
interact asynchronously with staggering algorithms 1 or 2, there is a value of the number of
inference processes N∗

I such that for all NI ≥ N∗
I , ∆inaction(τ)→ 0 as time goes on to τ →∞.

Algorithm 1 always ensures each processes waits for the current estimate of τmax
θ amount of seconds

before an action is taken by that process to preserve the spacing between actions. Adjustments are
made to the waiting time in each process until the estimate converges to the true τmax

θ value. The
benefit of this algorithm is that the spacing between actions stays very consistent with no variance
once the maximum value estimate has stabilized. This makes M̃delay easier to learn from. The
downside, however, is that the amount of necessary compute to eliminate inaction may be relatively
high.

On the other hand, algorithm 2 stops all waiting in all processes as time goes on, so that the expected
interaction time of each process is τ̄θ. An estimate of τ̄θ is maintained and when the estimate changes
after an action is taken, processes wait for an amount of time designed to adjust the average spacing
between processes to τ̄θ/NI . The law of large numbers ensures that the estimate converges to τ̄θ in
the limit as τ →∞ and that the waiting time diminishes to zero. Algorithm 2 has a strictly smaller
compute requirements than algorithm 1, but experiences variance in TI driven by the variance in
Tθ, which makes M̃delay harder to learn from. The compute advantage becomes more significant for
distributions that have variance in Tθ such that τmax

θ − τ̄θ is large. In our experiments, we consider
Algorithm 1 because we found the variance in τθ is extremely small for the models we consider.

4 Related Work
Realtime interaction: Previous work such as Travnik et al. [3] has considered the asynchronous
nature of realtime environments. However, we are not aware of any prior paper that has formalized
the connection between asynchronous and sequential versions of the same environment as we have.
Travnik et al. [3] highlight the reaction time benefit of acting before you learn, and Ramstedt and
Pal [8] highlight the reaction time benefit of interacting based on a one-step lag. Meanwhile, the
interaction frequency of both of these approaches are limited by sequential interaction and thus the
drawback highlighted in Remark 1 also applies to these approaches too.

Designing the interaction rate: Farrahi and Mahmood [11] examined how the choice of τI affects
the learning performance of deep RL algorithms in robotics. They found that low τI complicates
credit assignment, while high τI complicates learning reactive policies. Karimi et al. [15] proposed
a policy that executes multi-step actions with a learned τI within the options framework, which
may aid in slow problems where credit assignment is challenging. However, this approach does not
address the action delay issue we focus on and may worsen it by committing to multiple actions
based on a delayed state. Our policy, defined in the semi-MDP framework (Definition 1), relies on
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Algorithm 1 Maximum Time Inference Staggering

Initialize: τ̂max
θ = 0 and delay[processnum] = ϵ(processnum− 1)/NI ∀ processnum ∈ [1, ..., NI ]

Run: INFERENCE[processnum] ∀ processnum ∈ [1, ..., NI ]
1: function INFERENCE(processnum)
2: while alive do
3: sleep(delay[processnum]) ▷ Sleep for any delays accumulated by other processes
4: delay[processnum]← 0
5: a, τθ ∼ πθ(st) ▷ Have the policy sample an action and inference time
6: if τθ ≥ τ̂max

θ then
7: δτ ← τθ − τ̂max

θ ▷ Other processes sleep for the difference with the maximum
8: for num ̸= processnum ∈ [1, ..., NI ] do
9: delay[num]← delay[num] + dist(num,processnum) ×δτ/NI

10: τ̂max
θ ← τθ ▷ Set new global maximum

11: else
12: sleep(τ̂max

θ − τθ) ▷ Sleep for the remaining time
13: at+⌈τ̂max

θ /τM⌉ ← a ▷ Register action in environment

a low-level policy β, similar to the options framework [16]. The key difference is that β cannot be
modified by our policy, preventing intra-option learning and encouraging us to minimize its use.

Reinforcement learning with delays: Reinforcement learning in environments with delayed states,
observations, and actions is well-studied. Typically, delays are treated as communication delays
inherent to the environment [17; 18]. In contrast, we focus on delays resulting from our computations,
which are under our control and part of agent design. Our formulation of delay as part of regret is
novel due to this unique focus. Common methods address delay by augmenting the state space with
all actions taken since the delayed state or observation [19; 20; 21], but this is infeasible for us since
these actions are not available when computation begins. Instead, our approach aligns more with
methods addressing delay without state augmentation [22; 18; 23; 24; 25]. However, these methods
are limited by the environment’s stochasticity [12; 13], as highlighted by equation 4 of Theorem 1.

Asynchronous learning: Most work on asynchronous RL involves multiple environment simulators
learned from asynchronously or in parallel [26; 27; 28]. We explore a more challenging real-world
setup with a single environment, limiting exploration opportunities. Unlike typical asynchronous
setups where each process interacts sequentially with the environment and then learn from that
interaction [26], our setting benefits from making interaction and learning asynchronous (Remark 2).
Similarly to ours, some prior work has considered asynchronous learning to avoid blocking inference
[10], focusing on model-based learning [7; 29; 30; 9] and auxiliary value functions [31; 32]. The
novelty of our approach is in its use of multiple asynchronous staggered inference processes instead
of a single process, a critical contribution for deploying large models (Remark 1 and Remark 2).

5 Empirical Results
To show that our proposed method does indeed provide practical benefits for minimizing regret per
second with large neural networks in realtime environments, we perform a suite of experiments to
validate the theoretical claims made in Sections 2 and 3. Our experiments include:

• Question 1: an evaluation of the scaling properties of Algorithm 1 to demonstrate that
the needed number of processes to eliminate inaction N∗

I does indeed scale linearly with
increasing inference times τ̄θ and parameter counts |θ|.

• Question 2: an evaluation of the scaling properties of round-robin asynchronous learning
[14] to demonstrate that the number of processes needed to learn from every transition N∗

L
also scales linearly with increasing inference times τ̄θ and parameter counts |θ|.

• Question 3: an evaluation of the speed of progress through a realtime game with constant
novelty to demonstrate that our proposed asynchronous algorithms can not only maintain
better throughput of actions, but also maintain learning performance to make faster progress
through a game in which agents must demonstrate competent behavior to go on.
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(a) N∗
I vs. τ̄θ for Algorithm 1 (b) N∗

I vs. |θ| for Algorithm 1

Figure 3: a) We plot the scaling behavior of the inference compute requirement N∗
I as the expected

action inference time τ̄θ increases for ResNet polices across CPUs in the Game Boy environment. b)
We plot the scaling behavior of N∗

I instead as a function of the number of policy parameters |θ|.
• Question 4: an evaluation of episodic reward after training in a game where reaction time is

crucial to demonstrate that asynchronous interaction can maintain performance with models
that are multiple orders of magnitude larger than those using sequential interaction.

Implementation Details: In all our experiments, we implemented the Deep Q-Network (DQN)
learning algorithm [33] within our asynchronous multi-process framework, using a discount factor
of γ = 0.99, a learning rate of 0.001 with the Adam optimizer, and a batch size of 16. A shared
experience replay buffer stores the 1 million most recent environment transitions. For preprocessing,
we down-sampled monochromatic Game Boy images to 84x84x1, similar to Atari preprocessing [33].
Following the scaling procedure previously established by [34] and [35], we used a 15-layer ResNet
model [27] while scaling the number of filters by a factor k to grow the network. The model sizes
correspond to: k = 1 (1M parameters), k = 7 (10M), k = 29 (100M), and k = 98 (1B). Models
were deployed on multi-process CPUs using Pytorch multiprocessing on Intel Gold 6148 Skylake
cores at 2.4GHz, with one core per process and multiple machines for models using > 40 processes.
See Appendix A for further detailed regarding our experimental setup and a discussion of limitations.

5.1 Computational Scaling Properties for Asynchronous Interaction and Learning
Realtime Game Boy Simulation: To run a comprehensive set of scaling experiments that would not
be feasible with real-world deployment, we need a simulation of a realistic realtime scenario. Towards
this end, we considered two games from the Game Boy that are made available for simulation as RL
environments through the Gymnasium Retro project [36]. We implemented a realtime version of the
Game Boy where it is run at 59.7275 frames per second such that τM = 1/59.7275 and with "noop"
actions executed as the default behavior β. This exactly mimics the way that humans would interact
with the Game Boy as a handheld console [37] and matches the setting in which humans compete
over speed runs for these games. This is an ideal setting for addressing our core empirical questions.

Question 1: How does N∗
I from Remark 2 scale with τ̄θ and the number of parameters |θ|?

Figure 3: We measure N∗
I for the Game Boy when run at the standard frequency using a greedy DQN

policy. We implemented maximum inference time staggering from Algorithm 1. Figure 3a shows
that N∗

I scales roughly linearly with τ̄θ, as expected for effective staggering (Remark 2). Figure 3b
also demonstrates that N∗

I scales roughly linearly with |θ|.
Notation for Asynchronous Learning: We also would like to consider the compute scaling properties
of round-robin asynchronous learning [14]. We now assume that the time to learn from an environment
transition can be treated as a random variable TL with sampled values τL ∼ TL and expected value
τ̄L := E[TL]. N∗

L will denote the number of learning processes such that all NL ≥ N∗
L include at

least one transition learned from for each transition in the environment in the long-run. This quantity
is of significant interest because it expresses the number of learning processes needed to learn from
each transition in the environment at least once given the frequency of the environment.

Question 2: How does N∗
L scale with τ̄L and the number of parameters |θ|?
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(a) N∗
L vs. τ̄L for Algorithm 1 (b) N∗

L vs. |θ| for Algorithm 1

Figure 4: a) We plot the scaling behavior of the learning compute requirement N∗
L as the expected

transition learning time τ̄L increases for ResNet polices across CPUs in the Game Boy environment.
b) We plot the scaling behavior of N∗

L instead as a function of the number of policy parameters |θ|.

(a) Pokémon Battling Environment (b) Pokémon Catching Environment (c) Tetris Environment

Figure 5: a) A frame from the final battle of Pokémon Blue when the agent is deciding on the next
move. b) A frame from the final catching encounter of Pokémon Blue when the agent has just
successfully caught Mewtwo. C) A frame from Tetris right before the agent completes its first line.

Figure 4: In Figure 4a we demonstrate that N∗
L grows approximately linearly with τ̄L. This scaling is

in line with what we would expect for the Round-Robin algorithm for large and deep neural networks
[14]. Additionally, our results in Figure 4b appear to also showcase linear scaling of N∗

L with |θ|.

5.2 Faster Progress Through a Realtime Game with Constant Novelty
Pokémon Blue: Pokémon Blue is a valuable environment for our study due to its long play through
time and constant novelty over many hours of play. Acting quickly is not a necessity to complete
this game as it lets the agent dictate the pace of play, but better players are still differentiated based
on their speed of completing the game. Indeed, the game has a large community of "speed runners"
aiming to complete milestones in record times, with even the fastest milestones taking multiple hours
[38]. It is an interesting domain for our study because acting quickly is only beneficial to the extent
that the agent displays competent behavior so action throughput alone will not lead to better results
when the quality of play correspondingly suffers. Because Pokémon Blue is known as a challenging
exploration problem that perhaps even exceeds the scope of previous deep RL achievements [39], we
divided the game into two settings based on expert human play: 295 battle encounters (Figure 5a)
and 93 catching encounters (Figure 5b). Agents are deployed in these settings and must complete
each encounter (by winning a battle or catching a Pokémon) before progressing.

Question 3: Can asynchronous interaction and learning achieve faster progress through a realtime
strategy game where constant learning is necessary to move forward even when models are large?

Figure 9: For Pokémon Blue we leverage NI = N∗
I and NL = N∗

L/5 as we did not find benefit
from learning at every step given that the underlying game is not responsive to every action taken at
the frame level. For all models, exploration rate is annealed from 1.0 to 0.05 over the course of the
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(a) 100M: Pokémon Battles Won vs. Time τ (b) 100M: Wild Pokémon Caught vs. Time τ

Figure 6: Realtime Pokémon Performance for Staggered Asynchronous Interaction & Learning.
a) Battles won in Pokémon Blue as a function of time for |θ| = 100M . b) Wild Pokémon caught in
Pokémon Blue as a function of time for |θ| = 100M .

first 100,000 steps of learning. We compare to the standard RL interaction paradigm where inference
and learning are performed sequentially [2] and where the order is flipped for realtime settings [3].
Our results in Figures 9a and 9b showcase that asynchronous inference and learning combine for
superior scaling of realtime performance as the model size grows. The performance improvement
over the sequential interaction framework correspond with our expectations given Remarks 1 and 2.

5.3 Maintaining Performance in a Game that Prioritizes Reaction Time with Large Models
Tetris: We also explore the game Tetris (Figure 5c) that presents a different kind of challenge for our
agents where even more of a premium is put on reaction time. In Tetris, the player will lose the game
if they wait indefinitely and do not act in time. While a slow policy can eventually win the game in
Pokémon, despite taking longer than necessary, a policy that does not act timely cannot progress
through Tetris as new pieces must be moved into the correct spots before they fall on existing pieces.

Question 4: Can asynchronous interaction help for games that prioritize reaction time as |θ| grows?

Figure 7: Realtime Tetris Performance vs. |θ|.
The average episodic return over 2,000 episodes of
learning achievable with N∗

L asynchronous learn-
ing processes. We compare models with a single in-
ference process with those that perform staggered
asynchronous inference following Algorithm 1.

Figure 7: To aid with exploration and jump-
start learning, a single episode of human play
is provided to each agent to learn from. The
agent continues to learn from a total of 2,000
episodes with an exploration rate of 0.05. We
see the sequential interaction scales quite poorly
for games that prioritize a high frequency of ac-
tions and cannot surpass random performance
for |θ| ≥1M as we would expect based on Re-
mark 1. Meanwhile, staggered asynchronous
inference following Algorithm 1 can achieve
a much higher reward rate for |θ| >1B as we
would anticipate based on Remark 2.

6 Conclusion
In this paper, we have taken a deeper look at
RL in realtime settings and the viability of in-
creasing the neural network model size in these
environments. Our theoretical analysis of regret
bounds has demonstrated the downfall of mod-
els that implement a single process of action inference as model sizes grow (Remark 1) and we have
proposed staggering algorithms that address this limitation for environments that are sufficiently
deterministic (Remark 2). Our empirical results on the realtime Game Boy games Pokémon Blue and
Tetris corroborate these findings and demonstrate the ability to perform well in realtime environments
with models that are orders of magnitude larger than what is achievable with a single inference process.
While conventional wisdom often leads researchers to think that smaller models are necessary for
realtime settings, our work indicates that this is not necessarily the case and takes a step towards
making realtime deployment of foundation models realistic.
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A Further Details Supporting the Main Text

Software Libraries: Our experiments leverage Numpy [40], which is publicly available following a
BSD license. Neural network models were developed using Pytorch [41], which is publicly available
following a modified BSD license. The Gym Retro project [36] used to simulate the Game Boy in a
RL environment is made available following a MIT license. We are not at liberty to distribute the
proprietary ROMs associated with Pokémon or Tetris and each person that deploys our provided code
must separately obtain their own copy.

Environment Details: We depict the environments considered in our paper in Figure 5. We consider
six discrete actions for both Pokémon Blue and Tetris including the A button, the B button, the left
directional button, the up directional button, the right directional button, and the down directional
button. In the Battling Environment when the opponent Pokémon is knocked out by the agent’s
Pokémon a reward of 1 is received and a reward of −1 is received when a users Pokémon is knocked
out. Battles include 1-6 Pokémon for the agent and 1-6 Pokémon for the opponent AI. In the Catching
Environment a reward of 1 is received by the agent when a wild Pokémon is captured and −1 when
the encounter is terminated unsuccessfully. In Tetris we provide changes in the in-game score as a
reward for the agent to learn from.

Training Procedure for Tetris: The one episode of human play provided for Tetris included 16,000
steps where non-noop actions were taken. We used our experiments from Figure 3 to calculate
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(a) 1M: Pokémon Battles Won vs. Time τ (b) 1M: Wild Pokémon Caught vs. Time τ

Figure 8: Realtime Pokémon Performance for Staggered Asynchronous Interaction & Learning.
a) Battles won in Pokémon Blue as a function of time for |θ| = 1M . b) Wild Pokémon caught in
Pokémon Blue as a function of time for |θ| = 1M .

(a) 10M: Pokémon Battles Won vs. Time τ (b) 10M: Wild Pokémon Caught vs. Time τ

Figure 9: Realtime Pokémon Performance for Staggered Asynchronous Interaction & Learning.
a) Battles won in Pokémon Blue as a function of time for |θ| = 10M . b) Wild Pokémon caught in
Pokémon Blue as a function of time for |θ| = 10M .

the amount of action delay per step for each model and populated the replay buffer with 16,000
transitions corresponding to these actions with observations delayed by the expected amount for each
model. We the trained the model for 16,000 steps before tuning the model in a simulation of the
environment with the corresponding amount of delay 2,000 for episodes. The episodic reward from
Figure 7 corresponds to the average episodic reward achieved during that training period.

Statistical Significance: We also note that error bar shading throughout our paper reflects 95%
confidence intervals computed with three random seeds: 0, 1, and 2.

Limitations: In both our experiments on Pokémon Blue and Tetris, performance is well below
human-level. This is because both of these games pose significant exploration problems and we
train our models from scratch for a limited amount of time. We believe that these experiments are
more than sufficient to showcase the benefits of staggered asynchronous inference in comparison
to the sequential interaction framework by showcasing when the latter framework breaks down in
realtime settings. However, we speculate that the results showing that game play does not suffer
despite significant action delay will likely not generalize to more intricate human-level policies.

Algorithm Pseudocode: We provide detailed pseudocode for Algorithm 2, which could not be
included in the main text due to space constraints.
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Algorithm 2 Expected Time Inference Staggering

Initialize: ˆ̄τθ = 0, τtot = 0, and atot = 0
Initialize: delay[processnum] = ϵ(processnum− 1)/NI ∀ processnum ∈ [1, ..., NI ]
Run: INFERENCE[processnum] ∀ processnum ∈ [1, ..., NI ]

1: function INFERENCE(processnum)
2: while alive do
3: sleep(delay[processnum]) ▷ Sleep for any delays accumulated by other processes
4: delay[processnum]← 0
5: a, τθ ∼ πθ(st) ▷ Have the policy sample an action and inference time
6: atot ← atot + 1
7: τtot ← τtot + τθ
8: ˆ̄τ

′

θ ← τtot/atot

9: δτ ← ˆ̄τ
′

θ − ˆ̄τθ
10: if δτ ≥ 0 then ▷ Wait more further from the current process
11: for num ̸= processnum ∈ [1, ..., NI ] do
12: delay[num]← delay[num] + dist(num, processnum) abs(δτ)/NI
13: else ▷ Wait more closer to the current process
14: for num ̸= processnum ∈ [1, ..., NI ] do
15: delay[num]← delay[num] + (NI − 1)dist(num,processnum) abs(δτ)/NI
16: at+⌈τθ/τM⌉ ← a ▷ Register action in environment

B Proofs for Each Theoretical Statement

Our proofs rely on the following core assumptions, restated from Section 2 in the main text:

1. The environment step time can be treated as an independent random variable TM with
sampled values τM ∼ TM and expected value τ̄M := E[TM].

2. The environment interaction time can be treated as an independent random variable TI with
sampled values τI ∼ TI and expected value τ̄I := E[TI ].

3. The action inference time of the policy can be treated as an independent random variable Tθ

with sampled values τθ ∼ Tθ and expected value τ̄θ := E[Tθ].

4. Asynchronous learning can learn from every interaction with M̃delay.

B.1 Definition 1

Most of Definition 1 just recaps the dynamics of how the agent interacts with an asynchronous ground
MDP following assumptions 1-3 about the nature of that interaction. All that is left to show is that this
can be viewed as a delayed MDP and that it can be viewed as a semi-MDP. The interaction process
highlighted in Definition 1 matches that of a Random Delay Markov Decision Process (RDMDP)
[18] where the action delay distribution is defined by the random variable ⌈τθ/τM⌉. To show it is a
semi-MDP as well, we consider the same proof style of Theorem 1 in Sutton et al. [16]:

A semi-MDP consists of (1) a set of states, (2) a set of actions, (3) for each pair of state and action, an
expected cumulative discounted reward, and (4) a well-defined joint distribution of the next state and
transit time. We now demonstrate each of these properties. The set of states is S and the set of actions
is A. The expected reward and the next-state and transit-time distributions are well defined for every
state and delayed action. These expectations and distributions are well defined becauseMasync is
Markov, thus the next state, reward, and time are dependent only on the delayed action chosen and the
state in which it was initiated. Transit times with arbitrary real intervals are permitted in semi-MDPs.

B.2 Theorem 1

To prove Theorem 1 we will demonstrate the validity of each equation of the theorem following the
order of presentation in the main text.

Equation 1: By definition ∆learn(τ) and ∆inaction(τ) must be independent contribution to the total
regret because learning regret is only incurred when acting in the environment following π and
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inaction regret is only incurred when not acting in the environment and thus following the default
behavior policy β. The interaction frequency does not depend on the parameter values of π as they
change following from the independent random variable assumption. Even when regret from learning
is eliminated and regret from inaction is eliminated there is still another independent source of regret
that persists ∆delay(τ) reflecting the lower reward rate of the best possible policy in acting over M̃delay
in comparison to the best possible policy acting overMasync.

Equation 2: The worst case lower bound for the standard notion of regret arising from the need for
learning and exploration has been established as ∆learn(T ) ∈ Ω(

√
T ) where T denotes the number

of discrete learning steps taken in the environment. Given that we learn from every step in the
environment following assumption 4, then the regret as a function of τ scales with the expected
number of discrete environment steps as a function of T i.e. E[T (τ)] = τ(τ̄I/τ̄M) because TM and
TI are independent. Therefor, ∆learn(τ) ∈ Ω(

√
τ(τ̄I/τ̄M)). As noted in the footnote in the main

text, this analysis equally applies to the known ∆learn(T ) ∈ Õ(
√
T ) minimum upper bound [4].

Equation 3: The worst case lower bound on ∆inaction(τ) is derived by considering a worst case
environment with two actions a1 and a2 and two states s1 and s2 where the default behavior β takes
its own action a3 at every state. The reward provided is 1 at s1 and 0 at s2. The next state is s1
regardless of the state if either a1 or a2 is taken and s2 if a3 is taken. In this environment the optimal
reward rate is 1 and the reward rate when following β is 0.0. The expected number of times a3 is taken
during τ seconds inMasync is then τ(τ̄I − τ̄M)/τ̄M because TM and TI are independent. Therefor,
∆inaction(τ) ∈ Ω(τ(τ̄I − τ̄M)/τ̄M) for this particular environment. Meanwhile, the expected inaction
regret is also upper bounded by ∆inaction(τ) ≤ rmaxτ(τ̄I − τ̄M)/τ̄M) where rmax is the maximum
possible reward per step because by definition the agent cannot incur regret from inaction when it is
acting in the environment. Therefor, we have demonstrated that equation 3 holds.

Equation 4: The worst case lower bound on ∆delay(τ) is derived by considering a worst case
environment with two actions a1 and a2 and two states s1 and s2 where the default behavior β takes
its own action a3 at every state. The agent stays in the current state regardless of the action with
probability pminimax and goes to the other state with probability pminimax where pminimax ≤ 0.5 by
definition. The agent receives a reward of 1 for taking a1 in s1 or a2 in s2 and a reward of 0 otherwise.
So the best reward rate as a function of τ that can be ensured with actions delayed by τθ/τM is
τ×E[(1−pminimax)

τθ/τM ] meanwhile the best reward rate possible inMasync is τ , so the lower bound
on the regret with respect to that optimal reward rate is ∆delay(τ) ∈ Ω(τ × E[(1− pminimax)

τθ/τM ]).

B.3 Remark 1

We restate the derivation of the remark from the main text, filling in a bit more detail for clarity.
When π and Masync interact sequentially, we must have τI ≥ τθ, so ∆inaction(τ) ∈ Ω(τ(τ̄I −
τ̄M)/τ̄M) ∈ Ω(τ(τ̄θ − τ̄M)/τ̄M). This implies that even as τ → ∞, the worst case regret rate
∆realtime(τ)/τ ∈ Ω(∆inaction(τ)/τ) ∈ Ω((τ̄θ − τ̄M)/τ̄M) following from Theorem 1.

B.4 Remark 2

Algorithm 1 is capable of scaling the expected interaction time with the number of processes by
τ̄I = min(τmax

θ /NI , τ̄M) where τmax
θ is the maximum encountered value of τθ as τ →∞. This then

implies that for NI ≥ N∗
I = ⌈τmax

θ /τ̄M⌉, τ̄I = τ̄M. Algorithm 2 is capable of scaling the expected
interaction time with the number of processes by τ̄I = min(τ̄θ/NI , τ̄M) as τ →∞ following the
law of large numbers. This then correspondingly implies that for NI ≥ N∗

I = ⌈τ̄θ/τ̄M⌉, τ̄I = τ̄M.
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