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Abstract

Differential privacy with gradual expiration models the setting where data items
arrive in a stream and at a given time t the privacy loss guaranteed for a data item
seen at time (t− d) is εg(d), where g is a monotonically non-decreasing function.
We study the fundamental continual (binary) counting problem where each data
item consists of a bit, and the algorithm needs to output at each time step the sum of
all the bits streamed so far. For a stream of length T and privacy without expiration
continual counting is possible with maximum (over all time steps) additive error
O(log2(T )/ε) and the best known lower bound is Ω(log(T )/ε); closing this gap
is a challenging open problem.
We show that the situation is very different for privacy with gradual expiration by
giving upper and lower bounds for a large set of expiration functions g. Specifically,
our algorithm achieves an additive error of O(log(T )/ε) for a large set of privacy
expiration functions. We also give a lower bound that shows that if C is the additive
error of any ε-DP algorithm for this problem, then the product of C and the privacy
expiration function after 2C steps must be Ω(log(T )/ε). Our algorithm matches
this lower bound as its additive error is O(log(T )/ε), even when g(2C) = O(1).
Our empirical evaluation shows that we achieve a slowly growing privacy loss
with significantly smaller empirical privacy loss for large values of d than a natural
baseline algorithm.

1 Introduction

Differential privacy under continual observation [8, 16] has seen a renewed interest recently [2, 3,
15, 21, 25, 26, 27, 24] due to its application in private learning [10, 11, 13, 14, 34] and statistics [6, 7,
19, 22, 30, 37, 40, 41, 20, 32]. In this model, the curator gets the database in the form of a stream and
is required to output a given statistic continually. Chan et al. [8] and Dwork et al. [16] introduced the
binary (tree) mechanism which allows us to estimate the running count of a binary stream of length
T with additive error O(log2(T )/ε) under ε-differential privacy.

The traditional definition of continual observation considers every single entry in the stream equally
important for analysis and has equal confidentiality. However, in many applications of continual
observation, the data becomes less sensitive with time. For example, consider the case where the
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stream tracks visits to a certain location or website: it being visited a minute ago may constitute more
sensitive information than if it was visited a week ago. To capture such scenarios, Bolot et al. [4]
defined privacy with expiration, where the privacy of a streamed data item decreases as a function of
the time elapsed since it was streamed. However, known algorithms for privacy with expiration work
only in the setting when we expect no privacy after a certain time has elapsed [4, Section 6].

This lack of algorithms for privacy with expiration influences some real-world design choices [1]. In
particular, real-world deployments either allocate every user a “privacy budget” that is diminished
every time their data is used, such that their data should not be used once the privacy budget reaches
zero, or they account for privacy loss over the time. However, since the data can still be useful,
another common approach in these deployments use the heuristic of “refreshing the privacy budget”,
i.e., the privacy budget is reset to a positive default value after a prescribed time period, irrespective of
how much privacy budget has been used so far. This, for example, was pointed out by Tang et al. [38]
in Apple’s first large-scale deployment. However, refreshing the privacy budget is very problematic
as the privacy loss is, in the worst case, multiplied by the number of refreshes, for example, if the old
data is reused (i.e., the privacy expiration is linear).

In this paper, we study continual counting with gradual privacy expiration, generalizing the result in
Bolot et al. [4]. Our main contributions are algorithms with the following assets:

• Improve accuracy. We achieve an additive error of O(log(T )/ε) for a large class of privacy
expiration functions and show that this is optimal in a particular sense. This is in contrast
to continual counting without expiration, where there is a gap of a log T factor [16]. Our
work generalizes the Ω(log(T )/ε) lower bound for continual counting to a wide class of
privacy expiration functions and shows that for any additive error C, the product of C and
the privacy expiration function after 2C steps must be Ω(log T ). We match this lower bound
as our additive error is O(log(T )/ε), even when the expiration function after 2C steps is a
constant.

• Scale well. Our algorithms work for unbounded streams, run in amortized O(1) time per
update, log(T ) space, and offer different trade-offs than conventional continual counting
algorithms. In allowing for a growing privacy loss, we show that polylogarithmic privacy
expiration is sufficient for optimal additive error, and parameterize the algorithm by the
speed of the privacy expiration; as expected, faster privacy expiration yields a smaller error.

We supplement these theoretical guarantees with empirical evaluations.

Related Works. Before presenting our contributions in detail, we give a brief overview of the
most relevant related work. Since Chan et al. [8] and Dwork et al. [16], several algorithms have
been proposed for privately estimating prefix-sum under continual observation, i.e., given a stream
of inputs x1, x2, . . . from some domain X , output yt =

∑
i≤t xi for all t ≥ 1. Continual binary

counting is a special case of prefix sum when X = {0, 1} and xt is provided at time t.

When the input is given as a stream, earlier works improved on the basic binary mechanism under
(i) distributional assumptions on data [35], (ii) structural assumptions on data [36], and (iii) that the
importance of data (both with respect to utility and sensitivity) decreases with elapsed time [4], or
(iv) by enforcing certain conditions on the behavior of the output [9]. In recent work, Fichtenberger
et al. [21] gave algorithms to improve the worst-case non-asymptotic guarantees under continual
observation using the matrix mechanism [33] and Denisov et al. [14] used similar approach to provide
empirical results that minimize the mean-squared error. Subsequently, Henzinger et al. [25] showed
that the algorithm in Fichtenberger et al. [21] achieves almost optimal mean-squared error.

These earlier works are in the traditional definition of privacy under continual observation, i.e., they
consider data privacy to be constant throughout the stream. The only exception is the work of Bolot
et al. [4], which defined differentially private continual release with privacy expiration parameterized
by a monotonically non-decreasing function g and gave an algorithm for the special case that the data
loses all its confidentially after a prescribed time. Our work is in this privacy model. There is another
line of work motivated by applications in private learning that studies privacy-preserving prefix sum
without restricting access to the data points (such as allowing multiple passes) [13, 31] and providing
privacy-preserving estimates under various privacy models like shuffling [12]. Since we focus on
continual observation, we do not compare our results with this line of work.
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The work whose techniques are the most related to ours is the algorithm in Dwork et al. [16] for
continual counting satisfying pan-privacy [17]. Roughly speaking, an algorithm is pan-private if it is
resilient against intruders who can observe snapshots of the internal states of the algorithms.

1.1 Our Contributions

We start by first formally stating the problem. As mentioned above, the focus of this work is privacy
with expiration given as Definition 3 in Bolot et al.[4]:
Definition 1.1. Let g : N → R≥0 be a non-decreasing function1. Let A be a randomized online
algorithm that takes as an input a stream x1, x2, . . . and at every time step t outputs A(x1, . . . , xt).
A satisfies ε-differential privacy with expiration (function) g if for all τ ≥ 1, for all measurable
S ⊆ range(A)∗ 2, all possible inputs x1, . . . , xτ , all j ≤ τ and all x′

j with |xj − x′
j | ∈ [0, 1]

Pr[(A(x1, . . . , xj , . . . , xt))
τ
t=1 ∈ S] ≤ eg(τ−j)ε Pr[(A(x1, . . . , x

′
j , . . . , xt))

τ
t=1 ∈ S],

where the probability is over the coin throws of A. We refer to g(τ − j) · ε as the privacy loss.

Letting T be the length of the input stream, the best known bound on the ℓ∞-error for continual
counting under ε-differential privacy is O(log2(T )/ε), achieved by the algorithms in [16, 8]. Al-
ternatively, the analysis of [8] can be used to show that running this algorithm with ε′ = ε log(T )
achieves ε-differential privacy with expiration function g(d) = log(T ) for all d = 1, . . . , T , and error
O(log(T )/ε). Our main contribution is to show that better trade-offs are possible: In particular, we
can achieve the same error with a strictly smaller function g, i.e. we can get an O(log(T )/ε) bound
on the ℓ∞-error with an expiration function of g(d) ≈ log d. More generally, our algorithm provides
a trade-off between privacy loss and both ℓ∞-error and expected ℓ22-error for all expiration functions
f(d) that satisfy (roughly) f(d) ≥ 1 + logλ(d) for any λ > 0. The exact expiration function g is
stated below in Theorem 1.2. It also includes a parameter B that allows the privacy loss to be “shifted”
by B time steps, i.e., there is no privacy loss in the first B time steps. If the length T of the stream is
unknown, then B is a constant. If T is given to the algorithm, then B can be a function of T .

By Definition 1.1, any algorithm satisfying differential privacy with expiration g also fulfills differen-
tial privacy with any expiration function that is pointwise at least as large as g. Specifically, for two
functions f and g defined on the same domain D, we say f ⪰ g if f(x) ≥ g(x) for all x ∈ D. We
are now ready to state our main theorem:
Theorem 1.2. Let λ ∈ R>0\{ 3

2} be a constant, and let parameters ε ∈ R>0 and B ∈ N be
given. There exists an algorithm A that approximates prefix sums of a (potentially unbounded) input
sequence x1, x2, . . . with xi ∈ [0, 1] satisfying ε-differential privacy with any expiration function f
such that f ⪰ g, where

g(d) =

{
0 for d < B

O(1 + logλ(d−B + 1)) for d ≥ B

Considering all releases up to and including input t, the algorithm A uses O(B + log t) space and
O(1) amortized time per input/output pair and has the following error guarantees at each individual
time step t for β > 0,

• EA

[
(A(x)−

∑t
i=1 xi)

2
]
= O(B2 + log3−2λ(t)/ε2),

• |A(x) −
∑t

i=1 xi| = O(B + logq(t)
√
log(1/β)/ε) with probability 1 − β where q =

max(1/2, 3/2− λ).

The case when λ ∈ {0, 3/2} is covered in Appendix C.3. Note that choosing λ > 3/2 implies a
constant expected squared error at each time step if B = O(1). Parameter λ controls the trade-off
between the asymptotic growth of the expiration function and the error, while ε controls the trade-off
between initial privacy (after B time steps which is ε · g(B) ) and the error, which is inversely
proportional to ε. Also, for releasing T outputs we have the following corollary.

1We believe g being non-increasing is a typo in Bolot et al. [4].
2“∗" is the Kleene operator: given a set Σ, Σ∗ is the (infinite) set of all finite sequences of elements in Σ.

3



Corollary 1.3. The algorithm A with B = O(log(T )/ε) and λ ≥ 1 incurs a maximum (over all
time steps) additive ℓ∞-error of O(log(T )/ε) when releasing T outputs with probability 1− 1/T c,
for constant c > 0, and achieves privacy with expiration function g as in Theorem 1.2.

In Section 6, we provide empirical evidence to show that we achieve a significantly smaller empirical
privacy loss than a natural baseline algorithm. Finally, we complement our upper bound with the
following lower bound shown in Appendix C.4.
Theorem 1.4. Let A be an algorithm for binary counting for streams of length T which satisfies
ε-differential privacy with expiration h. Let C be an integer such that A incurs a maximum additive
error of at most C < T/2 over T time steps with a probability of at least 2/3. Then

2C · h(2C − 1) ≥ log(T/(6C))

2ε
.

Note that Theorem 1.4 gives a lower bound for h(j) for a specific j, namely j = 2C − 1, and as h is
non-decreasing by Definition 1.1, the lower bound also holds for all h(j′) with j′ ≥ j.

Note that Theorem 1.4 shows that our algorithm in Corollary 1.3 achieves a tight error bound for the
expiration functions λ ≥ 1 and B = O(log(T )/ε). Assume A′ is an algorithm that approximates
prefix sums in the continual setting and which satisfies differential privacy with expiration function h
and maximum error C ≤ B/2 + 1 at all time steps with probability at least 2/3 for an even B. When
run on a binary input sequence, A′ solves the binary counting problem. Thus, by Theorem 1.4, we
have that 2C · h(B + 1) ≥ 2C · h(2C − 1) ≥ log(T/(6C))

2ε ≥ log(T/(3B+6))
2ε = Ω( log T

ε ).

Now consider the algorithm A given in Corollary 1.3 and note that, by definition of the expiration
function g, g(B + 1) = O(1) and that Corollary 1.3 shows that C = O(log(T )/ε). This is tight as
Theorem 1.4 shows that for such an expiration function C = Ω(log(T )/ε).

1.2 Technical Overview

Central to our work is the event-level pan-private algorithm for continual counting by Dwork et
al. [16]. Similarly to the binary tree algorithm of Dwork et al. [8], a noise variable zI is assigned
to every dyadic interval I (see Section 3.2 for a formal definition) contained in [0, T − 1]. Let this
set of dyadic intervals be called I. In the version of the binary tree algorithm of Chan et al. [8], the
noise added to the sum of the values so far (i.e. the non-private output) at any time step 1 ≤ t ≤ T
is equal to

∑
I∈D[0,t−1]

zI , where D[0,t−1] ⊆ I is the dyadic interval decomposition of the interval
[0, t− 1]. The pan-private algorithm adds different noise to the output: it adds at time t the noises
for all intervals containing t − 1, i.e.,

∑
I∈{I∈I : t−1∈I} zI . This pan-private way of adding noise

helps us bound the privacy loss under expiration. For two neighboring streams differing at time
step j, we can get the same output at τ ≥ j by shifting the values of the noises of a set of disjoint
intervals covering [j, τ ] each by at most 1. Using that |D[j,τ ]| = O(log(τ − j + 1)), we show that
the algorithm satisfies a logarithmic privacy expiration.

In our algorithm, we make four changes to the above construction (i.e., the pan-private construction
in Dwork et al. [16]): (i) We do not initialize the counter with noise separately from that introduced
by the intervals. (ii) We split the privacy budget unevenly across the levels of the dyadic interval set
instead of uniformly allocating it. This allows us to control the asymptotic growth of the expiration
function, and the error. This change, however, requires a more careful privacy analysis. (iii) At time t
we add noise identified by intervals containing t, not t− 1. While this is a subtle difference, it allows
us to exclude intervals starting at 0 from I, leading to our algorithm running on unbounded streams
with utility that depends on the current time step t. Said differently, our algorithm does not need to
know the stream length in advance. This is in contrast to Dwork et al. [16] where the construction
requires an upper bound T on the length of the stream so that the utility guarantee at each step is
fixed and a function of T . (iv) We allow for a delay of B, meaning we output 0 for the initial B steps.
This gives perfect privacy for the first B steps, and, since each element of the stream is in [0, 1], the
delayed start leads only to an additive error of O(B).

2 Preliminaries

Let N>0 denote the set {1, 2, · · · } and R≥0 the set of non-negative real numbers. We use the symbol
g to denote the function that defines the privacy expiration, i.e., g : N → R≥0. We fix the symbol
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A(x) to denote the randomized streaming algorithm that, given an input x = x1, x2, . . . as a stream,
provides ε-differential privacy with expiration g. All algorithms lazily draw noise, meaning that a
“noise” random variable is only drawn when first used and is re-used and not re-drawn when referenced
again. For a random variable, Z, we use support(Z) to denote its support. For a sequence of random
variables Z = Z1, Z2, . . . , we use support(Z) to denote support(Z1)× support(Z2)× . . . .

Helpful lemmas. We now collect some helpful lemmas shown formally in Appendix C. To show
privacy with expiration in the following sections, we repeatedly use the following observation: a
similar lemma has been used to show the standard definition of differential privacy, e.g., in the proof
of Theorem 2.1 of Dwork et al. [18]. Informally, it says that if there exists a map q between random
choices made by algorithm A such that for any input x and fixed sequence z of random choices, the
map returns a sequence q(z) such that (1) the output A(x, z) equals the output A(x′, q(z)) and (2)
the probability of picking z is similar to the probability of picking q(z), then A is private. The notion
of “similar probability” is adapted to the definition of differential privacy with expiration and depends
on the function g. All the results in this section are shown formally in Appendix C.1:

Fact 2.1. Consider an algorithm A that uses a sequence of random variables Z = Z1, Z2, . . . as
the only source of randomness. We can model A : χ × support(Z) as a (deterministic) function
of its actual input from the universe χ and the sequence of its random variables Z. Suppose
that for all τ ∈ N>0, j ≤ τ and all neighboring pairs of input streams x = x1, . . . , xj , . . . , xτ

and x′ = x1, . . . , x
′
j , . . . , xτ , there exists a function q : support(Z) → support(Z) such that

A(x; z) = A(x′; q(z)) and

Pr
z∼Z

[z ∈ N ] ≤ eεg(τ−j) Pr
z′∼Z

[z′ ∈ q(N )] for all N ⊆ support(Z).

Then A satisfies ε-differential privacy with expiration g.

Lemma 2.2. Let Z = Z1, Z2, . . . , Zk be a sequence of independent Laplace random variables, such
that Zi ∼ Lap(bi) for bi > 0, for all i ∈ [k]. Let q be a bijection q : support(Z) → support(Z) of
the following form: For all ∆ := (∆1 ∆2 · · · ∆k) ∈ Rk, and for all z ∈ support(Z), we have
q(z) = z +∆ ∈ support(Z). Then for all N ⊆ support(Z) we have

Pr
z∈Z

[z ∈ N ] ≤ es Pr
z∈Z

[z ∈ q(N )], where s =

k∑
i=1

|∆i|
bi

.

3 Warmup

As a warm-up, we give two simple algorithms for two obvious choices of the expiration function: the
linear expiration function g(d) = d and the logarithmic expiration function g(d) = 2 log(d+ 1) + 2.

3.1 A Simple Algorithm with Linear Privacy Expiration

First, we consider a simple algorithm which gives ε-differential privacy with expiration g : N →
R≥0, where g(d) = d. The maximum error of this algorithm over T time steps is bounded by
O(ε−1 log(T/β)), with probability at least 1 − β. The algorithm Asimple is given in Algorithm 1.
It adds fresh Laplace noise to any output sum. Note that this is the same algorithm as the Simple
Counting Mechanism I from Chan et al. [8]. However, we show that for the weaker notion of
differential privacy with linear expiration, Laplace noise with constant scale suffices, even though
the sensitivity of Asimple running on a stream of length T is T . To prove this, we show that for two
neighbouring streams differing at time step j, we obtain the same output by “shifting” the values
of the Laplace noises for all outputs after step j by at most 1. We defer the proof of the following
lemma to Appendix C.2.

Lemma 3.1. The algorithm Asimple, given in Algorithm 1, is ε-differentially private with expiration
g, where g : N → N is the identity function g(d) = d for all d ∈ N. It incurs a maximum additive
error of O(ε−1 log(T/β)) over all T time steps simultaneously with probability at least 1− β.
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[2] [3] [4] [5] [6][1]

x 1 0 0 1 0 1

[2, 3] [4, 5] [6, 7]

[4, 7]

y 1 0 1 1 0 1

Figure 1: An example of the noise structure for Algorithm 2 and Algorithm 3 for B = 0 on two
neighbouring streams x and y differing in position 3. The nodes correspond to the dyadic intervals.
The filled nodes mark the intervals I for which the noise ZI is shifted by one between x and y to get
the same outputs for τ = 6. The fat nodes mark the intervals I corresponding to the ZI which are
used in the computation of the fourth prefix sum s4.

Algorithm 1 Asimple: Continual counting under
linear gradual privacy expiration

1: Input: A stream x1, x2, · · · , privacy pa-
rameter ε

2: Lazily3draw Zt−1 ∼ Lap
(
1
ε

)
3: At time t = 1, output 0
4: for t = 2 to ∞ do
5: At time t, output

∑t−1
i=1 xi + Zt−1

6: end for

Algorithm 2 Alog: Continual counting under loga-
rithmic gradual privacy expiration

1: Input: A stream x1, x2, · · · , privacy param ε
2: Let I be the dyadic interval set on [1,∞)
3: ∀I ∈ I, lazily draw i.i.d. ZI ∼ Lap

(
1
ε

)
4: Set It = {I ∈ I : t ∈ I}
5: for t = 1 to ∞ do
6: At time t, output

∑t
i=1 xi +

∑
I∈It

ZI

7: end for

3.2 A Binary-Tree-Based Algorithm with Logarithmic Privacy Expiration

Next, we show how an algorithm similar to the binary tree algorithm [16] gives ε-differential privacy
with expiration g : N → R≥0, where g(d) = 2 log(d+ 1) + 2. This result can also be derived from
Theorem 1.2 by setting λ = 1 and B = 0. As in the case when g(d) = d, the maximum error of this
algorithm over T time steps is again bounded by O(ε−1 log(T/β)), with probability at least 1− β.
Similarly to the binary tree algorithm, we define a noise variable for every node in the tree, but we do
this in the terminology of dyadic intervals. We consider the dyadic interval set I on [1,∞) (formally
defined shortly), associate a noise variable zI with each interval I ∈ I, and at time step t add noise
zI for each I ∈ I that contains t. This is similar to the construction in Dwork et al. [16], with the
exception that they instead consider the dyadic interval set on [0, T − 1], add noise zI at time t if
t− 1 ∈ I , and initialize their counter with noise from the same distribution. Our choice of I allows
the algorithm to run on unbounded streams, and leads to adding up 1 + ⌊log(t)⌋ noise terms at step t
rather than 1 + ⌊log(T )⌋. For privacy, we will argue that if two streams differ at time j, then we get
the same outputs up to time τ ≥ j by considering a subset of disjoint intervals in I covering [j, τ ],
and shifting the associated Laplace random variables appropriately. In the following, we describe this
idea in detail. We start by describing the dyadic interval decomposition of an interval.

Dyadic interval decomposition. For every non-negative integer ℓ, we divide [1,∞) into disjoint
intervals of length 2ℓ: Iℓ = {[k · 2ℓ, (k + 1) · 2ℓ − 1], k ∈ N>0}. We call I =

⋃∞
ℓ=0 Iℓ the dyadic

interval set on [1,∞), and Iℓ the ℓ-th level of the dyadic interval set. We show the following two
facts in Appendix C.
Fact 3.2. Let I be the dyadic interval set on [1,∞). For any interval [a, b], 1 ≤ a ≤ b, there exists a
set of intervals D[a,b] ⊆ I, referred to as the dyadic interval decomposition of [a, b], such that (i) the
sets in D[a,b] are disjoint; (ii)

⋃
I∈D[a,b]

I = [a, b]; and (iii) D[a,b] contains at most 2 intervals per
level, and the highest level ℓ of an interval satisfies ℓ ≤ log(b− a+ 1)

3By “lazily”, we mean we draw a random variable the first time it is used by the algorithm.
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Fact 3.3. Let I be the dyadic interval set on [1,∞), and for t ∈ N>0 define It = {I ∈ I : t ∈ I} as
the intersection of t with I. Then |It| = ⌊log t⌋+ 1.
Lemma 3.4. The algorithm Alog given in Algorithm 2 satisfies ε-differential privacy with expiration
g, where g : N → R is defined as g(x) = 2 log(x+ 1) + 2. It incurs a maximum additive error of
O(ε−1 log(T/β)) over all T time steps simultaneously with probability at least 1− β.

Privacy. We use Fact 2.1 and Lemma 2.2 to argue privacy of Alog: Let x and x′ differ at time j.
Note that the prefix sums fulfill the following properties: (i)

∑t
i=1 xi =

∑t
i=1 x

′
i for all t < j and

(ii)
∑t

i=1 x
′
i =

∑t
i=1 xi + y for all t ≥ j, where y = x′

j − x′
j ∈ [−1, 1].

In the following, we refer to the output of the algorithm run on input x and with values of the random
variables z as Alog(x; z). Let τ ≥ j be given, and consider S ⊆ range(Alog)

∗. Let Z = (ZI)I∈I
be the sequence of Laplace random variables used by the algorithm. For any fixed output sequence
s ∈ S, let z = (zI)I∈I be a sequence of values that the Laplace random variables need to assume
to get output sequence s for input x. That is

∑t
i=1 xi +

∑
I∈It

zI = st for t ≥ 1. Let D[j,τ ] be the
decomposition of [j, τ ] as defined in Fact 3.2. We define a bijection q satisfying the properties of
Fact 2.1 as follows: q(z) = z′ = (z′I)I∈I such that

z′I =

{
z′I = zI ∀I /∈ D[j,τ ]

z′I = zI + y ∀I ∈ D[j,τ ]
.

We show the two properties needed to apply Fact 2.1:

(1) Note that (Alog(x; z))t =
∑t

i=1 xi +
∑

I∈It
zI . For t < j, we have t /∈ [j, τ ] and therefore t /∈ I

for any I ∈ D[j,τ ]. Therefore, we have
t∑

i=1

xi +
∑
I∈It

zI =

t∑
i=1

x′
i +

∑
I∈It

zI =

t∑
i=1

x′
i +

∑
I∈It

z′I .

For j ≤ t ≤ τ , we have that t is contained in exactly one I ∈ D[j,τ ]. Thus, z′I = zI+y for exactly one
I ∈ It, and z′I′ = zI′ for all I ′ ∈ It\{I}. Further, since t ≥ j, we have that

∑t
i=1 xi =

∑t
i=1 x

′
i−y.

Together, this shows the first property of Fact 2.1 as
t∑

i=1

xi +
∑
I∈Ik

zI =

t∑
i=1

x′
i − y +

∑
I∈It

z′I + y =

t∑
i=1

x′
i +

∑
I∈It

z′I ,

(2) By Fact 3.2, |D[j,τ ]| ≤ 2(log(τ − j + 1) + 1). Thus, by Lemma 2.2 for any N ∈ support(Z),

Pr
z∈Z

[z ∈ N ] ≤ e
∑

I∈D[j,τ]
|y|ε

Pr
z∈Z

[z ∈ q(N )] ≤ e2(log(τ−j+1)+1)ε Pr
z∈Z

[z ∈ q(N )],

so the second property of Fact 2.1 is fulfilled with g(x) = 2 log(x+ 1) + 2. By Fact 2.1, we have
differential privacy with privacy expiration g(x) = 2 log(x+ 1) + 2.

Accuracy. To show accuracy at step t, let Yt =
∑

I∈It
ZI , i.e. the noise added

at time step t. By Fact 3.3 we add k = |It| = ⌊log t⌋ + 1 Laplace noises with
scale 1

ε . Let Mt,β = max
{√

⌊log t⌋+ 1,
√

ln(2/β)
}

. By Corollary B.4, we have that

Pr
[
|Yt| > 2

ε

√
2 ln(2/β)Mt,β

]
≤ β, for any β < 1. Setting β = β′/T , it follows that with

probability at least 1− β′, |Yt| = O(ε−1 log(T/β′)) for all time steps t ≤ T simultaneously.

4 Proof of Theorem 1.2 and Corollary 1.3

Section 3.2 shows that we can obtain an error smaller than the binary mechanism by using differential
privacy with a logarithmic expiration function. Here we show a general trade-off between the
expiration function’s growth and the error’s growth. Two techniques are needed to show the theorem:

Delay. All outputs are delayed for B steps. That is, in the first B steps, the mechanism outputs 0,
thereafter, it outputs a private approximation of

∑j−B
i=1 xi. Delay introduces an extra additive error of

up to B, but ensures perfect privacy for the first B time steps after receiving an input.
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Algorithm 3 Continual counting, gradual privacy expiration
1: Input: A stream x1, x2 · · · , privacy parameter ε,

parameters B ∈ N, λ ∈ R>0\{3/2}
2: Let I be the dyadic interval set on [1,∞) and It = {I ∈ I : t−B ∈ I}
3: ∀ℓ, I ∈ Iℓ, lazily draw i.i.d. ZI ∼ Lap

(
(1+ℓ)1−λ

ε

)
4: for t = 1 to B do
5: At time t, output 0
6: end for
7: for t = B + 1 to ∞ do
8: At time t, output st−B =

∑t−B
i=1 xi +

∑
I∈It

ZI

9: end for

Budgeting across levels. The privacy budget is split unevenly across levels of the dyadic interval set
in order to control the asymptotic growth of the expiration function. Specifically, the budget at level ℓ
is chosen to be proportional to (ℓ+ 1)λ−1. The case λ = 1 corresponds to the even distribution used
in the construction of Section 3.2.

Our algorithm is shown as Algorithm 3. In the following, we refer to the output of the algorithm run
on input x and with values of the random variables z as A(x; z).

Privacy. We now show that A satisfies Definition 1.1. For x and x′ that differ (only) at time j ≤ τ ,
the prefix sums fulfill the following properties:

•
∑t

i=1 xi =
∑t

i=1 x
′
i for all t < j and

•
∑t

i=1 x
′
i =

∑t
i=1 xi + y for all j ≤ t ≤ τ , where y = x′

j − xj ∈ [−1, 1].

Let j and τ be defined as in Definition 1.1. Due to the delay, if τ ′ = τ −B < j (corresponding to
d < B) the privacy claim is immediate since the output distributions of A up to step τ are identical
on the two inputs. Otherwise, for τ ′ = τ − B ≥ j, i.e., for d ≥ B, we wish to use Fact 2.1 and
Lemma 2.2. Let Z = (ZI)I∈I be the sequence of Laplace random variables used by A. For input
x consider a fixed length-τ output sequence consisting of B zeros followed by s1, . . . , sτ ′ . Let
z = (zI)I∈I be a sequence of values for the Laplace random variables in order to produce this output
sequence with input x. That is, st =

∑t
i=1 xi+

∑
I∈It

zI for t ≥ 1. Let D[j,τ ′] be the decomposition
of [j, τ ′] as defined in Fact 3.2. We define a bijection q satisfying the properties of Fact 2.1 as follows:
q(z) = z′ = (z′I)I∈I such that

z′I =

{
z′I = zI ∀I /∈ D[j,τ ′]

z′I = zI + y ∀I ∈ D[j,τ ′]
.

We show the two properties needed to apply Fact 2.1:

Lemma 4.1. The function q(z) satisfies A(x; z) = A(x′; q(z)) and for g(d) = O(1 + 1
λ logλ(d−

B + 1)) we have Prz∼Z [z ∈ N ] ≤ eεg(τ−j) Pr[z′ ∈ N ] for all N ⊆ support(Z).

Space and time. Algorithm 3 can update the sums
∑t−B

i=1 xi and
∑

I∈It
ZI in each time step t using

the following idea: The B most recent inputs are kept in a buffer to allow calculation of prefix sums
with delay and also the ⌊log(t)⌋+ 1 random variables of those values that were added to the most
recent output. At a given step, each random value that is no longer used is subtracted from the most
recent output, and each new random value is added. An amortization argument as in the analysis of
the number of bit flips in a binary counter yields the O(1) amortized bound.

Accuracy. To show the accuracy guarantee, we need to account for the error due to delay as well
as the noise required for privacy. It is easy to see that the delay causes an error of at most B, since
the sum of any B inputs is bounded by B. Thus, for both error bounds it remains to account for the
error due to noise. At every time step t after B, the output is the delayed prefix sum plus a sum of
Laplace distributed noise terms as indicated by It−B with parameters bℓ = (ℓ + 1)1−λ/ε, where
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ℓ = 0, . . . , ⌊log(t−B)⌋. To bound the variance of the noise, 2
∑

ℓ b
2
ℓ we compute:

⌊log(t−B)⌋∑
ℓ=0

b2ℓ =
1

ε2

⌊log(t−B)⌋∑
ℓ=0

(ℓ+ 1)2(1−λ) ≤ 1

ε2

1 +

log(t)+2∫
1

x2(1−λ)dx


≤ 1

ε2

(
1 +

[
1

3− 2λ
x3−2λ

]x=log(t)+2

x=1

)
= O

(
1 + log(t)3−2λ

ε2

)
.

This calculation assumes λ ̸= 3/2, proving the statement on the squared error in Theorem 1.2. For the
high probability bound we invoke Lemma B.3 with bM = maxℓ(bℓ) = max(1, log(2t)1−λ)/ε) =

O((1 + log(t)1−λ)/ε). For ν =
√∑

ℓ b
2
ℓ + bM

√
log t = O(bM

√
log t), applying Lemma B.3

says that the error from the noise is O(ν
√

log(1/β)) = O(
√
log(1/β) log(t)max(0.5,1.5−λ)) with

probability 1− β, proving Theorem 1.2.

Proof of Corollary 1.3. For releasing T outputs, choosing β = 1/T c+1, c > 0 being a con-
stant, and using a union bound over all outputs gives a bound on the maximum noise equal to
O(log(T )max(1,2−λ)/ε) with probability 1− 1/T c, proving Corollary 1.3.

5 Lower Bound on the Privacy Decay

The lower bound follows from a careful packing argument. The proof is deferred to Appendix C.4.
Theorem 5.1. Let A be an algorithm for binary counting for streams of length T which satisfies
ε-differential privacy with expiration g. Let C be an integer and assume that the additive error of A
is bounded by C < T/2 at all time steps with a probability of at least 2/3. Then

2C−1∑
j=0

g(j) ≥ log(T/6C)/ε

The lower bound extends to mechanisms running on unbounded streams. By Definition 1.1, g(j) is
non-decreasing in j. This immediately gives Theorem 1.4.

6 Empirical Evaluation

We empirically evaluated (i) how the privacy loss increases as the elapsed time increases for Algo-
rithm 3, (ii) how tightly the corresponding theoretical expiration function g of Theorem 1.2 bounds
this privacy loss, and (iii) how this privacy loss compares to the privacy loss of a realistic baseline.
As different algorithms have different parameters that can affect privacy loss, we use the following
approach to perform a fair comparison: In the design of ε-differentially private algorithms the error
of different algorithms is frequently measured with the same value of the privacy loss parameter ε.
Here, we turn this approach around: We compare the privacy loss (as a function of elapsed time) of
different algorithms whose privacy parameter ε is chosen to achieve the same error.

We empirically compute the privacy loss for Algorithm 3 by considering the exact dyadic decomposi-
tions used for the privacy argument (see Appendix A for details). As a baseline to compare against,
we break the input stream into intervals of length W , run the ’standard’ binary mechanism AB of
Chan et al. [8] with a privacy parameter εcur on the current interval, and compute the sum of all
prior intervals with a different privacy guarantee εpast. As for both algorithms that we evaluate it is
straightforward to compute the mean-squared error (MSE) for all outputs on a stream of length T ,
while the corresponding maximum absolute error can only be observed empirically, we fix the MSE
for T = dmax + 1, where dmax is the greatest d (on the x-axis) shown in each plot. We normalize
each plot to achieve the same MSE over the first T outputs, across all algorithms and parameter
choices. For all runs of Algorithm 3 we used B = 0, as for larger values of B, the primary effect
would be to shift the privacy loss curve to the right. We picked the MSE to be 1000 for all plots as it
leads to small values of the empirical privacy loss. As for both algorithms, the privacy loss does not
depend on the input data; we used an all-zero input stream, a standard approach in the industry (see,
for example, Thakurta’s [39] plenary talk at USENIX, 2017).
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Figure 2: Plots on the privacy loss for our Algorithm 3 and a baseline algorithm.

Figure 2(a) shows that g from Theorem 1.2 is a good approximation of the empirical privacy loss,
and that both exhibit the same polylogarithmic growth. Figure 2(b) shows that for large enough d our
algorithm has lower privacy loss than the baseline algorithm. See more details in the appendix.

7 Conclusion

In this work, we give the first algorithm for the continual counting problem for privacy with expiration
for a wide range of expiration functions and characterize for which expiration functions it is possible
to get an ℓ∞-error of O(log(T )/ε). We also give a general lower bound for any such algorithms and
show that ours is tight for certain expiration functions. It would be interesting to study this model
further, e.g., with slower-growing expiration functions, and also algorithms for other problems in
continual observation, such as maintaining histograms and frequency-based statics over changing
data. Specifically, it would be an interesting direction for future research to study problems in this
model, where a polynomial error gap between the batch model and the continual release model is
known to exist (for example max sum [29] and counting distinct elements [28, 23]), and to see if
this model allows for new trade-offs. Further, one of the main applications of continual counting
algorithms is in privacy-preserving federated learning algorithms, specifically in stochastic gradient
descent (see e.g. [14, 30, 34]). It would be interesting to explore how our algorithm can be deployed
in this setting.

Though the concept of privacy expiration has not been defined for approximate differential privacy, it
is natural to wonder if there exist analogous results in this setting, which, in general, allows better
privacy-utility trade-offs. We note that for ρ-zero-concentrated differential privacy [5] there is a
natural analog of Definition 1.1 for which it seems possible to prove results analogous to those shown
here for pure differential privacy. In that context it would also be interesting to see whether the matrix
mechanism can be used to improve the constants in the error, similar to [21, 24].
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A Empirical Evaluation

In this section, we empirically review (i) how the privacy loss increases as the elapsed time increases
for Algorithm 3, (ii) how tightly the corresponding theoretical expiration function g of Theorem 1.2
bounds this privacy loss, and (iii) how this privacy loss compares to the privacy loss of a realistic
baseline. Note that different algorithms have different parameters that can affect privacy loss; thus, it
is not clear how to perform a fair comparison at first. We use the following approach: In the design
of ε-differentially private algorithms the error is frequently bound as a function of the privacy loss,
i.e., the error of different algorithms is measured with the same value of the privacy loss parameter
ε. Here, we turn this approach around: We compare the privacy loss (as a function of elapsed time)
of different algorithms whose privacy parameter ε is chosen to achieve the same error. As for both
algorithms that we evaluate it is straightforward to compute the mean-squared error (MSE) for
all outputs on a stream of length T , while the corresponding maximum absolute error can only be
observed empirically, we fix the MSE for T = dmax +1, where dmax is the greatest d shown in each
plot. We normalize each plot to achieve the same MSE over the first T outputs, across all algorithms
and parameter choices. For all runs of Algorithm 3 we used B = 0, as for larger but practical values
of B, the primary effect would be to shift the privacy loss curve to the right. We picked the MSE to
be 1000 for all plots as it leads to small values of the empirical privacy loss. Any other choice would
simply rescale the values of the y-axes.

Note that for both algorithms the privacy loss does not depend on the input data and, thus, we
used an all-zero input stream, a standard approach in the industry (see, for example, [39]’s plenary
talk at USENIX, 2017). We also emphasize that all computations producing the plots shown are
deterministic, and so there is no need for error bars.

Empirical privacy expiration for Algorithm 3. For our evaluation we empirically compute the
privacy loss for Algorithm 3 by considering the exact dyadic decompositions used for the privacy
argument. More specifically, to compute the empirical privacy expiration function g (for d ≥ B) of
Algorithm 3, we use the proof of Theorem 1.2 to reason that for N ∈ support(Z), Prz∈Z [z ∈ N ] is
bounded by eq. (1). There we bound the exponent, i.e. the privacy loss, as a function of the size of the
interval d−B + 1 = τ ′ − j + 1, and this yields the g stated. However, this might not be exact, as
the decomposition of an interval of size d−B + 1 does not necessarily involve using 2 intervals per
level up to ℓ∗ = ⌊log(d−B + 1)⌋. Instead, for a given d ≥ B and λ, we can for all τ ′ ≥ j, where
τ ′ − j+1 = d−B+1, compute the exact associated dyadic decomposition D[j,τ ′] and the resulting
privacy loss. For each value of d taking the maximum over these losses over all τ ′ ≤ t gives the
worst-case privacy loss at time t+ d for an input streamed at time t.
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Figure 3: Worst-case privacy loss computed empirically for a data item streamed d steps earlier.

Figure 3(a) demonstrates how the privacy loss compares to what is predicted by Theorem 1.2. The
main observation is that g from Theorem 1.2 is a good approximation of the empirical privacy loss,
and that both exhibit the same polylogarithmic growth.

Figure 3(b) plots the empirically computed privacy loss for different choices of λ. It demonstrates
that the choice of λ equates to a trade-off between short-term and long-term privacy. The larger λ the
higher the privacy loss for large values of d, which is to be expected. It also shows that a smaller λ
provides greater privacy loss early on.

A baseline. As a baseline to compare against, we break the input stream into intervals of length
W , run the ’standard’ binary mechanism AB of [8] with a privacy parameter εcur on the current
interval, and compute the sum of all prior intervals with a different privacy guarantee εpast. More
exactly, the baseline outputs AB(εcur, t) for all time steps t in the first round, i.e., t ∈ [1,W ]. For
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each later round r > 1, it does the following: (1) Compute cr = zpast +
∑(r−1)·W

t=1 xt where
zpast ∼ Lap(1/εpast). (2) For t ∈ [(r − 1) ·W + 1, r ·W ], output cr +AB(εcur, t)

Intuitively, this models what is currently done in the software industry: Each user is given a “privacy
budget” for a fixed time interval with the guarantee that their data is no longer used whenever the
budget reaches 0 within the current interval. However, at the beginning of the next interval, the
privacy budget is being reset. Thus the total privacy loss is the sum of the privacy losses in all
intervals.

What fraction of the privacy budget is spent on the binary mechanism (εcur) and what is spent on
releasing the prefix of the past (εpast) can be chosen in multiple ways. For our experiments, we
choose a fixed fraction of εpast/εcur = 0.1, implying that we release sums from past rounds with
a stronger privacy guarantee compared to what is used in the binary tree. Other choices and their
implication are discussed in Appendix A.1.

Figure 3(c) shows the privacy loss of the baseline for a selection of round sizes. The main feature to
underline is that, after W time steps, the privacy expiration becomes linear in the number of rounds
(and therefore in d). This is a direct consequence of privacy composition: An input xt impacts the
outputs of AB in the round r = ⌈t/W ⌉ it participates in, and then is subsequently released in each
future round r′ > r as part of cr′ .

Comparing Algorithm 3 to the baseline. Algorithm 3 is compared to the baseline in Figure 4.
Qualitatively the results align with our expectations. For large enough d > W , the baseline enters
the region where the degradation in privacy is dominated by the number of rounds that a given input
participates in, yielding linear expiration. Notably, the baseline generally achieves a lower privacy
loss for smaller d compared to our method. This is largely decided by how εpast/εcur is picked.
Choosing a smaller fraction would lower the slope in the linear regime at the expense of the early
privacy loss incurred from AB . By contrast, Algorithm 3 exhibits a comparable initial privacy loss
that grows more slowly – never reaching linear privacy loss – as predicted by our theorem.
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Figure 4: Worst-case privacy loss for a data item streamed d steps earlier, shown for Algorithm 3
(with λ = 1, 2, 3) versus the baseline (W = 127 and W = 1023).

A.1 Technical Details

Choosing εpast/εcur for the baseline For our experiments above, we choose a fraction εpast/εcur =
0.1 for our baseline, but, as we state, other choices are possible. In particular, one appealing choice is
the fraction that minimizes the privacy loss at d = T − 1, making the baseline as privacy preserving
as possible for the last d shown in Figures 3(c) and 4. Note that the privacy loss for the largest value
of d will be, roughly, εcur + εpast · (N − 1), where N is the total number of rounds, corresponding to
the privacy loss for an input participating in the first round. We can compute the fraction εpast/εcur
that minimizes this privacy loss under the constraint of having a fix mean-squared error, yielding a
solution that is a function of the round length W and input stream length T .

The Figures 3(c) and 4 from Section 6 are shown below as Figures 5(a) and 5(b) where we instead
of using εpast/εcur = 0.1, we use the fraction minimizing the maximum privacy loss. Note that
Figure 5(a) is almost identical to Figure 3(c). This is due to the fact that for this choice of W and T ,
the optimal fraction is close 0.1. In the case of Figure 5(b) however, there is a notable difference. The
minimizing fraction is here considerably smaller, resulting in a tangible reduction of the final privacy
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(a) Baseline for multiple W .

100 101 102 103 104 105 106

d

10−1

100

101

102

Pr
iv

ac
y

lo
ss

W = 127

W = 1023

λ = 1

λ = 2

λ = 3

(b) Algorithm 3. vs. baseline

Figure 5: Worst-case privacy loss computed empirically for a data item streamed d steps earlier.
Figure 5(a) is a re-computation of Figure 3(c) where the ratio εpast/εcur is set to minimize the
maximum privacy loss, yielding a ratio of 0.069 for W = 31, 0.08 for W = 63 and 0.095 for
W = 127. Figure 5(b) is a re-computation of Figure 4 where the ratio εpast/εcur is set to minimize
the maximum privacy loss, yielding a ratio of 0.0064 for W = 127 and 0.010 for W = 1023.

loss, but at the expense of the privacy loss early on. This is in line with expectations: spending more
of the privacy budget on releasing sums from past rounds implies spending less on releasing the
binary tree in each round, which dominates the privacy loss for small d.

While the fraction εpast/εcur has an impact, running the baseline for a fix round length W will
always result in linear privacy expiration for a great enough stream length T , where εpast affects the
slope.

A.2 Exact Parameters for the Experiments

In all the plots, we choose the privacy parameter(s) to achieve a mean-squared error of 1000 over the
stream length T in each figure shown, where T = 103 for Figure 3(a), 3(b) and 3(c), and T = 106 in
Figure 4. The corresponding privacy parameters are listed in Table 1, ε refers to the privacy parameter
used by Algorithm 3 and εcur, εpast are the ones used by the baseline.

Table 1: Table over the privacy parameters used in each of the plots.

Figure Algorithm ε εcur εpast

3(a) λ = 2 0.05542 - -

3(b)
λ = 1 0.1341 - -
λ = 2 0.05542 - -
λ = 3 0.04651 - -

3(c)
W = 31 - 0.5678 0.05678
W = 63 - 0.6372 0.06372
W = 127 - 0.7197 0.07197

4

W = 127 - 0.7387 0.07387
W = 1023 - 1.096 0.1096

λ = 1 0.1947 - -
λ = 2 0.05645 - -
λ = 3 0.04652 - -

5(a)
W = 31 - 0.7328 0.05048
W = 63 - 0.7031 0.05796
W = 127 - 0.7170 0.07252

5(b)

W = 127 - 6.973 0.04488
W = 1023 - 4.413 0.04589

λ = 1 0.1947 - -
λ = 2 0.05645 - -
λ = 3 0.04652 - -
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B Background on Random Variables

Definition B.1 (Laplace Distribution). The Laplace distribution centered at 0 with scale b is the
distribution with probability density function

fLap(b)(x) =
1

2b
exp

(
−|x|
b

)
.

We use X ∼ Lap(b) or just Lap(b) to denote a random variable X distributed according to
fLap(b)(x).
Fact B.2 (Laplace Tailbound). If X ∼ Lap(b), then

Pr[|X| > t · b] ≤ e−t.

Lemma B.3 (Measure Concentration Lemma in [8]). Let Y1, . . . , Yk be independent variables with
Yi ∼ Lap(bi) for all i ∈ [k]. Denote bM = maxi∈[k] bi and Y =

∑k
i=1 Yi. Let 0 < β < 1 and

ν > max

{√∑k
i=1 b

2
i , bM

√
ln(2/β)

}
. Then,

Pr
[
|Y | > ν

√
8 ln(2/β)

]
≤ β.

Corollary B.4. Let Y1, . . . , Yk be independent variables with distribution Lap(b) and let Y =∑k
i=1 Yi. Let 0 < β < 1. Then

Pr
[
|Y | > 2b

√
2 ln(2/β)max

{√
k,
√

ln(2/β)
}]

≤ β.

Proof. Apply Lemma B.3 to b1 = · · · = bk = b.

C Omitted proofs

C.1 Omitted proofs from Section 2

Proof of Fact 2.1. Given x, x′ and any set of output sequences set S, let NS be the set of all choices
of random variables z such that A(x; z) ∈ S. Note that for all z ∈ NS , A(x′; q(z)) ∈ S, i.e., for all
z′ ∈ q(NS), A(x′; z′) ∈ S. Then

Pr
z∼Z

[A(x; z) ∈ S] = Pr
z∼Z

[z ∈ NS ] ≤ eεg(τ−j) Pr
z′∼Z

[z′ ∈ q(NS)]

≤ eεg(τ−j) Pr
z′∼Z

[A(x′; z′) ∈ S].

This completes the proof of Theorem 2.1.

Proof of Lemma 2.2. Let fLap(b) denote the density function of Lap(b). For all x, y ∈ R:

fLap(b)(x) =
1

2b
e−|x|/b ≤ 1

2b
e(|y|−|x+y|)/b = e|y|/b

1

2b
e(−|x+y|)/b = e|y|/bfLap(b)(x+ y),

where the inequality follows from the triangle inequality |x+ y| ≤ |x|+ |y|. In the following integral,
let z′ = q(z). Let s be as defined in the lemma statement. Then we have

Pr
z∈Z

[z ∈ N ] =

∫
z∈N

k∏
i=1

fLap(bi)(zi)dz ≤
∫

z∈N

k∏
i=1

e|z
′
i−zi|/bifLap(bi)(z

′
i)dz

= es
∫

z∈N

k∏
i=1

fLap(bi)(z
′
i)dz = es

∫
z∈q(N )

k∏
i=1

fLap(bi)(zi)dz

= es Pr
z∼Z

[z ∈ q(N )]

This completes the proof of Theorem 2.2.
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C.2 Omitted proofs from Section 3

Proof of Lemma 3.1. Privacy. We use Fact 2.1 and Lemma 2.2 to argue the privacy of our simple
algorithm, Asimple: Let x and x′ differ at time j. Note that the prefix sums fulfill the following
properties:

•
∑t

i=1 xi =
∑t

i=1 x
′
i for all t < j and

•
∑t

i=1 x
′
i =

∑t
i=1 xi + y for all t ≥ j, where y = x′

j − xj ∈ [−1, 1].

Let S ⊆ range(Asimple)
∗. For any τ ≥ j, we consider the output distribution of length-τ prefixes.

There are two cases: For j = τ and any t ≤ τ , the output on x is given by
∑t−1

i=1 xi + Zt−1 with
t− 1 < j, thus we get equal output distributions on x and x′. That is,

Pr[A(x1, . . . , xt)
τ
t=1 ∈ S] = Pr[A(x′

1, . . . , x
′
t)

τ
t=1 ∈ S] = eg(0)ε Pr[A(x′

1, . . . , x
′
t)

τ
t=1 ∈ S].

For j < τ , let Z = Z1, . . . , Zτ−1 be the sequence of Laplace random variables used by the algorithm.
For any fixed output sequence s ∈ S, note that the algorithm guarantees that s1 = 0 and let
z = z1, z2, . . . , zτ−1 be the values that the Laplace random variables need to assume to get output
sequence s with input x. That is,

∑t
i=1 xi + zt = st+1 for t ≥ 1. We define a bijection q satisfying

the properties of Fact 2.1 as follows. Define q(z) = z′ such that

z′i =

{
zi i ≤ j

zi + y i > j
.

This gives
∑t

i=1 x
′
i + z′t = st+1. All Laplace noises have the same distribution Lap(1/ε). By

Lemma 2.2, we have for any N ∈ support(Z),

Pr
z∈Z

[z ∈ N ] ≤ e(τ−j)ε Pr
z∈Z

[z ∈ q(N )].

Thus, q fulfills the properties of Fact 2.1, and therefore our algorithm satisfies ε-differential privacy
with expiration g(t) = t.

Accuracy. The error at time step t is given by xt + Zt−1. By the Laplace tail bound (Fact B.2), we
have that

Pr
zi∼Lap(1/ε)

[|zi| > ε−1 log(T/β)] ≤ β/T

for any i ∈ [T − 1].

Therefore, by a union bound, |Zi| ≤ log(T/β) simultaneously for all i ∈ [T − 1] with probability
at least 1− β. This implies that, with probability at least 1− β, the maximum error over the entire
stream is bounded by ε−1 log(T/β).

Proof sketch of Fact 3.2. For a = b, the claim is immediate and so we prove it for a < b. First,
consider the case where a = 2ℓ and b ≤ 2 · 2ℓ − 1. We show that in this case, there exists a set
D[a,b] with the properties above, only it contains at most one interval per level. If b = 2 · 2ℓ − 1,
then D[a,b] = {[a, b]}. Else, we have b − a + 1 < 2ℓ, thus there exists a binary representation
(q0, . . . , qℓ−1) ∈ {0, 1}ℓ such that b− a+ 1 = q0 + 2q1 + 22q2 + · · ·+ 2ℓ−1qℓ−1. Note that for any
j ≤ ℓ, there is an interval in I of level j starting at a = 2ℓ. We now show how to construct the set
D[a,b]. In the first step, choose the largest j such that qj = 1 and add the interval [2ℓ, 2ℓ + 2j − 1] to
D[a,b]. Then, set qj = 0. Next, assume we already cover the interval [a, s] for some b ≥ s > a. We
then again pick the largest remaining j such that qj = 1 and add the interval [s, s+ 2j − 1] to D[a,b].
By an inductive argument, this interval will be in I, since s is the ending position of an interval of a
higher level in I. We do this until no more qj with qj = 1 remains, at which point we have covered
[a, b]. The same argument can be repeated for the case where b = 2ℓ − 1 and a ≥ 1. Now, for the
general case, pick ℓ = ⌊log(b)⌋ and c = 2ℓ − 1 and define D[a,b] = D[a,c] ∪D[c+1,b].
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Proof sketch of Fact 3.3. First note that in our definition of I, we exclude all intervals starting at 0.
For a given t, let ℓ ∈ N be the greatest interval level satisfying 2ℓ − 1 < t. It follows that for every
j > ℓ, t ∈ [0, 2j − 1] /∈ I. Analogously, for every j ≤ ℓ we have t /∈ [0, 2j − 1], and therefore
there must exist a unique I ∈ Ij such that t ∈ I . Taken together, we have that |It| = ℓ+ 1 where
ℓ = ⌊log t⌋.

C.3 Omitted Proofs from Section 4

In this section, we give the detail proof for privacy analysis for all λ ∈ R≥0 and accuracy analysis for
λ = 3/2, which is not covered in Section 4.

C.3.1 Privacy proof for all λ ∈ R≥0

Proof of Lemma 4.1. We prove a slightly more general result; i.e., for all λ ∈ R≥0, we have the
following bound on the privacy expiration function:

g(d) ≤


0 for d < B

2

(
1 +

[
1
λ

(
(log(d−B + 1) + 1)λ − 1

) ])
for B ≤ d and λ ̸= 0

2 (1 + log log(d−B + 1)) for B ≤ d and λ = 0

We wish to use Theorem 2.1. For that, we first show that both the requirements in Theorem 2.1 are
satisfied.

1. By definition, A(x1x2 . . . xt; z) =
∑t

i=1 xi +
∑

I∈It
zI . For t < j, we have t /∈ [j, τ ′] and

therefore t /∈ I for all I ∈ D[j,τ ′]. It follows that for all I ∈ It it holds that I ̸∈ D[j,τ ′].
Therefore, we have

t∑
i=1

xi +
∑
I∈It

zI =

t∑
i=1

x′
i +

∑
I∈It

zI =

t∑
i=1

x′
i +

∑
I∈It

z′I .

For t ≥ j, we have that t is contained in exactly one I ∈ D[j,τ ′].Thus, z′I = zI + y for
exactly one I ∈ It, and z′I′ = zI′ for all I ′ ∈ It\{I}. Further, since t ≥ j, we have that∑t

i=1 xi =
∑t

i=1 x
′
i − y. Together, we have

t∑
i=1

xi +
∑
I∈Ik

zI =

t∑
i=1

x′
i − y +

∑
I∈It

z′I + y =

t∑
i=1

x′
i +

∑
I∈It

z′I ,

so the first property of Fact 2.1 is fulfilled.

2. By Fact 3.2, D[j,τ ′] consists of at most two intervals from each of I0, . . . , Iℓ∗ where
ℓ∗ = ⌊log(τ ′ − j + 1)⌋. Thus, by Lemma 2.2 we have for any N ∈ support(Z), then

Pr
z∈Z

[z ∈ N ] ≤ exp

log T∑
ℓ=0

∑
I∈D[j,τ′]∩Iℓ

|y|ε
(1 + ℓ)1−λ

 Pr
z∈Z

[z ∈ q(N )]

≤ exp

(
2ε

ℓ∗∑
ℓ=0

(1 + ℓ)λ−1

)
Pr
z∈Z

[z ∈ q(N )] .

(1)
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Using Fact 2.1 with d = τ − j = B+ τ ′ − j we conclude differential privacy with privacy expiration
g(d) = 2

∑⌊log(d−B+1)⌋
ℓ=0 (1 + ℓ)λ−1. Next we bound:

g(d) = 2

⌊log(d−B+1)⌋∑
ℓ=0

(1 + ℓ)λ−1

≤ 2

1 +

log(d−B+1)+1∫
1

xλ−1 dx


= 2

(
1 +

[
1

λ
xλ

]x=log(d−B+1)+1

x=1

)
= O(1 + logλ(d−B + 1)) .

Note that we use the assumption λ > 0.

In the case λ = 0 it instead holds that g(d) = O(log log(d−B + 1)) by setting the value of λ = 0
in the first inequality and then using the bound on the Harmonic sum.

This is not a point of discontinuity as the O(·) notation would imply. We treated λ as a constant and
derived the last equation in the above. If instead, we treat λ as a parameter, we have the following

g(d) ≤ 2

1 +

[
1

λ

(
(log(d−B + 1) + 1)λ − 1

) ]
︸ ︷︷ ︸

f(λ)


We can now evaluate the f(λ) as λ → 0 as follows: Since f(λ) as an indeterminate form and
noting that it satisfies the condition required to apply the L’Hôpital rule. Therefore, an application of
L’Hôpital rule gives us

lim
λ→0

f(λ) = lim
λ→0

d
dλ ((log(d−B + 1) + 1)λ − 1)

d
dλλ

= lim
λ→0

log(log(d−B + 1)) logλ(d−B + 1)

= log(log(d−B + 1)).

That is, we have the desired bound on the privacy expiration. This completes the proof of Theorem 4.1.

C.3.2 Accuracy proof when λ = 3/2

Recall that in the main text, we stated that for λ = 3/2, we achieve

⌊log(t−B)⌋∑
ℓ=0

b2ℓ ≤
log t∑
ℓ=0

b2ℓ = O

(
log log(t)

ε2

)
.

This follows from straightforward computation by setting λ = 3/2:

log t∑
ℓ=0

b2ℓ =

log t∑
ℓ=0

(ℓ+ 1)2(1−λ)

ε2
=

log t∑
ℓ=0

1

ε2(ℓ+ 1)
= O

(
log log(t)

ε2

)
.
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While it seems like a point of discontinuity based on what we showed in Section 4, we now show that
it is not the case. Recall the following computation in Section 4

log t∑
ℓ=0

b2ℓ =

log t∑
ℓ=0

(ℓ+ 1)2(1−λ)

ε2

≤ 1

ε2

1 +

log(t)+2∫
1

x2(1−λ)dx


≤ 1

ε2

(
1 +

[
1

3− 2λ
x3−2λ

]x=log(t)+2

x=1

)
.

Note that we did not include the last step. Now, setting the limits, we get

log t∑
ℓ=0

b2ℓ ≤ 1

ε2

(
1 +

(log(t) + 2)3−2λ − 1

3− 2λ

)
Just as in the case of the privacy proof, we can compute the limit by applying L’Hôpital rule to get
the desired expression.

C.4 Omitted Proofs from Section 5

Proof of Theorem 5.1. We define x(0) = 0T to be the 0 stream of length T . Let T ′ ≤ T such that 2C
divides T ′, and T − T ′ < 2C. Since T ≥ 2C we have T ′ ≥ 2C and T ′ ≥ T/2. We define T ′/(2C)

data sets x(1), . . . , x(T ′/(2C)) as follows:

x
(i)
t :=

{
1 t ∈ [2C(i− 1) + 1, 2Ci]

0 otherwise
.

For i ∈ [T ′/(2C)], let Si be the set of all output sequences a1, . . . , aT ∈ range(A) satisfying
a2Ci > C, and a2Ck < C for all k < i. Note that Si ∩ Sj = ∅ for i ̸= j where i, j ∈ [T ′/(2C)].
Further, since by assumption A has error at most C at all times steps with probability at least 2/3, we
have that

Pr[A(x
(i)
1 , . . . , x

(i)
t )2Ci

t=1 ∈ Si] ≥ 2/3.

Recall that x(0) and x(i)differ in exactly the positions t ∈ [2C(i− 1) + 1, 2Ci]. By the assumption
that A satisfies ε-differential privacy with expiration g,

2/3 ≤ Pr[A(x
(i)
1 , . . . , x

(i)
t )2Ci

t=1 ∈ Si]

≤ e
∑2C−1

j=0 g(j)ε Pr[A(x
(0)
1 , . . . , x

(0)
t )2Ci

t=1 ∈ Si]

= e
∑2C−1

j=0 g(j)ε Pr[A(x
(0)
1 , . . . , x

(0)
t )T

′
t=1 ∈ Si]

Now, since the Si’s are disjoint, we have

1 ≥
T ′/(2C)∑

i=1

Pr[A(x
(0)
1 , . . . , x

(0)
t )T

′
t=1 ∈ Si]

≥
T ′/(2C)∑

i=1

(2/3)e−
∑2C−1

j=0 g(j)ε

= (T ′/(2C))(2/3)e−
∑2C−1

j=0 g(j)ε.

It follows that
2C−1∑
j=0

g(j)ε ≥ log(2T ′/(6C)) ≥ log(T/6C)

completing the proof of Theorem 5.1.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All theoretical results claimed are backed up by Theorems 1.2 and 1.4, both
of which have complete proofs, and our claims about empirical results are backed up by
experiments, which can be reproduced using the code in the supplementary material. We
also believe we accurately contextualize our contribution in the existing literature.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we believe we do. For our theoretical results, the clearest limitation is
that it only holds for pure DP, not for approximate DP. We note that our techniques should
extend to zero-concentrated DP in Section 7. The other practical limitation is likely to be
whether a framework that allows for a privacy loss that increases with time is of practical
interest. We argue for its relevance in Section 1, by pointing out that (i) it exists in practice,
and, (ii) actively taking privacy expiration into account allows for better trade-offs between
privacy and error (our Theorem 1.2) than what is achieved in practice.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All our theoretical results are provided with the full set of assumptions and are
backed up by proofs, which, if not in the main part of the paper, can be found in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The full experimental setup, together with the results, is given in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code for reproducing the result is provided as a zip file containing
documentation and Python code. In particular, executing the included Jupyter Notebook
will reproduce our figures.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details provided in Section 6 should be sufficient to understand our
empirical results, which involve no training data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experiments involves exact computations of bounds on the privacy loss
for different algorithms. These computations are exact and involve no randomness, so no
error bars are necessary, and this information is stated in Section 6.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Our empirical results plots bounds on privacy loss for different algorithms, but
it does not run any of them. As the resources needed to produce the figures is not related to
actually running the algorithms considered, these resources are not of interest nor reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, our research involves no data and we otherwise conform to every other
aspect in the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work has the potential to expand the applications of differential privacy,
the societal impact of which depends on the particular use case.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not relevant to our research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We use a standard open-source Python environment for our experiments.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects are involved in our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects are involved in our paper.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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