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ABSTRACT

Reinforcement learning (RL) techniques have achieved impressive performance
on simulated benchmarks such as Ataril00k, yet recent advances remain largely
confined to simulation and show limited transfer to real-world domains. A central
obstacle is environmental stochasticity, as real systems involve noisy observations,
unpredictable dynamics, and non-stationary conditions that undermine the stabil-
ity of current methods. Existing benchmarks rarely capture these uncertainties and
favor simplified settings where algorithms can be tuned to succeed. The absence of
a well-defined taxonomy of stochasticity further complicates evaluation, as robust-
ness to one type of stochastic perturbation, such as sticky actions, does not guar-
antee robustness to other forms of uncertainty. To address this critical gap, we in-
troduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates
diverse stochastic effects and enables rigorous evaluation of RL techniques under
different forms of uncertainty. We propose a comprehensive five-type taxonomy
of environmental stochasticity and demonstrate systematic vulnerabilities in state-
of-the-art model-based RL algorithms through targeted evaluation of DreamerV3
and STORM. Our findings reveal that world models dramatically underestimate
environmental variance, struggle with action corruption, and exhibit unreliable dy-
namics under partial observability. We release the code and benchmark publicly
athttps://anonymous.4open.science/r/stori—353D, providing a
unified framework for developing more robust RL systems.

1 INTRODUCTION

Reinforcement learning (RL) techniques have achieved impressive performance on simulated bench-
marks such as Atari100k, yet recent advances remain largely confined to simulation and show limited
transfer to real-world domains. A central obstacle is environmental stochasticity, as real systems in-
volve noisy observations, unpredictable dynamics, and non-stationary conditions that undermine the
stability of current methods (Antonoglou et al., 2022} Paster et al.| [2022). This challenge is espe-
cially acute for model-based RL, which must build world models to capture environment dynamics,
a task that becomes significantly more complex when the environment exhibits multiple forms of
uncertainty.

However, we lack a comprehensive stochastic environment benchmark that enables systematic de-
velopment of RL methods robust to environmental stochasticity. Most widely used benchmarks,
such as Atari games in the Arcade Learning Environment (ALE) (Bellemare et al., 2013)), are deter-
ministic or nearly deterministic (Paster et al.| [2022)). Although several approaches have introduced
limited stochasticity, including sticky actions (Machado et al., 2018), no-ops (?), human starts (Nair,
et al.l2015)), and random frame skips (Brockman et al., |2016)—these modifications remain narrow
in scope. To develop truly robust RL agents, we need benchmarks that systematically incorporate
diverse forms of environmental uncertainty with granular control over both types and intensities of
stochastic effects.

In this paper, we introduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates
diverse stochastic effects and enables rigorous evaluation of RL techniques under different forms of
uncertainty. Alongside, we propose an updated taxonomy of stochasticity in RL environments,
providing a unified framework for analyzing and comparing approaches. We leverage STORI to
systematically investigate the reliability of world models under diverse forms of stochasticity and
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perform targeted evaluation probes to examine how learned dynamics respond to different stochastic
challenges.

Our key contributions include:

* A comprehensive stochasticity taxonomy with five distinct types: action-dependent
noise, action-independent randomness, concept drift, representation learning challenges,
and missing state information

* STORI benchmark implementation that systematically incorporates these stochasticity
types into four Atari environments with granular parameter control

» Systematic evaluation of state-of-the-art model-based RL algorithms (DreamerV3 and
STORM) revealing fundamental vulnerabilities to environmental uncertainty

» Targeted failure mode analysis demonstrating that world models systematically under-
estimate variance, struggle with action corruption, and show unreliable dynamics under
partial observability

* Open-source framework enabling researchers to develop and evaluate stochasticity-aware
RL algorithms. We release the code and benchmark publicly at https://anonymous.
4open.science/r/stori—353D
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Figure 1: STORI benchmark and results. (a) Framework for systematic stochasticity evaluation. (b)
DreamerV3 and STORM performance degradation under uncertainty (Types: 1=action corruption,
2.1=random events, 2.2=concept drift, 3.1=default, 3.2=missing information).

2 RELATED WORKS

Stochastic Environment Benchmarks Recent efforts have addressed limitations of deterministic
RL benchmarks by incorporating stochastic perturbations. Robust-Gymnasium 2025)
provides a modular framework for robust evaluation across sixty robotics and control tasks, intro-
ducing observation-disruptors, action-disruptors, and environment-disruptors for systematic robust-
ness assessment. Similarly, [Zouitine et al.| (2024) introduced a benchmark extending Gymnasium-
MuJoCo with six tasks capturing environmental shifts. STORI shares similar motivations but offers
complementary contributions. First, it uses Atari games as a canonical testbed for discrete, high-
dimensional decision-making. Second, STORI explicitly includes temporal non-stationarities such
as concept drift, a critical yet underexplored aspect of real-world uncertainty. Beyond comprehen-
sive benchmarks, several works target specific perturbation types. [Zhang et al.| (2020) examined
adversarial state perturbations, (2024) studied multi-agent adversarial attacks, and
analyzed offline goal-conditioned RL under perturbations. These reveal vulnerabilities
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to specific noise sources but lack unified robustness suites. Sandbox frameworks like MiniHack
(Samvelyan et al.,[2021]) allow custom stochastic environments.

Stochasticity Taxonomy Early RL literature formalized uncertainty through Partially Observable
Markov Decision Processes (POMDPs) (Sutton & Barto, 2018)), addressing partial observability and
stochastic transitions. Recent works like [Vamplew et al.| (2022) propose broader stochastic MDP
classifications for policy evaluation and learning. Beyond formal stochasticity, [Liu et al.| (2023)
introduces environment heterogeneity concerning spatial layout and dynamics variations. [Lu et al.
(2018) addresses temporal non-stationarity or concept drift, where target concepts change due to
shifting hidden contexts. STORI’s taxonomy integrates existing perspectives into a unified, practical
framework explicitly designed for benchmarking, allowing systematic instantiation of stochasticity
classes as configurable perturbations.

World Model Benchmarks Recent world modeling advances include DreamerV3 (Hafner et al.}
2024)), IRIS (Micheli et al., [2023), STORM (Zhang et al., 2023), TransDreamer (Chen et al., |2024),
TWM (Robine et al.|[2023), and DIAMOND (Alonso et al.,2024)). These have been evaluated using
Atari 100k (Ye et al., [2021)), BSuite (Osband et al., |2020), Crafter (Hatner, 2021}, and DMLab
(Beattie et al., 2016). STORI introduces a stochasticity-driven framework to analyze world model
performance under environmental uncertainties.

3  ENVIRONMENT STOCHASTICITY AND OUR MOTIVATION

3.1 ENVIRONMENT STOCHASTICITY

RL environments can be categorized by their predictability. Deterministic environments have fully
predictable outcomes, while stochastic environments introduce uncertainty requiring agents to han-
dle outcome variability. Following Kumar & Varaiyal (1986)), stochasticity includes: Stationary
Stochastic (Objective) with consistent statistical distributions (coin tosses); Stationary Stochastic
(Subjective) based on personal beliefs (expert forecasts); Non-Stationary Stochastic with time-
varying dynamics (traffic patterns); and Illusory or Complex Uncertainty where probabilities are
unreliable (nuclear accidents).

3.2 MATHEMATICAL TAXONOMY OF STOCHASTICITY

We formalize five key types using transition function P(s’|s, a) where s is the current state, a is the
action, and s’ is the next state.

3.2.1 TYPE 1: INTRINSIC ACTION-DEPENDENT STOCHASTICITY

Unreliable action channels corrupt intended action a into executed action a.

Pap(s'|s,a) = Y C(ala)P(s'|s, a) (1)
acA
For sticky actions: C(ala) = (1 — «)l{a = a} + « - u(a)
3.2.2 TYPE 2.1: INTRINSIC ACTION-INDEPENDENT STOCHASTICITY (RANDOM)

Exogenous random events independent of agent actions, with random variable £ ~ F(&):
Par(s'ls.a) = [ P(s1s.a,.)dF(E) @

3.2.3 TYPE 2.2: INTRINSIC ACTION-INDEPENDENT STOCHASTICITY (CONCEPT DRIFT)

Time-dependent dynamics P;(s'|s, a) with drift magnitude:
Drift(t,t + At) = D(Pi(+|s, a)||Prrat(¢]s, a)) 3)

3.2.4 TYPE 3.1: AGENT-INDUCED STOCHASTICITY (REPRESENTATION LEARNING)
Rich observations requiring representation learning where I(S;0) ~ H(S). Belief states update

via:
bir1(s") oc O(041]8") Z P(s'|s,a4)bi(s) 4)
seS
State aliasing is resolvable through better feature extraction. Example: Standard Atari RGB frames
contain all game information but require learning to extract from pixels.



Under review as a conference paper at ICLR 2026

3.2.5 TYPE 3.2: AGENT-INDUCED STOCHASTICITY (MISSING STATE VARIABLES)

Critical state variables are completely omitted where I(S;O) < H(S). Creates fundamental state
aliasing O(o|s;) = O(o|s;) = 1 for s; # s; that persists regardless of representational capacity.
Same belief update as Type 3.1 but fundamentally limited.

Requires history tracking: h; = {01, a1, 02,a2,...,0:}

Examples: Breakout with invisible ball regions; Boxing with hidden opponents; partial screen oc-
clusion.

3.3 CHALLENGES FOR WORLD MODEL LEARNING AND MODEL BASED RL IN STOCHASTIC
ENVIRONMENTS

In this section, we analyze potential challenges for MBRL in different types of stochastic environ-

ments. A world model, denoted ]59, aims to learn the true transition dynamics from data. Each form

of stochasticity introduces a distinct challenge that can cause a mismatch between Py and the true

dynamics.

Challenge from Type 1 Stochasticity The world model must learn not only the environment’s
response to actions, P(s’|s,a), but also the action channel itself, C(als,a). If the model fails to
account for the action channel, its predictions will be systematically biased. The prediction error
is the divergence between the model’s direct prediction and the true, action-corrupted dynamics:
Error = D(Pap(s’|s,a)||Py(s’|s,a)), where Pap represents the true dynamics and Py represents
the model prediction. The model’s ability to control the environment is limited by the action chan-
nel capacity, which can be measured by the mutual information I(A; A|S). A low-capacity channel
is fundamentally difficult to model and exploit.

Challenge from Type 2.1 Stochasticity This introduces irreducible aleatoric uncertainty into
the environment. A deterministic world model will fail completely. A probabilistic world model
must accurately capture the variance of the outcomes. The world model must learn a distribution
over next states. The core challenge is to match the variance of this distribution to the true environ-
mental variance, which is inherent and cannot be reduced with more data. The prediction error is
tied to the model’s ability to capture this spread: Aleatoric Error = [Var/.p,,[s'] — Var,, _p,[s']].
The world model must avoid being overconfident in its predictions and instead represent the full

range of possible outcomes.

Challenge from Type 2.2 Stochasticity Concept drift causes the world model’s learned parame-
ters 6 to become outdated. A model trained on data from time ¢ will be inaccurate at time ¢ + At.
The prediction error grows over time as the environment drifts away from the data the model was
trained on. The accumulated error is a function of the drift magnitude: Prediction Error(t + At)
D(P;(+|s,a)||Ps(:|s,a)), where Py was trained on data from distributions around time ¢. This forces

the model to either continuously adapt its parameters or have a mechanism to detect and react to the
drift.

Challenge from Type 3.1 & 3.2 Stochasticity The world model cannot operate on the true state
s and must instead learn a latent state representation z; from a history of observations o1.;. The pri-
mary challenge is state aliasing. The uncertainty a world model faces is not just the environment’s
true stochasticity, but also the aliasing-induced variance. The total variance in outcomes given an ob-
servation o is decomposed as: Var([s|o, a] = E,p(s|0)[Var[s'|s, a]] 4+ Vary.p(s)0)[E[5]s, a]], where
the first term represents true aleatoric uncertainty and the second term represents aliasing-induced
uncertainty. The world model’s latent dynamics, Py(z’|z, a), must implicitly handle the second term,
which is purely an artifact of perception. In Type 3.2 environments, where entire state variables are
missing, this aliasing uncertainty can become overwhelmingly large, making it nearly impossible to
form an accurate belief state and rendering long-term prediction unreliable.

4 STORI - A BENCHMARK OF STOCHASTIC ENVIRONMENTS FOR RL

In this section, we describe in details the benchmark environments we built for different types of
stochasticity based on Atari-Arcade learning environment. Atari games such as Breakout, Box-
ing, Gopher and BankHeist were modified to allow fine-grain control of these stochasticity. The
taxonomy for stochasticity in STORI is an extension of the summary of classification of stochas-
ticity according to |Antonoglou et al.| (2022)). Table |1| presents the taxonomy of stochasticity, listing
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each type, its corresponding subtype, and the associated ID. Each type is explained in the following
sections.

Table 1: Environment stochasticity tax-

onomy
ID Type Sub Type
0  Deterministic NA

1 Action Dependent  NA
2.1  Action Independent Random
2.2 Action Independent Concept Drift
3.1 Partially Observed  Representation
3.2 Partially Observed  Missing State

ATARI - ARCADE LEARNING ENVIRONMENT

The Arcade Learning Environment (ALE) provides a foundational framework for applying RL to
Atari 2600 games (Bellemare et al., [2013). Built on the Stella emulator and integrated with Gym-
nasium (Brockman et al.,|2016), ALE supports over a hundred games with extensive configurability
including observation types (RGB, grayscale, RAM), action spaces, and stochasticity parameters
like sticky actions (Machado et al.| 2018). The Atari 100K benchmark evaluates
sample efficiency by assessing agents after only 100,000 environment steps (approximately two
hours of gameplay).
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Figure 2: Stochasticity types in STORI benchmark.

TYPE O: DETERMINISTIC ENVIRONMENT

Deterministic environments are those in which the next state is fully determined by the current state
and the action taken. The state is completely observable and there is no randomness in the state
transitions or rewards, meaning that the outcome of any action is predictable.

In the case of Atari, we consider the ground-truth labels of various state variables obtained directly
from the RAM for each observation, following the approach of |Anand et al.| (2020). No additional
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stochasticity parameters are introduced, meaning that the environment is fully deterministic and
corresponds to Type 0 in our taxonomy. Example for Breakout can be seen in figure 3}

TYPE 1: INTRINSIC ACTION DEPENDENT STOCHASTIC ENVIRONMENT

In environments with action-dependent intrinsic stochasticity, the environment may, by default, re-
place the agent’s chosen action with a random one. For instance, in sticky_action (Machado et al.,
2018) scenarios, the environment can repeat the previous action with some probability. This results
in varied outcomes even from the same state, with the stochastic effects limited to the state variables
that can be influenced by the agent’s actions. An example of action-dependent intrinsic stochasticity
with Atari Boxing can be seen in the

TYPE 2.1: INTRINSIC ACTION INDEPENDENT STOCHASTIC ENVIRONMENT - RANDOM

In action-independent random stochastic environments, randomness arises independently of the
agent’s choices and affects state variables outside the agent’s direct control. This stochasticity, often
due to external factors or inherent environmental noise, means that even with complete knowledge
of the environment and carefully chosen actions, the next state cannot be predicted with certainty.

The figure[2b|illustrates an example of how this type of stochasticity can be modeled in Atari Break-
out, where the paddle is moved to the right while the ball is on a trajectory to hit a block. In this
case, there is a 0.15 probability that the ball bounces back without destroying the block or yielding
any reward. Notably, this stochastic behavior is independent of the action of moving the paddle to
the right.

TYPE 2.2: INTRINSIC ACTION INDEPENDENT STOCHASTIC ENVIRONMENT - CONCEPT DRIFT

Environments with intrinsic action-independent concept drift can change over time independently
of the agent’s actions, a phenomenon known as concept drift (Lu et al., 2018)), which can generally
be categorized into three types according to how the drift unfolds over time. In sudden drift, the
environment undergoes abrupt changes, forcing the agent to quickly adapt to new dynamics. In
gradual or incremental drift, the transition to new dynamics occurs slowly over time, requiring the
agent to continuously adjust its policy. Finally, in recurring drift, previously observed dynamics
reappear in a cyclical or context-dependent manner, making long-term adaptation more challenging.
Learning in such environments demands flexibility and the ability to detect and respond to changes.

In the case of Atari, most games have intrinsic incremental drift. As the agent levels up in the game,
the difficulty of the game also increases. With a more fine-grain control over concept drift, other
types of drift can also be achieved in Atari games as shown in figure[2c|

TYPE 3.1: PARTIALLY OBSERVED ENVIRONMENT (REPRESENTATION LEARNING)

In partially observed environments, the agent does not have access to the full state information.
When the state variables are represented differently from the true underlying environment, the agent
must infer hidden information or learn an appropriate representation. This increases the complexity
of decision making, since the agent must rely on approximate observations.

A typical example is the Default Atari setting, where the agent perceives only the screen image
produced by the emulator after each action. These images are designed to approximate the true
state, but they do not capture it fully. To enrich the observation, many implementations use a 4-
frame skip with aggregation, which allows the agent to infer additional information, such as motion
or rate of change over time, that is not apparent from a single frame.

TYPE 3.2: PARTIALLY OBSERVED ENVIRONMENT (MISSING STATE VARIABLE(S))

An important subclass of partially observed environments arises when information about certain
state variables is missing, leaving the agent unable to observe critical aspects of the environment.
This lack of information demands strategies that can manage uncertainty and make robust decisions
despite gaps in perception. Such environments are common in real-world scenarios where sensors
are limited, noisy, or unreliable.

Figure 2d|illustrates type 3.2 environments using Atari Breakout and Boxing. In Breakout, examples
include invisible blocks or a partially hidden screen, while in Boxing, examples include a hidden
boxing ring or concealed clock and score information.

6
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5 EXPERIMENTS AND RESULTS

We evaluated DreamerV3 (Hafner et al., [2024) and STORM (Zhang et al., |2023)) using STORI.
DreamerV3 features a learned world model with actor-critic architecture, achieving robustness
through fixed hyperparameters, normalization, and effective scaling. STORM employs a trans-
former backbone with stochastic variational modeling for strong sequence modeling and robustness.
We focus on MBRL methods as model-free approaches require substantially more computational
resources for meaningful results.

We selected four Atari 100K environments: Breakout, Boxing, Gopher (Agent-Optimal (Lim et al.|
2025)), and BankHeist (Human-Optimal (Lim et al., [2025))). These provide action space diversity:
Breakout (4 actions), Gopher (8), Boxing and BankHeist (18 each). Implementation details are in
Appendix [A.T| and experiment stochasticity settings in Appendix Each algorithm was trained
for 100K steps across baseline and modified environments for 3 seeds, evaluated on 100 episodes
with mean return reported.

5.1 PERFORMANCE OF DREAMERV3 AND STORM IN DIFFERENT STOCHASTIC
ENVIRONMENTS

5.1.1 BREAKOUT

Stochasticity introduction caused marked performance decline versus default Type 3.1 environ-

ment (Figure[1b)), aligning with theoretical predictions. DreamerV3 initially outperformed STORM

(60.71+41.89 vs 24.17+3.55) but STORM showed greater robustness across stochasticity types.
Breakout’s small action space (4 actions) cre-

Table 2: Variance underestimation by world ates high sensitivity to perturbations as incorrect

models. LEFT/RIGHT actions immediately cause failure.
Type 1 environments particularly impact control au-
Model Type Diff. thority (Equation 14). Unlike Boxing, Breakout of-
fers no recovery margin, amplifying uncertainty’s
DreamerV3 3.1 1.25 long-term impact.
DreamerV3 2.1 300.34 ) .
STORM 3.1 1.32 Type 2.1 environments caused severe struggles, with
STORM 21 32521 performance dropping to 15% of baseline, confirm-

ing that irreducible aleatoric uncertainty challenges
deterministic world models. Type 2.2 concept drift
(default—Type 3.2A after 300 steps) showed better
performance than standalone Type 3.2A, suggesting adaptive mechanisms can leverage temporal
structure.

5.1.2 BOXING

Boxing showed less pronounced performance decline. STORM initially led (86.18+11.29 vs
84.22+1.68) but DreamerV3 outperformed across several stochasticity types. Boxing’s resilience
stems from: (1) larger action space (18 actions) providing redundancy with functionally similar
actions, and (2) recovery mechanisms through retreating/repositioning.

Type 3.2A (hidden score/clock) counterintuitively improved DreamerV3 performance (86.90+1.33
vs 84.22+1.68), suggesting non-essential information removal simplifies representation learning.
For Type 3.2B (75% right-half occlusion), agents showed adaptive behavior as they confined oppo-
nents to visible areas, transforming partial observability into strategic constraints.

Type 2.2 concept drift performed worse than standalone Type 3.2C, except DreamerV3’s third seed
learned to maximize early-episode scores before opponent invisibility, demonstrating strategic adap-
tation to predictable timing.

5.1.3 GOPHER AND BANKHEIST

Gopher showed high variability with Type 2.1 producing anomalous DreamerV3 perfor-
mance (11,333.53+14,761.12) due to beneficial reward cancellation dynamics—suggesting
implementation-specific edge case exploitation.
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BankHeist exhibited divergent Type 3.2 outcomes: DreamerV3 achieved 849.80+514.15 while
STORM fell to 43.10+22.85. DreamerV3 consistently adopted an unconventional policy, remaining
near city gates and triggering inter-city transitions to loot nearby banks while avoiding stochastic
modifications—effectively exploiting structural features to reduce tasks to near-deterministic sub-
problems rather than demonstrating genuine robustness. STORM explored broadly within cities,
exposing itself to full stochastic impact. This highlights that high returns may reflect reward-
maximizing shortcuts exploiting environment dynamics rather than genuine uncertainty resilience.

5.2 ANALYSIS OF ERROR TYPES AND WORLD MODEL FAILURES

To understand the specific failure modes of model-based RL under different stochasticity types, we
conducted targeted analyses for each error category defined in Section 3.3.

5.2.1 ERRORS CAUSED BY TYPE 2.1 STOCHASTICITY: ALEATORIC UNCERTAINTY AND
CONCEPT DRIFT ANALYSIS

We ran a controlled probe of a single repeated action (action 3) for 1000 steps in both Type 3.1
(default setting,partially observed) and Type 2.1 (action-independent stochasticity) BankHeist en-
vironments, collecting states from the environment and predictions from the world models from
DreamerV3 and STORM (Table[2)). The resulting variance differences include:

Environment variance difference:
Varey (Type 2.1) — Vare,y (Type 3.1)

— DreamerV3: 299.097, STORM: 323.904. This confirms that Type 2.1 environments exhibit
significantly higher true variance due to stochasticity.

Model variance difference:
Varmodel (Type 2.1) — Varoger (Type 3.1)

— DreamerV3: 0.00465, STORM: 0.01216. Both models predict nearly identical variance between
environments despite the true variance increasing substantially.

Both DreamerV3 and STORM significantly underestimate the increased stochasticity present in
Type 2.1 environments in BankHeist. While environment variance increases by approximately 300,
the models’ predicted variances remain nearly constant. This mismatch highlights a lack of vari-
ance calibration under action-independent stochastic conditions, revealing a limitation in the world
models’ ability to capture environment uncertainty accurately.

For concept drift stochasticity, we measured the

Table 3: Partial observability errors. degradation ratio of model performance before
and after the drift point. Table ] shows results

Model ANLL AKL for BankHeist Type 2.2.
DreamerV3  1.1542.46  —0.18+2.83 The high degradation ratio for dynamics loss in
STORM 23394286  0.18+0.62 DreamerV3 and STORM indicates that world

model accuracy deteriorated significantly after
the concept change, consistent with our theoret-
ical prediction in Equation 12.

5.2.2 ERRORS CAUSED BY TYPE 3 STOCHASTICITY: STATE ALIASING EFFECTS

To investigate how well world models handle missing information, we designed a controlled exper-
iment using BankHeist Type 3.2, where city blocks are randomly hidden in 75% of observations.
The key question: does a model’s prediction accuracy depend on whether it can initially see the
environment clearly?

Experimental design: We created six test scenarios and compared two starting conditions for each:

 Clear-start: Model begins with city blocks visible, takes an action, observes the result
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* Obscured-start: Model begins with city blocks hidden, takes the same action, sees the

same result

We then measured how “surprised” each model was by computing the difference in prediction error:
ANLL = NLL(obscured-start) — NLL(clear-start) as in figure[3]

Table 4: Concept drift degradation.

Model Pre Ratio

DreamerV3 5.4+158 6.94
STORM 45424 5.04

Key findings: As in table [5| DreamerV3 shows posi-
tive ANLL values (1.15), meaning it makes significantly
worse predictions when starting from obscured observa-
tions. In contrast, STORM shows negative ANLL val-
ues (—3.32), indicating it actually performs slightly better
when starting from limited information.

This reveals that DreamerV3’s world model relies heav-
ily on having complete initial observations to make ac-
curate predictions. When city blocks are initially hidden,

DreamerV3 struggles to maintain accurate beliefs about the environment state, requiring larger “cor-
rections” to its internal model after seeing the action’s outcome.

Critical insight: High task performance does not guarantee robust world model dynamics. Despite
achieving strong returns in partially observable environments, DreamerV3’s world model is more
brittle when dealing with missing information compared to STORM.

True State

S1_visible
25%

Observation Action

NOOo >l SiF visible
Forward——» S1F_hidden

S1R_visible
S1R_hidden

Reverse——Pp|

S1_hidden
75%

v v

Prior Posterior

Figure 3: Partial observability probe showing prediction errors when
models start with clear vs. obscured observations.

6 CONCLUSIONS

Table 5: Model prediction errors under
partial observability.

Model ANLL AKL
DreamerV3 1.15+2.46 -0.18+2.83
STORM -3.32+2.86 0.18+0.62

We introduced STORI, a systematic benchmark with a
five-type taxonomy for evaluating RL algorithms un-
der environmental stochasticity: action-dependent noise,
action-independent randomness, concept drift, represen-
tation learning challenges, and missing state information.

Evaluation of DreamerV3 and STORM revealed system-
atic vulnerabilities in model-based approaches. Both al-
gorithms struggle with action corruption, underestimate
environmental variance by 300x, degrade 5-7x after con-

cept drift, and show inconsistent reliability under partial observability. Strong task performance does
not guarantee robust world model dynamics.

Limitations include cross-type comparison challenges, potential researcher bias in task selection,
and computational constraints limiting evaluation to two algorithms. Future work should expand
algorithmic coverage and develop stochasticity-aware world models. STORI provides a foundation
for building more robust RL systems capable of handling real-world uncertainty.
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7 REPRODUCIBILITY STATEMENT

We are commiitted to ensuring the reproducibility of our findings. All data, code, and implementation
details necessary to replicate our experiments will be made available to the research community.
Careful documentation accompanies the released resources to facilitate independent verification and
reuse. The authors affirm that the results reported in this paper can be fully reproduced using the
provided materials.

8 ETHICS STATEMENT

This work was conducted in accordance with established ethical standards for scientific research. All
methods, analyses, and interpretations were carried out with a commitment to transparency, integrity,
and responsible reporting. The authors confirm that no part of this research involved practices that
could compromise fairness, safety, or the ethical treatment of data, participants, or systems.
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A APPENDIX

A.1 STORI IMPLEMENTATION

The STORI framework is built around a sophisticated wrapper-based architecture that introduces
various types of uncertainty and partial observability into deterministic Atari environments with a
granular control over the modifications.

A.1.1 CORE ARCHITECTURE AND WRAPPER SYSTEM

Stochastic
Env

Wrapper Registry
(for each game)

( N ([ R
No change
( Type 1 Type 2.1 Type 3.1 (oeraum)
modify action: modify stl'ap: \_ )
- chose random action - modify ram state
\_ - reward (some cases) e

Type 2.2 )

( Type 3.2 concept 1: type 3.1
concept 2: type 1,2.1 or 3.2

modify observation: applied at
- post-process obs array robabilit modify step: (at switch)
- temporary RAM change to P Y P - replace env wrappers
\_ get new obs and revert - revert (if cyclic)
\_ J L
\_ J

Figure 4: STORI Implementation Overview

The implementation uses a hierarchical wrapper system built on top of the Atari Learning Environ-
ment (ALE). The main ‘StochasticEnv* class serves as the entry point, which applies different types
of wrappers from ‘wrapper_registry‘ of specified environment. The system supports five distinct
types, each introducing different forms of stochasticity. The system is highly configurable through
a dictionary-based configuration system. Users can specify probabilities for different stochasticity
effects, choose between different modes of operation, and configure temporal parameters for con-
cept drift. The wrapper registry system allows for easy extension and customization of stochasticity
types for new games or research requirements.

A.1.2 STOCHASTICITY WRAPPERS

* Type 0: This type returns the RAM state of the game (a 1-D numpy array) with state labels
as the observation. This implementation is an extension of Atari Annotated RAM Interface
(Anand et al., 2020)).

* Type 1: The ‘ActionDependentStochasticityWrapper‘ randomly replaces the agent’s in-
tended action with a random action from the action space with a specified probability.

* Type 2.1: The ‘ActionIndependentRandomStochasticity Wrapper‘ implements environment
specific random events that occur independently of the agent’s actions. These effects are ap-
plied probabilistically and create unpredictable environmental changes to which the agent
must adapt. Read more about game-specific modifications in section

* Type 2.2: This introduces temporal concept drift where the environment dynamics change
over time. The ‘ActionIndependentConceptDriftWrapper* supports both sudden and cyclic
modes between 2 concepts. The concept 1 is the default environment (type 3.1) and concept
2 can be any other environment stochasticity types out of 1, 2.1 and 3.2. In sudden mode,
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the environment switches to concept 2 after a fixed number of steps. In cyclic mode, it alter-
nates between the concept 1 and 2 every specified number of steps, creating a challenging
environment where the agent must continuously adapt to changing dynamics.

* Types 3.1: This stochasticity type returns the default ALE environment without any modi-
fications.

* Types 3.2: The ‘PartialObservationWrapper‘ introduces partial observability by modify-
ing the agent’s observations. The system supports multiple observation modification tech-
niques including cropping (removing portions of the screen), blackout (hiding specific re-
gions), and RAM manipulation (temporarily modifying the game’s internal state to get
modified observation).

In STORI, stochasticity types 1, 2.1, 2.2, and 3.2 are implemented as extensions of Type 3.1 en-
vironments. This is because screen-based observations serve as the default, well-studied ALE in-
puts for various reinforcement learning algorithms, providing a consistent foundation for comparing
different types of stochasticity while also allowing for interpretable analysis of agent actions and
behaviors.

A.1.3 ALGORITHMS ADDITIONAL DETAILS

* DreamerV3: The source implementation and default parameters for Ataril00OK con-
fig used from this code repository (MIT license): https://github.com/NM512/
dreamerv3-torch

* STORM: The source implementation and default parameters (except eval num_episode was
set to 100) used from this code repository: https://github.com/weipu-zhang/
STORM

B ADDITIONAL BENCHMARK DETAILS

Blocks

63 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
0 0 240 0 5 0 0 6
70 88 5 146 0 7 0 0
242 25 241 5 242 1 0 255
1130 1 0 1 0 0 8
255 0 0 ) 0 0 186 214 117

Player x

Figure 5: The figure shows the RAM state of Atari Breakout on the left and corresponding obser-
vation image from the emulator on the right, along with annotations for various state variables like
ball position, blocks state etc.
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B.1

B.1.1

B.1.2

B.1.3

B.1.4

EXPERIMENT STOCHASTICITY MODES

STOCHASTICITY MODES USED IN BREAKOUT EXPERIMENTS
Type 1: Random action executed from action space instead of predicted action with a
probability of 0.3.

Type 2.1: If a block is hit, there is probability of 0.25 that the hit is not considered and the
block is not destroyed thereby returning O reward and the ball bounces back.

Type 2.2: Episode starts with default setting (Type 3.1) and after 300 steps into the episode,
the dynamics suddenly change to Type 3.2A.

Type 3.1: Default Atari Breakout.

Type 3.2A: The ball is only visible is a specific window between the blocks and the paddle
and permanently hidden (p = 1.0) in rest of the space between them.

Type 3.2B: Randomly hide left vertical half of the screen 75% (p = 0.75) of the episode.

Type 3.2C: Only a random circular area of the screen is visible every frame (p = 1.0)
similar to what someone will see when walking in a dark room with a torch.

STOCHASTICITY MODES USED IN BOXING EXPERIMENTS
Type 1: Random action executed from action space instead of predicted action with a
probability of 0.3.

Type 2.1: Swaps the color of the enemy and player (character and score) with probability
of 0.001 which results in 6-7 persistent swaps per episode (2 mins boxing round).

Type 2.2: Episode starts with default setting (Type 3.1) and after 300 steps into the episode,
the dynamics suddenly change to Type 3.2C.

Type 3.1: Default Atari Boxing.

Type 3.2A: Permanently hide (p = 1.0) scores and game clock.

Type 3.2B: Randomly hide right vertical half of the screen 75% (p = 0.75) of the episode.
Type 3.2C: Randomly hide enemy character 70% (p = 0.7) of the episode.

STOCHASTICITY MODES USED IN GOPHER EXPERIMENTS
Type 1: Random action executed from action space instead of predicted action with a
probability of 0.3.

Type 2.1: Hole doesn’t fill underground below the farmer and the reward is reverted to 0
whenever farmer digs, with probability of 0.3.

Type 2.2: At the beginning of each episode, the environment is set to the default mode
(Type 3.1). Every 600 steps, the dynamics transition cyclically between Type 3.2 and the
default.

Type 3.1: Default Atari Gopher.

Type 3.2: Permanently hide (p = 1.0) underground gopher movement and holes and only
hole openings are visible on surface (if any).

STOCHASTICITY MODES USED IN BANKHEIST EXPERIMENTS

Type 1: With probability 0.3, a random action is executed from a restricted subset of the
action space (0-9) instead of the predicted action. The restriction reduces the frequency of
fire-based actions during random sampling, preventing the agent from instantly dying by
triggering a bomb it drops on itself.

Type 2.1: With probability 0.001, the robber is unexpectedly teleported to a different city.

Type 2.2: At the beginning of each episode, the environment is set to the default mode
(Type 3.1). Every 600 steps, the dynamics transition cyclically between Type 3.2 and the
default.

Type 3.1: Default Atari BankHeist.
Type 3.2: Randomly hide city blocks 75% (p = 0.75) of the frames.
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B.2 LEARNING CURVES FOR DIFFERENT STOCHASTICITY TYPES

Figures [6] [7] [B] and [9] illustrate the learning curves on Breakout, Boxing Gopher and BankHeist
respectively, depicting the average evaluation return as a function of training steps up to 100K, for
DreamerV3 and STORM.

Type 1 Type 2.1 Type 2.2 Type 3.1
10 20 2 100
IS 2 £ £ €
2 2 10 2 2 50
2 5 . g 2 10 o
! | ! 0] i i 0+t i i 01; i i
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Figure 6: Breakout - learning curves
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Figure 7: Boxing - learning curves
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Figure 9: BankHeist - learning curves
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B.3 OVERALL RESULTS FOR EVALUATION RETURN

Table 6: Overall Results for Evaluation Return

GAME NAME STOCHASTICITY DREAMERV3 STORM
TYPE
1 8.67 +0.30 9.20 + 1.72
2.1 13.80 + 3.26 16.44 + 2.03
22 14.86 4+ 1.74 20.45 + 2.92
Breakout
3.1 (Default Baseline) 60.71 +41.89 24.17 4+ 3.55
32A 10.65 + 0.41 12.05 + 0.89
32B 3.57 4+ 1.43 6.48 + 2.50
3.2C 1.89 =+ 0.49 3.96 + 1.42
1 39.32 + 6.79 29.48 + 15.41
2.1 43.00 + 31.98 54.69 + 20.44
, 22 42.21 + 35.54 92.44 + 3.54
Boxing -
3.1 (Default Baseline) 84.22 + 1.68 86.18 +11.29
32A 86.90 + 1.33 85.22 + 11.77
3.2B 61.74 + 17.71 45.41 + 26.56
3.2C 56.52 + 18.45 52.66 + 25.68
1 1137.00 &+ 56.98  1303.53 + 724.76
2.1 11333.53 + 14761.12  950.67 + 188.37
Gopher 22 2190.87 +407.24  2315.40 + 893.32
3.1 (Default Baseline) 3235.27 + 443.51 3811.67 + 2431.85
32 1521.13 £ 451.45  936.40 + 106.83
1 197.63 + 20.76 128.03 + 31.41
, 2.1 663.60 &+ 587.85  467.80 % 507.74
BankHeist 55 682.67 +476.90  267.70 4 295.86

3.1 (Default Baseline)
3.2

562.30 £ 320.74
849.80 £ 514.15

1015.73 + 148.43
43.10 £ 22.85
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B.4 ADDITIONAL DETAILS: TYPE 3.2 ERROR ANALYSIS

True State

G

rd

1=1
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e nlin mm—
I: [eal j
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25%
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Forward——» S1F_hidden
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75%
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Figure 10: Detailed results from the BankHeist Type 3.2 partial observability probe. Each row cor-
responds to one of six carefully selected cases, showing the start state visibility, next state visibility,
negative log-likelihood (NLL), and KL divergence for both DreamerV3 and STORM.

Table 7: Analysis on BankHeist (Type 3.2) - DreamerV3

Action — Posterior Observations (Visible/Hidden)

Prior Obs Metrics NOOP (0) Forward (3) Reverse (4) NOOP (0) Forward (3) Reverse (4)
S1F_visible S1F_visible SIR_visible S1F_hidden S1F_hidden SI1R_hidden
.. -logd 41.72 38.43 44,73 19.13 21.56 29.81
S1_visible .
KL div 25.52 20.13 24.71 6.40 7.17 12.78
S1 hidden —— log .d 41.36 38.74 45.14 25.15 22.63 29.25
KL div 20.99 20.47 24.57 10.72 7.05 11.81
Table 8: Analysis on BankHeist (Type 3.2) - STORM
Action — Posterior Observations (Visible/Hidden)
Prior Obs Metrics NOOP (0) Forward (3) Reverse (4) NOOP (0) Forward (3) Reverse (4)
S1_visible S1F_visible SIR_visible SI1_hidden SI1F_hidden S1R_hidden
S1 visible " log p 33.53 21.72 28.65 19.81 11.29 21.86
- KL div 115.63 116.00 114.13 114.94 115.47 113.79
S1 hidden —— log .p 28.60 18.50 22.58 18.43 12.61 16.21
KL div 115.55 115.49 115.05 115.03 115.19 114.73
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B.5 COMPUTE RESOURCES USED

The experiment runs were executed in several types of GPUs like A40, A100 and H100 depending
on availability. Each node atleast had 32 vCPU and S0GB RAM. On GPUs with large memory,
mulitple runs were executed.

DreamerV3 and STORM took around 24 hours and 12 hours respectively per run (training & evalu-
ation) per seed when running on single GPU.

C INFORMATION-THEORETIC LEVERS

Information-theoretic measures provide quantitative levers to diagnose how stochasticity affects
learning and planning:

Action channel capacity. For action-dependent noise, controllability is reduced. The effective
capacity is measured by I(A4; A | S), which quantifies how much of the intended action A survives

corruption into the executed action A.

Predictive information of dynamics. For action-independent randomness, the predictive struc-
ture is measured by I((St, A:¢); St41), reflecting how much the next state depends on the current
state-action pair. Under drift, temporal changes in this quantity indicate shifts in environment regu-
larity.

Representation sufficiency. A latent Z, should act as a sufficient statistic for planning. Ideally,
I(Zy; St) is maximized, while I(Z;; O;) remains bounded, ensuring that Z; captures hidden states
rather than surface-level noise, consistent with bisimulation invariance.

Aliasing quantification. In partially observable settings, the observation-state information gap
can be written as I(S;; Oy) — I(Sy; O | Ay), capturing residual uncertainty after conditioning on
actions. This disentangles sensor noise from genuine state ambiguity.

Risk-sensitive planning. Robust planning can be viewed through an information lens: risk-
sensitive objectives such as Conditional Value at Risk (CVaR) optimize not the mean return but
lower quantiles, effectively re-weighting information from rare but catastrophic outcomes.
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D ALL IMPLEMENTED STOCHASTICITY MODES

We define stochasticity modes along four Atari environments (Breakout, Boxing, Gopher,
BankHeist), and the set of cropping modes are common to all games.

COMMON CROPPING MODES (ALL GAMES)
* Mode 0: No crop
* Mode 1: Left — Crop the left half of the observation
* Mode 2: Right — Crop the right half of the observation
* Mode 3: Top — Crop the top half of the observation
* Mode 4: Bottom — Crop the bottom half of the observation

* Mode 5: Random circular mask — Randomly mask a circular region of the observation

BREAKOUT
Action-independent random

¢ 0: none
* 1: block hit cancel (reward unchanged)
¢ 2: block hit cancel (reward set to 0)

* 3: regenerate a randomly chosen hit block

Partial observation (blackout)

: none
:all

: blocks
: paddle

. Score

0
1
2
3
4
* 5: ball_missing_top
6: ball_missing_middle
7: ball_missing_bottom
8: blocks_and_paddle
9: blocks_and_score
* 10: ball_missing_top_and_bottom

* 11: ball_missing_all
Partial observation - RAM modification

¢ 0: none
* 1: nus_pattern (blocks RAM)
e 2: ball_hidden

BOXING
Action-independent random

* 0: none
* 1: colorflip (swap player/enemy colors)

¢ 2: hit cancel (revert score; reward set to 0)
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* 3: displace to corners (swap player/enemy positions)

Partial observation (blackout)

(=)

: none
s all
: left boxing ring

: right boxing ring

: full boxing ring

: enemy score

: player score

: enemy+player score
: clock

L]
O 0 LA WD =

: enemy-+player score+clock
Partial observation - RAM modification

* 0: none

* 1: hide boxing ring
* 2: hide enemy

* 3: hide player

GOPHER

Action-independent random

¢ 0: none
* 1: hole doesn’t close (fill cancel; reward unchanged)
¢ 2: hole doesn’t close (fill cancel; reward set to 0)

* 3: randomly remove one visible carrot (once per reset)

Partial observation (blackout)

=)

: none
:all
: gopher attack (both sides)

: left gopher attack

: right gopher attack

: underground full (before-dug color)

: underground full offset (before-dug color)
: underground row 0 (before-dug)

: underground row 0 (dug color)

.
O 00 1 N Lt AW N~

: underground row 1 (before-dug)
* 10: underground row 1 (dug color)
¢ 11: underground row 2 (before-dug)
* 12: underground row 2 (dug color)
* 13: underground row 3 (before-dug)
* 14: underground row 3 (dug color)
e 15: farmer (full)
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¢ 16: farmer below nose
e 17: duck fly
¢ 18: score

Partial observation - RAM modification

¢ 0: none
* 1: hide left carrot

: hide middle carrot

: hide right carrot

: hide all carrots
: hide seed

W A W N

BANKHEIST
Action-independent random

¢ 0: none

* 1: dropped bomb is a dud

2: fuel leaks (per city, once per episode)
* 3: switch city mid-way (teleport)
* 4: bank empty (reward suppressed when bank—police transition detected)

Partial observation (blackout)

* 0: none

e 1:all

: city walls (all)

: top city wall

: left city wall

: bottom city wall

: right city wall

: left and right city walls together
: fuel region

.
O 0 1 O L K~ W N

: lives region
* 10: score region

Partial observation - RAM modification

* 0: none

* 1: hide robber’s car
* 2: hide change in fuel (always full)
: hide city blocks

: blend city blocks and wall (background color)

: hide banks (when currently a bank)

AN L B~ W N

: hide police (when currently police)

CONCEPT DRIFT USAGE
All partial observation, action-independent, and action-dependent modes can also be used as a sec-

ond concept in a concept drift setting, enabling controlled evaluation of robustness to non-stationary
environments.
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E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We made use of large language models (LLMs) to assist with selected aspects of this work. Specifi-
cally, LLMs were employed to improve the clarity and flow of writing, to summarize and condense
long paragraphs during manuscript preparation, and to generate code snippets for repetitive compo-
nents of the implementation. All outputs from the LLMs were carefully reviewed, validated, and
edited by the authors to ensure accuracy and correctness.
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