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Abstract

Sharpness-aware minimization (SAM) has been shown to improve the generalization of neu-
ral networks. However, the method comes at the expense of storing a perturbation of the
model parameters, which can be restrictive when memory bound. We design a variant of
SAM, called νSAM, which obtains a low-rank perturbation by modifying the perturbation
constraint. The update almost entirely removes the memory footprint of the perturbation
without increasing the computational complexity, thus achieving close to a 1/3 memory
saving regarding the parameters when using SGD as the base optimizer. We demonstrate
comparable performance of νSAM with SAM on vision transformers both when training
models from scratch and for fine-tuning. Interestingly, νSAM seems to significantly improve
performance for MLP-Mixer architectures across both settings. The results are corrobo-
rated theoretically, where we show that SAM with an arbitrary norm choice (which includes
νSAM) can converge even with fixed perturbation radius.

1 Introduction

Sharpness-aware minimization (SAM) (Foret et al., 2020) has seen rising popularity due to increasing the
generalization capability across a wide range of tasks. The method consistently improves classification error
(Foret et al., 2020), replaces heavy data augmentation otherwise used in pretraining of vision transformers
(ViTs) (Chen et al., 2021), and improves fine-tuning of large language models (LLMs) (Bahri et al., 2021;
Zhong et al., 2022). SAM has also been shown to be more robust (Foret et al., 2020), interpretable (Chen
et al., 2021) and reproducible (Somepalli et al., 2022).

∗The work of TP was done while interning at Amazon Web Services.
†Concurrent positions as an Amazon Scholar and as a faculty at the corresponding institutes. This paper represents the

work performed at Amazon.
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Table 1: (Left) The number of parameters stored for the perturbation. The νSAM method uses almost no
memory for storing the perturbation in comparison with SAM. (Right) Removing the perturbation entirely
would lead to an overall memory saving regarding the model of up to 1/3. Memory is provided in multiples
of the model size.

SAM νSAM Saving
ViT-S/16 22M 75k 99.66%
ViT-B/16 87M 149k 99.83%
ViT-L/16 304M 395k 99.87%
BERT (base) 110M 201k 99.82%
BERT (large) 335M 479k 99.86%

Method Memory Saving
SGD 2 1/3
SGD momentum 3 1/4
Adam(W) 4 1/5
Adam(W) bf16 momentum 3 1/4
Adafactor ∼2 1/3

The update rule of SAM proceeds by finding a (norm constrained) perturbation vector ε ∈ Rd and subse-
quently updating the weights x ∈ Rd using a gradient ∇f computed at the perturbed set of weights,

x← x− γ∇f(x + ε). (1)

Despite its popularity, one subtle problem is the increased memory footprint of SAM as compared to con-
ventional first-order methods such as stochastic gradient descent (SGD). Specifically, at any given time the
SAM method needs to store: the weights, a gradient and additionally the perturbation. This is 50% more
memory demanding in terms of the weights than SGD, which only needs to store the weights and a gradient.

This naturally raises the following research questions:

Is it possible to obtain a SAM formulation that induces a memory-efficient algorithm without intro-
ducing additional computational overhead?

In this work, we answer the above question in the affirmative. Concretely we make the following contributions:

• By revisiting the original SAM formulation we notice that the structure of the network is lost in the
computation of the perturbation ε since the parameters are treated as a vector. This motivates us to
replace the original vector ℓ2-norm constraint with a particular matrix norm constraint (specifically
the nuclear norm) that allows us to obtain a layerwise low-rank ε. The modification leads to
substantial memory-savings regarding the perturbation, saving more than 99.8% of the memory
required by the perturbation in the original SAM method on ViT-B/16 (see Table 1).

• We extensively evaluate our method νSAM on vision transformers (ViTs) and MLP-Mixer models
when both fine-tuning and training from scratch, and additionally fine-tune BERT on a set of
language tasks. We find that νSAM consistently outperforms the baseline AdamW in all cases and
achieves comparable performance with SAM. Surprisingly, this is the case even when the low-rank
decomposition of the perturbation ε is only coarsely approximated through a single power iteration,
which avoid adding any wall-clock time as compared with SAM. Interestingly, we find that νSAM
enjoys a substantial improvement over SAM for MLP-Mixer models on both fine-tuning and when
training from scratch.

• We provide a strong baseline for ViTs on relatively small datasets like CIFAR, which might be
of independent interest, increasing the baseline in (Mueller et al., 2023) by more than 3pp (see
Sections 5.1 and 5.2.1). We interestingly find that, in this setting, both νSAM and SAM substantially
improve if the perturbation is not activated until after several epochs. The delay raises the percentage
points improvement over AdamW by a striking factor of ∼4. It appears that the perturbation can
be taken larger if delayed, partially explaining the benefit.

• Theoretically, we find that SAM-type methods with arbitrary norm choice for the perturbation
(which includes νSAM) converges even with fixed perturbation radius ρ, although only for a re-
strictive class of certain convex quadratics. This is in stark contrast with a SAM variant using
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(normalized) random perturbation, which is not guaranteed to converge, as we demonstrate. This
observation possibly sheds some light on the practically observed advantage of using gradient infor-
mation in the perturbation.

Limitations Our work focuses on transformers and MLP-Mixer models, since our memory-efficient refor-
mulation of SAM heavily relies on the presence of matrix structures in the network.

2 Related work

Memory-efficient SAM There has been other works trying to lower the memory consumption of SAM.
FSAM (Zhong et al., 2022) and SSAM (Mi et al., 2022) use the Fisher information to identify a subset of
the parameters to perturb. In practice SSAM can save 50%, and FSAM roughly 90%, of the perturbation
(see Zhong et al. (2022, Sec. 6.1)) whereas νSAM saves ∼ 99.8% (see Table 1). Very recently, a similar
memory saving as νSAM was made possible with SAM-ON, which only perturbs the normalization layers
(Mueller et al., 2023). Very surprisingly, this minor modification leads to improvements over SAM in many
settings. We compare in detail in the experimental section where we find that our method has an advantage
for specifically MLP-Mixer architectures and for fine-tuning tasks across architectures.

Convergence of SAM The analysis in GSAM (Zhuang et al., 2022), SSAM (Mi et al., 2022) and An-
driushchenko & Flammarion (2022, Thm. 2) takes decreasing perturbation radius ρk. Almost sure conver-
gence of SAM was shown in Nam et al. (2023) using a similar construction. The decreasing ρk was avoided
in (Andriushchenko & Flammarion, 2022, Thm. 6) by ignoring the normalization in SAM. Very recently,
SAM with fixed perturbation radius ρ was studied in Si & Yun (2023) with convergence guarantees for
(strongly)-convex objectives, while providing negative results for stochastic and nonconvex cases.

Power iteration An important method for eigenvalue and singular value computation is the power itera-
tion method (Mises & Pollaczek-Geiringer, 1929) (see e.g. Golub & Van der Vorst (2000)). The method has
been extensively used in the machine learning community. It is, for instance, the backbone of the PageRank
algorithm (Page et al., 1999), and used for computing the spectral norm in training of generative adversarial
networks (Miyato et al., 2018).

Low-rank approximations There have been several work exploiting low rank structures in machine
learning application: Vogels et al. (2019) uses a low rank approximation to save on communication costs
in distributed settings, recently low-rank fine-tuning was popularized by LoRA (Hu et al., 2021), and other
work explores the effect of initialization on low-rank pretraining (Kamalakara et al., 2022).

3 Algorithmic derivation

The starting point of SAM is the following saddle point problem for a given loss f : X → R

min
x∈X

max
ε∈X :∥ε∥≤ρ

f(x + ε), (2)

where ρ ∈ [0,∞) is the perturbation radius and ∥·∥ is some norm to be defined. To obtain a computationally
efficient method, SAM (Foret et al., 2020) linearizes the maximization problem with a first-order Taylor
expansion as follows

ε⋆ ∈ Arg max
ε∈X :∥ε∥≤ρ

f(x + ε) ≈ Arg max
ε∈X :∥ε∥≤ρ

{f(x) + ⟨ε,∇f(x)⟩} = Arg max
ε∈X :∥ε∥≤ρ

⟨ε,∇f(x)⟩ . (3)

For the particular choice of ℓ2-norm constraints, the argmax has a closed form solution, which leads to the
following update rule:

εk = ρ
∥∇f(xk)∥2

∇f(xk),

xk+1 = xk − γ∇f(xk + εk).
(SAM)
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Algorithm 1 Nuclear norm based sharpness-aware minimization (νSAM)
Require: Parameter initialization x−1 = (M−1

1 , . . . , M−1
l ), SVD initialization u−1

i ∈ Rni ∀ i ∈ [l]
Repeat for k = 0, 1, . . . , K − 1

1: Draw a sample ξk ∼ P
2: Compute the adversarial perturbation x̃k+1 = (M̃k+1

i )i∈[l]:{
uk

i , vk
i = SVDtop1(∇Mif(xk, ξk), uk−1

i )
M̃k+1

i = Mk
i + ρuk

i (vk
i )⊤ ∀i ∈ [l]

3: Update the weights xk+1 = (Mk+1
i )i∈[l]

1:

Mk+1
i = M̃k+1

i − ρuk
i (vk

i )⊤ − γ∇Mi
f(x̃k+1, ξk) ∀i ∈ [l]

Return xK := (MK
1 , . . . , MK

l )
1For simplicity the update is only for matrix shaped parameters. Update non-matrix parameters using gradient descent.

Algorithm 2 Top singular value decomposition (SVDtop1)
Require: Matrix A ∈ Rn×m, initialization u−1 ∈ Rn, τ = 10−12 ∈ (0,∞)
Repeat for t = 0, 1, . . . , T − 1

1: vt+1 = A⊤ut

∥A⊤ut∥2+τ

2: ut+1 = Avt+1

∥Avt+1∥2+τ

Return uT , vT

One potential limitation of SAM is the requirement to store one entire additional set of model parameters.
To economize on memory we revisit (3) and notice that the RHS can be interpreted as a linear minimization
oracle (LMO), i.e.,

lmoZ(s) := Arg min
z∈Z

⟨z, s⟩ . (4)

To be precise, (3) can be written as

Arg max
ε∈X :∥ε∥≤ρ

⟨ε,∇f(x)⟩ = lmoE(−∇f(x)), (5)

where E = { ε ∈ X | ∥ε∥ ≤ ρ }. It is well-known that for certain choices of norms, such as the nuclear norm,
the LMO leads to a sparse solution, which we will exploit in what follows.

Abstractly, with a stepsize γ > 0, our update takes the following form

εk = lmoE(−∇f(xk)),
xk+1 = xk − γ∇f(xk + εk).

(6)

Instead of flattening the model parameters, we will consider the case where our model is parametrized by
a matrix in X = Rn×m and we choose the nuclear norm constraint E∗ = { ε ∈ X | ∥ε∥∗ ≤ ρ }. In that case
update (6) reduces to only computing

εk = ρuk(vk)⊤, (7a)
xk+1 = xk − γ∇f(xk + εk). (7b)

where uk and vk are the singular vectors associated with the top singular value of −∇f(xk) (see Section 3.1
for derivations).

We crucially rearranged the update to avoid ever storing εk and xk simultaneously:
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x̃k = xk + ρuk(vk)⊤, (8a)
xk+1 = x̃k − ρuk(vk)⊤ − γ∇f(x̃k). (8b)

In other words, xk can be completely discarded after step 2 in νSAM (Algorithm 1), which is critical to
achieving the memory saving. In (8a), we only need to store one matrix xk and two vectors uk and vk by
performing the update in-place. Similarly, in (8b), it suffice to store the matrices xk and ∇f(x̃k) and two
vectors uk and vk. In contrast, (SAM) requires storing three matrices simultaneously.

The top singular vectors can efficiently be computed using (warmstarted) power iterations (Algorithm 2). We
simply ignore the update for all other parameters including the vector-valued bias terms in the MLP layers.
The resulting algorithm is described in νSAM (pronounced “newSAM”) where the weight parameterization
consists of l weight matrices Mi ∈ Rni×mi , i.e., x = (M1, . . . , Ml) and the update uses stochastic gradients.

As seen in νSAM (Algorithm 1) the LMO is applied independently to each layer matrix, which is beneficial
for distributed settings (see Section 3.2). We note that the resulting update can still be interpreted as a
norm-constrained LMO on the joint parameters x, namely as the max-norm over nuclear norms,

∥x∥X := max{∥M1∥∗, ∥M2∥∗, . . . , ∥Mℓ∥∗}.

Consequently, the convergence in Theorem 4.3 applies. We also develop and compare with a normalized
variant of νSAM in Appendix C.1, where layer updates are no longer independent.

The memory savings are large if the embedding dimensions (i.e., layer width) are large (c.f. Table 1). The low-
rank perturbation allows νSAM to reduce the memory consumption associated with storing the perturbation
by almost an order 103, e.g. the 304M parameter ViT-L/16 model only requires 395k parameters for the
perturbation.

3.1 The low-rank update

To arrive at (8a) we seek a closed form solution to the linear minimization oracle (LMO) under a nuclear
norm constraint,

lmo (W ) := arg min
X:∥X∥∗≤ρ

⟨W, X⟩. (9)

We include the closed form solution below for completeness (see e.g. Jaggi (2013) for a similar result).
Lemma 3.1. The LMO under nuclear constraint in (9) can be efficiently computed as

lmo (W ) = −ρuv⊤,

where u and v are the left and right singular vectors associated with the top singular value of W .

Lemma 3.1 yields the update rule in (7), which, when approximated with power iterations, leads to Algo-
rithm 1.

3.2 Implementation

In practice we avoid perturbing the bias term and the (single) convolutional layer in ViTs if not otherwise
specified.

See Algorithm 3 in Appendix C for pseudo-code for a distributed setting with distributed data parallel
(DDP). We note that νSAM is also compatible with fully sharded data parallel (FSDP) as long as the neural
network structure is preserved when sharded, such that the matrix structure is not lost. Compatibility with
FSDP opens up the possibility to apply νSAM to models that do not fit on a single GPU. As of writing,
the FairScale implementation (FairScale authors, 2021) allows preserving the structure whereas the PyTorch
implementation flattens the network parameters (v2.0.0). One favorable property of νSAM under FSDP is
that no global normalization needs to be computed and distributed between the layer computations, which
is otherwise the case for SAM.
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Figure 1: Demonstration of Theorem 4.3. The direction of the perturbation is important: Both νSAM and
SAM with a decreasing stepsize γk = 1/k enjoys a O(1/k2) rate on mini∈[k−1] ∥∇f(xi)∥2, while perturbing
with normalized Gaussian noise (GaussSAM) exhibits nonconvergence. Gradient descent (GD) with the
same stepsize only converges as O(1/k).

The νSAM method almost entirely removes the memory overhead of the perturbation. It is important,
in conjunction, to also reduce the memory footprint of the optimizer states. This work uses the popular
Adam (Kingma, 2014) and AdamW (Loshchilov & Hutter, 2017) as the base optimizer, but Adam(W) can
be readily replaced by a memory efficient variant, such as Adafactor (Shazeer & Stern, 2018), which is
commonly used in the vision transformer literature (see e.g., (Zhai et al., 2022, sec. 3.4) and Beyer et al.
(2022)). For fine-tuning specifically, we note that νSAM is also compatible with using low-rank updates for
the minimizer as in e.g., LoRA (Hu et al., 2021). We provide an overview of methods in Table 1, which
shows that the relative memory saving is higher when the base optimizer has a small memory footprint.

4 Convergence analysis

The gradient direction in the perturbation appearing through the LMO of both SAM and νSAM turns out
to be important for convergence under fixed perturbation radius ρ. If a random direction is used instead,
convergence cannot be guaranteed as illustrated in Figure 1. We will now make this claim precise.

In this section, ∥ · ∥∗ will more generally denote the dual norm of some norm ∥ · ∥, instead of specifically
referring to the nuclear norm. For the matrix case ∥ · ∥2 refers to the entry-wise 2-norm (i.e., the Frobenius
norm).

Abstractly our update takes the following form:

x̃k = xk + ρkεk,

xk+1 = xk − γk∇f(x̃k),
(10)

where the particular choice of εk ∈ X is to be defined.

Interestingly, we can show convergence without decreasing ρ for certain convex quadratics, if we restrict the
ε-perturbation to the LMO over an (arbitrary) norm-ball.

We make the following assumptions and define f⋆ := infx∈X f(x).
Assumption 4.1. The function f : X → R is strongly-convex with parameter µ > 0, i.e.,

⟨∇f(x)−∇f(x′), x− x′⟩ ≥ µ∥x− x′∥2
2 ∀x, x′ ∈ X .
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Assumption 4.2. The gradient ∇f : X → X is L-Lipschitz with L > 0, i.e.,

∥∇f(x)−∇f(x′)∥2 ≤ L∥x− x′∥2 ∀x, x′ ∈ X .

Theorem 4.3. Suppose Assumptions 4.1 and 4.2 hold with L = µ. Then, (10) with the (arbitrary) norm
perturbation εk ∈ Arg maxε:∥ε∥∗≤1 ⟨∇f(xk), ε⟩ satisfies the following descent inequality with ρ ≥ 0 and γk > 0,

f(xk+1)− f⋆ ≤ (1− µγk)(f(xk)− f⋆)− γk(1− γkL)Lρ∥∇f(xk)∥+ γ2
kL3ρ2ξ2

∗
2 .

Furthermore, for γk = γ = min{ 1
µK log(α), 1

2L} with α = ∆02µ3K2

L4ρ2ξ4
∗ξ2 , it follows that

min
k∈[K]

f(xk)− f⋆ = Õ
(

exp(−K
2 )∆0 + Cρ2

K2

)
with ∆0 = f(x0)− f⋆, C = Lξ4

∗ξ2, ξ = maxx∈X ∥x∥2/∥x∥ and ξ∗ = maxx∈X ∥x∥2/∥x∥∗.
Remark 4.4. Theorem 4.3 holds for any norm-ball constrained perturbation including both SAM and
νSAM. In this sense, Theorem 4.3 can be seen as a generalization of the recent result of Si & Yun (2023).
Interestingly, the fact that the proof uses the particular direction of the perturbation appears to not only
be an artifact of the proof technique. In particular, if the perturbation is instead replaced with normalized
Gaussian noise, the scheme does not converge (cf. Figure 1).

The assumptions of Theorem 4.3 are rather restrictive, but they are sufficient for showing the importance of
including the gradient direction in the perturbation. Theorem 4.3 applies to quadratic minimization problem
of the form f(x) = L

2 ∥x− b∥2 + c for some b ∈ X and c ∈ R, which we demonstrate it on in Figure 1. The
parameter ρ is kept fixed and the stepsize is taken as γk = O(1/k) as suggested by the theory.

The particular direction of the perturbation turns out to be important not only for the proof. If normalized
Gaussian noise is used (i.e., εk = ek

/∥ek∥2 with ek ∼ N (0, I) denoted as GaussSAM) we observe that the
iterates only converges within a neighborhood of the solution as also suggested by theory (cf. e.g. (Li et al.,
2024, Thm. 4)). This negative result is particularly interesting in the light of the generalization bound of
SAM in Foret et al. (2020, Thm. 1), whose statement would also hold for GaussSAM. It is therefore not obvi-
ous from the generalization bound alone that the gradient direction in both νSAM and SAM is preferred over
GaussSAM. The optimization perspective in Theorem 4.3 provides a possible explanation, by showing that
only the former enjoys convergence guarantees. In addition, we observe the fast O(1/k2) rate for νSAM and
SAM, whereas the (unperturbed) gradient descent (GD) with the same stepsize has the slower O(1/k) rate.

If the perturbation radius can be taken decreasing it is possible to show convergence without convexity
assumptions, as long as the gradients are bounded. No structural assumptions are needed on the perturbation
εk (apart from being bounded) and the result thus also applies to νSAM.
Assumption 4.5. The gradient ∇f : X → X is bounded, i.e., ∥∇f(x)∥2 ≤ G ∀x ∈ X .
Theorem 4.6. Suppose Assumptions 4.2 and 4.5 hold and ∥εk∥ ≤ ξ for all k ∈ [K]. Then (10) satisfies the
following convergence guarantee for ρk ≥ 0 and γk ∈ (0, 2/L),

min
k=0,...,K−1

∥∇f(xk)∥2
2 ≤

∆0+C1
∑K−1

k=0
γ2

kρ2
k+C2

∑K−1
k=0

γkρk∑K−1
k=0

γk(1−γkL/2)

with ∆0 = f(x0)− f⋆, C1 = 1
2 L3ξ2 and C2 = LGξ.

In particular, for constant stepsize γk = γ = 1/L
√

K and ρ = 1√
K

, the following rate is obtained

min
k=0,...,K−1

∥∇f(xk)∥2
2 = O( ∆0√

K
+ C2√

K
+ C1

LK3/2 )

Remark 4.7. To get convergence one needs to take ρk decreasing. Specifically, it suffice to take
∑∞

k=0 γkρk <
∞ and

∑∞
k=0 γk =∞. We note that decreasing ρ is used for SOTA experimental SAM results as in Zhuang

et al. (2022). Theorem 4.6 also implies a fallback guarantee for when ρ is taken constant, since the theorem
in that case ensures convergence to a ρ-dependent neighborhood.
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Table 2: Training from scratch on CIFAR10/100 where νSAM shows strong performance on especially
Mixer models where test accuracy is increased over SAM by between 0.28pp and 0.55pp, while memory
usage associated with the perturbation is reduced by almost 3 orders of magnitude.

Method AdamW SAM SAM-ON νSAM
Dataset Model
CIFAR10 Mixer-B/4 91.00 91.70 91.73 (+0.03) 92.23 (+0.53)

Mixer-S/4 91.08 91.96 92.00 (+0.04) 92.24 (+0.28)
ViT-B/4 93.45 94.62 94.90 (+0.28) 94.44 (-0.18)
ViT-S/4 93.37 94.21 94.65 (+0.44) 94.39 (+0.18)

CIFAR100 Mixer-B/4 66.90 69.54 68.25 (-1.29) 70.09 (+0.55)
Mixer-S/4 68.03 70.35 69.35 (-1.00) 70.79 (+0.44)
ViT-B/4 68.25 70.26 71.25 (+0.99) 70.15 (-0.11)
ViT-S/4 68.17 71.71 72.70 (+0.99) 70.60 (-1.11)

Figure 2: Sweep over ρ for pretraining results in Table 2. See Figure 4 in Appendix D for remaining
configurations.

5 Experiments

We evaluate νSAM both when training from scratch and for fine-tuning against several baselines, namely
Adam(W) (Kingma, 2014; Loshchilov & Hutter, 2017), SAM (Foret et al., 2020) and SAM-ON (Mueller
et al., 2023). The relative (colored) number in the tables captures the difference in performance from SAM.

Note that we use a single power iteration (T = 1 in Algorithm 2) for the approximation in νSAM if not
otherwise stated and only the weight matrices are perturbed. Specifically, we simply ignore the (single)
convolutional layer in the ViT and the bias terms when applying νSAM. This leads to a method that has
a wall-clock time matching that of SAM (c.f. Table 14 in Appendix D.1). We experiment with using more
power iterations in Table 10 of Appendix D, but conclude that T = 1 performs sufficiently well, while
remaining computationally cheap.

5.1 Training from scratch

We train multiple sizes of ViTs and MLP-Mixer on CIFAR10/100 from scratch. We specifically take the
original architecture configuration of ViTs and MLP-Mixer models in Dosovitskiy et al. (2020); Tolstikhin
et al. (2021) and downsize the patch size to 4 to fit the smaller image size of 32 × 32. See Table 6 in
Appendix D for details.

Baseline & hyperparameters Since there is a lack of good hyperparameter defaults for these architec-
tures on small datasets, we first find a good configuration for the base optimizer AdamW on CIFAR10. We
provide a substantially better baseline (AdamW) than e.g. Mueller et al. (2023, Table 3) (93.37% instead
of 90.34% on ViT-S/4). The baseline is comparable with SOTA ViTs for small datasets (Gani et al., 2022;
Lee et al., 2021; Liu et al., 2021) without optimizing the ViT structure and without using CutMix, MixUp,
repeated augment, stochastic depth and random erase. The final hyperparameters can be found in Table 7
of Appendix D. We use standard augmentations (random cropping and flipping) and AutoAugment as in
Gani et al. (2022) and a cosine learning rate schedule with linear warmup.

8
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(a) Performance of the best ρ for a given perturbation de-
lay.

(b) The optimal ρ for νSAM increases with the perturba-
tion start epoch. Both SAM and νSAM suffer if activated
immidately.

Figure 3: Both SAM and νSAM benefit from delaying perturbing until after the learning rate warmup phase.

Table 3: Pretraining without AutoAugment. The gap in comparison with AdamW is larger and νSAM
provides a substantial improvement over SAM, while significantly reducing memory usage.

Method AdamW SAM SAM-ON νSAM
Model Dataset
Mixer-S/4 CIFAR10 85.79 87.92 86.18 (-1.74) 88.55 (+0.63)

CIFAR100 59.09 60.73 60.52 (-0.21) 61.09 (+0.36)
ViT-S/4 CIFAR10 88.49 89.90 90.74 (+0.84) 90.42 (+0.52)

CIFAR100 61.22 65.11 66.01 (+0.90) 65.29 (+0.18)

Comparison of SAM variants In order to fairly compare variants of SAM, we sweep over the hyperpa-
rameter ρ and pick the best one for each combination of model type, dataset and method (c.f. Figure 4 in
Appendix D). We discover that ρ can be significantly larger for both SAM and νSAM if the perturbation is
only started after the learning rate warmup period. Delaying the perturbation increases the test accuracy
for both methods, so we use this as the default throughout our experiments. We further investigate this
curious phenomenon in Section 5.1.1.

Results The test accuracies of the best iterate are shown in Table 2. The νSAM method yields a large
improvement on the MLP-Mixer architecture, which is maybe not surprising since there are no convolutional
layers as in ViTs. What is maybe surprising, is that νSAM performs substantially better than all the
baselines, including SAM, on MLP-Mixer across both datasets. We additionally provide experiments without
AutoAugment on ViT-S/4 in Table 3 where νSAM is found to consistently outperform SAM.

5.1.1 Delaying the perturbation

We notice that delaying the perturbation in SAM and νSAM until after the learning rate warmup phase
greatly improves the test accuracy in our training setup. This is in contrast with earlier observations (Agar-
wala & Dauphin, 2023). To investigate the effect of the delay we sweep over multiple radii, ρ, for each delay
to ensure optimality. The results can be found in Figure 3 which uses a horizon of 300 epochs on CIFAR10
and a ViT-S/4. We compute a mean and standard deviation over 3 independent runs for each configuration.

Interestingly, the best ρ for νSAM increases as the delay is increased. It appears that perturbing in the early
training phase is problematic for both νSAM and SAM. Therefore, we delay perturbation for both method
until after 10% of the epochs (after the learning rate warmup). Curiously, SAM-ON (Mueller et al., 2023)
on the other hand does not seem to benefit from a similar delay (c.f. Table 9 of Appendix D).
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Table 4: Fine-tuning on CIFAR10/100 where νSAM consistently outperforms SAM-ON and provides a
significant performance boost over SAM for the MLP-Mixer model on CIFAR10 (0.21pp) and CIFAR100
(0.68pp).

Method AdamW SAM SAM-ON νSAM
Dataset Model
CIFAR10 Mixer-B/16 97.16 ± 0.16 97.52 ± 0.08 97.58 (+0.06) ± 0.10 97.72 (+0.21) ± 0.05

ViT-B/16 98.36 ± 0.19 98.87 ± 0.05 98.74 (-0.13) ± 0.10 98.89 (+0.02) ± 0.03
ViT-S/16 98.38 ± 0.02 98.85 ± 0.00 98.73 (-0.12) ± 0.01 98.81 (-0.04) ± 0.02

CIFAR100 Mixer-B/16 85.87 ± 0.05 86.20 ± 0.19 86.39 (+0.19) ± 0.17 86.88 (+0.68) ± 0.25
ViT-B/16 90.54 ± 0.03 92.12 ± 0.13 91.47 (-0.65) ± 0.05 91.89 (-0.23) ± 0.13
ViT-S/16 91.10 ± 0.12 91.74 ± 0.23 91.37 (-0.37) ± 0.13 91.60 (-0.14) ± 0.05

Table 5: Fine-tuning of BERT-base (uncased) on GLUE.

Adam SAM SAM-ON νSAM Length
CoLA 57.31 ± 1.58 57.02 ± 1.41 57.84 (+0.82) ± 0.89 57.38 (+0.37) ± 1.12 8.5k
MNLI-m 83.82 ± 0.04 84.23 ± 0.11 84.08 (-0.14) ± 0.27 84.03 (-0.20) ± 0.23 393k
MNLI-mm 84.02 ± 0.29 84.37 ± 0.16 83.98 (-0.39) ± 0.29 84.16 (-0.21) ± 0.29 393k
MRPC 85.11 ± 0.76 86.13 ± 1.12 85.64 (-0.49) ± 1.17 86.42 (+0.29) ± 0.96 3.7k
MRPC (F1) 89.56 ± 0.58 90.31 ± 0.77 89.95 (-0.36) ± 0.74 90.46 (+0.15) ± 0.69 3.7k
QNLI 90.20 ± 0.82 90.87 ± 0.47 90.90 (+0.03) ± 0.48 90.11 (-0.76) ± 0.27 105k
QQP 91.03 ± 0.11 91.42 ± 0.23 91.29 (-0.13) ± 0.05 91.29 (-0.13) ± 0.09 364k
QQP (F1) 87.94 ± 0.11 88.47 ± 0.33 88.30 (-0.17) ± 0.08 88.32 (-0.14) ± 0.11 364k
RTE 58.12 ± 0.98 61.01 ± 2.35 60.58 (-0.43) ± 2.05 59.93 (-1.08) ± 0.57 2.5k
SST-2 92.63 ± 0.83 92.78 ± 0.69 92.27 (-0.50) ± 0.52 92.68 (-0.09) ± 0.55 67k
STS-B (Pearson) 87.34 ± 0.18 87.43 ± 0.20 87.41 (-0.02) ± 0.32 87.43 (-0.01) ± 0.43 7k
STS-B (Spearman) 87.06 ± 0.21 87.18 ± 0.19 87.16 (-0.02) ± 0.31 87.26 (+0.08) ± 0.37 7k
Avg 81.22 ± 0.35 81.83 ± 0.17 81.70 (-0.13) ± 0.37 81.61 (-0.22) ± 0.13 -

5.2 Fine-tuning

We fine-tune on both vision tasks and language tasks across multiple datasets.

5.2.1 Vision task

Setup We take ViT and MLP-Mixer architectures pretrained on ImageNet and fine-tune the models on
CIFAR10/100. Since there is no pretrained Mixer-S/16 release from Tolstikhin et al. (2021); Steiner (2022)
we restrict the experiments concerning MLP-Mixer architectures to Mixer-B/16. We optimize the baseline
AdamW, whose final hyperparameters can be found in Table 11 of Appendix D. We sweep over the pertur-
bation radius ρ for all perturbation-based methods for a fair comparison (see Figure 5 in Appendix D for ρ
sweep). Each configuration is run 3 times to computes a mean and standard deviation.

Our baseline performs substantially better than similar experiments in Zhuang et al. (2022, Table 3). The
improvement upon the baseline is primarily due to the use of a smaller learning rate and no weight decay. The
configuration additionally allows us to run for only 10 epochs (20 times less iterations) while still achieving
better performance.

Results The results are shown in Table 4. Maybe surprisingly, νSAM seems to especially provide an
improvement for the larger base model size. Similar to training from scratch in Section 5.1 we also see
strong performance on the MLP-Mixer architecture. Even if AdamW is optimized further and given a larger
computational budget it does not close the performance gap (see Table 13 in Appendix D).
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5.2.2 Language task

We fine-tune a pretrained BERT-base (uncased) (Devlin et al., 2018) on the GLUE benchmark (Wang et al.,
2018) following the setup and hyperparameters in Geiping & Goldstein (2022). We use a 10% perturbation
delay for SAM and νSAM (c.f. Section 5.1.1) and sweep over ρ ∈ {0.01, 0.02, 0.05}. The best configuration
is picked and run 5 times to provide a mean and standard deviation. Hyperparameters can be found in
Table 12 of Appendix D. The results are shown in Table 5 where we find that all SAM variants improve
upon the Adam baseline. The νSAM method appears to exhibit the smallest variance across all the methods
on average.

6 Conclusion

We developed νSAM, a sharpness-aware minimization algorithm that almost entirely removes the additional
memory otherwise required for storing the perturbation. The method uses a low-rank approximation that
only needs to be very coarsely approximated in practice, resulting in no runtime overhead compared with the
original SAM method. We observe strong performance on particularly MLP-Mixer models across both fine-
tuning and when training from scratch. We additionally find that both νSAM and SAM benefit from delaying
activating perturbation in certain settings. Interesting future work involves better understanding the effect
of the architecture and the benefit of perturbation delay as well as exploring the use of other norm choices.
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A Proofs for Section 3 (Algorithmic derivation)

Lemma 3.1. The LMO under nuclear constraint in (9) can be efficiently computed as

lmo (W ) = −ρuv⊤,

where u and v are the left and right singular vectors associated with the top singular value of W .

Proof. We are asked to find X satisfying min∥X∥∗≤ρ⟨W, X⟩, which relates to the definition of the dual norm,

1
ρ

min
∥X∥∗≤ρ

⟨W, X⟩ = max
∥X̄∥∗≤1

⟨W, X̄⟩ =: ∥W∥ where X̄ := −1
ρ

X. (11)

where ∥ · ∥ is the spectral norm. We can rewrite (11) into a vector problem that we know how to solve. Note
that the spectral norm is unitary invariant since it is a Schatten norm, i.e., ∥A∥ = ∥UAV ⊤∥. So consider
instead the SVD, W = U diag(σ)V ⊤, for which the dual norm simplifies,

∥W∥ = ∥U diag(σ)V ⊤∥ = ∥σ∥∞ := max
∥x∥1≤1

⟨σ, x⟩. (12)

In other words, we need ∥σ∥∞ = ⟨σ, x⟩ which is attained by

xj :=
{

1 j ∈ Arg maxi∈[d] σi

0 otherwise
∀j ∈ [d]. (13)

This solution also trivially satisfies the ∥ · ∥1-constraint.

It remains to translate x in (13) into a matrix solution X, which can be done by rewriting the objective and
constraint in (12) back into the problem in (11),

∥x∥1 = ∥diag(x)∥∗ = ∥U diag(x)V ⊤∥∗ = ∥X̄∥∗,

⟨σ, x⟩ = tr(V ⊤V diag(σ)U⊤U diag(x))
= tr(V diag(σ)U⊤U diag(x)V ⊤) = ⟨U diag(σ)V ⊤, U diag(x)V ⊤⟩ = ⟨W, U diag(x)V ⊤⟩.

(14)

So it must be that X = −ρX̄ = −ρU diag(x)V ⊤. For our choice of x the solution reduces to X = −ρuv⊤.

B Proofs for Section 4 (Convergence analysis)

Theorem 4.3. Suppose Assumptions 4.1 and 4.2 hold with L = µ. Then, (10) with the (arbitrary) norm
perturbation εk ∈ Arg maxε:∥ε∥∗≤1 ⟨∇f(xk), ε⟩ satisfies the following descent inequality with ρ ≥ 0 and γk > 0,

f(xk+1)− f⋆ ≤ (1− µγk)(f(xk)− f⋆)− γk(1− γkL)Lρ∥∇f(xk)∥+ γ2
kL3ρ2ξ2

∗
2 .

Furthermore, for γk = γ = min{ 1
µK log(α), 1

2L} with α = ∆02µ3K2

L4ρ2ξ4
∗ξ2 , it follows that

min
k∈[K]

f(xk)− f⋆ = Õ
(

exp(−K
2 )∆0 + Cρ2

K2

)
with ∆0 = f(x0)− f⋆, C = Lξ4

∗ξ2, ξ = maxx∈X ∥x∥2/∥x∥ and ξ∗ = maxx∈X ∥x∥2/∥x∥∗.

Proof. By using smoothness we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L
2 ∥x

k+1 − xk∥2
2

= f(xk)− γk ⟨∇f(xk),∇f(x̃k)⟩+ γ2
kL
2 ∥∇f(x̃k)∥2

2

= f(xk)− γk(1− γkL
2 )∥∇f(xk)∥2

2 + γ2
kL
2 ∥∇f(x̃k)−∇f(xk)∥2

2

− γk(1− γkL) ⟨∇f(xk),∇f(x̃k)−∇f(xk)⟩ (15)
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Let us develop the last term of (15) with some c > 0:

⟨∇f(xk),∇f(x̃k)−∇f(xk)⟩ = c ⟨ρεk,∇f(x̃k)−∇f(xk)⟩+ ⟨∇f(xk)− cρεk,∇f(x̃k)−∇f(xk)⟩
= c ⟨x̃k − xk,∇f(x̃k)−∇f(xk)⟩+ ⟨∇f(xk)− cρεk,∇f(x̃k)−∇f(xk)⟩

(Assumption 4.1) ≥ µcρ2∥εk∥2
2 + ⟨∇f(xk)− cρεk,∇f(x̃k)−∇f(xk)⟩

= µcρ2∥εk∥2
2 + cρ∥∇f(xk)∥ − ∥∇f(xk)∥2

2 + ⟨∇f(xk)− cρεk,∇f(x̃k)⟩
= (µ− c

2 )cρ2∥εk∥2
2 + cρ∥∇f(xk)∥ − 1

2∥∇f(xk)∥2
2

− 1
2∥∇f(xk)−∇f(x̃k)∥2

2 + 1
2∥∇f(x̃k)− cρεk∥2

2

(Assumption 4.2) ≥ (µc− c2

2 −
L2

2 )ρ2∥εk∥2
2 + cρ∥∇f(xk)∥ − 1

2∥∇f(xk)∥2
2 + 1

2∥∇f(x̃k)− cρεk∥2
2

= ( µ
c −

1
2 −

L2

2c2 )∥cρεk∥2
2 + cρ∥∇f(xk)∥ − 1

2∥∇f(xk)∥2
2 + 1

2∥∇f(x̃k)− cρεk∥2
2

(16)

where we have used the definition of dual norm in the third equality. The first term of (16) is positive by
assuming µ ≥ c

2 + L2

2c which is feasible when µ = L (pick c = L).

c =
√

µ/LL

Plugging (16) into (15) (and ignoring the last good terms of (16)) we get

f(xk+1) ≤ f(xk)− γk

2 ∥∇f(xk)∥2
2 − γk(1− γkL)Lρ∥∇f(xk)∥+ γ2

kL
2 ∥∇f(x̃k)−∇f(xk)∥2

2

(Assumption 4.2) ≤ f(xk)− γk

2 ∥∇f(xk)∥2
2 − γk(1− γkL)Lρ∥∇f(xk)∥+ γ2

kL3ρ2

2 ∥εk∥2
2

≤ f(xk)− γk

2 ∥∇f(xk)∥2
2 − γk(1− γkL)Lρ∥∇f(xk)∥+ γ2

kL3ρ2ξ2
∗

2 .

where the last line uses ξ∗ := maxx∈X
∥x∥2
∥x∥∗

and ∥∇f(xk)∥∗ ≤ 1. From the PL condition, f(x) − f⋆ ≤
µ
2 ∥∇f(x)∥2

2 ∀x ∈ X , (implied by strong convexity and Lipschitz continuity) it follows that

f(xk+1)− f⋆ ≤ (1− µγk)(f(xk)− f⋆)− γk(1− γkL)Lρ∥∇f(xk)∥+ γ2
kL3ρ2ξ2

∗
2 . (17)

Set γk = γ and consider two cases.

Case I: When ∥∇f(xk)∥ ≥ γL2ρξ2
∗

2(1−γL) for all k up to K, the second last term γ(1−γL)Lρ∥∇f(xk)∥ dominates,
leading to geometric decay. We have

f(xK)− f⋆ ≤ (1− µγ)K(f(x0)− f⋆).

Case II: On the other hand, when ∥∇f(xk)∥ ≤ γL2ρξ2
∗

2(1−γL) , we have from the PL condition that

f(xk)− f⋆ ≤ ∥∇f(xk)∥2
2 ≤

ξ2

2µ∥∇f(xk)∥2 ≤ γ2L4ρ2ξ4
∗ξ2

8µ(1−γL)2 .

with ξ := maxx∈X
∥x∥2
∥x∥ . At any k, either of the two cases hold, so we can upper bound by their sum as

follows

min
k∈[K]

f(xk)− f⋆ ≤ (1− µγ)K∆0 + γ2L4ρ2ξ4
∗ξ2

8µ(1−γL)2

≤ (1− µγ)K∆0 + γ2L4ρ2ξ4
∗ξ2

2µ

≤ exp(−µγK)∆0 + γ2L4ρ2ξ4
∗ξ2

2µ ,

where for simplicity we have picked γ ≤ 1
2L in the second last inequality and the last inequality uses

(1− x)K ≤ exp(−xK) for x = µγ < 1.
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Consider the stepsize γ = min{ c
µK , 1

2L} where the scalar c is to be decided. There are two cases.

First, if 1
2L > c

µK then γ = c
µK and consequently

min
k∈[K]

f(xk)− f⋆ ≤ exp(−c)∆0 + c2L4ρ2ξ4
∗ξ2

2µ3K2 ≤ (1 + c2) L4ρ2ξ4
∗ξ2

2µ3K2

where we have picked c = log( ∆02µ3K2

L4ρ2ξ4
∗ξ2 ) to optimize the bound.

On the other hand, if 1
2L ≤

c
µK then γ = 1

2L ≤
c

µK and consequently

min
k∈[K]

f(xk)− f⋆ ≤ exp(− µ
2L K)∆0 + c2L4ρ2ξ4

∗ξ2

2µ3K2

where the second term uses that γ ≤ c
µK .

In any case we can upper bound using the sum of the two bounds

min
k∈[K]

f(xk)− f⋆ ≤ exp(− µ
2L K)∆0 + (2 + c2) L4ρ2ξ4

∗ξ2

2µ3K2 = Õ(exp(− µ
2L K)∆0 + L4ρ2ξ4

∗ξ2

µ3K2 ).

where Õ hides logarithmic factors. This completes the proof.

Theorem 4.6. Suppose Assumptions 4.2 and 4.5 hold and ∥εk∥ ≤ ξ for all k ∈ [K]. Then (10) satisfies the
following convergence guarantee for ρk ≥ 0 and γk ∈ (0, 2/L),

min
k=0,...,K−1

∥∇f(xk)∥2
2 ≤

∆0+C1
∑K−1

k=0
γ2

kρ2
k+C2

∑K−1
k=0

γkρk∑K−1
k=0

γk(1−γkL/2)

with ∆0 = f(x0)− f⋆, C1 = 1
2 L3ξ2 and C2 = LGξ.

In particular, for constant stepsize γk = γ = 1/L
√

K and ρ = 1√
K

, the following rate is obtained

min
k=0,...,K−1

∥∇f(xk)∥2
2 = O( ∆0√

K
+ C2√

K
+ C1

LK3/2 )

Proof. Using smoothness we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L
2 ∥x

k+1 − xk∥2
2

= f(xk)− γk ⟨∇f(xk),∇f(x̃k)⟩+ γ2
kL
2 ∥∇f(x̃k)∥2

2

= f(xk)− γk(1− γkL
2 )∥∇f(xk)∥2

2 + γ2
kL
2 ∥∇f(x̃k)−∇f(xk)∥2

2

− γk(1− γkL) ⟨∇f(xk),∇f(x̃k)−∇f(xk)⟩

(Assumption 4.2) ≤ f(xk)− γk(1− γkL
2 )∥∇f(xk)∥2

2 + γ2
kρ2

kL3

2 ∥εk∥2
2 − γk(1− γkL) ⟨∇f(xk),∇f(x̃k)−∇f(xk)⟩ .

(18)

What remains is the last term of (18):

−⟨∇f(xk),∇f(x̃k)−∇f(xk)⟩ ≤ ∥∇f(xk)∥2∥∇f(x̃k)−∇f(xk)∥2

(Assumption 4.2) ≤ ρkL∥εk∥2∥∇f(xk)∥2

(Assumption 4.5) ≤ ρkLG∥εk∥2 (19)

Plugging (19) back into (18) and using that ∥εk∥2 ≤ ξ we have

f(xk+1) ≤ f(xk)− γk(1− γkL
2 )∥∇f(xk)∥2

2 + γ2
kρ2

kL3ξ2

2 + γk(1− γkL)ρkLGξ.

Subtracting f⋆ on both sides, telescoping and rearranging completes the proof.
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C Implementation

Algorithm 3 Pseudo-code for distributed implementation of νSAM.
1: //Compute the gradient on each device over a distinct batch:
2: grad← compute_gradients(model, batch)
3: if not m-SAM then
4: //Average and synchronize the gradients:
5: grad← all_reduce(grad, operation = ”mean”)
6: end if
7: //Perturb the model (while maintaining a sparse representation of the perturbation):
8: sparse_eps← compute_perturbation(model, grad)
9: model← add_sparse_perturbation(model, sparse_eps)

10: //Compute the gradient on the perturbed model on each device and synchronize:
11: grad← compute_gradients(model, batch)
12: grad← all_reduce(grad, operation = ”mean”)
13: //Remove the (possibly distinct) perturbation on each device:
14: model← subtract_sparse_perturbation(model, sparse_eps)
15: //At this point model and grad are identical across all devices:
16: model← optimizer_step(model, grad)

C.1 νSAM variant with normalization

In this section, we derive for completeness a variant of νSAM which normalizes the layerwise perturbations,
that we refer to as νSAM-Norm.

It follows from the Eckart-Young-Mirsky theorem that a rank-1 approximation to a matrix A ∈ Rn×m is
given by its top singular value σ and associated singular vectors u, v as follows

arg min
X:rank(X)≤1

∥A−X∥2 = σuv⊤. (20)

Suppose for simplicity that the network parameters are composed only of matrices, i.e., x = (M1, ..., Ml)
such that ∇f(x) = (∇M1f(x), ...,∇Ml

f(x)). Define σi to be the top singular value and ui, vi the associated
singular vectors of ∇Mi

f(x). Then the SAM perturbation update on the rank-1 approximation instead of
the gradient reduces to the following

εi = ρσiuiv
⊤
i /c with c = ∥(σ1u1v⊤

1 , ..., σlulv
⊤
l )∥2 =

√∑
j σ2

j . (21)

In other words, the resulting ascent update for νSAM-Norm is identical to Step 2 in νSAM but with a
scaling factor of σi/

√∑l

j=1
σ2

j
for the ith matrix. Similar to νSAM, the perturbation update can be seen

as a norm-constrained LMO on x, so convergence gaurantees of Theorem 4.3 also applies to νSAM-Norm.
Experimental results can be found in Table 8 of Appendix D, where we find that νSAM-Norm has improved
performance in certain cases, but is generally dominated by νSAM.

D Experiments

• For training from scratch see Tables 6 to 10 and Figure 4.

• For fine-tuning see Tables 11 to 13 and Figure 5.

• Computational resources and wall-clock time are specified in Appendix D.1.
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Table 6: The architectures used for CIFAR10/100 training from scratch. We take the original model con-
figurations used in Dosovitskiy et al. (2020); Tolstikhin et al. (2021) but changes the patch size to 4 to
accommodate for the smaller image size of 32× 32.

Model Embedding dim. Depth Heads Patch size
ViT-S/4 384 12 6 4
ViT-B/4 768 12 12 4

Mixer-S/4 512 8 - 4
Mixer-B/4 768 12 - 4

Table 7: Baseline (AdamW) hyperparameters for training from scratch. We use a cosine learning rate schedule
with linear warmup. We use standard augmentations (random cropping and flipping) and AutoAugment.

Hyperparameter Value
Learning rate 0.0005

Label smoothing 0.1
Weight decay 0.05

Warmup epoch 10%
Epochs 300

Dropout rate 0.0
Drop path rate 0.1

Gradient clipping Disabled
Batch size 128

Figure 4: Sweep over ρ for pretraining results in Table 2.
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Table 8: νSAM-Norm variant on ViT-S/4 and Mixer-S/4 (see Appendix C.1 for the formulation).

Method AdamW νSAM νSAM-Norm
Perturbation start epoch 0 30 30

Dataset Model
CIFAR10 Mixer-S/4 91.08 92.24 (+1.16) 92.10 (+1.02)

ViT-S/4 93.37 94.39 (+1.02) 93.95 (+0.58)
CIFAR100 Mixer-S/4 68.03 70.79 (+2.76) 70.17 (+2.14)

ViT-S/4 68.17 70.60 (+2.43) 71.13 (+2.96)

Table 9: SAM-ON with perturbation delay interestingly does not improve the test accuracy.

Perturbation start epoch 0 30
Dataset Model
CIFAR100 ViT-S/4 72.70 71.85

Table 10: Ablation of the number of power iterations. Maybe surprisingly, increasing the number of power
iterations does not necessarily lead to higher test accuracies. One possible explanation is that the warmstart
in the power iterations (Algorithm 2) might act as a variance reduction like mechanism by implicitly incorpo-
rating previous stochastic gradients in the approximation. Applying variance reduction to the perturbation
direction has shown to empirically be beneficial (Li & Giannakis, 2024). Investigating this connection is
interesting future work.

Method νSAM
Power iterations 1 50

Model Dataset
ViT-B/4 CIFAR10 94.44 94.35

CIFAR100 70.15 70.27
ViT-S/4 CIFAR10 94.39 94.47

CIFAR100 70.60 70.24
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Figure 5: Sweep over ρ for fine-tuning results in Table 4. Mean and standard deviation for each configuration
is computed over 3 independent runs.

Table 11: Baseline (AdamW) hyperparameters for fine-tuning. We use a cosine learning rate schedule.

Hyperparameter Value
Learning rate 0.0001

Label smoothing 0.0
Weight decay 0.0

Warmup epoch 0
Epochs 10

Dropout rate 0.0
Drop path rate 0.0

Gradient clipping Disabled
Batch size 96

Table 12: Hyperparameters for fine-tuning on GLUE.

Hyperparameter Adam SAM1 νSAM 1 SAM-ON1

Model Pretrained BERT base (uncased) (Devlin et al., 2018)
Epochs 5

Batch size 32
Learning rate 4 · 10−5 (cosine schedule)

Learning rate warmup 10%
ρ - { 0.01, 0.02, 0.05 } {0.01, 0.02, 0.05 } { 0.01, 0.02, 0.05 }

Perturbation delay - 10% 10% 0%
1 All methods uses Adam as the base optimizer.

21



Published in Transactions on Machine Learning Research (01/2025)

Table 13: Even if AdamW is given a more refined budget to optimize the learning rate (lr = 5e−05), (ν)SAM
with the same learning rate improves even further when using the default parameter ρ = 0.05 (ρ = 0.02).
Providing AdamW with twice the computational budget also does not close the gap.

Test accuracy
lr=0.0005 AdamW 97.19
lr=0.0001 AdamW (2x epochs) 98.49 (+0.11)

AdamW 98.38
SAM 98.76 (+0.38)

lr=0.00005 AdamW (2x epochs) 98.49 (-0.13)
AdamW 98.62
SAM 98.89 (+0.27)
νSAM 98.81 (+0.19)

lr=0.00001 AdamW 98.44
SAM 98.72 (+0.28)

D.1 Computational resources

All experiments are run on either a single NVIDIA V100 GPU. Table 14 shows the wall-clock time.

Table 14: Wall-clock time for training ViTs and MLP-Mixer models from scratch on a single V100 GPU.
Both νSAM (with one power iteration) and SAM require the same computational complexity.

minutes / epoch
Dataset Model Method

CIFAR10 Mixer-B/4 νSAM 4.4
SAM 4.4

Mixer-S/4 νSAM 1.6
SAM 1.6

ViT-B/4 νSAM 4.3
SAM 4.2

ViT-S/4 νSAM 1.6
SAM 1.7

CIFAR100 Mixer-B/4 νSAM 4.4
SAM 4.3

Mixer-S/4 νSAM 1.6
SAM 1.6

ViT-B/4 νSAM 4.3
SAM 4.2

ViT-S/4 νSAM 1.7
SAM 1.7
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