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Abstract
Evaluating sign language generation has tradi-001
tionally relied on back-translation, where gener-002
ated signs are converted into text and assessed003
using text-based metrics. However, this ap-004
proach presents significant challenges: (i) it005
leads to substantial information loss, failing006
to capture the multimodal nature of sign lan-007
guage—such as facial expressions, spatial struc-008
ture, and prosody—and (ii) errors introduced009
during back-translation propagate through the010
evaluation pipeline.011

In this work, we propose SILVERSCORE,012
a novel semantically-aware embedding-based013
evaluation metric that assesses sign language014
generation in a joint embedding space. Our con-015
tributions include: (1) identifying limitations016
of existing metrics, (2) introducing SiLVER-017
Score for semantically-aware evaluation, (3)018
demonstrating its robustness to semantic and019
prosodic variations, and (4) exploring gener-020
alization challenges across datasets. SiLVER-021
Score offers a step toward more reliable evalua-022
tion of sign language generation systems1.023

1 Introduction024

The ability to automatically evaluate sign language025

generation is critical for advancing accessibility026

and inclusion for the deaf and hard of hearing com-027

munity. Accurate evaluation ensures that generated028

sign language content meets the needs of users.029

However, the development of impactful, fully auto-030

mated systems is hindered by the lack of effective031

evaluation methods (Liu et al., 2023). Ensuring032

that model outputs are aligned with human expecta-033

tions requires robust evaluation metrics specifically034

tailored to sign language’s multimodal nature.035

In this work, we introduce SILVERSCORE036

(Sign Language Video Embedding Representation037

Score), a novel embedding-based metric for eval-038

uating sign language generation. SiLVERScore039

1The GitHub link to the implementation and analysis will
be disclosed after the review process to maintain anonymity.

Figure 1: Comparison of evaluation methods for sign
language generation. Top: Traditional back-translation-
based metrics (e.g., BLEU, ROUGE) evaluate the gen-
erated sign by first translating it back to text, comparing
the resulting text with the reference text. This approach
ignores the actual sign and can lead to incorrect evalua-
tions. Bottom: The proposed SILVERSCORE uses
embedding-based similarity to directly compare the gen-
erated sign with the reference text, ensuring a more
accurate assessment of semantic alignment.

directly compares generated and reference signs 040

within a joint embedding space, capturing semantic 041

and prosodic features. 042

Automatically evaluating generated sign lan- 043

guage remains challenging due to its unique multi- 044

modal linguistic nature, which incorporates facial 045

expressions, manual markers, and spatiotemporal 046

relationships into its prosody, iconicity, semantics, 047

and pragmatics (Sandler, 2012; Liddell, 2003). Cur- 048

rent evaluation methods rely on back-translation 049

from visual to textual representations, which mis- 050

aligns with the visual nature of sign language and 051

leads to inaccuracies. While embedding-based 052

metrics such as BLEURT (Sellam et al., 2020), 053

BERTScore (Zhang* et al., 2020) and CLIPScore 054
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(Hessel et al., 2021), have shown success in natural055

language processing, they have been underexplored056

for sign language evaluation. This limitation is pri-057

marily due to the scarcity and domain specificity of058

sign language datasets, which restrict the generaliz-059

ability of sign embeddings. Our hypothesis is that060

these data limitations prevent the effective transfer061

of embedding-based metrics to sign language eval-062

uation. To address this, we design SiLVERScore to063

be adaptable to individual datasets, ensuring robust064

evaluation despite limited data availability. This ap-065

proach leads us to ask: Can embedding-based met-066

ric offer a better alternative for evaluating sign lan-067

guage generation compared to back-translation?068

Our work makes the following contributions:069

1. We survey existing evaluation metrics for sign070

language generation and highlight their limi-071

tations (§ 2).072

2. We introduce SiLVERScore, a novel073

semantically-aware embedding-based metric074

for evaluating sign language generation in a075

joint embedding space (§ 3).076

3. We conduct prosodic and semantic tests to077

demonstrate that SiLVERScore outperforms078

traditional metrics, showing robustness to079

word reordering and prosodic variations (§ 4.2,080

§ 4.3).081

4. We perform a case study on generalization, the082

challenges of applying sign language models083

across different datasets and domains (§ 5).084

2 Survey of Evaluation Metrics for Sign085

Language Processing086

The evaluation of sign language generation sys-087

tems has traditionally relied on back-translation ap-088

proaches, first introduced by Camgoz et al. (2018).089

In these methods, a sign language translation model090

(typically trained by the authors) is used to con-091

vert the generated signs into text for evaluation.092

However, the absence of a standardized sign-to-093

text translation system complicates this approach,094

introducing unknown error propagation.095

To address these issues, researchers have pro-096

posed several multimodal metrics. For instance,097

Dynamic Time Warping Mean Joint Error (Huang098

et al., 2021) aligns generated and ground truth099

poses to measure spatial-temporal accuracy and100

compute the mean joint error. While effective101

for motion similarity, it penalizes valid linguis-102

tic variations that differ in pose but maintain se-103

mantic meaning. Similarly, Fréchet Gesture Dis-104

tance (Yoon et al., 2020), Fréchet Video Distance 105

(Unterthiner et al., 2019), Fréchet Inception Dis- 106

tance (Heusel et al., 2017) compare gesture distri- 107

butions but focus on physical similarity rather than 108

semantics (Hwang et al., 2022; Xie et al., 2024; 109

Hwang et al., 2024; Dong et al., 2024). In a visual- 110

spatial SignWriting domain, signwriting-evaluation 111

(Moryossef et al., 2024) was proposed as a metric 112

designed for this by using its novel symbol dis- 113

tance metric using the Hungarian algorithm (Kuhn, 114

1955). A sign language translation metric, Sign- 115

BLEU (Kim et al., 2024) aims to mitigate the sig- 116

nificant information loss due to the simplification to 117

a single sequence of text for evaluation. However, 118

despite its improvements, both remain confined to 119

the text-realm. 120

Embedding-based methods are promising due to 121

their ability to capture multimodal elements and 122

eliminate errors introduced by back-translation. Ex- 123

isting sign language embeddings, such as Sign- 124

CLIP (Jiang et al., 2024), offer a foundation for 125

embedding-based evaluation. However, they have 126

not yet been widely adopted for evaluating sign 127

language generation. This paper aims to bridge this 128

gap by introducing and validating a semantically 129

aware embedding-based evaluation metric tailored 130

to sign language generation. 131

3 SILVERSCORE 132

The objective of SiLVERScore is to evaluate gener- 133

ated sign language videos without requiring a ref- 134

erence video. This evaluation measures the align- 135

ment between a sign video and its corresponding 136

text by comparing their similarity in a shared joint 137

embedding space, trained to capture multimodal 138

relationships. The similarities are computed using 139

CiCo (Cheng et al., 2023), a model that leverages 140

contrastive learning to align video and text repre- 141

sentations. This approach addresses the alignment 142

issues discussed in § 5 by using a sliding window 143

mechanism to localize alignment between modali- 144

ties. 145

We employ CiCo due to its framework that: 146

(i) formulates sign language retrieval as a cross- 147

lingual retrieval task; (ii) demonstrates state-of-the- 148

art performance on benchmarks such as PHOENIX- 149

2014T, CSL-Daily, and How2Sign; (iii) avoids re- 150

liance on pose estimation tools, eliminating depen- 151

dency on pose extraction quality; and (iv) provides 152

accessible code for implementation. 153
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Model Details. The sign encoder processes sign154

videos using a sliding window mechanism to gener-155

ate embeddings. This approach enables the model156

to handle continuous video streams without requir-157

ing explicit segmentation at test time. This en-158

coder combines domain-agnostic features, captured159

by a pre-trained I3D network (Varol et al., 2021)160

on BSL-1K, with domain-aware features from the161

same network fine-tuned on PHOENIX-14T. The162

features are weighted and fused before being fed163

into a 12-layer Transformer initialized with CLIP’s164

ViT-B encoder. The corresponding text is lower-165

cased, byte pair encoded, and translated into En-166

glish using Google Translate to align with the CLIP167

pretraining. The video and text embeddings are168

aligned through a contrastive learning objective169

with the InfoNCE loss. CiCo aligns video and text170

embeddings through a contrastive learning objec-171

tive based on InfoNCE loss, which maximizes the172

similarity of matched video-text pairs while min-173

imizing the similarity of unmatched pairs. This174

alignment is performed both globally across en-175

tire videos and texts and locally by retaining fine-176

grained mappings between video segments and in-177

dividual text tokens. The resulting embeddings178

represent a semantically rich and temporally aware179

shared space that effectively captures the relation-180

ships between sign videos and their corresponding181

text annotations.182

Global Similarity Calculation Global similarity183

is derived from a fine-grained similarity matrix184

E ∈ RM×L:185

E(i, j) = Si ·W T
j , (1)186

where Si ∈ RD and Wj ∈ RD represent video clip187

and word embeddings, respectively. To emphasize188

similarities, softmax re-weighting is applied:189

E′(i, j) = Softmax(E(i, j)) · E(i, j). (2)190

Row-wise summation followed by averaging yields191

the video-to-text similarity ZV 2T , while column-192

wise operations yield the text-to-video similarity193

ZT2V .194

In the implementation, the ZV 2T and ZT2V sim-195

ilarities are equally weighted in the loss function.196

This equal weighting ensures that the global align-197

ment of video-to-text and text-to-video pairs is198

equivalent, making it sufficient to use either ZV 2T199

or ZT2V as the similarity metric. Without loss of200

generality, we use ZV 2T for our similarity metric.201

Scaling for Interpretability To ensure compa- 202

rability with metrics like BLEU and ROUGE, we 203

follow a similar approach to CLIP-Score by scal- 204

ing the embeddings with a weighting factor of 3, 205

expanding the score distribution range to [0,100]. 206

4 Experiments 207

To evaluate the effectiveness of SiLVERScore, we 208

conduct multiple experiments to assess the perfor- 209

mance compared to back-translation methods. 210

Dataset PHOENIX-14T dataset (Camgoz et al., 211

2018) is widely recognized as the benchmark 212

dataset for sign language generation (Saunders 213

et al., 2020, 2021; Viegas et al., 2023; Inan et al., 214

2022). It consists of German Sign Language 215

weather forecast videos segmented into sentences, 216

accompanied by corresponding German transcripts 217

and sign-gloss annotations. The dataset includes 218

7,096 training samples, 519 validation samples, 219

and 642 testing samples, recorded from 9 different 220

signers. 221

Translation Model For the back translation 222

model, we use the multi-stream keypoint attention 223

network proposed by Guan et al., 2024, due to 224

its state-of-the-art performance in sign language 225

translation task of PHOENIX-14T dataset. This 226

approach minimizes the error propagation caused 227

by inaccuracies back translation. 228

Metrics We evaluate the quality of back- 229

translated text using both rule-based and 230

embedding-based metrics. For rule-based evalua- 231

tion, we compute BLEU scores with sacreBLEU 232

(Post, 2018) and ROUGE scores. For embedding- 233

based evaluation, we use BLEURT (specifically 234

BLEURT-20, Pu et al., 2021) and BERTScore 235

(using the bert-base-multilingual-cased 236

model to accommodate the German dataset; 237

(Zhang* et al., 2020)). These metrics provide a 238

benchmark for assessing the alignment quality 239

of SiLVERScore in comparison to traditional 240

back-translation evaluation methods. 241

4.1 Which metric can better distinguish 242

between correct and incorrect video-text 243

pairs? 244

4.1.1 Distribution of Metric Scores 245

To qualitatively evaluate the performance of dif- 246

ferent metrics, we analyze the kernel density plots 247

in Figure 2. These plots illustrate the distribution 248

of scores for correctly matched video-text pairs 249
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Figure 2: Kernel Density Plots for different metrics. Top row (left to right, rule-based metrics): BLEU-2, BLEU-3,
ROUGE. Bottom row (left to right, embedding-based metrics): BERTScore, BLEURT, SiLVERScore. The blue
curve represents the distribution of scores for matching indices (aligned pairs), while the orange curve represents
different indices (misaligned pairs). SiLVERScore exhibits a clear separation between the two distributions,
indicating a strong ability to distinguish aligned from misaligned pairs. In contrast, BLEU and ROUGE metrics
show more overlap, reflecting their sensitivity to surface-level variations.

(blue curve) and randomly paired samples (orange250

curve). SiLVERScore shows a clear separation251

between the two distributions, with minimal over-252

lap. This indicates its strong ability to distinguish253

aligned pairs from misaligned ones. In contrast,254

BLEU-2 exhibit significant overlap, particularly255

for lower score ranges, suggesting reduced discrim-256

inative power for this task. Similarly, the ROUGE257

plot shows partial separation but retains overlap be-258

tween the two distributions. The BERTScore and259

BLEURT plots show improved separation com-260

pared to BLEU and ROUGE but still exhibit some261

overlap. The sharp distinction and density clus-262

tering of scores in the SiLVERScore plot indicate263

its effectiveness in capturing semantic alignment264

between video and text representations. The rest of265

the plots are in the Appendix A.266

4.1.2 Quantifying overlap and separability267

To complement the qualitative insights from the268

kernel density plots, we quantify the ability of each269

metric to distinguish between correctly aligned and270

randomly paired samples using overlap percentage271

and ROC AUC (Receiver Operating Characteristic272

Area Under the Curve). The results are summarized273

in Table 1.274

Overlap percentage Overlap percentage mea-275

sures how much the distributions of scores for cor-276

rect and random pairs intersect. Lower overlap277

percentages indicate better discriminative power.278

Lower overlap percentages indicate better discrimi-279

native power.280

Metric Overlap (%) ROC AUC
BLEU-1 53.74 0.95
BLEU-2 26.48 0.90
BLEU-3 38.94 0.81
BLEU-4 55.45 0.72
ROUGE 49.84 0.95
BERTScore 47.82 0.97
BLEURT 65.11 0.95
SiLVERScore 34.89 0.99

Table 1: Comparison of Overlap Percentages and ROC
AUC for Various Metrics. SiLVERScore achieves the
best overall performance with a low overlap of 34.89%
and a high ROC AUC of 0.99.

Since each metric operates on a different scale, 281

we applied Min-Max normalization to scale all met- 282

rics to the [0,1] range for a fair comparison. 283

From Table 1, BLEU-2 achieves the lowest over- 284

lap percentage (26.4798%). However, as observed 285

in the kernel density plots, this low overlap does 286

not translate to effective separability due to the 287

dispersed and overlapping nature of the BLEU-2 288

distributions. SiLVERScore, with an overlap per- 289

centage of 34.8910%, shows clear separation in 290

the density plots. The distributions are narrow and 291

well-clustered, making the overlap region small 292

and localized. 293

ROC AUC ROC AUC measures the metric’s abil- 294

ity to distinguish between the two distributions. 295

Higher ROC AUC values indicate better separabil- 296

ity, with a maximum value of 1.0. SiLVERScore 297
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achieves the highest ROC AUC of 0.9934, sug-298

gesting its superior performance in distinguishing299

aligned pairs. Despite BLEU-2 having a low over-300

lap percentage, its ROC AUC is lower (0.9017)301

than SiLVERScore, confirming that its distributions302

are not well-separated. Overall, the results show303

that learned embedding-based metrics (SiLVER-304

Score, BERTScore, BLEURT) outperform rule-305

based metrics in distinguishing between correctly306

aligned and misaligned video-text pairs.307

4.2 Which metric captures semantic308

distinctions through targeted changes in309

the input?310

4.2.1 Reordering311

Rule-based metrics (BLEU and ROUGE) are inher-312

ently sensitive to the exact ordering of words, even313

when the overall meaning remains unchanged. To314

demonstrate this sensitivity, we designed an experi-315

ment where GPT-4o was used to reorder the words316

in sentences while preserving their meaning. The317

exact prompt provided to GPT-4o was:318

Reorder the words in the following sen-319

tence while keeping the meaning the320

same: {text} Reordered sentence:321

Kernel density plot The kernel density plot (Fig-322

ure 3) illustrates how different metrics respond to323

surface-level changes, specifically word reordering,324

while preserving the semantic meaning. SiLVER-325

Score exhibits the highest score distribution, sug-326

gesting its robustness to reordering and its ability327

to capture semantic content. In contrast, BLEU328

and ROUGE display sharp peaks and narrower dis-329

tributions concentrated in the lower score range.330

This pattern exhibits a clear distinction between331

rule-based and embedding-based metrics.332

Quantifying overlap and separability In this333

experiment, the scores are computed by compar-334

ing the ground-truth references with their corre-335

sponding hypotheses. While these hypotheses may336

contain errors, they represent the best available ap-337

proximations of the ground truth. By computing338

the ROC AUC between reordered pairs and ref-339

erence pairs, we measure each metric’s ability to340

distinguish between semantically similar and dis-341

similar pairs. Lower ROC AUC values indicate that342

the metric maintains its scores despite reordering,343

reflecting robustness to surface-level variations.344

From Table 2, we observe that BLEU and345

ROUGE show significant drops in overlap percent-346

ages and higher ROC AUC values, indicating their347

Figure 3: Kernel Density Estimate (KDE) plot compar-
ing the score distributions of different evaluation met-
rics when applied reordered hypotheses. SiLVERScore,
BERTScore, and BLEURT show broader distributions
and higher overlap, while rule-based metrics such as
BLEU and ROUGE exhibit sharp peaks at lower scores.
This indicates their sensitivity to surface-level word or-
der changes.

sensitivity to word order. In contrast, SiLVERScore 348

achieves the highest overlap (83.49%) and a rela- 349

tively low ROC AUC (0.60), suggesting it better 350

maintains robustness to reordering. 351

It is important to note that the original distribu- 352

tion contains errors, which may affect the Overlap 353

and ROC AUC values for all metrics. This could 354

explain why SiLVERScore’s ROC AUC is slightly 355

higher than those of other embedding-based met- 356

rics. 357

Metric Overlap (%) ROC AUC
BLEU-1 64.49 0.65
BLEU-2 71.50 0.63
BLEU-3 66.98 0.65
BLEU-4 69.47 0.63
ROUGE 67.45 0.67
BERTScore 78.19 0.55
BLEURT 81.31 0.47
SiLVERScore 83.49 0.60

Table 2: Overlap % and ROC AUC values for different
metrics when comparing original and reordered sen-
tence pairs. Embedding-based metrics maintain higher
overlaps and lower ROC AUC values, suggesting that
they capture semantic equivalences more effectively.

4.3 Which metric can evaluate multimodal 358

and pragmatic aspects like prosody more 359

effectively? 360

4.3.1 Motivation and Setup 361

Sign languages rely heavily on prosodic markers 362

such as facial expressions, pauses, and intensity to 363
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Figure 4: Box plots showing the distribution of SiLVERScore, BLEU-1, and ROUGE scores across three prosody
intensity categories (No Intensity, Low Intensity, and High Intensity). While SiLVERScore remains stable across all
categories, indicating robustness to prosodic variations, both BLEU-1 and ROUGE exhibit a noticeable decline in
scores as prosody intensity increases. This drop suggests that BLEU-1 and ROUGE are sensitive to prosodically-rich
sentences, which results in lower scores and higher variability in the High Intensity category.

convey meaning. Evaluating the robustness of met-364

rics to prosodic variations is critical, as traditional365

back-translation-based methods often fail to cap-366

ture such multimodal cues. We build on the work of367

Inan et al., 2022, which provided human-annotated368

token-level prosody intensities for the PHOENIX-369

14T dataset. These annotations classify tokens into370

three distinct prosodic levels: (i) no intensity: 0,371

indicating the absence of prosodic markers; (ii) low372

intensity: 1, reflecting a low degree of intensity373

markers; and (iii) high intensity: 2, representing374

high-degree intensity markers.375

Sentence level prosody We define sentence in-376

tensity as the sum of the intensity levels of its377

tokens, I =
∑n

i=1 ti, where ti is the intensity378

of token i. Sentences are categorized into three379

prosody levels: No Intensity I = 0, Low Intensity380

1 ≤ I ≤ 4, and High Intensity I ≥ 5.381

Prosody level distribution The dataset exhibits382

the following distribution of sentences across these383

prosody categories: 328 sentences (51.09%) fall384

under No Intensity, 238 sentences (37.07%) under385

Low Intensity, and 76 sentences (11.84%) under386

High Intensity. This distribution indicates that the387

majority of sentences either lack prosodic mark-388

ers or exhibit low levels of prosody, while highly389

expressive sentences are comparatively rare.390

4.3.2 Distribution of Scores Across Prosody391

Categories392

To analyze the impact of prosody on evaluation393

metrics, we categorized sentences based on the394

sentence-level intensity sums defined earlier. Fig-395

ure 4 shows the distributions of SiLVERScore, 396

BLEU-1, and ROUGE scores across the categories. 397

SiLVERScore Stability SiLVERScore remains 398

consistent across the three prosody categories, 399

showing minimal variation in median and interquar- 400

tile range. This demonstrates that SiLVERScore 401

effectively evaluates semantic alignment without 402

being influenced by prosodic intensity. 403

BLEU-1 and ROUGE Sensitivity BLEU-1 and 404

ROUGE scores decline with increasing prosody 405

intensity, with median scores for High Intensity 406

significantly lower than for No Intensity. This 407

trend indicates that these metrics struggle with 408

prosodically-rich sentences. 409

Score Variability Both BLEU-1 and ROUGE 410

display higher variability in the High Intensity cat- 411

egory, suggesting inconsistent performance in eval- 412

uating expressive signing. 413

4.4 Correlation with Prosodic Intensity 414

As shown in Table 3, traditional back-translation- 415

based metrics (BLEU and ROUGE) exhibit signif- 416

icant negative correlations with prosody intensity 417

(e.g., BLEU-4: -0.200, p = 3.31 × 10−7), reflect- 418

ing their vulnerability to prosodic variations. This 419

behavior reflects the limitations of traditional met- 420

rics, which depend on surface-level text alignment 421

and are vulnerable to information loss during back 422

translation. 423

In contrast, SiLVERScore exhibits no significant 424

correlation with prosody intensity (correlation: - 425

0.004, p = 0.9277), indicating its robustness to 426
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Metric Correlation p-value
BLEU-1 -0.160 < 0.01
BLEU-2 -0.178 < 0.01
BLEU-3 -0.191 < 0.01
BLEU-4 -0.200 < 0.01
ROUGE -0.179 < 0.01
BERTScore -0.144 < 0.01
BLEURT -0.101 0.01
SiLVERScore -0.004 0.93

Table 3: Pearson Correlation and p-value of metrics with
sentence-level prosody intensity. BLEU and ROUGE
exhibit significant negative correlations with prosody in-
tensity, while SiLVERScore demonstrates no significant
correlation.

prosodic variations. This robustness suggests SiL-427

VERScore’s ability to evaluate semantic alignment428

without being influenced by expressive elements.429

5 The Generalization Problem430

While evaluation metrics are expected to generalize431

across diverse datasets, this remains a significant432

challenge in sign language processing due to the433

limited size and diversity of available datasets. As434

highlighted by Jiang et al. (2024), one of the largest435

sign language dataset, SpreadtheSign, contains436

only 456,913 examples, which is orders of magni-437

tude smaller than datasets in related domains (e.g.,438

400M examples for CLIP and 136M for Video-439

CLIP). In this section, we empirically demonstrate440

that even SignCLIP, the largest contrastive learning441

model to date, struggles with generalization at the442

token level.443

5.1 Empirical Evidence of Limited444

Generalization445

5.1.1 Token Level Generalization446

We evaluated SignCLIP on ASL Citizen (Desai447

et al., 2024) and ASL Signs (Chow et al., 2023).448

The results show that SignCLIP’s generalization449

capability is limited without fine-tuning. (Descrip-450

tions of these datasets can be found in Appendix E.)451

Figure 5 illustrates the cosine similarity between452

video and text embeddings. Ideally, high similar-453

ity values should appear along the diagonal, in-454

dicating alignment between corresponding video-455

text pairs. Before fine-tuning, the heatmaps dis-456

play low, diffuse similarity scores, indicating poor457

video-text alignment. Fine-tuning significantly458

improves alignment, indicating the necessity of459

dataset-specific adaptation. A similar trend is ob- 460

served for ASL Signs (figures in Appendix B). 461

5.1.2 Sentence Level Generalization 462

We evaluated SignCLIP’s sentence-level gener- 463

alization on the WMTSLT Focus News Corpus 464

(Mathias et al., 2022). (A description of this dataset 465

is available in Appendix E.) Despite fine-tuning, 466

SignCLIP struggles to achieve strong results (R@1 467

= 0.0436). Heatmaps (Figure 5) reveal diffuse pat- 468

terns before fine-tuning and overfitting after, due to 469

the dataset’s limited size (9000 instances). 470

5.1.3 Token Level Language Specific 471

Generalization 472

To investigate the effect of data size on general- 473

ization, we fine-tuned SignCLIP using combined 474

training samples from ASL Signs and SemLex 475

datasets. Despite this, SignCLIP fails to gener- 476

alize effectively to ASL Citizen (R@5 = 0.0005). 477

Even when training on all three datasets, the test 478

set performance on ASL Citizen did not improve 479

significantly. This suggests that dataset-specific 480

characteristics influence performance even when 481

substantial training data is available. 482

5.1.4 Representation Density 483

Ye et al., 2024 indentified a representation density 484

problem, where the semantic visual representations 485

of different sign gestures tend to be closely clus- 486

tered together, making them hard to distinguish. 487

The proposed contrastive learning strategy, SignCL, 488

encourages the learning of discriminative feature 489

representations. However, applying SignCL to our 490

data yielded limited improvement in retrieval re- 491

sults (R@1 = 9.11E-05), compared to (R@1 = 492

3.04E-05) with vanilla contrastive learning. 493

5.1.5 Data Augmentation 494

Data augmentation is a commonly employed tech- 495

nique to improve model generalization, especially 496

in domains with limited data. To this end, we exper- 497

imented with several data augmentation strategies 498

including: spatial 2D augmentation, temporal aug- 499

mentation, and Gaussian noise on keypoints (Jiang 500

et al., 2024). Results show negligible gains (R@1 501

= 0 with 2D-aug; 6.07E-05 with temporal augmen- 502

tation), highlighting the limitations of conventional 503

augmentation techniques in enhancing generaliza- 504

tion. This suggests that limited dataset diversity 505

and the complexity of visual sign representations 506

cannot be fully addressed through conventional 507

augmentation techniques alone. 508
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Fine-tuned on Tested on SignCL Data Aug R @ 1 R @ 5 R @ 10
Token Level (§ 5.1.1)
- Citizen - - 0.0014 0.0061 0.0112
Citizen Citizen - - 0.0639 0.2710 0.4392
Sentence Level (§ 5.1.2)
WMTSLT WMTSLT - - 0.0037 0.0175 0.0323
Token Level Language Specific (§ 5.1.3)
Signs, SemLex Citizen - - 3.04E-05 0.0005 0.0008
Citizen, Signs, SemLex Citizen - - 0.0436 0.1764 0.2878
With SignCL (§ 5.1.4)
Signs, SemLex Citizen - 9.11E-05 0.0005 0.0009
With Data Augmentation (§ 5.1.5)
Signs, SemLex Citizen - 2D-aug, Gaussian 0 0.0002 0.0006
Signs, SemLex Citizen - Temporal 6.07E-05 9.11E-05 0.0003

Table 4: Text-to-Video Retrieval results and generalization across datasets. Results are shown for different fine-
tuning datasets, test datasets, and configurations with or without data augmentation.

Figure 5: Heatmaps of SignCLIP embeddings cosine similarity scores for two datasets: ASL Citizen (token level)
and WMTSLT (sentence level). Left: Finetuning increases alignment, as indicated by the clearer diagonal line.
Right: After finetuning, the model appears to overfit, assigning high similarity scores to many pairs.

5.2 How SiLVERScore Addresses509

Generalization Challenges510

Our findings from the experiments suggest the idea511

that, given the current constraints in data availabil-512

ity, tailoring metrics to specific datasets is neces-513

sary to create alignment between text and sign.514

We proposed a dataset-specific evaluation metric515

designed to leverage the strengths of embedding-516

based methods while addressing the constraints of517

current sign language datasets. By optimizing for518

specific domains and datasets, we can achieve more519

reliable evaluations and better alignment with the520

linguistic and multimodal nature of sign language.521

6 Conclusion522

Through the introduction of SiLVERScore, we523

demonstrated the empirical strengths of embedding-524

based methods, including robustness to semantic525

variation, prosodic intensity, and a more holistic526

multimodal evaluation. Our results show that SiL-527

VERScore can overcome limitations of traditional528

back-translation metrics. 529

SiLVERScore has the potential to reshape sign 530

language evaluation standards by advancing acces- 531

sibility for the Deaf community and promoting 532

inclusivity in language technologies. Its robust- 533

ness and semantic sensitivity make it well-suited 534

for broader challenges in multimodal NLP, such as 535

cross-lingual evaluation and integration with video 536

generation models. To support open research and 537

encourage further advancements, we release the 538

code for SiLVERScore’s analysis and computation. 539

Future efforts should integrate insights from 540

computer graphics, such as improved modeling of 541

spatial relationships and prosody in sign language, 542

to further refine embedding-based methods. In- 543

corporating richer multimodal features, including 544

gesture dynamics and temporal coherence, could 545

enhance the evaluation of expressive and context- 546

dependent signing. Additionally, addressing the 547

scarcity of diverse, large-scale datasets remains 548

critical for improving model generalization. 549
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7 Limitations550

While the proposed metric, SiLVERScore, demon-551

strates strong empirical performance, this work has552

several limitations. One significant limitation is the553

absence of human evaluation. Although SiLVER-554

Score shows clear advantages over traditional meth-555

ods using back translation, it remains crucial to556

validate its alignment with human judgments. Hu-557

man evaluators could provide insights into whether558

the metric effectively captures the semantic and559

linguistic aspects of generated sign language. Ad-560

dressing this limitation will be a focus of future561

work.562

Another limitation is the reliance on the563

PHOENIX-14T dataset, which centers on Ger-564

man Sign Language within the specific domain565

of weather forecasts. This narrow scope restricts566

the generalizability of SiLVERScore to other sign567

languages, domains, or datasets with broader se-568

mantic and linguistic diversity. Although we show569

how to adapt the embedding-based evaluation ap-570

proach to a particular dataset, following similar571

data-specific adaptation procedures could allow the572

creation of comparable metrics for other sign lan-573

guage datasets as well.574

The approach’s reliance on translating textual575

annotations into English for alignment with CLIP576

embeddings poses challenges in multilingual sce-577

narios. This reliance assumes that translation into578

English is both feasible and accurate, which may579

not hold in contexts involving less commonly stud-580

ied languages with limited resources for translation.581

Additionally, our current evaluation focuses on582

sentence-level retrieval, which overlooks the con-583

textual dependencies and references made in prior584

sentences, as noted by Tanzer et al. (2024). Sign585

language often relies heavily on discourse-level586

context, and evaluating only at the sentence level587

may not fully capture these contexts.588

Finally, while the results show that prosody does589

not degrade SiLVERScore’s performance, this does590

not imply that the metric explicitly models prosody.591

Future research should investigate how to incor-592

porate explicit prosodic modeling into evaluation593

metrics to better capture the expressive nuances of594

sign language.595

Potential Risks. Adopting embedding-based596

metrics can inadvertently inherit biases, stereo-597

types, or inaccuracies from the underlying training598

data and models. If the pre-trained embeddings599

contain demographic, cultural, or linguistic biases,600

these may influence evaluations and potentially dis- 601

advantage certain signers or signing styles. More- 602

over, inaccuracies introduced at the text-annotation 603

stage could propagate through the metric, reinforc- 604

ing incorrect assessments. Finally, the metric’s 605

reliance on English textual embeddings and spe- 606

cific datasets may inadvertently privilege certain 607

languages and cultures. 608
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A Kernel Density Plots782

Figure 6: Kernel density plots for BLEU-1 (top) and
BLEU-4 (bottom).

B Heatmaps783

Figure 7 shows a heatmap of SignCLIP embedding784

cosine similarity scores for the ASL Signs dataset.785

A sharper diagonal pattern on the right indicates786

increased alignment between sign embeddings and787

their corresponding references.788

C Training Details789

Hardware and Compute All training and infer-790

ence computations were performed on an NVIDIA791

Figure 7: Heatmaps of SignCLIP embeddings cosine
similarity scores for ASL Signs.

A100 GPU with 80GB of GPU memory. The ex- 792

periments were conducted on a Linux-based server 793

environment equipped with 8 CPU cores. 794

SignCLIP Fine-Tuning Fine-tuning the Sign- 795

CLIP model on American Sign Language (ASL) 796

datasets took the longest (approximately 4 hours). 797

Fine-tuning was conducted using a batch size of 798

256, a maximum length of 64, Adam optimizer 799

with β1 = 0.9, β2 = 0.98, and a gradient clipping 800

norm of 2.0. Training involved 1,000,000 total 801

updates and a warm-up phase over the first 122 802

updates. Up to 25 epochs were run with 1000 steps 803

for monitoring. 804

Sign Language Translation (MSKA) Inference 805

Inference with the MSKA model for sign language 806

translation completed in under 10 minutes. Pre- 807

trained weights from Guan et al., 2024 were used 808

without further fine-tuning. 809

Code and Configuration Files All code and con- 810

figuration files necessary to reproduce the results 811

(including model parameters, optimizer settings, 812

and data preprocessing scripts) will be released via 813

our GitHub repository upon paper acceptance. 814

D Prosody Boxplots 815

Figure 8 on the following page illustrates how vari- 816

ous evaluation metrics distribute across sentences 817

with different levels of prosodic intensity (No In- 818

tensity, Low Intensity, and High Intensity). 819

E Dataset Specifications 820

Table 5 summarizes the datasets used for our exper- 821

iments in § 5, covering American Sign Language 822

(ASL) and Swiss German Sign Language (DSGS). 823
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Figure 8: Box plots showing the distribution of BLEU-2, BLEU-3, BLEU-4, BERTScore, and BLEURT scores
across three prosody intensity categories (No Intensity, Low Intensity, and High Intensity). Traditional back-
translation metrics (BLEU) and embedding-based metrics (BERTScore and BLEURT) show a decline in scores
with increasing prosody intensity

Dataset Language Level # of Samples (Train/Val/Test) # of Signers
ASL Signs ASL Token Level 85,031 / 4,723 / 4,723 100+ Signers
SemLex ASL Token Level 51,029 / 18,025 / 15,514 119 deaf signers
ASL Citizen ASL Token Level 40,154 / 10,304 / 32,941 52 deaf/hard-of-hearing
WMTSLT DSGS Sentence Level 9172 / 470 / 494* 12 deaf signers

Table 5: Overview of the datasets used in our evaluations. For the WMTSLT dataset, the train/validation/test split
was generated by the authors, as the original dataset provided by the challenge did not include a predefined test set.
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