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Fig. 1: Overview. We propose a comprehensive benchmark
named DexGraspNet 2.0 for dexterous grasping in synthetic
cluttered scenes. Beyond dataset construction, our proposed
method which leverages a generative model conditioned on
local features achieves SOTA on DexGraspNet 2.0 and a
90.70% real-world success rate.

Abstract—Grasping in cluttered scenes remains highly chal-
lenging for dexterous hands due to the scarcity of data. To
address this problem, we present a large-scale synthetic dataset,
encompassing 1319 objects, 8270 scenes, and 426 million grasps.
Beyond benchmarking, we also explore data-efficient learning
strategies from grasping data. We reveal that the combination
of a generative model conditioned on local features and a grasp
dataset that emphasizes complex scene variations is key to achiev-
ing effective generalization. Our proposed generative method
outperforms all baselines in simulation experiments. Further-
more, it demonstrates zero-shot sim-to-real transfer through test-
time depth restoration, attaining 90.70% real-world dexterous
grasping success rate, showcasing the robust potential of utilizing
fully synthetic training data.

I. INTRODUCTION

Recent years have witnessed significant advancements in
dexterous grasping datasets [25, 21, 9] and algorithms [22, 4]
for single objects. However, extending these advancements
to cluttered scenes poses a formidable challenge due to
data scarcity. Existing datasets are either too small [12],
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contain loosely placed objects [12, 27], or rely on naive
search methods [12, 10], hindering algorithm development.
Furthermore, this slow progress in dataset research obscures
the scale requirements of scenes, grasps, and objects needed
for effective generalization.

In this study, we present DexGraspNet 2.0, a large-scale
synthetic benchmark for robotic dexterous grasping in clut-
tered scenes. The dataset comprises 8270 scenes and 426.6
million grasp labels for the LEAP hand [16]. All grasps are
synthesized via an optimization process aimed at achieving
force closure [2, 25] to ensure diversity and quality.

In addition to data, learning grasping in cluttered scenes
presents its own challenges. Firstly, the intricate scene land-
scapes contribute to a highly complicated distribution of valid
grasps, potentially confusing networks. Previous regression
methods [10] that directly regress grasp parameters often
converge to a mean or median pose in such complex distribu-
tions, causing penetration or inaccurate contacts. Secondly, the
observation space of cluttered scenes greatly surpasses that for
grasping single objects, demanding higher generalization effi-
ciency. Typical grasping approaches for single objects [7, 26]
use the global feature vector to predict grasps, necessitating
extensive object-level variations to grasp novel objects. Their
direct application in cluttered scenarios could significantly
impede generalization to new scenes.

To address these challenges, we propose a system that
leverages a generative model conditioned on local features to
predict grasp pose distribution. Firstly, employing a generative
model allows our system to handle the multimodality of
grasp distributions more effectively, enhancing output quality.
Secondly, by conditioning on local features, our system better
exploits the dataset’s diverse variations in local geometries,
boosting generalization to new objects and scenes.

We acknowledge that our approach is not groundbreaking in
its utilization of local features for grasping [24, 10]. However,
our contribution lies in offering an intuitive analysis of why
such a design can generalize effectively without the need for
extensive scene data. Additionally, while the integration of
generative models into grasping systems is not novel [7, 26],
our work is, to our knowledge, the first to combine this
approach with local feature conditioning and validate its
effectiveness, paving the way for future advancements.

To comprehensively evaluate our method, we perform sim-
ulation experiments on DexGrasNet 2.0, where our model
outperforms all baselines. Additionally, we scale down the
dataset to identify the turning point for generalization. Finally,



with the aid of test-time depth restoration [18], our model
achieves a 90.70% success rate in cluttered dexterous grasping
in real-world scenarios, confirming the practicality of our
system, which trains on fully synthetic data.

II. RELATED WORK

1) Dexterous Grasping Datasets: Creating comprehensive
dexterous grasping datasets presents challenges due to the
high dimensionality involved. Some studies [23] have utilized
teleoperation systems to collect such datasets but face scala-
bility issues. Recent advancements in simulation and synthetic
data generation have significantly increased dataset sizes.
Sampling-based methods [11] involve sampling grasping poses
and selecting optimal ones. Additionally, research [20, 21]
suggests using differentiable simulators to generate grasping
data. Optimization-based methods [25, 26] refine grasping
poses by optimizing a designed energy function. Prior efforts
have mainly focused on generating grasping poses for single
objects, with limited exploration of cluttered scenes. Although
attempts have been made to create datasets for cluttered envi-
ronments [10], these datasets often lack diversity and quality
in challenging settings. In contrast, our work introduces the
first comprehensive benchmark for synthetic cluttered scenes,
employing optimization-based methods to efficiently generate
diverse and high-quality grasping datasets.

2) Data-driven Dexterous Grasping: Data-driven methods
utilize these synthetic datasets to learn grasp pose prediction
from object point clouds or depth images. Research in this area
typically falls into three categories: sampling-based methods,
regression-based methods, and generative model approaches.
Sampling-based methods [14, 27] often face challenges related
to sample efficiency and accuracy. Regression-based meth-
ods [4] struggle with handling multimodal data distributions
effectively. In contrast, generative models excel in learning
data distributions and generating diverse grasping poses when
trained on large-scale datasets. Previous works [7, 26] have
employed conditional generative models such as CVAE and
normalizing flow to learn dexterous grasping, primarily focus-
ing on single-object scenarios. Other studies [27, 12] have
explored grasping in cluttered environments; however, they
often employ suboptimal designs and feature test scenes where
objects are loosely positioned on the table.

III. DEXGRASPNET 2.0 BENCHMARK

We present a comprehensive dexterous grasping benchmark,
which is a combination of 1319 diverse objects, 8270 cluttered
scenes, and 426M grasps in all scenes.

A. Object Collection and Scene Synthesis

For training, we generate 7600 synthetic cluttered scenes
using all 60 training objects from [5]. Then we collect 1259
unseen ojbects from [5, 1] and create 670 testing scenes with
all 1319 objects. In each scene, 1 to 11 objects are piled within
an approximately 30 by 50 cm area, and depth images are
rendered from 256 different views. Among the 7600 training
scenes, 100 are directly adopted from [5], which are densely

packed (containing 8 to 11 objects each). The other 7500
training scenes have a random number of objects. For further
details, please refer to our supp.

B. Dexterous Grasp Annotation

We employ a two-stage pipeline to annotate dexterous grasp
labels within cluttered training scenes. We first synthesize
grasp labels for single objects using our modified implementa-
tion of [2, 25] and then leverage the IsaacGym simulator [13]
to filter out unstable ones (with friction set to 0.2). Then for
each scene, we gather grasps from all objects and retain the
collision-free ones. We synthesize approximately 1.9M stable
grasps for each object (190M in total), resulting in about 56K
collision-free grasps for each scene (426M in total). For more
details, please refer to our supp.

C. Dexterous Grasp Evaluation in Simulation

We evaluate various models by their success rates in the
IsaacGym [13] simulator. For each test scene, a model receives
a single-view depth point cloud and produces a grasp pose. If
capable of generating multiple grasps, the model must select
the best proposal. A grasp is deemed successful if it can lift
an object within the simulator. The friction coefficient is set to
0.2, consistent with the dataset’s filtering procedure. We design
six test groups consisting of densely, randomly, and loosely
packed scenes with objects from GraspNet-1Billion [5], as
well as these three types of packed scenes with 1231 objects
from ShapeNet [1]. For more details, please consult the supp.

IV. CLUTTERED GENERATIVE DEXTEROUS GRASPING

We design a two-stage method to generate dexterous grasp
poses in cluttered scenes: (1) a seed point proposal module
that identifies graspable regions and extracts point-wise local
features, and (2) a grasp pose generation module that models
grasp pose distributions conditioned on local features. The
combination of the generative model with local conditioning
enables our network to learn from numerous local geometry
variations in the dataset, which greatly enhances generalization
efficiency. We will first introduce the inference process in
Sec. IV-A and Sec. IV-B, and then explain the training process
in Sec. IV-C. The entire architecture is demonstrated in Fig. 2.

A. Seed Point Proposal

Inspired by [24], the seed point proposal module extracts
point-wise features f from a single-view depth point cloud
P and identifies graspable regions by generating object seg-
mentation score O and graspness score GS for each point.
Based on these, we select a subset of high-scoring points,
termed seed points, whose local features are fed into the
subsequent grasp generation module, achieving more efficient
generalization than conditioning on global features [7, 26].

Ground-truth Graspness Definition. For each training
scene, we define the graspness score GS for every point p
on the surface of objects, indicating the level of graspability
in its surrounding area. In essence, this score is computed by
allowing each grasp label to “vote” for nearby points within
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Fig. 2: Method architecture. Our method leverages a generative model conditioned on local features and models the distribution
of grasp poses (T ,R,θ) in a decomposed way. Inference process: The model receives a single-view depth point cloud and
generates multiple grasps (only one is visualized). Training process: The model takes the depth point cloud and ground-truth
annotations to learn data distribution by optimizing loss terms.

reach of the palm, following a heuristic rule. Subsequently,
GSp is defined as the logarithm of the sum of all voted values.
Empirically, GSp reflects the abundance of valid grasps in its
vicinity. And these definition details can be found in the supp.

Graspness Prediction and Seed Point Sampling. To
extract local features and predict point-wise graspness, we
utilize the same graspness network as described in [24]. Given
the scene point cloud P ∈ RN×3, we employ a ResUNet14
built upon MinkowskiEngine to extract a feature vector fp for
each point p ∈ R3. This feature is then fed into an MLP to
predict p’s graspness score GSp and object segmentation score
GSp, which classifies whether p belongs to an object or the
table. Finally, object points that rank top 1% in GS are selected
and downsampled to M = 1024 points via FPS (farthest point
sampling). These points, denoted as S = {s}, are termed seed
points. Their feature vectors {fs} and graspness scores {GSs}
are used for subsequent grasp pose generation.

B. Grasp Pose Generation

The grasp pose generation module takes a seed point’s
feature vector fs, and generates diverse dexterous grasp poses
relative to that seed point using a generative model. These
grasp poses are then ranked based on their estimated log-
likelihoods and the graspness GSs of the seed point.

Notations and Assumptions. A dexterous grasp pose rel-
ative to a seed point is denoted as gr = (T,R, θ), where
T ∈ R3 and R ∈ SO(3) represent the wrist pose relative to
the seed point, and θ ∈ RDoF signifies joint angles of the hand
(DoF = 16 for LEAP hand [17]). Given a seed point s from a
scene point cloud P , all valid grasps near s form a conditional
probability distribution p(T,R, θ|fs), where fs is the predicted
visual feature of point s. We assume that the distribution of
(T,R) conditioned on fs is multi-moded and complicated,
while the distribution of θ conditioned on fs and (T,R)
is single-moded. Therefore, we use a conditional generative
model to predict the conditional distribution p(T,R|fs), and

a deterministic model to predict θ from fs and (T,R).
Predicting Conditional Pose Distribution via Diffusion.

We adopt the denoising diffusion probabilistic model [6],
a powerful class of probabilistic models widely used in
the Euclidean space, to approximate p(T,R|fs). To embed
p(T,R|fs) into the Euclidean space, we flatten the rotation
matrix R and concatenate it with the translation T to get
the 12D vector representation gE of a grasp’s wrist pose.
Then we learn a conditional denoising model vΘ to denoise a
random 12D Gaussian noise vector ĝ1E into a valid wrist pose
vector gE = ĝ0E through an iterative process. Specifically, at
each diffusion timestep t ∈ [0, 1], we feed t, feature vector
fs, and the current noisy sample ĝtE to an MLP vΘ, which
then predicts the velocity [15] of the diffusion process. Using
the predicted velocity, we denoise ĝtE into ĝt−dt

E by solving
an ODE illustrated in [19]. After the last step, the denoised
gE = ĝ0E ∈ R12 is projected back to SE(3) by applying
SVD [8] to the rotation channels. Moreover, we estimate the
sample’s probability p(gE |fs) by solving a PDE introduced
in [3, 19], and then empirically rank the sample with a linear
combination of log p(gE |fs) and GSs.

Finger Joint Angle Prediction. After sampling a wrist pose
(T,R) from the diffusion model, we input fs and (T,R) into
an MLP to predict the finger joint angles θ, together forming
gr = (T,R, θ), a generated dexterous grasp pose relative to
seed point s. Additionally, our method seamlessly extends to
parallel grippers by substituting the joint angles θ ∈ R16 with
one parameter w ∈ R indicating gripper width.

C. Joint Training and Loss Functions

The seed point proposal module and grasp pose generation
module are trained jointly. At each gradient step, we randomly
sample D = 8 scenes from our dataset and select a rendering
view for each scene. The depth point cloud of a scene is
denoted as P ∈ RN×3, its corresponding object point mask is
{Ogt

p }N , and the ground truth point-wise graspness scores are



{GSgt
p }N . All point coordinates are represented in the camera

frame. We then sample B = 64 random grasp labels {g}B in
this scene. For each grasp g, we compute its “corresponding
point” p following Sec. IV-A and represent g as a relative
grasp pose (T gt, Rgt, θgt) in the reference frame of p.

First, point cloud P is fed into the seed point proposal
module to obtain local features {fp}N , object segmentation
scores {Op,0/1}N , and point-wise graspness scores {GSp}N ,
after which the object segmentation loss Lo (Cross-Entropy)
and graspness loss Lg (SmoothL1) are computed.

Next, for each grasp gj , we collect the local feature fp of its
corresponding point p and pass these to the grasp generation
module. The 12D Euclidean representation of the wrist pose
gE undergoes the diffusion process to obtain a noisy sample
ĝtE =

√
αtgE +

√
1− αtϵ and diffusion velocity vt =

√
αtϵ−√

1− αtgE at some random time step t. The denoising model
vΘ then predicts this velocity, under the supervision of an MSE
loss Ld. The joint angle prediction MLP takes feature fp and
the wrist pose (T gt, Rgt), predicts θ, and is supervised by a
joint angle loss Lθ (Smooth L1).

The total loss is a linear combination of all loss terms: L =
λoLo + λgLg + λdLd + λθLθ. The model is trained on one
NVIDIA 3090 for 50k iterations, taking about 2 hours.

V. EXPERIMENT

A. Baseline comparisons.

We compare our method with HGC-Net [10] and modified
versions of GraspTTA [7] and ISAGrasp [4] on DexGraspNet
2.0, with simulation success rates shown in Tab. I. Our method
leverages a diffusion model conditioned on local features,
which boosts prediction accuracy as well as generalizability,
significantly outperforming all baselines.

B. Scaling the Dataset.

We scale down the training data in two ways: (1) by
reducing the number of grasps in each scene, and (2) by
decreasing the number of training scenes.

Grasps. Our model demonstrates a significant performance
increase from 40K to 4M grasps, indicating strong scaling
properties. In contrast, the modified ISAGrasp, following the
regression approach, only increases at a 10% success rate,
saturating at 66.1%, when the number of grasps rises from
40K to 400M. This suggests that regressive methods may
struggle to effectively leverage increased grasp data due to
the complexity of the data distribution.

Scenes. Our model continuously improves in performance
with the addition of more training scenes, indicating that
it benefits from a larger and more diverse scene dataset.
Interestingly, although the total number of training objects
never exceeds 60, the model achieves an impressive 85.8%
success rate on test scenes containing 1231 novel objects,
which implies scenes matter more than objects for our model.

C. Real-World Experiments

We use the collection of 32 objects in our real-world
experiments. And, we use a LEAP hand mounted on the

Method GraspNet-1Billion ShapeNet
Dense Loose Dense Loose

HGC-Net [10] 46.0 26.7 46.4 30.4
GraspTTA†[7] 62.5 42.8 56.6 46.4
ISAGrasp† [4] 63.4 51.4 64.0 52.7
Ours 90.6 73.2 81.0 74.2

TABLE I: Benchmark for dexterous grasping. Modified
baseline methods are indicated with †. Each Dense scene
contains 8-11 obiects; each Loose scene contains 1-2 objects.

Fig. 3: Scaling the number of grasps/scenes.

Dexterous Grasp Gripper Grasp
Method HGC-Net Ours ASGrasp Ours
SR (%) 16.44 90.70 84.48 92.45

TABLE II: Comparison of real-robot success rates.

UR-5 robot arm for the dexterous grasp experiment and a
Franka Panda arm for the gripper experiment. Both of them
use an Intel RealSense D435 camera and use [18] for depth
restoration. In both settings, we grasp objects in a cluttered
scene one by one until the table is cleared. As shown in
Tab. II, our method achieves 90.70% and 92.45% success rates
for dexterous hand and gripper respectively, outperforming
baseline methods.

VI. CONCLUSION

We present DexGraspNet 2.0, a large-scale benchmark for
dexterous grasping in cluttered scenes. Our proposed method
outperforms all baselines in simulation and achieves a 90.70%
success rate in real-world tests. By scaling our dataset, we
identify the turning point for generalization. We also discover
that scene complexity is more important for generalization
than the number of training objects.
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