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ABSTRACT

The functional or structural spatial regions within tissues, referred to as spatial
niches, are elements for illustrating the spatial contexts of multicellular organ-
isms. A key challenge is querying shared niches across diverse tissues, which
is crucial for achieving a comprehensive understanding of the organization and
phenotypes of cell populations. However, current data analysis methods predomi-
nantly focus on creating spatial-aware embeddings for cells, neglecting the devel-
opment of niche-level representations for effective querying. To address this gap,
we introduce QueST, a novel niche representation learning model designed for
querying spatial niches across multiple samples. QueST utilizes a novel subgraph
contrastive learning approach to explicitly capture niche-level characteristics and
incorporates adversarial training to mitigate batch effects. We evaluate QueST
on established benchmarks using human and mouse datasets, demonstrating its
superiority over state-of-the-art graph representation learning methods in accurate
niche queries. Overall, QueST offers a specialized model for spatial niche queries,
paving the way for deeper insights into the patterns and mechanisms of cell spatial
organization across tissues.

1 INTRODUCTION

A spatial niche in tissue sections is a cell and its surroundings with specific functionality or struc-
ture. Cells within tissues operate in complex spatial niches, where their functions are significantly
influenced by interactions with neighboring cells. These niches are characterized by the spatial
arrangement of cells and the molecular signals exchanged among them, playing a crucial role in
regulating higher-order tissue functions such as immune responses, tissue regeneration, and disease
progression (Wu et al., 2021; Meylan et al., 2022} |Palla et al., 2022). Importantly, the behavior of
the same cell type can vary dramatically depending on its niche (Wagner et al.| [2016), underscoring
the necessity of understanding the spatial context in cellular behavior.

Recent advances in spatial transcriptomics technologies (Xia et al.,2019;|Eng et al.,[2019;|Rao et al.}
2020; |[Rodriques et al., [2019; (Chen et al. 2022) have enabled scientists to inspect this important
biological component from a computational view, as these technologies manage to generate gene
expression data for each cell or sequencing spot while preserving its location information. Some
researchers have endeavored to develop context-aware representation learning methods on spatial
transcriptomics data (Hu et all 2021} [Dong & Zhang| 2022} [Long et al., [2023). However, these
methods focus on cell or node embedding clustering on a single spatial transcriptomics sample,
limiting their application to studying spatial niches. Also, most methods are unable to remove the
batch effect, limiting their usability on multiple samples.

Extending the analysis of spatial niches across multiple samples amplifies our ability to discern
universal patterns and unique variations that single-sample studies might overlook. By integrat-
ing spatial transcriptomics data across different samples, including, different tissues, developmental
stages, or disease conditions, we may uncover how similar niches or microenvironmental features
manifest in diverse biological contexts, shedding light on the underlying mechanisms that drive nor-
mal physiology and pathological states. Recent researchers have made a step towards this multiple
sample integration target (Zeira et al., 2022; [Xia et al.l 2023} Zhou et al.| [2023), which are the
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so-called ‘alignment’ methods. However, these methods focus on cross-sample similarity on the
cell-cell level rather than considering it on a niche level. Although the cell-cell alignment results
may generally indicate niche similarity structure, they cannot directly serve as niche similarity mea-
surement. Furthermore, these methods are limited to aligning only two samples per training run,
making them impractical for analyzing large cohorts of spatial transcriptomics samples.

Querying spatial niches across different samples presents several unique challenges. First, explicit
representations are needed to compute the similarities among spatial niches and perform query tasks.
However, existing graph deep learning methods typically focus on node embedding rather than sub-
graph embedding. Some methods (Wu et al.l [2022; [Fischer et al.| [2022; Wang et al.l 2023) have
tried to represent a subgraph via posing a pooling layer or readout function on the node embedding,
but this simple approach cannot guarantee proper utilization of information within and between
subgraphs under the self-supervised setting. Second, the gene expression data between different
samples may contain considerable batch effect (Korsunsky et al., 2019), which must be removed
before comparing niches on a sample-wise level.

To address the above challenges, we present QueST, a novel niche representation learning model
that explicitly learns biologically meaningful representations for spatial niches and can perform spa-
tial niche queries across multiple samples. We construct benchmarks for the niche query problem
with the Human Dorsolateral Prefrontal Cortex (DLPFC) dataset (Maynard et al.| 2021) and the
Mouse Olfactory Bulb Tissue (MOBT) dataset (Guo et al., [2023)), and evaluate QueST against sev-
eral state-of-the-art graph representation learning and alignment methods on these benchmarks. Our
framework makes the following key contributions:

* Novel Niche Representation Learning Strategy: We introduce a novel graph contrastive
learning strategy to explicitly learn the representation of a niche, which includes obtaining
subgraph embedding via a pooling layer and partially shuffling the graph while leaving
certain parts fixed to generate positive and negative niche pairs.

* Adversarial Batch Effect Removal: We borrow the idea of Adversarial Auto-encoder
(Makhzani et al. [2015)) and introduce an adversarial training strategy to remove batch in-
formation from the model’s latent space during the training stage and empower the encoder
with the ability to remove batch effect from unseen samples.

2 TASK FORMULATION

Consider a spatial transcriptomics dataset D that includes gene expression measurements for NV cells,
G genes, and T samples. For each cell i, we have access to the gene expression vector z; € R, its
spatial location s; € R?, and a one-hot batch annotation b; € N indicating the sample from which
cell ¢ originates.

We construct a spatial graph G = (V, E') based on the spatial proximity relationship among cells
within each sample, where each node has node features that correspond to a cell’s gene expression
vector. We define the k-hop subgraph centered at cell i as its corresponding spatial niche, denoted
as Niche(i). Consequently, the dataset D will contain up to IV niches in total. We categorize these
niches into two sets:

Query niche set Q: a small set of niches that are well studied, possessing known properties of
interest, such as specific cell type patterns.

Reference niche set R: a larger set of niches where the properties of interest remain largely un-
known and are worth exploration.

Now we introduce the main objective of this paper:
Niche Query Problem: What is the most similarity niche in R to a query niche in Q?

Figure[I|provides a schematic illustration of this problem. Each query niche corresponds to a “’simi-
lar niche(s)” area on a reference sample, where a series of niches will all serve as the correct answers
to the Niche Query Problem. We aim for the model not only to identify a single correct niche within
the ’similar niche(s)” area but also to reveal this entire area.
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Figure 1: Illustration of the Niche Query Problem

Assume Niche(q) € Q is a given query niche and Niche(r) € R is an arbitrary niche from the
reference set. The objective of the niche query problem is:

Niche(#) = argmax sima, [Niche(q), Niche(r)] (1)
Niche(r)eR

where sima(+, -) is a pairwise similarity function defined by the model M.
We then define several metrics to evaluate M’s performance from the following two aspects:

Best Niche Match Accuracy: This perspective examines whether Niche(7) is accurate, requiring
a ground truth metric for pairwise niche similarity. Since no existing niche similarity measurement
is available, we derive this metric from ground truth cell type annotations, transforming the niche
similarity problem into a subgraph similarity problem. We adopt the Wasserstein Weisfeiler-Lehman
(WWL) Graph Kernel method (Togninalli et al., 2019) to calculate the similarity value between two
arbitrary subgraphs. This method involves multiple information aggregation iterations, where each
vertex aggregates the node embeddings (initialized with cell type labels) from its neighbors and
hashes the aggregated label into a new embedding for itself. This process can be defined as:

a"*!(v) = hash (a"(v), N"(v)) (2)

After these iterations, we compute the Wasserstein distance between the node embedding matrices
of the two niches, reversing it to establish the ground truth similarity measure:

simyy [Niche(q), Niche(7)] = 1 — WassersteinDistance [Niche(q), Niche(#)] 3)

Overall Similarity Accuracy: This perspective assesses the accuracy of sima, which in essence
reflects the model’s ability to reveal the entire “similar niche(s)” region in Figure[I] We compare the
similarity results between simy,, and sim, across the entire sample. Given a query niche Niche(q)
and a reference sample 7 with its corresponding niche set Niche(7) = {Niche(r)|r € T}, each
similarity function sim generates a similarity vector .S, with each entry representing the similarity
value:

Ssim[r] = sim [Niche(q), Niche(r)] 4)
We then evaluate the agreements between Sgim,,, and Ssm,, using the Pearson correlation metric:

Accuracy,, = PearsonCorrelation (Ssimgu s Ssimag ) 5)

3 THE QUEST APPROACH

In this section, we present QueST, the self-supervised graph auto-encoder framework, to query
niches on multi-sample spatial transcriptomics data based on graph neural networks. Besides the
main graph auto-encoder architecture, QueST has a contrastive learning module and an adversar-
ial training module, which are two critical components that distinguish QueST from previous ap-
proaches. The contrastive learning module enables the model to discriminate between niches with
different cell type compositions and topological structures, while the adversarial training module
removes the batch effect from the latent niche representation. We present a schematic illustration of
QueST model architecture in Figure
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Figure 2: QueST model architecture

3.1 CONTRASTIVE NICHE REPRESENTATION LEARNING

The main architecture of QueST uses a graph auto-encoder with GIN (Xu et al.,|2018). The graph
encoder maps the normalized gene expression vector to a d dimensional latent space:

ATV =MLPO [(14¢) - h + 3 Al (6)
JENTD)

where hl(»l) is the node embedding of cell 7 after the [-th encoder layer of GNN, with hl(o) initialized

as @;. lene is the number of layers of the encoder, and z; = hl(-le“) € R? is the node embedding
of cell ¢ after the encoder. ¢ is a scalar that controls the weight of each node’s own feature in the
aggregation process.

However, this typical node-embedding fashion only learns a representation for each node or cell
rather than for each niche. Even if the node embedding considers the k-hop neighborhood via
information aggregation in Graph Neural Networks, the signal faints as the distance from the central
node increases, while each cell should be treated equally within a niche when the prior knowledge
of importance for each cell is absent. To emphasize this equal information aggregation within a
niche, we add a pooling layer to force the model to learn the unbiased representation for the entire
subgraph or niche centered at each cell:

Zniche(i) = POOL (2,5 € N (i) 0

where Ziche(s) 1 the embedding of the niche centered at cell 7. We then introduce a typical graph
decoder fqe. and a reconstruction loss to make sure that the embedding contains enough information
to reconstruct the input:

1 N
Liecon = N Z Hfdec (ZniChe(i))) - Llile ®)
=1

To make sure the niche embedding encodes both the local and global topological and structural
information, we introduce a contrastive learning framework to enhance the quality of the niche
embedding. Consider the spatial graph G, = (Vj, E}) for sample k,k = 1,...,T. During each
training epoch, before G, goes through the model, we conduct data augmentation via the following
steps:

1. Niche Fixing: we randomly sample a certain subset of nodes Vs C V. For each niche with a
central node in Vi, we generate a positive and a negative pair in the next step. Denote this fixed
niche set as Nicheg, = {Niche(v)|v € Vi }.
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2. Graph Corruption: We generate a corrupted graph by randomly shuffling node features while
preserving the graph structure. During this process, the nodes included by Nicheg, will have their
node features fixed, while the rest of the nodes will randomly exchange their node feature vectors.
Denote the corrupted graph as G}, = (V}/, E},). For each node v € V, denote v’ as its corresponding
node in the corrupted graph G’.

3. Dual Encoding: Once the corrupted graph G’ is generated, both G and G’ will be fed into the
model and will have its own latent niche representation denoted as ZNiche(v) and 2Niche(v’)-

4. Contrastive Sampling: After obtaining 2Zniche(v) and 2Niche(v), for each node v in Vjy and its
corresponding niche, we can define following the positive and negative embedding pair:

¢ Positive pair: (ZNiche(v)7 zNiche(v’));

* Negative pair: (Zniche(v)> ZNiche(’))» Where u’ is randomly sampled from V'\ {v}.

After the data augmentation step, we define the following contrastive loss:

1
Lcontrast = ‘V | E IOg [fcontrast (zNiChE(V)7 zNiche(V’))} + 1Og [1 - fcontrast (zNiche(V)7 zNiche(u'))] (9)
fix
v€E Viix

where we build the contrastive loss following Deep Graph Infomax (Velickovic et al., [2019), with
Seontrast being a bilinear discriminator feonrast : R¢ x R? — R which distinguishes the positive pair
from the negative pair.

3.2 BATCH REMOVAL VIA ADVERSARIAL TRAINING

The above architecture is designed to learn niche representation on one single spatial transcriptomics
sample. To enable QueST query niches across multiple samples, we develop an adversarial training
method to remove the batch effect from the latent niche representation when training the model on
multiple samples. The basic logic of this adversarial training is to make a discriminator to discrimi-
nate batch labels from the niche embeddings while simultaneously training the encoder adversarially
to fool the batch discriminator. To achieve this, we input the latent niche representation Zniche(v) t0
a batch discriminator fyuen to predict which sample this niche is from and use a Gradient Reversal
Layer (Ganin et al.,[2016) for giving reverse gradient to the encoder. We denote the predicted batch
labels as

by = foaten (GRL (2Niche(v))) (10)
where GRL is:
OGRL (2 i
GRL (ZNiche(v)) = ZNiche(v); M =-1 (11)
ZNiche(v)

then we have the following batch prediction loss:

N T
Lowen = —% YUY 6 10g b + (1 - bgﬂ) log (1 - i)gj)) (12)
1

i=1 \j=

However, the removal of batch information from the latent representation will add difficulties to
reconstruction, since the gene expression that which decoder is required to reconstruct still contains
the batch effect. To mitigate the negative impact of batch removal on the reconstruction task, we add
batch information back to the input of the decoder:

Lrecon, — fdec(zNiche(v)7 bu) (13)

and the reconstruction loss becomes

1 N
Lrecon - N ; ||wreconi - wsz (14)
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3.3 QUEST OVERALL L0SS FUNCTION

The overall loss function of QueST is defined as follows:
L= >\1Lrec0n + >\2Lcomrasl + )\SLbatCh (15)

where we set \; = 1, Ao = 1, A3 = 0.1 as default across all experiments. For other hyperparameters
and implementation details, please refer to section[A.3]

3.4 QUERYING NICHES IN LATENT SPACE

Finally, we measure the similarity between two arbitrary spatial niches using the cosine similarity
of their latent representation, which is used for the query:

T
ZNi(;he(q) zNiche (T‘)

simgyest[Niche(q), Niche(r)] =

= (16)
”zNiche(q) [ - HzNiche(r) H

4 EXPERIMENTS

In this section, we present our experimental results. We set k = 3 as the default for the definition of
a spatial niche across all experiments. For the WWL Graph Kernel, We set the iteration number to
be 3 and use it as the ground truth similarity measurement.

4.1 BENCHMARK CONSTRUCTION

As there are currently no available multi-sample datasets with niche-level annotations that can serve
as benchmarks, we synthesize our niche query benchmarks based on existing spatial transcriptomics
datasets with cell-type annotation.

Specifically, we use two widely used datasets in spatial transcriptomics: the Human Dorsolateral
Prefrontal Cortex (DLPFC) dataset and the Mouse Olfactory Bulb Tissue (MOBT) dataset. These
datasets represent niche query problems with varying levels of challenges. On each dataset, we first
separate samples into query and reference set, and then generate niches that need to be queried. The
DLPFC dataset consists of 12 samples from the human brain, with ground truth cell type annotation
illustrated in Figure We partition this dataset into a query set with 1 sample and a reference
set with 11 samples. This setting requires the model to perform batch effect removal and niche
query on a large cohort of spatial transcriptomics samples. The MOBT dataset contains 3 samples
from different sequencing technologies including 10X Visium, Stereo-seq (Chen et al., [2022) and
Slide-seq V2 (Stickels et al., |2021). The radius of data spots for each technology differs; they are
50pm;, 35m and 10pem, respectively. As the ground truth cell type annotation shown in Figure[A.2]
the variation in spot resolution affects the spatial distribution of the sequencing spots or cells, which
is an even harder task. It requires the niche query methods not only to remove the batch effect in
gene expression but also to model the spatial context on heterogeneous graphs. We split the MOBT
dataset into a query set with 1 sample from Stereo-seq and a reference set with 2 samples from 10X
Visium and Slide-seq V2. The detailed description of these two datasets can be found in section

Ad

Once the query and reference sample sets are established, any niche within the query sample can
correspond to a niche query problem. In this paper, we generate several query niches by changing
these two parameters:

1. Size: This refers to the number of cells included in the niche. We consider three scenarios with
the query niche containing 50, 100, and 200 cells.

2. Cell Type Pattern: This refers to the number of cell types contained in the niche. We also
examine three scenarios, where the query niche includes 1, 2, and 3 cell types.

By combining these two aspects of variation, in total 9 query niches can be defined for each query
sample, as illustrated in Figure[A.3]and Figure See section[A.2]for detailed generation of query
niches.

We evaluate QueST’s performance against three popular graph deep learning methods in spatial tran-
scriptomics: GraphST, SLAT, and STAGATE. GraphST and STAGATE are representation learning
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Table 1: Results for Pearson correlation on DLPFC dataset. We report the mean value on the 11
reference samples for each query niche.

Niche Name GraphST SLAT STAGATE QueST
Layer3_Layer4 Layer5_100 0.476 0.528 0.130 0.383
Layer3_Layer4_Layer5_200 0.477 0.607 0.102 0.620
Layer3_Layer4 _Layer5_50 0.335 0.506 0.068 0.585

Layer4_100 0.288 0.418 0.062 0.535
Layer4_200 0.285 0.430 0.063 0.535
Layer4_50 0.282 0.415 0.058 0.529
Layer5_Layer6-100 0.386 0.658 0.132 0.802
Layer5_Layer6_-200 0.463 0.729 0.152 0.743
Layer5_Layer6_50 0.433 0.720 0.140 0.714

methods designed for single samples, utilizing GCN (Kipf & Welling, 2016)) and GAT (Velickovic
et al., 2017) as their respective model backbones, while SLAT is tailored for the alignment of two
spatial transcriptomics slides, employing LGCN (Xia et al.l [2023) as its backbone and SVD pre-
processing for batch effect removal. Additionally, SLAT solves an optimal transport optimization
problem in its latent space to establish node correspondence relationships between samples as align-
ment results. However, all these competing methods focus on node embedding learning; thus, we
manually perform pooling on their embeddings to obtain niche representations. We utilize the co-
sine similarity between the representations of niches in reference samples and the query niche as the
similarity measurement corresponding to these representation learning methods.

4.2 QUEST QUERIES NICHES ACCURATELY ON LARGE COHORTS OF REFERENCE SAMPLES

We first evaluate QueST’s performance on the DLPFC datasets. Table[T]presents the performance of
GraphST, STAGATE, SLAT, and QueST on the DLPFC dataset, measured by the Overall Similarity
Accuracy. As shown, the niche similarity results generated by QueST closely resemble the ground
truth, achieving the highest Pearson correlation for 7 out of the 9 query niches. SLAT, utilizing its
LGCN and batch correction module, also performs well, attaining the best results for the remaining 2
query niches. In contrast, the representation learning methods designed for single samples, including
GraphST and STAGATE, perform poorly on this niche query task.

Figure 3] and Figure [A-5A9] showcase the spatial distribution of cosine similarity for the example
query niche Layer5_Layer6_100. As shown in these figures, QueST visually aligns most closely
with the ground truth, with the high-similarity regions closely following the ground truth patterns,
exhibiting fewer noisy artifacts and a smoother gradient across the reference sample. This indicates
that QueST excels at reproducing the similarity structure of the ground truth. In contrast, the other
methods capture the general spatial similarity pattern but lack niche embedding learning, making
their latent spaces unsuitable for accurately measuring niche similarity.
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Figure 3: Visualization of cosine similarity of niche Layer5_Layer6_100 on sample 151675

151675 STAGATE 151675 QUEST

Table 2] presents the performance of these methods based on Best Niche Match Accuracy. From
this table, it is evident that QueST achieves the best results for nearly all query niches. These results
are consistent with those from the Overall Similarity Accuracy, as a more reasonable similarity
measurement is more likely to accurately address the Niche Query Problem. Figure [] visualizes
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Table 2: Results for Subgraph Wasserstein Distance on DLPFC dataset. We report the mean value
on the 11 reference samples.

Niche Name GraphST SLAT STAGATE QueST
Layer3_Layer4 _Layer5_100 0.917 0.809 0.936 0.870
Layer3_Layer4_Layer5_200 0.840 0.842 0.896 0.837
Layer3_Layer4 _Layer5_50 0.941 0.869 0.957 0.858

Layer4_100 0.946 0.907 0.989 0.883
Layer4_200 0.967 0.910 0.989 0.897
Layer4_50 0.938 0.891 0.989 0.889
Layer5_Layer6-100 0.758 0.803 0.969 0.751
Layer5_Layer6_200 0.797 0.776 0.963 0.771
Layer5_Layer6_50 0.781 0.782 0.968 0.775

the niche query results for sample 151675, highlighting only the queried region’s cell types. We
observe that QueST generates results that most closely match the results generated by ground truth
similarity measurement, accurately capturing both the correct cell types and their adjacency rela-
tionships within the marked region. We also observe that alignment methods based on OT, such as
SLAT, can find regions with cell type largely correct, but fail to produce a concentrated query area
that corresponds to a local neighborhood or niche. This limitation arises because OT-based meth-
ods focus on computing cell-cell similarity rather than niche-niche similarity, mapping each cell in
the query niche to its most similar counterpart in the reference niche. Therefore, while popular in
multi-sample integration, these methods are not well-suited for the niche query task.

151675 Ground Truth 151675 GraphST 151675 SLAT 151675 STAGATE 151675 QUEST

Figure 4: Visualization of query result on example niche Layer5_Layer6_100. We show the cell type
of the region which is determined by the method as the query result and mask the cell type of the
rest part.

4.3 QUEST QUERIES NICHE ACCURATELY ACROSS DIFFERENT SEQUENCING TECHNOLOGIES

Next, we evaluate QueST’s performance on the Mouse Olfactory Bulb Tissue dataset. Table[3|shows
the performance on the MOBT dataset in terms of the Overall Similarity Accuracy. Again, QueST
achieves the highest Pearson correlation value on most of the query niches, demonstrating QueST’s
superiority for querying niches across samples with varying sequencing technologies. Figure[5]and
Figure [A_TOJA.T4] showcase the spatial distribution of cosine similarity of an example query niche
GL_ONL_100. We observe that most of the results degrade significantly compared to those on
DLPFC datasets, largely due to the substantial variations between samples introduced by the dif-
ference in sequencing technology. Nevertheless, QueST successfully retains most of the underlying
similarity structure. In contrast, other methods suffer badly from this technical challenge, producing
cosine similarity that almost spreads uniformly across the entire tissue, with low contrast between
the target regions and the others.

Similar trends are observed when assessing these methods on the MOBT dataset using Best Niche
Match Accuracy. Table ] summarizes the mean performance of the nine query niches across two
reference samples, with QueST consistently delivering the best results for most query niches. Figure
[6] visualizes the query results for the example niche GL_ONL_100, again showing that QueST’s
outputs most closely resemble the ground truth.
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Table 3: Results for Pearson Correlation on Mouse Olfactory Bulb Tissue dataset. We report the
mean value on the 2 reference samples.

Niche Name GraphST SLAT STAGATE QueST
GCL_100 0.437 0.769 0.576 0.777
GCL_150 0.518 0.669 0.539 0.771
GCL_50 0.359 0.747 0.551 0.773

GCLMCL_EPL_100 0.130 0.515 0.215 0.544
GCL_MCL_EPL_150 0.116 0.572 0.283 0.557

GCL_MCL_EPL_50 0.223 0.541 0.081 0.288
GL_ONL_100 0.211 0.573 -0.256 0.766
GL_ONL_150 0.156 0.691 -0.237 0.768
GL_ONL_50 0.241 0.663 -0.428 0.812

Slide-seq V2 Ground Truth Slide-seq V2 GraphST Slide-seq V2 SLAT Slide-seq V2 STAGATE Slide-seq V2 QUEST
08 08 05 09

Figure 5: Visualization of cosine similarity on example niche GL_ONL_100

4.4 QUEST ABLATION EXPERIMENTS

In this section, we present the results of the ablation experiments, as shown in Table @ From these
results, we can draw several important observations:

First, removing the contrastive learning module significantly degrades the model’s performance.
This finding is intuitive, as the primary purpose of incorporating contrastive learning is to help
the model distinguish between potentially similar yet fundamentally different niches (for instance,
niches with the same cell type composition but different arrangements are treated as negative pairs)
and to recognize identical niches in varying external environments (positive pairs). Our model em-
ploys subgraph pooling to generate niche embeddings, which can obscure the topological structure
within the niche or subgraph. The introduction of contrastive learning effectively mitigates this
issue.

Second, the absence of pooling also severely decreases the model’s performance. We argue that
node embedding methods are ill-suited for the niche query problem. This is primarily due to the
fact that, while the information aggregated in node embeddings considers the microenvironments
surrounding each cell, the signal diminishes with increasing distance from neighboring cells to the
central cell. Given that a spatial niche comprises dozens of cells, it is challenging to identify a

Table 4: Results for Subgraph Wasserstein Distance on Mouse Olfactory Bulb Tissue dataset. We
report the mean value on the 2 reference samples.

Niche Name GraphST SLAT STAGATE QueST
GCL_100 0.794 0.741 0.812 0.729
GCL_150 0.800 0.762 0.883 0.738
GCL_50 0.808 0.729 0.815 0.692
GCL_MCL_EPL_100 0.819 0.835 0.894 0.803
GCL_MCL_EPL_150 0.822 0.772 0.881 0.797
GCL_MCL_EPL_50 0.839 0.842 0.926 0.838
GL_ONL_100 0.918 0.829 0.865 0.782
GL_ONL_150 0.848 0.810 0.870 0.763
GL_ONL_50 0.906 0.810 0.887 0.765
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Figure 6: Visualization of query result on example niche GL_ONL_100

Table 5: Ablation study for batch discriminator, contrastive learning and pooling on QueST model,
where No-X means the QueST model without the X module. We report mean Pearson Correlation
on the 11 reference samples of the DLPFC dataset.

Niche Name No-Batch No-Contrastive No-Pooling QueST
Layer3_Layer4 _Layer5_100 0.302 0.316 0.260 0.383
Layer3_Layer4_Layer5_200 0.402 0.263 0.306 0.620
Layer3_Layer4_Layer5_50 0.524 0.272 0.369 0.585
Layer4_100 0.540 0.258 0.226 0.535
Layer4_200 0.527 0.259 0.343 0.535
Layer4_50 0.508 0.248 0.213 0.529
Layer5_Layer6_100 0.647 0.294 0.496 0.802
Layer5_Layer6_200 0.498 0.393 0.280 0.743
Layer5_Layer6_50 0.549 0.399 0.389 0.714

dominant cell. Consequently, using the central cell’s node embedding as the representative for the
entire niche can introduce significant bias when calculating the similarity between different niches.

Lastly, the removal of the batch discriminator has a relatively minor impact on the model’s perfor-
mance. This may be attributed to the relatively small batch effects present in the DLPFC dataset.
Nonetheless, the overall performance indicates that the batch discriminator contributes to more ac-
curate niche similarity measurements across different samples.

5 DISCUSSION AND CONCLUSION

In this study, we introduce the Niche Query Problem and develop QueST, a novel and specialized
framework for querying spatial niches across diverse spatial transcriptomics samples. QueST em-
ploys a subgraph contrastive learning approach to explicitly learn niche representation, incorporates
an adversarial training framework to perform batch correction, and finally uses cosine similarity
between latent representation vectors to perform spatial niche query. Experimental results demon-
strate the efficacy of these critical modules and validate QueST’s capability for accurately querying
spatial niches in various settings. To the best of our knowledge, QueST is the first graph deep learn-
ing model tailored for querying spatial niches in spatial transcriptomics data. We believe that with
the increased volume of spatial transcriptomic data, this niche query problem will be a foundation
for investigating pan-cancer or cross-species studies, and both the QueST method and the query
benchmark we developed will lay the groundwork for addressing this problem.

Certain limitations exist for QueST and further work is desired to improve the framework. At
present, QueST requires computing k-hop subgraphs with a fixed k to extract spatial niches on ref-
erence samples for comparison with the query niche. Handling niches with various sizes and shapes
simultaneously on reference samples is a potential future direction for improvement. Furthermore,
the graph auto-encoder architecture limits the scale of the model. Introducing novel architecture
such as transformers may help scale up the model for larger pre-training and querying tasks on
datasets with millions of cells or even more.
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A APPENDIX

A.1 DETAILED DESCRIPTION OF DATASETS

The DLPFC dataset contains 12 samples as summarized in Table[A.T}

Table A.1: Summary of the DLPFC dataset

Sample ID Spot Number Gene Number

151507 4221 33538
151508 4381 33538
151509 4788 33538
151510 4595 33538
151669 3636 33538
151670 3484 33538
151671 4093 33538
151672 3888 33538
151673 3611 33538
151674 3635 33538
151675 3566 33538
151676 3431 33538

Besides, the DLPFC contains 7 cell types in total, namely Layerl, Layer2, Layer3, Layer4, LayerS,
Layer6, and WM, which corresponds to different layers of cortex and the white matter. The ground
truth cell type annotation is depicted in Figure [A.T]

The MOBT dataset contains 3 samples as summarized in Table[A.2}

Table A.2: Summary of the MOBT dataset
Sequencing Technology Spot Number Gene Number

10X Visium 1185 5531
Stereo-seq 8762 5531
Slide-seq V2 18173 5531

The MOBT dataset contains 5 cell types in total, which are EPL (External Plexiform Layer), GCL
(Granular Cell Layer), GL (Glomerular Layer), MCL (Mitral Cell Layer), ONL (Olfactory Nerve
Layer). We show the ground truth cell type annotation in Figure

A.2 DETAILED GENERATION OF QUERY NICHES

In this section, we describe how the query niches are selected in detail.
For the DLPFC dataset, we choose sample 151507 as the query sample, upon which we define the
query niches. We propose the following three cell-type patterns:

1. Layer4;

2. Layer5 and Layer6;

3. Layer3, Layer4 and Layero6.
With the niche size determined as 50, 100, and 200 cells beforehand, we select the region that
satisfies these 9 different requirements respectively. For each setting, we first randomly determine

an anchor cell for the query niche and expand this subgraph with its k-hop neighbors until the
subgraph satisfies the size requirements. The query niches selected are visualized in Figure[A.3]

For the MOBT dataset, we choose the Stereo-seq sample as the query sample and define query
niches on it. We choose the following cell-type patterns:

1. GCL;
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Figure A.1: ground truth cell type annotation on DLPFC dataset

Slide-seq V2

Stereo-seq

10X Visium

cecce

cecoce
2

cecce
2}

Figure A.2: ground truth cell type annotation on MOBT dataset

2. GL and ONL;
3. GCL, MCL, and EPL.

We then set out to select appropriate regions with the same niche size requirements. Since the cell
type distribution in this tissue is not as smooth as in the DLPFC dataset, it is hard to find a region
that satisfies the cell type requirements. Instead, we choose regions that contain the required cell
types with a proportion over 95%. The query niches of the MOBT dataset are shown in Figure[A:4]

A.3 IMPLEMENTATION DETAILS FOR QUEST MODEL

Here we present the default configuration for QueST in Table [A.3}

where the fix ratio refers to the fixed number of niches when generating positive and negative pairs,
and the negative pair shuffle ratio is used to determine whether a shuffled subgraph can be sampled
as a negative pair. QueST is implemented via PyTorch 2.2.1 and PyTorch Geometric 2.5.2. All
experiments are done on an Nvidia A100-80G GPU.
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Figure A.3: Query niches of the DLPFC dataset
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Figure A.4: Query niches of the MOBT dataset
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Table A.3: Default configuration for QueST

config value
gnn type GIN
e of GIN 0
encoder gnn layer number 3
decoder gnn layer number 1
bottleneck dimension 32
k 3
fix ratio 2%
negative pair shuffle ratio  25%-75%
optimizer Adam
learning rate 0.001
weight decay Se-4

A.4 EXTENDED FIGURES

In this section, we present the results of the niche Layer5_Layer6_-100 on all samples of the DLPFC
dataset, and GL_ONL_100 on all samples of the MOBT dataset. For results of the other niches,
please refer to the supplementary materials.

A.4.1 PEARSON CORRELATION ON THE DLPFC DATASET
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Figure A.5: Pearson Correlation of Ground Truth on the DLPFC dataset
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Figure A.6: Pearson Correlation of GraphST on the DLPFC dataset
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Figure A.7: Pearson Correlation of SLAT on the DLPFC dataset
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Figure A.8: Pearson Correlation of STAGATE on the DLPFC dataset
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A.4.2 PEARSON CORRELATION ON THE MOBT DATASET

10X

GL_ONL_100 Ground Truth
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Pearson Correlation of Ground Truth on the MOBT dataset

GL_ONL_100 GraphST
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Figure A.11: Pearson Correlation of GraphST on the MOBT dataset
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Figure A.12: Pearson Correlation of SLAT on the MOBT dataset
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GL_ONL_100 STAGATE
10X Slide-seq V2

Figure A.13: Pearson Correlation of STAGATE on the MOBT dataset

GL_ONL_100 QUEST
10X Slide-seq V2

Figure A.14: Pearson Correlation of QUEST on the MOBT dataset
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