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ABSTRACT

In this work, we explore the theoretical properties of conditional deep generative
models under the statistical framework of distribution regression where the re-
sponse variable lies in a high-dimensional ambient space but concentrates around
a potentially lower-dimensional manifold. More specifically, we study the large-
sample properties of a likelihood-based approach for estimating these models.
Our results lead to the convergence rate of a sieve maximum likelihood estimator
(MLE) for estimating the conditional distribution (and its devolved counterpart)
of the response given predictors in the Hellinger (Wasserstein) metric. Our rates
depend solely on the intrinsic dimension and smoothness of the true conditional
distribution. These findings provide an explanation of why conditional deep gen-
erative models can circumvent the curse of dimensionality from the perspective
of statistical foundations and demonstrate that they can learn a broader class of
nearly singular conditional distributions. Our analysis also emphasizes the impor-
tance of introducing a small noise perturbation to the data when they are supported
sufficiently close to a manifold. Finally, in our numerical studies, we demonstrate
the effective implementation of the proposed approach using both synthetic and
real-world datasets, which also provide complementary validation to our theoreti-
cal findings.

1 INTRODUCTION

Conditional distribution estimation provides a principled framework for characterizing the depen-
dence relationship between a response variable Y and predictors X , with the primary goal of es-
timating the distribution of Y conditional on X through learning the (conditional) data-generating
process. Conditional distribution estimation allows one to regress the entire distribution of Y on
X , which provides much richer information than the traditional mean regression and plays a central
role in various important areas ranging from causal inference (Pearl, 2009; Spirtes, 2010), graphical
models (Jordan, 1999; Koller and Friedman, 2009), representation learning (Bengio et al., 2013),
dimension reduction (Carreira-Perpinán, 1997; Van Der Maaten et al., 2009), to model selection
(Claeskens and Hjort, 2008; Ando, 2010). Their applications span across diverse domains such as
forecasting (Gneiting and Katzfuss, 2014), biology (Krishnaswamy et al., 2014), energy (Jeon and
Taylor, 2012), astronomy (Zhao et al., 2021), and industrial engineering (Simar and Wilson, 2015),
among others.

There is a rich literature in statistics and machine learning on conditional distribution estimation
including both frequentist and Bayesian methods (Hall and Yao, 2005; Norets and Pati, 2017). Tra-
ditional methods, however, suffer from the curse of dimensionality and often struggle to adapt to the
intricacies of modern data types such as the ones with lower-dimensional manifold structures.

Recent methodologies that leverage deep generative models have demonstrated significant advance-
ments in complex data generation. Instead of explicitly modeling the data distribution, these ap-
proaches implicitly estimate it through learning the corresponding data sampling scheme. Com-
monly, these implicit distribution estimation approaches can be broadly categorized into three types.
The first one is likelihood-based with notable examples including Kingma and Welling (2013),
Rezende et al. (2014), Burda et al. (2015), and Song et al. (2021) . The second approach, based
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on adversarial learning, matches the empirical distribution of the data with a distribution estimator
using an adversarial loss. Representative examples include Goodfellow et al. (2014), Arjovsky et al.
(2017), and Mroueh et al. (2017), among others. The third approach, which is more recent, reduces
the problem of distribution estimation to score estimation through certain time-discrete or contin-
uous dynamical systems. The idea of score matching was first proposed in Hyvärinen and Dayan
(2005) and Vincent (2011). More recently, score-based diffusion models have achieved state-of-the-
art performance in many applications (Sohl-Dickstein et al., 2015; Nichol and Dhariwal, 2021; Song
et al., 2020; Lipman et al., 2022).

On the theoretical front, recent works such as Liu et al. (2021), Chae et al. (2023), Altekrüger et al.
(2023), Stanczuk et al. (2024), Pidstrigach (2022) , and Tang and Yang (2023) demonstrate that dis-
tribution estimation based on deep generative models can adapt to the intrinsic geometry of the data,
with convergence rates dependent on the intrinsic dimension of the data, thus potentially circum-
venting the curse of dimensionality. Such advancement has naturally motivated us to employ and
investigate conditional deep generative model for conditional distribution estimation. Specifically,
we explore and study the theoretical properties of a new likelihood-based approach to conditional
sampling using deep generative models for data potentially residing on a low-dimensional mani-
fold corrupted by full-dimensional noise. More concretely, we consider the following conditional
distributional regression problem:

Y |X = V |X + ε, (1)
where X serves as a predictor in Rp, V |X represents the (uncorrupted) underlying response
supported on a manifold of dimension d ≤ D, Y |X represents the observed response, and
ε ∼ N(0, σ2

∗ID) denotes the noise residing in the ambient space RD. Our deep generative model fo-
cuses on the conditional distribution V |X by using a (conditional) generator of the form G∗(Z,X),
where G∗ is a function of a random seed Z and the covariate information X . This approach is
termed ‘conditional deep generative’ because the conditional generator is modeled using deep neu-
ral networks (DNNs). Observe that, when d < D, the distribution of G∗(Z,X) is supported on
a lower-dimensional manifold, making it singular with respect to the Lebesgue measure in the D-
dimensional ambient space. We study the statistical convergence rate of sieve MLEs in the condi-
tional deep general model setup and investigate its dependence on the intrinsic dimension, structure
properties of the model as well as the noise level of the data.

1.1 LIST OF CONTRIBUTIONS

We briefly summarise the main contributions made in this paper.

• To the best of our knowledge, our study is the first attempt to explore the likelihood-based ap-
proach for distributional regression using a conditional deep generative model, considering full-
dimensional noise and the potential presence of singular underlying support. We provide a solid
statistical foundation for the approach by proving the near-optimal convergence rates for this pro-
posed estimator.

• We derive the convergence rates for the conditional density estimator of the corrupted data Y
with respect to the Hellinger distance and specialize the obtained rate for two popular deep neural
network classes: the sparse and fully connected network classes. Furthermore, we characterize
the Wasserstein convergence rates for the induced intrinsic conditional distribution estimator on
the manifold (i.e., a deconvolution problem). Both rates turn out to depend only on the intrinsic
dimension and smoothness of the true conditional distribution.

• Our analysis in Corollary 2 suggests the need to inject a small amount of noise into the data when
they are sufficiently close to the manifold. Intuitively, this observation validates the underlying
structural challenges in related manifold estimation problems with noisy data, as outlined by Gen-
ovese et al. (2012).

• We show that the class of learnable (conditional) distributions of our method is broad. It encom-
passes not only the smooth distributions class, but also extends to the general (nearly) singular
distributions with manifold structures, with minimal assumptions.

1.2 OTHER RELEVANT LITERATURE

The problem of non-parametric conditional density estimation has been extensively explored in
statistical literature. Hall and Yao (2005), Bott and Kohler (2017), and Bilodeau et al. (2023) directly
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tackle this problem with smoothing and local polynomial-based methods. Fan and Yim (2004)
and Efromovich (2007) explore suitably transformed regression problems to address this challenge.
Other notable approaches include the nearest neighbor method (Izbicki et al., 2020; Bhattacharya
and Gangopadhyay, 1990), basis function expansion (Sugiyama et al., 2010; Izbicki and Lee, 2016),
tree-based boosting (Pospisil and Lee, 2018; Gao and Hastie, 2022), and Bayesian optimal transport
flow Chemseddine et al. (2024) among others.

In the context of conditional generation, we highlight recent work by Zhou et al. (2022) and Liu
et al. (2021). In Zhou et al. (2022), GANs were employed to investigate conditional density estima-
tion. While this work offers a consistent estimator, it lacks statistical rates or convergence analysis,
and its focus is on a low-dimensional setup. In Liu et al. (2021), conditional density estimation
supported on a manifold using Wasserstein-GANs was examined. However, their setup does not ac-
count for smoothness across either covariates or responses, nor do they address how deep generative
models specifically tackle the challenges of high-dimensionality. Moreover, their assumption that
the data lies exactly on the manifold can be restrictive. Our study shares some commonalities with
the work of Chae et al. (2023), as both investigate sieve maximum likelihood estimators (MLEs).
However, the fundamental problems addressed and the methodologies employed differ significantly,
and our work involves technical challenges that span multiple scales. While Chae et al. (2023) con-
centrates exclusively on unconditional distribution estimation, our theoretical analysis necessitates
much more nuanced techniques due to the conditional nature of our setup. This shift is noteworthy
because it demands a more refined analysis of entropy bounds, considering two potential sources
of smoothness - across the regressor and the response variables. Furthermore, our setting accom-
modates the possibility of an infinite number of x values, which gives rise to a dynamic manifold
structure, further compounding the intricacy of the problem at hand.

2 CONDITIONAL DEEP GENERATIVE MODELS FOR DISTRIBUTION
REGRESSION

We consider the following probabilistic conditional generative model, where for a given predictor
value x, the response Y is generated by

Y = G∗(Z, x) + ε, x ∈ X ⊂ Rp. (2)
Here, G∗(·, x) : Z → Mx is the unknown generator function, Z a latent variable with a known dis-
tribution PZ and support Z ⊂ Rd independent of the predictor X . The existence of the generator G∗
directly follows from Noise Outsourcing Lemma 3. This lemma enables the transfer of randomness
into the covariate and an orthogonal (independent) component through a generating function for any
regression response. We denote M : = ∪x∈XMx ⊂ RD as the support of the image of G∗(Z,X )
such as a (union of) d-dimensional manifold. We model G∗(·, ·) : Z × X ⊂ Rd × Rp → Y ⊂ RD

using a deep neural network, leading to a conditional deep generative model for (2).

In the next section, we present a more general result in terms of the entropy bound (variance) for
the true function class of G∗ and the approximability (bias) of the search class. We then proceed
to a simplified understanding in the context of conditional deep generative models in subsequent
sections.

2.1 CONVERGENCE RATES OF THE SIEVE MLE

In light of equation (2), it is evident that the distribution of Y |X = x results from the convolution
of two distinct distributions: the pushforward of Z through G∗ with X = x, and ε following an
independent D-dimensional normal distribution. The density corresponding to the true distribution
P∗(·|X = x) can thus be expressed as:

p∗(y|x) =
∫

ϕσ∗(y −G∗(z, x)) dPZ ,

where ϕσ∗ is the density of N(0, σ2
∗Id). We define the class of conditional distributions P as

P =
{
Pg,σ : g(·, x) ∈ F , σ ∈ [σmin, σmax]

}
, (3)

where Pg,σ represents the distribution with density pg,σ =
∫
ϕσ(y − g(z, x))dPZ . In this notation,

P∗ = PG∗,σ∗ and p∗ = pG∗,σ∗ . The elements of P comprise two components: g originating from
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the underlying function class F , and σ, which characterizes the noise component. This class enables
us to obtain separate estimates for G∗ and σ∗, furnishing us with both the canonical estimator for the
distribution of Y |X = x and enhancing our comprehension of the singular distribution of G∗(Z, x),
supported on a low-dimensional manifold.

Given a data set {(Xi, Yi)}ni=1, the log-likelihood function is defined as ℓn(g, σ) =
n−1

∑n
i=1 log pg,σ(Yi|Xi). For a sequence ηn ↓ 0 as n → ∞, a sieve maximum likelihood es-

timator (MLE) (Geman and Hwang, 1982) is any estimator (ĝ, σ̂) ∈ F × [σmin, σmax] that satisfies

ℓn (ĝ, σ̂) ≥ sup
σ∈[σmin,σmax]

g∈F

ℓn(g, σ)− ηn. (4)

Here ĝ ∈ F and σ̂ ∈ [σmin, σmax] are the estimators, and ηn represents the optimization error. The
dependence of ĝ and σ̂ on n illustrates the sieve’s role in approximating the true distribution when
optimization is performed over the class P . The estimated density p̂ = pĝ,σ̂ provides an estimator
for p∗(·|·), and Qĝ(·|X = x) serve as the estimator for Q∗(·|X = x).

In this section, we formulate the main results, which provide convergence rates in the Hellinger
distance for our sieve MLE estimator. The convergence rate was derived for any search functional
class F , with a brief emphasis on their entropy and approximation capabilities.
Assumption 1 (True distribution). Denote µ∗

X(x) as the distribution of X . We denote the true
conditional densities as p∗ = {p∗(·|x), x ∈ Rp}. It is natural to assume that the data is generated
from p∗ from model (2) with some true generator G∗ and σ∗. We denote Q∗(·|X = x) (or QG∗ ) as
the distribution of G∗(Z, x) for some distribution PZ .

A function g is said to have a composite structure (Schmidt-Hieber, 2020; Kohler and Langer, 2021)
if it takes the form as

g = fq ◦ fq−1 ◦ · · · ◦ f1 (5)

where fj : (aj , bj)
dj → (aj+1, bj+1)

dj+1 , d0 = p + d and dq+1 = D. Denote fj =

(f
(1)
j , . . . , f

(dj+1)
j ) as the components of fj , let tj be the maximal number of variables on which

each of the f
(i)
j depends and let f (i)

j ∈ Hβj ((aj , bj)
tj ,K) (see Section 2.4.1 for the definition of

the Hölder class Hβ). A composite structure is very general which includes smooth functions and
additive structure as special cases. In addition, in the next section, we show the class of conditional
distributions {QG∗(·|X = x) : x ∈ Rp, G∗ ∈ G} induced by the composite structure is broad.
Assumption 2 (composite structure ). Denote G = G (q,d, t,β,K) as a collection of functions
of form (5), where d = (d0, . . . , dq+1), t = (t0, . . . , tq+1), and β = (β0, . . . , βq+1). We regard
(q,d, t,β,K) as constants in our setup, and assume that the true generator G∗(·, x) as in (2)
belongs to G, for all x ∈ X . Additionally, we assume ∥|G∗|∞∥∞ ≤ K.

β̃j = βj

q∏
l=j+1

(βl ∧ 1) , j∗ = argmax
j∈{0,...,q}

tj

β̃j

, β∗ = β̃j∗ , t∗ = tj∗ .

The quantities t∗ and β∗ are called intrinsic dimension and smoothness of G∗ (or of G).
Remark 1 (Strength of the Composite Structure). The expression (aj , bj) ⊂ [−K,K] can be intu-
itively visualized by setting aj = −K and bj = K. To illustrate the impact of intrinsic dimensional-
ity and smoothness, consider a function f : Rd → R defined as f(x) = f1(x1)+. . .+fd(xd), where
x = (x1, . . . , xd) and fj ∈ Hβ((−K,K),K) for j = 1, . . . , d. While f ∈ Hβ((−K,K)d,K), its
intrinsic dimension is t∗ = 1 with intrinsic smoothness β. This mitigates the curse of dimensionality.

Assumption 3. Let M∗ be the closure of G∗(Z,X ). We assume that M∗ does not have an interior
point, and reach(M∗) = r∗ with r∗ > 0.

Assumption 2 permits low intrinsic dimensionality within the learnable function class. Assumption 3
imposes the strong identifiability condition necessary for efficient estimation, as seen in manifold
literature (Aamari and Levrard, 2019; Tang and Yang, 2023).

Given two conditional densities p1(·|x), p2(·|x) and µ∗
X denoting the density of X , we use in-

tegrated distances for a measure of evaluation. With a slight abuse of notation, we denote
d1(p1, p2) = EX [d1(p1(·|x), p2(·|x))] and dH(p1, p2) = EX [dH(p1(·|x), p2(·|x)], where d1 and
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dH represent the L1 and the Hellinger distance as d1(p1(·|x), p2(·|x)) =
∫
|p1(y|x)− p2(y|x)| dy

and dH(p1, p2) = (
∫ ∫

[
√
p1(y|x) −

√
p2(y|x)]2 dy)1/2 respectively. Denote N (δ,F , d) and

N[](δ,F , d) as covering and bracketing numbers of the function class F with respect to the (pseudo)-
metric d.

We first present Lemma 1, which establishes the bracketing entropy of the functional class P with
respect to Hellinger distance in terms of the covering entropy of the search class F . This enables us
to transfer the entropy control of the individual components F and σ to the entire P .
Lemma 1. Let F be class of functions from Z × X to RD such that ∥|g|∞∥∞ ≤ K for every
g ∈ F . Let P = {Pg,σ : g ∈ F , σ ∈ [σmin, σmax]} with σmin ≤ 1. Then, there exist constants
c = c(σmax,K,D) and C = C(σmax,K,D) and δ∗ = δ∗(D) such that for every δ ∈ (0, δ∗],

logN[](δ,P, dH) ≤ logN (cσD+3
min δ4,F , ∥| · |∞∥∞) + log

(
C

σD+2
min δ4

)
, (6)

The proof of Lemma 1 is provided in the Appendix E. Theorem 1 presents the convergence rate of
the sieve-MLE to the true distribution (see Appendix F for the proof).
Theorem 1. Let F ,P, σmin and δ∗ = δ∗(D) be given as in Lemma 1, and n ≥ 1. Suppose
that logN (δ,F , ∥| · |∞∥∞) ≤ ξ

{
A+ 1 ∨ log δ−1

}
for every δ ∈ (0, δ∗] and some A, ξ > 0.

Suppose that there exists a G ∈ F and some δapprox ∈ (0, δ∗] such that ∥|G−G∗|∞∥∞ ≤ δapprox.
Furthermore, suppose that s ≥ 1, A ≥ 1, σmin ≤ 1, δapprox ≤ 1 and σ∗ ∈ [σmin, σmax]. Then

P∗ (dH(p̂, p∗) > ε∗n) ≤ 5e−C1nε
∗2
n + C2n

−1 (7)

provided that ηn ≤ nε∗2n /6 and ε∗n ≤
√
2δ∗, where

ε∗n = C3

(√
ξ {A+ log (n/σmin)}

n
∨ δapprox

σ∗

)
, (8)

C1 is an absolute constant, C2 = C2(D) and C3 = C3(D,K, σmax).

The outlined rate has two components: the statistical component, expressed as an upper bound to
the metric entropy of F , and the approximation component, denoted as δapprox. The statistical
error is quantified by measuring the complexity of the class P , as formulated in Lemma 1. The
approximation error is assessed through the ability of the provided function class to approximate the
true distribution.

2.2 NEURAL NETWORK CLASS

We model G∗(·, ·) using a deep neural network. More specifically, we parameterize the true gener-
ator G∗ with a deep neural neural architecture (L, r) of the form

f : Rr0 → RrL+1 , z 7→ f(z) = WLρvLWL−1ρvL− . . .W1ρv1W0z, (9)

where Wj ∈ Rrj+1×rj , vj ∈ Rrj , ρvj (·) = ReLU(· − vj) and r = (r0, . . . , rL+1) ∈ NL+2. The
constant L is the number of hidden layers and r = (r0, . . . , rL+1) represents the number of nodes
in each layer.

We define the sparse neural architecture class Fs(L, r, s, B,K) as set of functions of form (9)
satisfying

max
0≤j≤L

|Wj |∞ ∨ |vj |∞ ≤ B,

L∑
j=1

|Wj |0 + |vj |0 ≤ s, ∥|f |∞∥∞ ≤ K,

with r0 = d + p and rL+1 = D, where | · |0 and | · |∞ stand for the L0 and L∞ vector norms, and
∥|f |∞∥∞ = supx∈Rr0 maxi=1,...,D |fi(x)|, s is sparsity parameter and K is functional bound.

The fully connected neural architecture class Fc = Fc (L, r, B,K) is set of functions of form (9)
satisfying

max
0≤j≤L

|Wj |∞ ∨ |vj |∞ ≤ B, ∥|f |∞∥∞ ≤ K.
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Both classes Fs and Fc for the deep generator will be considered in our analysis of the resulting sieve
maximum likelihood estimator. We denote the corresponding sieve-MLE as p̂s and p̂c, respectively.
When we use r instead of r, it refers to r1 = . . . = rL = r along with r0 = d+ p and rL+1 = D.

We can simplify and visualize the result stated in Theorem 1 in both cases: when the sieve-MLE is
obtained with optimization performed over the class Fs and Fc. To fulfill the conditions stated in
the Theorem 1, we need to establish entropy bounds for these function classes, Fs and Fc, and gain
insight into their approximation capabilities for the composite structure class described in Assump-
tion 2.

For the sparse neural architecture class Fs(L, r, s,K), the entropy, formally stated as Proposition 1
in Ohn and Kim (2019), is bounded as follows.

logN (δ,Fs, ∥| · |∞∥∞) ≲ sL {log(BLr) + log δ−1}. (10)
From an entropy perspective, the fully connected neural architecture class Fc(L, r,B,K) can be
viewed as Fs without any sparsity constraint, meaning s ≍ r2L. Therefore, we have

logN (δ,Fc, ∥| · |∞∥∞) ≲ L2r2{log(BLr) + log δ−1}. (11)

The approximation properties of the sparse and fully connected network are provided in Lemma 4.1
and Lemma 4.2 of the Appendix K, respectively.

Having established the essential components for Fc in (11) and Lemma 4.2, and for Fs in (10) and
Lemma 4.1, respectively, we can simplify Theorem 1 and state Corollary 1.
Corollary 1. Suppose that Assumptions 1 and 2 hold, and σ∗ ∈ [σmin, σmax] with σmin ≤ 1 and
σmax < ∞. Moreover, assume that the noise σ∗ decays at rate α, i.e., σ∗ ≍ n−α, and σmin = n−γ

for some γ ≥ α ≥ 0. Then, for every δapprox ∈ [0, 1], the following holds:

1. Let Fs = Fs (L, r, s, B,K) with δ∗ = δ∗(D) be as given in Lemma 1, and L ≍ log δ−1
approx,

r ≍ δ
−t∗/β∗
approx , s ≍ δ

−t∗/β∗
approx log δ−1

approx, B ≍ δ−1
approx. Then the sieve MLE p̂s satisfies (7)

with ε∗n as in (8) with ξ = δ
−t∗/β∗
approx log2(δ−1

approx) and A = log2(δ−1
approx) provided that

ηn ≤ nε∗2n /6 and ε∗n ≤
√
2δ∗.

2. Let Fc = Fc (L, r,B,K) with δ∗ = δ∗(D) be as given in Lemma 1, and L ≍ log δ−1
approx,

r ≍ δ
−t∗/2β∗
approx , B ≍ δ−1

approx. Then the sieve MLE p̂c satisfies (7) with ε∗n as in (8) with ξ =

δ
−t∗/β∗
approx log2(δ−1

approx) and A = log2(δ−1
approx) provided that ηn ≤ nε∗2n /6 and ε∗n ≤

√
2δ∗.

In particular, choosing δapprox :=
(
σ2
∗/n

)β∗/(2β∗+t∗) minimizes ε∗n ≍√
ξ {A+ log (n/σmin)} /n ∨ δapprox/σ∗, and gives

ε∗n ≍ n− β∗−t∗α
2β∗+t∗ log2(n). (12)

Remark 2. The convergence rate in (12) illustrates the influence of intrinsic dimensionality, smooth-
ness, and noise level on the estimation process. Note that α is upper bounded as ε∗n ≤

√
2δ∗(D).

For large values of α, estimation of G∗ is inherent difficult as the data is very close on the singu-
lar support. To address this, a small noise injection, as described in Corollary 2, can smooth the
estimation and ensure consistency.
The proof of Corollary 1 is provided in Appendix G. For the composite structural class G, the
effective smoothness is denoted by β∗, and the dimension is t∗. This effectively mitigates the curse
of dimensionality. The convergence rate at (12) also recovers the optimal rate when q = 1 and
α = 0, and there is a small lag of polynomial factor t∗α/(2β∗ + t∗) when α > 0 (Norets and Pati,
2017). This lag arises due to the presence of full-dimensional noise in the response observation Y .
Note that when the noise is small, that is α is large, achieving a sharp estimation of p∗ requires an
equally accurate estimate of G∗. This can be quite challenging. Our practically tractable approach
attempts to address this without initially estimating the singular support.

2.3 WASSERSTEIN CONVERGENCE OF THE INTRINSIC (CONDITIONAL) DISTRIBUTIONS

Using Wasserstein distance as a metric for distributions Qg is meaningful due to their singularity in
ambient space: when d < D, the conditional distribution is singular with respect to the Lebesgue
measure on RD.
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The integrated Wasserstein distance, for r ≥ 1, between P1(·|X) and P2(·|X) is defined as

Wr (P1, P2) = EX

[
inf

β∈Γ(P1,P2)

(
E(U1,U2)∼β

[
|U1 − U2|rr

])1/r]
,

where Γ(P1, P2) is the set of all couplings between P1 and P2 that preserves the two marginals. The
(dual) representation of this norm, Wr(P1, P2) = EX

[
sup∥f∥Lipr≤1 {EP1

[f ]− EP2
[f ] }

]
(Villani

et al., 2009) with ∥ · ∥Lipr
denoting the r-Lipschitz norm, is particularly useful in our proofs.

Theorem 2. Suppose that Assumption 3 holds. If dH(pg,σ, p∗) ≤ ε holds for some ε ∈ [0, 1] and
some pg,σ ∈ P , then we have

W1(Qg, Q∗) ≤ C
(
ε+ σ∗

√
log ε−1

)
,

where C = C(D,K, r∗) depends only on (D,K, r∗).

The proof of Theorem 2 is provided in Appendix H. Theorem 2 guarantees that W1

(
Q̂ĝ, Q∗

)
≲log

dH(p̂, p∗) + σ∗, where ≲log represents less than or equal up to a logarithmic factor of n. Following
from Corollary 1, the Wasserstein convergence rate, n−(β∗−t∗α)/(2β∗+t∗) log2(n) ∨ σ∗ log

1/2(n),
comprises two components: the convergence rate in the Hellinger distance and the standard deviation
of the true noise sequence. It is noteworthy that the first expression is influenced by the variance
of noise by the factor α. When α is very small, indicating that the data Yj lies very close to the
manifold, the second expression n−α in the overall rate dominates. Intuitively, this phenomenon
arises from the underlying structural challenges in related manifold estimation problems with noisy
data, as discussed by Genovese et al. (2012). To address this issue, we propose a data perturbation
strategy by transforming the data {(Yj , Xj)}nj=1 into {(Ỹj , Xj)}nj=1, where Ỹj = Yj + ϵj and
ϵj ∼ N

(
0D, n−β∗/(β∗+t∗) ID

)
. The resulting estimation error bound is summarized below, whose

proof is provided in Appendix I.

Corollary 2. Suppose that Assumption 1, 2, and 3 hold, and σ∗ ∈ [σmin, σmax] with σ∗ = n−α and
σmin = n−γ for some 0 ≤ α ≤ γ. Then for each of the network architecture classes (sparse and
fully connected) with the network parameters specified in Corollary 1, the sieve MLE p̂per and Q̂per

based on the perturbed data {(Ỹj , Xj)}nj=1 satisfies

P∗

[
W1

(
Q̂per, Q∗

)
≥
(
ε∗n + σ∗

√
log((ε∗n)

−1)
)]

≲ 5e−C1nε
∗
n
2

+
C2

n

where ε∗n can be chosen such that

ε∗n + σ∗
√
log((ε∗n)

−1) ≍

{
n− β∗−t∗α

2β∗+t∗ log2(n), if α < β∗/{2(β∗ + t∗)},
n− β∗

2(β∗+t∗) log2(n), otherwise.
(13)

2.4 CHARACTERIZATION OF THE LEARNABLE DISTRIBUTION CLASS

Section 2.2 focuses on the true generator G∗ within the class of functions with composite structures.
In this subsection, we show that such a conditional distribution class achieved by the push-forward
map G∗ is broad and includes many existing distribution classes for Q∗ as special cases.

2.4.1 SMOOTH CONDITIONAL DENSITY

For β > 0, let Hβ(D,M) be the class of all β-Hölder functions f : D ⊂ Rd → R with β-Hölder
norm bounded by M > 0. Let Hβ(D) = ∪M>0Hβ(D,M). See Appendix B for their formal
definitions.

Lemma 2. Suppose that (i) Z × X and Y are uniformly convex and (ii) pZ ∈ HβZ (Z), µ∗
X ∈

HβX (X ) and q∗ ∈ HβQ(Y) for some βZ , βX , βQ > 0 and are bounded above and below. Then,
there exists a map g(·, ·) : Z × X → Y such that Q∗(·|·) = Qg and g ∈ Hβmin+1(Z × X ), where
βmin = min{βZ , βX , βQ}.

7
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Lemma 2 establishes that the learnable distribution class includes Hölder-smooth functions with
smoothness parameter βmin and intrinsic dimension d. As a result, following Corollary 1, the con-
vergence rate for density estimation is given by ε∗n ≍ n−(βmin+1−dα)/(2βmin+2+d). A push-forward
map is a transport map between two distributions. The well-established regularity theory of transport
map in optimal transport is directly applicable here [see Villani et al. (2009) and Villani (2021)]. The
proof of Lemma 2 is based on Theorem 12.50 of Villani et al. (2009) and Caffarelli (1996), which
establishes the regularity of this transport map and its existence follows from Brenier (1991). When
pZ is selected as a well-behaved parametric distribution, the regularity of the transport map is deter-
mined by the smoothness of both µ∗

X and Q∗. For a more detailed discussion on this, please refer to
Appendix C.

2.4.2 A BROADER CONDITIONAL DISTRIBUTION CLASS WITH SMOOTHNESS DISPARITY

In Appendix L, we present a novel approximation result for the function class exhibiting smoothness
disparity in Theorem 5. This new result facilitates the study of theoretical properties of estimators
when the generator G∗ ∈ HβZ ,βX

d,p (Z,X ,K). Note that such a function class defined in (16) in
Appendix L is much broader compared to the smoothness class in Section 2.4.1 as Z and X do
not have to be jointly smooth and it allows for smoothness disparity among them. The subsequent
Theorem 3 combines our approximation result with (11) and enables us to specialize Theorem 1 to
this class (see Appendix J for the proof).

Theorem 3. Let G∗ ∈ HβZ ,βX

d,p (Z,X ,K). Suppose that Assumption 1 holds and σ∗ ∈ [σmin, σmax]

with σmin ≤ 1 and σmax < ∞. Moreover, we assume σ∗ ≍ n−α, and σmin = n−γ for some 0 ≤
α ≤ γ ≤ (β−1

Z d+ β−1
X p)−1. Then, for every δapprox ∈ [0, 1], we have: Let Fs = Fs (L, r, s, 1,K)

with L ≍ log δ−1
approx, r ≍ δ

−(β−1
Z d+β−1

X p)
approx , s ≍ δ

−(β−1
Z d+β−1

X p)
approx log δ−1

approx. Then the sieve MLE p̂s

satisfies (7) with the rate outlined in (8) with ξ = δ
−(β−1

Z d+β−1
X p)

approx log2 δ−1
approx and A = log2 δ−1

approx,

provided that ηn ≤ nε∗2n /6. In particular, choosing δapprox :=
(
σ2
∗/n

)1/(2+β−1
Z d+β−1

X p) ≤ 1

minimizes ε∗n ≍
√
ξ {A+ log (n/σmin)} /n ∨ δapprox/σ∗, and gives

ε∗n ≍ n
−

1−α(β
−1
Z

d+β
−1
X

p)

2+β
−1
Z

d+β
−1
X

p log2(n). (14)

The proof of Theorem 3 is provided in Appendix J. In the special case when α = 0 and d = D, our
convergence rate in (14) recovers the minimax optimal rate for conditional density estimation based
on kernel smoothing, as established in Li et al. (2022).

2.4.3 CONDITIONAL DISTRIBUTION ON MANIFOLDS

In this part, we extend Lemma 2 and provide the existence of the generator when the conditional
distribution is supported on a compact manifold with dimension d∗ ≤ D. Due to space constraints,
we provide only a sketched proof here; the detailed proof can be found in Appendix D. Specifically,
we first present arguments for the existence of the generator when Y is covered by a single chart.
We then extend this to the multiple chart case using the technique of partition of unity.

In the simpler case when there exists a single (Y, φ) covering Y , where φ : B1(0d∗) → Y is a
homeomorphism, we assume φ ∈ Hβmin+1. In this case, we use the change of variable formula
to transfer the measure on B1(0d∗) (unit ball in Rd∗ ) from Y . Following Lemma 2, we can find
a transport map g ∈ Hβmin mapping from Z × X to B1(0d∗). The map g ◦ φ then serves as our
generator.

In the general case where the compact manifold Y needs to be covered by multiple charts, demon-
strating the existence of a transport or push-forward map is challenging because Y is not uniformly
convex. Suppose that {(Uk, φk)}Kk=1 forms a cover of Y . Due to the compactness of Y , the number
of charts K is finite. Analogous to the single chart scenario, we first construct gk ◦ φk to transport
the measure on each chart. We then patch these local transport maps together to construct a global
transport map; see Appendix D for full details. As a result, following Corollary 1, the convergence
rate for density estimation shall be given by ε∗n ≍ n−(βmin−dα)/(2βmin+d).
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3 NUMERICAL RESULTS

In this section, we present numerical experiments to validate and complement our theoretical find-
ings using two synthetic dataset examples. These experiments cover a range of scenarios, including
full-dimensional cases as well as benchmark examples involving manifold-based data. Additionally,
we provide a real data example to further enrich our experimentation and validation process. It is
worth noting that, although not significant, the computational cost of fitting a conditional generative
model is higher compared to fitting an unconditional one, as the input dimension of the deep neural
network (DNN) is p+ d rather than just d.

Learning algorithm to compute sieve MLE. For the computational algorithm, we adopt a
common conditional variational auto-encoder (VAE) architecture to maximize the following log-
likelihood term:

∑n
j=1 LVAE(g, σ, ϕ;Yj , Xj), where

LVAE(g, σ, ϕ; y, x) = log

(
pg,σ(y, x, z)

qϕ(Z|y, x)

)
.

The variational distribution qϕ(Z|y, x) is chosen as the standard normal family
N(µϕ(y, x),Σϕ(y, x)).

We examine two classes of datasets: (i) full-dimensional response and (ii) response residing on a
low-dimensional manifold. The first highlights the generality of our proposed approach, while the
second underscores its efficiency in terms of the Wasserstein metric and validates the small noise
perturbation strategy outlined in Corollary 2.

Simulation from full dimension distribution. We use the following models for data generation.

• FD1 : Y = I{U<0.5} N
(
−X, 0.252

)
+ I{U>0.5} N

(
X, 0.252

)
; U ∼ Unif(0, 1), X ∼ N(3, 1).

• FD2 : Y = X2
1 + e(X2+X3/3) + sin(X4 +X5) + ε; {Xj}5j=1

i.i.d∼ N(0, 1), ε ∼ N(0, 1).

• FD3 : Y = X2
1 + e(X2+X3/3) + X4 − X5 + 0.5 (1 + X2

2 + X2
5 ) × ε; {Xj}5j=1

i.i.d∼ N(0, 1),
ε ∼ N(0, 1).

These are examples of a mixture model, an additive noise model, and a multiplicative noise model,
respectively. The neural architecture for both the encoder and decoder consists of two deep layers,
i.e., L = 2. The hyperparameters are as follows: renc = (p + 1, 10, 10) for µϕ and Σϕ, and
rdec = (10 + p, 10, 1) for g. The sample size used for simulation is 5000, with a training-to-testing
ratio of 4 : 1. We employ a batch size of 64 with a learning rate of 10−3.

We compare the sieve MLE with CKDE (Hall et al., 2004) and FlexCode proposed by Izbicki and
Lee (2017). To evaluate their performance, we compute the mean squared error (MSE) for both
the mean and the standard deviation. We use Monte Carlo approximation to compute the mean
and standard deviation for the sieve MLE, and numerical integration for CKDE and Flexcode. This
evaluation strategy resembles that implemented by Zhou et al. (2022). Table 1 summarizes the
findings.

Table 1: MSE for the estimated conditional mean and the standard deviation.

Sieve MLE CKDE FlexCode

FD1 MEAN 0.0379± 0.0170 1.0053± 0.1004 1.1660± 0.1076
SD 0.0280± 0.0045 0.9887± 0.0347 1.2000± 0.0126

FD2 MEAN 0.1943± 0.0427 0.2640± 0.0515 0.3954± 0.0571
SD 0.2843± 0.0093 0.2853± 0.0213 5.8278± 0.1607

FD3 MEAN 0.2337± 0.0453 0.2967± 0.0537 1.3419± 0.1087
SD 1.6394± 0.0861 0.6334± 0.0460 11.4898± 0.1559

Note that the sieve MLE outperforms all other methods in all scenarios except for the MSE(SD) for
the FD3 dataset. However, for the FD3 dataset, we found that as the training sample size increases
further, the MSE(SD) of the sieve MLE achieves performance increasingly comparable to CKDE.
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Simulation from distributions on manifolds. We consider two examples of manifolds with an
intrinsic dimension d = 1, while the ambient dimension is D = 2.

• M1 : Y = G∗(Z,U) + ε, G∗ = (G
(1)
∗ , G

(2)
∗ ), G(1)

∗ = I{U<0.5} (1− cos(Z)) + I{U>0.5} cos(Z),
G

(2)
∗ = I{U<0.5} (0.5− sin(Z)) + I{U>0.5} sin(Z); Z ∼ Unif(0, π), U ∼ Unif(0, 1).

• M2 : Y = G∗(Z,U) + ε, G∗ =
(
G

(1)
∗ , G

(2)
∗

)
, G(1)

∗ = I{U<0.5} cos(Z) + I{U>0.5} 2 cos(Z),

G
(2)
∗ = I{U<0.5} 0.5 sin(Z) + I{U>0.5} sin(Z); Z ∼ Unif(0, 2π), U ∼ Unif(0, 1).

The manifold M1 consists of two moons. The manifold M2 comprises ellipses, with conditions
distinguishing the inner and outer confocal ellipses. The noise sequence follows a two-dimensional
centered Gaussian distribution, ε ∼ N(02, σ

2
∗I2). We investigated this setup across various noise

variances σ2
∗. Our neural architecture employed renc = (p + 2, 100, 100, 2) for µϕ and Σϕ, and

rdec = (2 + p, 100, 100, 2) for g. We utilized a sample size of 5000 for simulation, with a training-
to-testing ratio of 4 : 1. A batch size of 100 was employed, with a learning rate of 10−3. We

Figure 1: Generated samples from manifold M1 and M2 are displayed in the left panel. The right
panel shows box plots for the empirical Wasserstein distance at different noise levels σ∗.

computed the empirical W1 distance using the algorithm proposed by Cuturi (2013) to evaluate the
performance. The right panel of Figure 1 presents the boxplots of W1 between the true and learned
distribution for M1 and M2 across 20 repetitions. The left panel highlights the following general
behaviors:

• When α is small and close to zero, the noise variance is large, making estimation challenging due
to the singularity of the true data distribution.

• When α is large, the noise variance is small, and the perturbed data facilitates efficient estimation.

This observed pattern, as emphasized in Corollary 2, closely aligns with the results achieved in
(13). An additional numerical experiment on real data has been performed and can be found in
Appendix A.1.

4 DISCUSSION

We investigated statistical properties of a likelihood-based conditional deep generative model for
distribution regression in a scenario where the response variable is situated in a high-dimensional
ambient space but is centered around a potentially lower-dimensional intrinsic structure. Our anal-
ysis established favorable rates in both the Hellinger and Wasserstein metrics which are dependent
on only the intrinsic dimension of the data. Our theoretical findings show that the conditional deep
generative models can circumvent the curse of dimensionality for high-dimensional distribution re-
gression. To the best of our knowledge, our work is the first of its kind.

Given the novelty of emerging statistical methodologies with intricate structural considerations in
the study of deep generative models, there exist numerous paths for future exploration. Among
these potential directions, we are particularly interested in investigating controllable generation via
penalized optimization methods, studying statistical properties of deep generative models trained
via matching flows, as well as delving into the hypothesis testing problem within the framework of
deep generative models, among others. Another interesting direction is to explore residual neural
network structure for modeling time series of distributions with interesting temporal dependence
structures.
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