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Abstract

Evaluating sign language generation has tradi-
tionally relied on back-translation, where gener-
ated signs are converted into text and assessed
using text-based metrics. However, this ap-
proach presents significant challenges: (i) it
leads to substantial information loss, failing
to capture the multimodal nature of sign lan-
guage—such as facial expressions, spatial struc-
ture, and prosody—and (ii) errors introduced
during back-translation propagate through the
evaluation pipeline.

In this work, we propose 4SILVERSCORE,
a novel semantically-aware embedding-based
evaluation metric that assesses sign language
generation in a joint embedding space. Our con-
tributions include: (1) identifying limitations
of existing metrics, (2) introducing SiLVER-
Score for semantically-aware evaluation, (3)
demonstrating its robustness to semantic and
prosodic variations, and (4) exploring gener-
alization challenges across datasets. SILVER-

Score offers a step toward more reliable evalua-

tion of sign language generation systems'.

1 Introduction

The ability to automatically evaluate sign language
generation is critical for advancing accessibility
and inclusion for the deaf and hard of hearing com-
munity. Accurate evaluation ensures that generated
sign language content meets the needs of users.
However, the development of impactful, fully auto-
mated systems is hindered by the lack of effective
evaluation methods (Liu et al., 2023). Ensuring
that model outputs are aligned with human expecta-
tions requires robust evaluation metrics specifically
tailored to sign language’s multimodal nature.

In this work, we introduce ¥ SILVERSCORE
(Sign Language Video Embedding Representation
Score), a novel embedding-based metric for eval-
uating sign language generation. SiLVERScore

'The GitHub link to the implementation and analysis will
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Figure 1: Comparison of evaluation methods for sign
language generation. Top: Traditional back-translation-
based metrics (e.g., BLEU, ROUGE) evaluate the gen-
erated sign by first translating it back to text, comparing
the resulting text with the reference text. This approach
ignores the actual sign and can lead to incorrect evalua-
tions. Bottom: The proposed 4SILVERSCORE uses
embedding-based similarity to directly compare the gen-
erated sign with the reference text, ensuring a more
accurate assessment of semantic alignment.

directly compares generated and reference signs
within a joint embedding space, capturing semantic
and prosodic features.

Automatically evaluating generated sign lan-
guage remains challenging due to its unique multi-
modal linguistic nature, which incorporates facial
expressions, manual markers, and spatiotemporal
relationships into its prosody, iconicity, semantics,
and pragmatics (Sandler, 2012; Liddell, 2003). Cur-
rent evaluation methods rely on back-translation
from visual to textual representations, which mis-
aligns with the visual nature of sign language and
leads to inaccuracies. While embedding-based
metrics such as BLEURT (Sellam et al., 2020),
BERTScore (Zhang* et al., 2020) and CLIPScore



(Hessel et al., 2021), have shown success in natural
language processing, they have been underexplored
for sign language evaluation. This limitation is pri-
marily due to the scarcity and domain specificity of
sign language datasets, which restrict the generaliz-
ability of sign embeddings. Our hypothesis is that
these data limitations prevent the effective transfer
of embedding-based metrics to sign language eval-
uation. To address this, we design SiLVERScore to
be adaptable to individual datasets, ensuring robust
evaluation despite limited data availability. This ap-
proach leads us to ask: Can embedding-based met-
ric offer a better alternative for evaluating sign lan-
guage generation compared to back-translation?
Our work makes the following contributions:

1. We survey existing evaluation metrics for sign
language generation and highlight their limi-
tations (§ 2).

2. We introduce SiLVERScore, a novel
semantically-aware embedding-based metric
for evaluating sign language generation in a
joint embedding space (§ 3).

3. We conduct prosodic and semantic tests to
demonstrate that SILVERScore outperforms
traditional metrics, showing robustness to
word reordering and prosodic variations (§ 4.2,
§ 4.3).

4. We perform a case study on generalization, the
challenges of applying sign language models
across different datasets and domains (§ 5).

2 Survey of Evaluation Metrics for Sign
Language Processing

The evaluation of sign language generation sys-
tems has traditionally relied on back-translation ap-
proaches, first introduced by Camgoz et al. (2018).
In these methods, a sign language translation model
(typically trained by the authors) is used to con-
vert the generated signs into text for evaluation.
However, the absence of a standardized sign-to-
text translation system complicates this approach,
introducing unknown error propagation.

To address these issues, researchers have pro-
posed several multimodal metrics. For instance,
Dynamic Time Warping Mean Joint Error (Huang
et al., 2021) aligns generated and ground truth
poses to measure spatial-temporal accuracy and
compute the mean joint error. While effective
for motion similarity, it penalizes valid linguis-
tic variations that differ in pose but maintain se-
mantic meaning. Similarly, Fréchet Gesture Dis-

tance (Yoon et al., 2020), Fréchet Video Distance
(Unterthiner et al., 2019), Fréchet Inception Dis-
tance (Heusel et al., 2017) compare gesture distri-
butions but focus on physical similarity rather than
semantics (Hwang et al., 2022; Xie et al., 2024;
Hwang et al., 2024; Dong et al., 2024). In a visual-
spatial SignWriting domain, signwriting-evaluation
(Moryossef et al., 2024) was proposed as a metric
designed for this by using its novel symbol dis-
tance metric using the Hungarian algorithm (Kuhn,
1955). A sign language translation metric, Sign-
BLEU (Kim et al., 2024) aims to mitigate the sig-
nificant information loss due to the simplification to
a single sequence of text for evaluation. However,
despite its improvements, both remain confined to
the text-realm.

Embedding-based methods are promising due to
their ability to capture multimodal elements and
eliminate errors introduced by back-translation. Ex-
isting sign language embeddings, such as Sign-
CLIP (Jiang et al., 2024), offer a foundation for
embedding-based evaluation. However, they have
not yet been widely adopted for evaluating sign
language generation. This paper aims to bridge this
gap by introducing and validating a semantically
aware embedding-based evaluation metric tailored
to sign language generation.

3 “%SILVERSCORE

The objective of SILVERScore is to evaluate gener-
ated sign language videos without requiring a ref-
erence video. This evaluation measures the align-
ment between a sign video and its corresponding
text by comparing their similarity in a shared joint
embedding space, trained to capture multimodal
relationships. The similarities are computed using
CiCo (Cheng et al., 2023), a model that leverages
contrastive learning to align video and text repre-
sentations. This approach addresses the alignment
issues discussed in § 5 by using a sliding window
mechanism to localize alignment between modali-
ties.

We employ CiCo due to its framework that:
(i) formulates sign language retrieval as a cross-
lingual retrieval task; (ii) demonstrates state-of-the-
art performance on benchmarks such as PHOENIX-
2014T, CSL-Daily, and How2Sign; (iii) avoids re-
liance on pose estimation tools, eliminating depen-
dency on pose extraction quality; and (iv) provides
accessible code for implementation.



Model Details. The sign encoder processes sign
videos using a sliding window mechanism to gener-
ate embeddings. This approach enables the model
to handle continuous video streams without requir-
ing explicit segmentation at test time. This en-
coder combines domain-agnostic features, captured
by a pre-trained 13D network (Varol et al., 2021)
on BSL-1K, with domain-aware features from the
same network fine-tuned on PHOENIX-14T. The
features are weighted and fused before being fed
into a 12-layer Transformer initialized with CLIP’s
ViT-B encoder. The corresponding text is lower-
cased, byte pair encoded, and translated into En-
glish using Google Translate to align with the CLIP
pretraining. The video and text embeddings are
aligned through a contrastive learning objective
with the InfoNCE loss. CiCo aligns video and text
embeddings through a contrastive learning objec-
tive based on InfoNCE loss, which maximizes the
similarity of matched video-text pairs while min-
imizing the similarity of unmatched pairs. This
alignment is performed both globally across en-
tire videos and texts and locally by retaining fine-
grained mappings between video segments and in-
dividual text tokens. The resulting embeddings
represent a semantically rich and temporally aware
shared space that effectively captures the relation-
ships between sign videos and their corresponding
text annotations.

Global Similarity Calculation Global similarity
is derived from a fine-grained similarity matrix
E € RM*L;

E(i,j) = S;- W}, (1)

where S; € RP and W; e RP represent video clip
and word embeddings, respectively. To emphasize
similarities, softmax re-weighting is applied:

E'(i,j) = Softmax(E(i, 7)) - E(i,7). (2)

Row-wise summation followed by averaging yields
the video-to-text similarity Zy o7, while column-
wise operations yield the text-to-video similarity
Zrav.

In the implementation, the Zy o7 and Zz 9y sim-
ilarities are equally weighted in the loss function.
This equal weighting ensures that the global align-
ment of video-to-text and text-to-video pairs is
equivalent, making it sufficient to use either Zy o
or Zroy as the similarity metric. Without loss of
generality, we use Zy o7 for our similarity metric.

Scaling for Interpretability To ensure compa-
rability with metrics like BLEU and ROUGE, we
follow a similar approach to CLIP-Score by scal-
ing the embeddings with a weighting factor of 3,
expanding the score distribution range to [0,100].

4 Experiments

To evaluate the effectiveness of SILVERScore, we
conduct multiple experiments to assess the perfor-
mance compared to back-translation methods.

Dataset PHOENIX-14T dataset (Camgoz et al.,
2018) is widely recognized as the benchmark
dataset for sign language generation (Saunders
et al., 2020, 2021; Viegas et al., 2023; Inan et al.,
2022). It consists of German Sign Language
weather forecast videos segmented into sentences,
accompanied by corresponding German transcripts
and sign-gloss annotations. The dataset includes
7,096 training samples, 519 validation samples,
and 642 testing samples, recorded from 9 different
signers.

Translation Model For the back translation
model, we use the multi-stream keypoint attention
network proposed by Guan et al., 2024, due to
its state-of-the-art performance in sign language
translation task of PHOENIX-14T dataset. This
approach minimizes the error propagation caused
by inaccuracies back translation.

Metrics We evaluate the quality of back-
translated text using both rule-based and
embedding-based metrics. For rule-based evalua-
tion, we compute BLEU scores with sacreBLEU
(Post, 2018) and ROUGE scores. For embedding-
based evaluation, we use BLEURT (specifically
BLEURT-20, Pu et al., 2021) and BERTScore
(using the bert-base-multilingual-cased
model to accommodate the German dataset;
(Zhang* et al., 2020)). These metrics provide a
benchmark for assessing the alignment quality
of SiLVERScore in comparison to traditional
back-translation evaluation methods.

4.1 Which metric can better distinguish
between correct and incorrect video-text
pairs?

4.1.1 Distribution of Metric Scores

To qualitatively evaluate the performance of dif-
ferent metrics, we analyze the kernel density plots
in Figure 2. These plots illustrate the distribution
of scores for correctly matched video-text pairs
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Figure 2: Kernel Density Plots for different metrics. Top row (left to right, rule-based metrics): BLEU-2, BLEU-3,
ROUGE. Bottom row (left to right, embedding-based metrics): BERTScore, BLEURT, SiLVERScore. The blue
curve represents the distribution of scores for matching indices (aligned pairs), while the orange curve represents
different indices (misaligned pairs). SiLVERScore exhibits a clear separation between the two distributions,
indicating a strong ability to distinguish aligned from misaligned pairs. In contrast, BLEU and ROUGE metrics
show more overlap, reflecting their sensitivity to surface-level variations.

(blue curve) and randomly paired samples (

). SiLVERScore shows a clear separation
between the two distributions, with minimal over-
lap. This indicates its strong ability to distinguish
aligned pairs from misaligned ones. In contrast,
BLEU-2 exhibit significant overlap, particularly
for lower score ranges, suggesting reduced discrim-
inative power for this task. Similarly, the ROUGE
plot shows partial separation but retains overlap be-
tween the two distributions. The BERTScore and
BLEURT plots show improved separation com-
pared to BLEU and ROUGE but still exhibit some
overlap. The sharp distinction and density clus-
tering of scores in the SILVERScore plot indicate
its effectiveness in capturing semantic alignment
between video and text representations. The rest of
the plots are in the Appendix A.

4.1.2 Quantifying overlap and separability

To complement the qualitative insights from the
kernel density plots, we quantify the ability of each
metric to distinguish between correctly aligned and
randomly paired samples using overlap percentage
and ROC AUC (Receiver Operating Characteristic
Area Under the Curve). The results are summarized
in Table 1.

Overlap percentage Overlap percentage mea-
sures how much the distributions of scores for cor-
rect and random pairs intersect. Lower overlap
percentages indicate better discriminative power.
Lower overlap percentages indicate better discrimi-
native power.

Metric Overlap (%) ROC AUC
BLEU-1 53.74 0.95
BLEU-2 26.48 0.90
BLEU-3 38.94 0.81
BLEU-4 55.45 0.72
ROUGE 49.84 0.95
BERTScore 47.82 0.97
BLEURT 65.11 0.95
SiLVERScore 34.89 0.99

Table 1: Comparison of Overlap Percentages and ROC
AUC for Various Metrics. SILVERScore achieves the
best overall performance with a low overlap of 34.89%
and a high ROC AUC of 0.99.

Since each metric operates on a different scale,
we applied Min-Max normalization to scale all met-
rics to the [0,1] range for a fair comparison.

From Table 1, BLEU-2 achieves the lowest over-
lap percentage (26.4798%). However, as observed
in the kernel density plots, this low overlap does
not translate to effective separability due to the
dispersed and overlapping nature of the BLEU-2
distributions. SiLVERScore, with an overlap per-
centage of 34.8910%, shows clear separation in
the density plots. The distributions are narrow and
well-clustered, making the overlap region small
and localized.

ROCAUC ROC AUC measures the metric’s abil-
ity to distinguish between the two distributions.
Higher ROC AUC values indicate better separabil-
ity, with a maximum value of 1.0. SILVERScore



achieves the highest ROC AUC of 0.9934, sug-
gesting its superior performance in distinguishing
aligned pairs. Despite BLEU-2 having a low over-
lap percentage, its ROC AUC is lower (0.9017)
than SiLVERScore, confirming that its distributions
are not well-separated. Overall, the results show
that learned embedding-based metrics (SiLVER-
Score, BERTScore, BLEURT) outperform rule-
based metrics in distinguishing between correctly
aligned and misaligned video-text pairs.

4.2 Which metric captures semantic
distinctions through targeted changes in
the input?

4.2.1 Reordering

Rule-based metrics (BLEU and ROUGE) are inher-
ently sensitive to the exact ordering of words, even
when the overall meaning remains unchanged. To
demonstrate this sensitivity, we designed an experi-
ment where GPT-40 was used to reorder the words
in sentences while preserving their meaning. The
exact prompt provided to GPT-40 was:

Reorder the words in the following sen-

tence while keeping the meaning the

same: {text} Reordered sentence:

Kernel density plot The kernel density plot (Fig-
ure 3) illustrates how different metrics respond to
surface-level changes, specifically word reordering,
while preserving the semantic meaning. SiILVER-
Score exhibits the highest score distribution, sug-
gesting its robustness to reordering and its ability
to capture semantic content. In contrast, BLEU
and ROUGE display sharp peaks and narrower dis-
tributions concentrated in the lower score range.
This pattern exhibits a clear distinction between
rule-based and embedding-based metrics.

Quantifying overlap and separability In this
experiment, the scores are computed by compar-
ing the ground-truth references with their corre-
sponding hypotheses. While these hypotheses may
contain errors, they represent the best available ap-
proximations of the ground truth. By computing
the ROC AUC between reordered pairs and ref-
erence pairs, we measure each metric’s ability to
distinguish between semantically similar and dis-
similar pairs. Lower ROC AUC values indicate that
the metric maintains its scores despite reordering,
reflecting robustness to surface-level variations.
From Table 2, we observe that BLEU and
ROUGE show significant drops in overlap percent-
ages and higher ROC AUC values, indicating their

Kernel Density Estimate (KDE) of Reordered Evaluation Metrics
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Figure 3: Kernel Density Estimate (KDE) plot compar-
ing the score distributions of different evaluation met-
rics when applied reordered hypotheses. SILVERScore,
BERTScore, and BLEURT show broader distributions
and higher overlap, while rule-based metrics such as
BLEU and ROUGE exhibit sharp peaks at lower scores.
This indicates their sensitivity to surface-level word or-
der changes.

sensitivity to word order. In contrast, SILVERScore
achieves the highest overlap (83.49%) and a rela-
tively low ROC AUC (0.60), suggesting it better
maintains robustness to reordering.

It is important to note that the original distribu-
tion contains errors, which may affect the Overlap
and ROC AUC values for all metrics. This could
explain why SiLVERScore’s ROC AUC is slightly
higher than those of other embedding-based met-
rics.

Metric Overlap (%) ROC AUC
BLEU-1 64.49 0.65
BLEU-2 71.50 0.63
BLEU-3 66.98 0.65
BLEU-4 69.47 0.63
ROUGE 67.45 0.67
BERTScore 78.19 0.55
BLEURT 81.31 0.47
SiLVERScore 83.49 0.60

Table 2: Overlap % and ROC AUC values for different
metrics when comparing original and reordered sen-
tence pairs. Embedding-based metrics maintain higher
overlaps and lower ROC AUC values, suggesting that
they capture semantic equivalences more effectively.

4.3 Which metric can evaluate multimodal
and pragmatic aspects like prosody more
effectively?

4.3.1

Sign languages rely heavily on prosodic markers
such as facial expressions, pauses, and intensity to

Motivation and Setup
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Figure 4: Box plots showing the distribution of SILVERScore, BLEU-1, and ROUGE scores across three prosody
intensity categories (No Intensity, Low Intensity, and High Intensity). While SILVERScore remains stable across all
categories, indicating robustness to prosodic variations, both BLEU-1 and ROUGE exhibit a noticeable decline in
scores as prosody intensity increases. This drop suggests that BLEU-1 and ROUGE are sensitive to prosodically-rich
sentences, which results in lower scores and higher variability in the High Intensity category.

convey meaning. Evaluating the robustness of met-
rics to prosodic variations is critical, as traditional
back-translation-based methods often fail to cap-
ture such multimodal cues. We build on the work of
Inan et al., 2022, which provided human-annotated
token-level prosody intensities for the PHOENIX-
14T dataset. These annotations classify tokens into
three distinct prosodic levels: (i) no intensity: 0,
indicating the absence of prosodic markers; (ii) low
intensity: 1, reflecting a low degree of intensity
markers; and (iii) high intensity: 2, representing
high-degree intensity markers.

Sentence level prosody We define sentence in-
tensity as the sum of the intensity levels of its
tokens, I = Z?Zl t;, where t; is the intensity
of token 7. Sentences are categorized into three
prosody levels: No Intensity I = 0, Low Intensity
1 < I <4, and High Intensity I > 5.

Prosody level distribution The dataset exhibits
the following distribution of sentences across these
prosody categories: 328 sentences (51.09%) fall
under No Intensity, 238 sentences (37.07%) under
Low Intensity, and 76 sentences (11.84%) under
High Intensity. This distribution indicates that the
majority of sentences either lack prosodic mark-
ers or exhibit low levels of prosody, while highly
expressive sentences are comparatively rare.

4.3.2 Distribution of Scores Across Prosody
Categories

To analyze the impact of prosody on evaluation
metrics, we categorized sentences based on the
sentence-level intensity sums defined earlier. Fig-

ure 4 shows the distributions of SiLVERScore,
BLEU-1, and ROUGE scores across the categories.

SiLVERScore Stability SiLVERScore remains
consistent across the three prosody categories,
showing minimal variation in median and interquar-
tile range. This demonstrates that SILVERScore
effectively evaluates semantic alignment without
being influenced by prosodic intensity.

BLEU-1 and ROUGE Sensitivity BLEU-1 and
ROUGE scores decline with increasing prosody
intensity, with median scores for High Intensity
significantly lower than for No Intensity. This
trend indicates that these metrics struggle with
prosodically-rich sentences.

Score Variability Both BLEU-1 and ROUGE
display higher variability in the High Intensity cat-
egory, suggesting inconsistent performance in eval-
uating expressive signing.

4.4 Correlation with Prosodic Intensity

As shown in Table 3, traditional back-translation-
based metrics (BLEU and ROUGE) exhibit signif-
icant negative correlations with prosody intensity
(e.g., BLEU-4: -0.200, p = 3.31 x 1077), reflect-
ing their vulnerability to prosodic variations. This
behavior reflects the limitations of traditional met-
rics, which depend on surface-level text alignment
and are vulnerable to information loss during back
translation.

In contrast, SILVERScore exhibits no significant
correlation with prosody intensity (correlation: -
0.004, p = 0.9277), indicating its robustness to



Metric Correlation p-value
BLEU-1 -0.160 <0.01
BLEU-2 -0.178 <0.01
BLEU-3 -0.191 <0.01
BLEU-4 -0.200 <0.01
ROUGE -0.179 <0.01
BERTScore -0.144 <0.01
BLEURT -0.101 0.01
SiLVERScore -0.004 0.93

Table 3: Pearson Correlation and p-value of metrics with
sentence-level prosody intensity. BLEU and ROUGE
exhibit significant negative correlations with prosody in-
tensity, while SILVERScore demonstrates no significant
correlation.

prosodic variations. This robustness suggests Sil-
VERScore’s ability to evaluate semantic alignment
without being influenced by expressive elements.

5 The Generalization Problem

While evaluation metrics are expected to generalize
across diverse datasets, this remains a significant
challenge in sign language processing due to the
limited size and diversity of available datasets. As
highlighted by Jiang et al. (2024), one of the largest
sign language dataset, SpreadtheSign, contains
only 456,913 examples, which is orders of magni-
tude smaller than datasets in related domains (e.g.,
400M examples for CLIP and 136M for Video-
CLIP). In this section, we empirically demonstrate
that even SignCLIP, the largest contrastive learning
model to date, struggles with generalization at the
token level.

5.1 Empirical Evidence of Limited
Generalization

5.1.1 Token Level Generalization

We evaluated SignCLIP on ASL Citizen (Desai
et al., 2024) and ASL Signs (Chow et al., 2023).
The results show that SignCLIP’s generalization
capability is limited without fine-tuning. (Descrip-
tions of these datasets can be found in Appendix E.)

Figure 5 illustrates the cosine similarity between
video and text embeddings. Ideally, high similar-
ity values should appear along the diagonal, in-
dicating alignment between corresponding video-
text pairs. Before fine-tuning, the heatmaps dis-
play low, diffuse similarity scores, indicating poor
video-text alignment. Fine-tuning significantly
improves alignment, indicating the necessity of

dataset-specific adaptation. A similar trend is ob-
served for ASL Signs (figures in Appendix B).

5.1.2 Sentence Level Generalization

We evaluated SignCLIP’s sentence-level gener-
alization on the WMTSLT Focus News Corpus
(Mathias et al., 2022). (A description of this dataset
is available in Appendix E.) Despite fine-tuning,
SignCLIP struggles to achieve strong results (R@1
=0.0436). Heatmaps (Figure 5) reveal diffuse pat-
terns before fine-tuning and overfitting after, due to
the dataset’s limited size (9000 instances).

5.1.3 Token Level Language Specific
Generalization

To investigate the effect of data size on general-
ization, we fine-tuned SignCLIP using combined
training samples from ASL Signs and SemLex
datasets. Despite this, SignCLIP fails to gener-
alize effectively to ASL Citizen (R@5 = 0.0005).
Even when training on all three datasets, the test
set performance on ASL Citizen did not improve
significantly. This suggests that dataset-specific
characteristics influence performance even when
substantial training data is available.

5.1.4 Representation Density

Ye et al., 2024 indentified a representation density
problem, where the semantic visual representations
of different sign gestures tend to be closely clus-
tered together, making them hard to distinguish.
The proposed contrastive learning strategy, SignCL,
encourages the learning of discriminative feature
representations. However, applying SignCL to our
data yielded limited improvement in retrieval re-
sults (R@1 = 9.11E-05), compared to (R@1 =
3.04E-05) with vanilla contrastive learning.

5.1.5 Data Augmentation

Data augmentation is a commonly employed tech-
nique to improve model generalization, especially
in domains with limited data. To this end, we exper-
imented with several data augmentation strategies
including: spatial 2D augmentation, temporal aug-
mentation, and Gaussian noise on keypoints (Jiang
et al., 2024). Results show negligible gains (R@1
= 0 with 2D-aug; 6.07E-05 with temporal augmen-
tation), highlighting the limitations of conventional
augmentation techniques in enhancing generaliza-
tion. This suggests that limited dataset diversity
and the complexity of visual sign representations
cannot be fully addressed through conventional
augmentation techniques alone.



Fine-tuned on Tested on  SignCL Data Aug R@1 R@5 R@10
Token Level (§ 5.1.1)

- Citizen - - 0.0014 0.0061 0.0112
Citizen Citizen - - 0.0639 0.2710  0.4392
Sentence Level (§ 5.1.2)

WMTSLT WMTSLT - - 0.0037 0.0175  0.0323
Token Level Language Specific (§ 5.1.3)

Signs, SemLex Citizen - - 3.04E-05  0.0005 0.0008
Citizen, Signs, SemLex Citizen - - 0.0436 0.1764 0.2878
With SignCL (§ 5.1.4)

Signs, SemLex Citizen v’ - 9.11E-05  0.0005 0.0009
With Data Augmentation (§ 5.1.5)

Signs, SemLex Citizen - 2D-aug, Gaussian 0 0.0002  0.0006
Signs, SemLex Citizen - Temporal 6.07E-05 9.11E-05 0.0003

Table 4: Text-to-Video Retrieval results and generalization across datasets. Results are shown for different fine-
tuning datasets, test datasets, and configurations with or without data augmentation.

ASL Citizen (w/o finetuning) ASL Citizen (w/ finetuning)

Text Index

Video Index Video Index

Text Index

WMTSLT (w/o finetuning)

WMTSLT (w/ fmetunlng)
| Y

1 lim
Video Index Video Index

Figure 5: Heatmaps of SignCLIP embeddings cosine similarity scores for two datasets: ASL Citizen (token level)
and WMTSLT (sentence level). Left: Finetuning increases alignment, as indicated by the clearer diagonal line.
Right: After finetuning, the model appears to overfit, assigning high similarity scores to many pairs.

5.2 How SiLVERScore Addresses
Generalization Challenges

Our findings from the experiments suggest the idea
that, given the current constraints in data availabil-
ity, tailoring metrics to specific datasets is neces-
sary to create alignment between text and sign.
We proposed a dataset-specific evaluation metric
designed to leverage the strengths of embedding-
based methods while addressing the constraints of
current sign language datasets. By optimizing for
specific domains and datasets, we can achieve more
reliable evaluations and better alignment with the
linguistic and multimodal nature of sign language.

6 Conclusion

Through the introduction of SiLVERScore, we
demonstrated the empirical strengths of embedding-
based methods, including robustness to semantic
variation, prosodic intensity, and a more holistic
multimodal evaluation. Our results show that Sil-
VERScore can overcome limitations of traditional

back-translation metrics.

SiLVERScore has the potential to reshape sign
language evaluation standards by advancing acces-
sibility for the Deaf community and promoting
inclusivity in language technologies. Its robust-
ness and semantic sensitivity make it well-suited
for broader challenges in multimodal NLP, such as
cross-lingual evaluation and integration with video
generation models. To support open research and
encourage further advancements, we release the
code for SILVERScore’s analysis and computation.

Future efforts should integrate insights from
computer graphics, such as improved modeling of
spatial relationships and prosody in sign language,
to further refine embedding-based methods. In-
corporating richer multimodal features, including
gesture dynamics and temporal coherence, could
enhance the evaluation of expressive and context-
dependent signing. Additionally, addressing the
scarcity of diverse, large-scale datasets remains
critical for improving model generalization.



7 Limitations

While the proposed metric, SILVERScore, demon-
strates strong empirical performance, this work has
several limitations. One significant limitation is the
absence of human evaluation. Although SiLVER-
Score shows clear advantages over traditional meth-
ods using back translation, it remains crucial to
validate its alignment with human judgments. Hu-
man evaluators could provide insights into whether
the metric effectively captures the semantic and
linguistic aspects of generated sign language. Ad-
dressing this limitation will be a focus of future
work.

Another limitation is the reliance on the
PHOENIX-14T dataset, which centers on Ger-
man Sign Language within the specific domain
of weather forecasts. This narrow scope restricts
the generalizability of SILVERScore to other sign
languages, domains, or datasets with broader se-
mantic and linguistic diversity. Although we show
how to adapt the embedding-based evaluation ap-
proach to a particular dataset, following similar
data-specific adaptation procedures could allow the
creation of comparable metrics for other sign lan-
guage datasets as well.

The approach’s reliance on translating textual
annotations into English for alignment with CLIP
embeddings poses challenges in multilingual sce-
narios. This reliance assumes that translation into
English is both feasible and accurate, which may
not hold in contexts involving less commonly stud-
ied languages with limited resources for translation.

Additionally, our current evaluation focuses on
sentence-level retrieval, which overlooks the con-
textual dependencies and references made in prior
sentences, as noted by Tanzer et al. (2024). Sign
language often relies heavily on discourse-level
context, and evaluating only at the sentence level
may not fully capture these contexts.

Finally, while the results show that prosody does
not degrade SiLVERScore’s performance, this does
not imply that the metric explicitly models prosody.
Future research should investigate how to incor-
porate explicit prosodic modeling into evaluation
metrics to better capture the expressive nuances of
sign language.

Potential Risks. Adopting embedding-based
metrics can inadvertently inherit biases, stereo-
types, or inaccuracies from the underlying training
data and models. If the pre-trained embeddings
contain demographic, cultural, or linguistic biases,

these may influence evaluations and potentially dis-
advantage certain signers or signing styles. More-
over, inaccuracies introduced at the text-annotation
stage could propagate through the metric, reinforc-
ing incorrect assessments. Finally, the metric’s
reliance on English textual embeddings and spe-
cific datasets may inadvertently privilege certain
languages and cultures.
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A Kernel Density Plots
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Figure 6: Kernel density plots for BLEU-1 (top) and
BLEU-4 (bottom).

B Heatmaps

Figure 7 shows a heatmap of SignCLIP embedding
cosine similarity scores for the ASL Signs dataset.
A sharper diagonal pattern on the right indicates
increased alignment between sign embeddings and
their corresponding references.

C Training Details

Hardware and Compute All training and infer-
ence computations were performed on an NVIDIA
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ASL Signs (w/ finetuning)

= = m—

Text Index

Video Index

Video Index

Figure 7: Heatmaps of SignCLIP embeddings cosine
similarity scores for ASL Signs.

A100 GPU with 80GB of GPU memory. The ex-
periments were conducted on a Linux-based server
environment equipped with 8 CPU cores.

SignCLIP Fine-Tuning Fine-tuning the Sign-
CLIP model on American Sign Language (ASL)
datasets took the longest (approximately 4 hours).
Fine-tuning was conducted using a batch size of
256, a maximum length of 64, Adam optimizer
with 51 = 0.9, B2 = 0.98, and a gradient clipping
norm of 2.0. Training involved 1,000,000 total
updates and a warm-up phase over the first 122
updates. Up to 25 epochs were run with 1000 steps
for monitoring.

Sign Language Translation (MSKA) Inference
Inference with the MSKA model for sign language
translation completed in under 10 minutes. Pre-
trained weights from Guan et al., 2024 were used
without further fine-tuning.

Code and Configuration Files All code and con-
figuration files necessary to reproduce the results
(including model parameters, optimizer settings,
and data preprocessing scripts) will be released via
our GitHub repository upon paper acceptance.

D Prosody Boxplots

Figure 8 on the following page illustrates how vari-
ous evaluation metrics distribute across sentences
with different levels of prosodic intensity (No In-
tensity, Low Intensity, and High Intensity).

E Dataset Specifications

Table 5 summarizes the datasets used for our exper-
iments in § 5, covering American Sign Language
(ASL) and Swiss German Sign Language (DSGS).
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Figure 8: Box plots showing the distribution of BLEU-2, BLEU-3, BLEU-4, BERTScore, and BLEURT scores
across three prosody intensity categories (No Intensity, Low Intensity, and High Intensity). Traditional back-
translation metrics (BLEU) and embedding-based metrics (BERTScore and BLEURT) show a decline in scores

with increasing prosody intensity

Dataset Language Level # of Samples (Train/Val/Test) # of Signers

ASL Signs ASL Token Level 85,031/4,723 /4,723 100+ Signers
SemLex ASL Token Level 51,029/ 18,025/ 15,514 119 deaf signers
ASL Citizen ASL Token Level 40,154 /10,304 / 32,941 52 deaf/hard-of-hearing
WMTSLT DSGS Sentence Level 9172 /470 / 494* 12 deaf signers

Table 5: Overview of the datasets used in our evaluations. For the WMTSLT dataset, the train/validation/test split
was generated by the authors, as the original dataset provided by the challenge did not include a predefined test set.
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