
Published as a conference paper at ICLR 2025

HOW LOW CAN YOU GO? SEARCHING FOR THE IN-
TRINSIC DIMENSIONALITY OF COMPLEX NETWORKS
USING METRIC NODE EMBEDDINGS

Nikolaos Nakis1∗ Niels Raunkjær Holm2∗ Andreas Lyhne Fiehn2∗ Morten Mørup2

1Yale University 2Technical University of Denmark
nicolaos.nakis@gmail.com, nielsraunkjaer@gmail.com,
andreas@lyhnefiehn.dk, mmor@dtu.dk

ABSTRACT

Low-dimensional embeddings are essential for machine learning tasks involving
graphs, such as node classification, link prediction, community detection, network
visualization, and network compression. Although recent studies have identified
exact low-dimensional embeddings, the limits of the required embedding dimen-
sions remain unclear. We presently prove that lower dimensional embeddings are
possible when using Euclidean metric embeddings as opposed to vector-based Lo-
gistic PCA (LPCA) embeddings. In particular, we provide an efficient logarithmic
search procedure for identifying the exact embedding dimension and demonstrate
how metric embeddings enable inference of the exact embedding dimensions of
large-scale networks by exploiting that the metric properties can be used to provide
linearithmic scaling. Empirically, we show that our approach extracts substantially
lower dimensional representations of networks than previously reported for small-
sized networks. For the first time, we demonstrate that even large-scale networks
can be effectively embedded in very low-dimensional spaces, and provide exam-
ples of scalable, exact reconstruction for graphs with up to a million nodes. Our
approach highlights that the intrinsic dimensionality of networks is substantially
lower than previously reported and provides a computationally efficient assessment
of the exact embedding dimension also of large-scale networks. The surprisingly
low dimensional representations achieved demonstrate that networks in general
can be losslessly represented using very low dimensional feature spaces, which can
be used to guide existing network analysis tasks from community detection and
node classification to structure revealing exact network visualizations.
Code available at: https://github.com/AndreasLF/HowLowCanYouGo.

1 INTRODUCTION

Graphs are used in a plethora of settings to model various complex systems including social networks,
the Internet, citation links between research publications, neural networks, protein-protein interactions,
food webs, and metabolic networks (Newman, 2003), to mention but a few. From a machine
learning perspective graph representation learning (GRL) aiming to embed graph structure using
low-dimensional vector spaces that provide compressed representations of network structure has
in recent years garnered substantial attention (Hamilton et al., 2017a;b). Some of the challenges
in GRL include preserving structure from the discrete graph space in the learned embedding space.
This means that the connectedness and similarity of nodes in the graph should carry over into the
embedding space (Zhang et al., 2020). Both local connectivity and global community structures
are crucial to the characteristics of the system modeled by the graph. The concept of homophily
(Mcpherson et al., 2001) should thus be preserved, such that links between nodes are signified in
their corresponding embeddings. Intuitively, the node representations should be close in proximity
to each other in some measure relevant to the embedding space. Further, this notion of proximity
should apply to next-step neighbors, next-next-step, and so on (Zhang et al., 2017). In the literature,

∗Shared first authorship.

1

https://github.com/AndreasLF/HowLowCanYouGo

Published as a conference paper at ICLR 2025

various so-called shallow embedding methods, which essentially refer to mapping nodes one-to-one
to embedding vectors have been proposed. These methods each aim to capture different parts of the
graph structure, e.g. DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), node2vec (Grover &
Leskovec, 2016), GraRep (Cao et al., 2015), TADW (Serrano et al., 2007), and many more (Zhang
et al., 2020). Recently, it has been demonstrated that latent space network representation approaches
such as the latent distance model (Hoff et al., 2002) perform favorably using ultra-low dimensional
(i.e., D = 2 and D = 3) embedding representations (Nakis et al., 2022).

In Seshadhri et al. (2020) the goal of embedding graphs was formulated as capturing as much structure
as possible from the graph in a low-rank representation. They also pose the question of how well
we can embed graphs. They conclude that graphs created from low-dimensional embeddings cannot
have many triangles involving vertices of low-degree. This was later discussed in Chanpuriya et al.
(2020) where it was demonstrated that with a relaxed version of the factorization model, finding
exact low-rank embeddings for bounded degree graphs, i.e. graphs with at most degree kmax, is
indeed feasible. For this task, they used a method for learning an embedding model based on logistic
principal component analysis (LPCA). However, the work only provided rough estimates of the
required embedding dimensions and the approach was restricted to the analysis of small networks
(i.e., less than 20.000 nodes).

In this paper, we investigate the limits required to achieve exact network embeddings. Specifically, we
propose an algorithm to efficiently search for an upper bound for the exact embedding dimension (D∗)
of graphs. We further theoretically and empirically demonstrate that lower embedding dimensions
can be achieved considering metric embeddings using the latent distance model (LDM) (Hoff et al.,
2002). Importantly, through the properties of distance functions, metric spaces have natural and
intuitive notions of proximity and by extension also node homophily and interconnectedness on both
local and global scale. Inspired by the Hierachical Block Distance Model (HBDM), as introduced by
Nakis et al. (2022), we exploit that the metric properties are especially useful for embedding very
large graphs. As the reconstruction check itself becomes intractable for large sets of nodes, we further
exploit how hierarchical representations of data with metric properties allow linearithmic runtime
complexity. As such, we implement a KD-tree-based nearest neighbor reconstruction check method.

1.1 RELATED WORK

The interest in embedding networks using low dimensional representations has been substantially
explored in the inexact reconstruction setting in which latent space modeling approaches including
the latent eigenmodel and latent distance model have been explored (Hoff et al., 2002; Hoff, 2007).
Recently, it has been observed that the latent distance model using ultra-low dimensional representa-
tion provides strong generalization in graph representation learning tasks such as node classification
and link prediction (Nakis et al., 2022). The first attempt to quantify the intrinsic dimensionality of
exact network reconstruction was considered in Chanpuriya et al. (2020) based on a Logistic PCA
(LPCA) model. For a network of N nodes, the LPCA model consists of two rank D ∈ Z+ embedding
matrices X,Y ∈ RN×D. It assumes that the probability of a link between node i and j, expressed
in the adjacency matrix A ∈ {0, 1}N×N as ai,j = 1, is σ([XY⊤]i,j) where σ(x) = (1 + e−x)−1 is
the sigmoid-function. Using the shifted adjacency matrix ãi,j = 2ai,j − 1, the log-likelihood can be
compactly written as log(σ(ãi,j [XY⊤]i,j)). Maximizing the likelihoods of links between all node
indices i and j is then equivalent to the following optimization task:

min
X,Y

L(RLPCA(X,Y)) = min
X,Y

N∑
i=1

N∑
j=1

− log σ

(
ãi,j

[
XYT

]
i,j

)
. (1)

Notably, this objective is closely related to identifying the sign-rank of a matrix in which the product
ãi,j

[
XYT

]
i,j

> 0 ∀i, j. It has been shown that the sign-rank is lower bounded by N/σmax(Ã)

where σmax(Ã) denotes the largest singular value, i.e. spectral norm, of Ã (Forster, 2002). This
bound has been refined in the context of learning theory and communication complexity in (Razborov
& Sherstov, 2010) whereas the existing known lower bounds for sign-rank have recently been surveyed
in (Hatami et al., 2022) and found to have limitations. To minimize L(RLPCA(X,Y)) Chanpuriya
et al. (2020) initialize X and Y uniformly at random in [−1, 1] and use the SciPy implementation
of the L-BFGS scheme with default parameters and a maximum of 2000 iterations to optimize the

2

Published as a conference paper at ICLR 2025

Network Input

Exact network
reconstruction

Metric Space

Figure 1: Model Overview: The input network is embedded into a low-dimensional space using
matrices X and Y, defining an upper bound D∗ on intrinsic dimensionality for structure-preserving
reconstruction via the β-radius. Connected nodes fall within each other’s β-radius, ensuring exact
reconstruction.

expression. A check for full reconstruction is made by comparing A to σ(XY⊤). In practice, XY⊤

is clipped to [0, 1] (i.e. applying the map clip : R 7→ [0, 1] defined as clip(x) = max(0,min(1, x)))
and the Frobenius norm of the difference between the clipped reconstruction and A is calculated,
||clip(XY⊤)−A||F/||A||F . When this measure evaluates to 0, all predicted indices match the actual
adjacency matrix and the found embedding thus allows for perfect reconstruction. They carried out
this optimization process using a coarse analysis of varying embedding dimensionalities in multiples
of 16, and reported the dimensionality of the lowest exact embedding dimension found, e.g., they
obtained factorizations of rank 16 on the well-known datasets Cora and Citeseer (Yang et al., 2016),
and 32 on ca-HepPh (Leskovec et al., 2005) (see Table 2).

In Gu et al. (2021) the exact embedding dimension was evaluated at the point in which the latent
dimension was as large as the number of nodes arguing that this would be the upper bound of
required dimensions and the optimal dimensionality defined as the lower dimensional representation
concurring within a small margin of such exact embedding. In Bonato et al. (2012); Bonato (2017)
the Logarithmic Dimension Hypothesis was proposed arguing for dimensionality of the embedding
space of networks scaling as O(logN) when considering the MGEO-P model (Bonato et al., 2012)
relying on embeddings based on the L∞-norm in a Blau space in which distance in latent position
of nodes are used to characterize their relations (McPherson, 2004) akin to the latent distance
model (Hoff et al., 2002). Similarly, in Boratko et al. (2021) it was proven that any directed
acyclic graph (DAG) can be perfectly embedded using the probabilistic box embedding in which
the probability of observing a link is given by the node-specific box overlap using a O(logN)
embedding dimension. It was further empirically observed that, for low-dimensional embeddings,
metric embedding approaches provided higher capacity embeddings compared to those relying on
LPCA (Boratko et al., 2021). Finally, in Chanpuriya et al. (2023) LPCA was generalized to undirected
graphs by use of a difference formulation between two symmetric non-negative decompositions
bridging the exact network embedding to community detection methodologies. In Chanpuriya et al.
(2020) it was proven that for bounded degree (i.e., kmax) graphs exact embeddings can be achieved
using D = 2kmax + 1 dimensions. This result was further refined in Chanpuriya et al. (2023) proving
that for sparse networks the arboricity α, i.e., largest subgraph density-weighted by the number of
nodes in the subgraph, bounds the embedding dimensions by 4⌈α⌉2 + 1 (Chanpuriya et al., 2023).

1.2 CONTRIBUTIONS

From these related works several important open questions remain. Specifically,
Q1: Can metric model formulations provably provide lower dimensional representations
than LPCA? We presently prove that metric embeddings can uniformly provide at least as low
dimensional embeddings as LPCA and highlight empirically that lower dimensional representations
of networks exhibiting homophily can be achieved yet the same embedding dimension for networks
exhibiting heterophily. Q2: How can a network’s exact low-dimensional embedding efficiently be
quantified? Whereas there exist bounds on the embedding dimensions based on logarithmic scaling
wrt. number of nodes (Boratko et al., 2021) in the network, maximum degree (Chanpuriya et al.,
2020), and arboricity (Chanpuriya et al., 2023) it is unclear how the lowest possible actual exact
embedding dimension of a given network can be identified and Chanpuriya et al. (2020) provided only

3

Published as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

Adjacency matrix

10 0 10

10

5

0

5

10

15
LPCA embedding

xi

yj

20 0 20

L2 embedding
xi

yj

-radius

(a) Graph with a homophilous community block struc-
ture. Green lines indicate the L2 radius β.

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

Adjacency matrix

10 0 10

10

5

0

5

10

15 LPCA embedding
xi

yj

20 0 20

20

0

20

L2 embedding
xi

yj

-radius

(b) Graph with a heterophilous block structure. Green
circles indicate the L2 radius β.

Figure 2: Example graphs with a community and an anticommunity structure, respectively, and their
corresponding RLPCA- and RL2-embeddings (Lines/Circles denote link thresholds for RL2).

a very coarse assessment of embedding dimensionality. We presently derive an efficient logarithmic
search strategy reliably identifying an upper bound on the intrinsic dimensionality of exact network
embeddings. Q3: How can exact network embeddings be linearithmically O(N logN) quantified
in large graphs? Existing network embedding assessments rely on the explicit evaluation of all links
and non-links in the objective function optimized as well as reconstruction check scaling for N nodes
as O(N2) which is not feasible for large graphs. We presently, explore how metric embeddings
enable efficient linearithmic neighborhood queries through the use of KD-trees to scalably assess
perfect network reconstruction, and for the first time achieve such a reconstruction for networks
with up to a million nodes. We further provide a linearithmic approximation of the full likelihood of
metric embeddings providing an efficient learning framework that we demonstrate can be refined
using zero-margin hinge-loss optimization over the few approximation-induced missclassified dyads
to achieve exact embeddings of large-scale networks.

2 METHODS

In the following wi will denote the ith row of the matrix W and ∥ · ∥ denotes the conventional
Euclidean norm. diag(b) will denote a diagonal matrix with the elements of b along the diagonal
and sign(b) the conventional sign function that is −1 if b < 0 and 1 if b > 0. Let A denote the
adjacency matrix of a graph such that ai,j = 1 if there is a link between node i and j and ai,j = 0
otherwise. Finally let ãi,j = 2ai,j − 1 be the shifted adjacency matrix such that links and absence of
links respectively are given by 1 and −1.

Q1: Both the local and global structure of a given graph carry information about the role of each
specific node, and this contributes to the complexity of embedding nodes. Modeling the optimization
objective such that the resulting embedding space has the capacity to capture these connectivity-
related attributes is crucial for encoding the information into low-dimensional node representations.
We note two main components in the approach of Chanpuriya et al. (2020), namely a parametrized
reconstruction model and a loss measure between the true graph and its reconstruction. We can
thus decompose the objective function in Equation 1 into the reconstruction model and loss function
respectively given by

RLPCA(X,Y)
∆
= XY⊤, (2) L(R)

∆
=
∑
i,j

− log σ(ãi,jri,j), (3)

where Ã = [ãi,j] is the shifted adjacency matrix and R = [ri,j] is the reconstruction of the adjacency
matrix, i.e., given by Equation 2. Considering L(·), in which the underlying modeling assumption is
a Bernoulli likelihood, we can express the reconstruction at index i, j as applying thresholding on the
link probability, i.e. p(Ai,j = 1) ≥ 1

2 , or equivalently, ãi,jri,j ≥ 0.

Analyzing RLPCA, we see that it consists of an outer product between the two embedding matrices.
The expressiveness of this reconstruction model thus lies in the pairwise inner products between each
row vector in the two matrices. This method is known to have a lot of representational capacity akin to
PCA, as the inner product provides a natural similarity measure between vectors, proportional to the
angles between them. Notably, the LPCA model formulated above can be considered a generalization
to row and column specific embeddings of the latent eigenmodel proposed in Hoff (2007). The
eigenmodel also includes a bias term β, i.e. REIG(X,Y, β)

∆
= β +XY⊤. As a result, expressing

4

Published as a conference paper at ICLR 2025

this formulation of the latent eigenmodel by LPCA would require an additional dimension, i.e.
[β1 X][1 Y]

⊤ provided that β is non-zero and XY⊤ does not exactly span the constant matrix (a
low-probability event). Consequently, the latent eigenmodel formulation can in theory reduce the
dimensionality by one when compared to LPCA, i.e. D∗LPCA − 1 ≤ D∗EIG ≤ D∗LPCA. Similarly,
standard PCA requires an extra dimension if the data is not centered, i.e., when applying SVD
directly to an uncentered data matrix. Importantly, we are only arguing for the dimensionality of
the solution and not that the solution must be exactly [β1 X][1 Y]

⊤ since the model reconstructions
RLPCA, REIG , and RL2

for LPCA, LEIG, and LDM are non-unique and can all be modified by an
orthogonal matrix Q such that X̃ = XQ and Ỹ = Y Q−1 provide identical reconstructions.

To further improve the expressiveness of the node embedding optimization objective, we consider
the Euclidean latent distance model (LDM) (Hoff et al., 2002; Hoff, 2007) that provides a metric
specification of the reconstruction model according to

RL2
(X,Y, β)

∆
=
[
β − ∥xi − yj∥2

]
. (4)

The LDM is a metric model, i.e., it yields an embedding vector space endowed with a distance
function, which has useful properties we will elaborate on later. Importantly, in Theorem 2.1, we
establish that the RL2

-reconstruction model can provide more favorable embedding dimensions using
up to two embedding dimensions less than RLPCA. A model overview is given in Figure 1.
Theorem 2.1. Let D∗LPCA and D∗L2

denote the lowest exact embedding dimension for a graph
embedding obtainable by optimization w.r.t. the RLPCA-reconstruction and RL2

-reconstruction
respectively. We then have the relationship

D∗LPCA − 2 ≤ D∗L2
≤ D∗LPCA. (5)

For a proof of the above theorem see section A.2 in the supplementary material.

Importantly, metric models are especially efficient when modeling homophily in networks, i.e., a
friend of a friend is also a friend, which is naturally entailed by the triangular inequality using
metric embeddings (Hoff et al., 2002). On the other hand, heterophilous networks (Chanpuriya et al.,
2023) also defined in terms of stochastic equivalence (Hoff, 2007) in which dissimilar nodes can
be grouped is well accounted for by LPCA and can according to the above theorem at least with
similar embedding dimensions be accounted for by the LDM. This is illustrated in Figure 2 where we
compare the RLPCA and RL2

considering a homophilous community structured and heterophilous
block-structured network. We here observe that the RL2 formulation can account for communities
using an embedding dimension of D = 1 whereas RLPCA and RLEIG (not shown) requires D = 2
whereas all approaches can perfectly reconstruct the heterophilous network using D = 2. In Figure 3
we further highlight an example empirically verifying the bounds of Theorem 2.1. RLPCA requires
three dimensions since more than three communities (as in Figure 2) need angles greater than 90
degrees in 2D for perfect reconstruction, which is not possible for the 10 communities in Figure 3.
As a result, an additional dimension is needed to mimic the bias term included in RLEIG that can
reconstruct the network using two dimensions exploiting that the bias term can threshold on angles
less than 90 degrees for perfect reconstruction. Importantly, RL2

can trivially embed this network
using only one dimension due to its metric properties.

Q2: To find an upper bound for the low-dimensional exact embedding, we propose Algorithm 1, which
utilizes binary search (also called logarithmic search due to its logarithmic scaling) to search through
an interval [lb, ub], lb < ub ∈ Z+ of embedding space ranks with linearithmic time complexity
(Knuth, 1998). We initialize the first iteration of embeddings at a relatively high dimension D0 = ub,
yielding the embedding matrices X,Y ∈ RN×D0 .When the LDM optimization yields embedding
matrices that perfectly reconstruct the graph, they are concatenated as Z = [X Y]

⊤ ∈ R2N×D0 .
As the LDM is translation invariant, we center the concatenated matrix as Zc = Z− 1µ⊤Z , where µZ

is a vector containing the rowwise mean of Z. We then proceed to the next iteration of embeddings
X′,Y′ ∈ RN×D, where the new rank D is chosen according to binary search. We initialize the
new embeddings using the low-rank SVD with D dimensions, given as Zc ≈ UDΣDV⊤D, to
project the previous embedding matrices onto the reduced space as X′ = (X − 1µ⊤Z)VD,Y′ =
(Y − 1µ⊤Z)VD ∈ RN×D. This is repeated by updating D in accordance with the binary search.
In Figure 7 of the supplementary material the benefits of truncated SVD initialization from a higher
embedding dimension as opposed to randomly initializing the new embedding at the given embedding
dimension are illustrated.

5

Published as a conference paper at ICLR 2025

Algorithm 1 Progressive search for solution with lowest
EED
Require: lb, ub ∈ Z+ and lb < ub.
1: Initialize search interval as [lb, ub]
2: D⋆ ← None ▷ Optimal D∗ found.
3: D0 ← ub ▷ Initial candidate EED.
4: θ0 ← RN×D0 × RN×D0 , θi,j ∼ N (0, 1) ▷ For
L2, β ← β0 ∼ Unif(0, 1)

5: Initialize MR with θ0 ▷MR: model w. reconstructionR.
6: θ ← Train MR until convergence or full reconstruction, otherwise stop search.
7: while lb ≤ ub do
8: D ←

⌊
lb+ub

2

⌋
9: [U,Σ, V]← SVD(Concat[X,Y]) ▷ For L2, center embedding space after

concat.
10: (X′, Y ′)← (V:DX,V:DY)
11: Initialize M ′

R with (X′, Y ′)

12: θ′ ← Train M ′
R until convergence or exact embedding

13: if exact embedding achieved then
14: D⋆ ← D
15: ub← D − 1
16: θ ← θ′

17: Stop search if D = lb.
18: else
19: Stop search if D = ub.
20: lb← D + 1
21: end if
22: end while

Q3: A metric space is defined as a
set M endowed with a distance func-
tion d : M ×M → R satisfying the
metric properties for points x, y, z ∈
M , i.e. (I) d(x, x) = 0, (II) for
x ̸= y : d(x, y) > 0, (III) d(x, y) =
d(y, x) and (IV) [the triangle inequal-
ity]: d(x, z) ≤ d(x, y) + d(y, z).
Since the RL2 -reconstruction is based
on the Euclidean distance between the
latent coordinates of the nodes, the
set of nodes jointly embedded during
training will therefore satisfy these
metric properties.

Optimizing the objective function
with the RL2-reconstruction as in
Equation 4, we obtain a set of pa-
rameters θ⋆ = {X⋆,Y⋆, β⋆}. As-
suming θ⋆ corresponds to a per-
fect reconstruction and noting that
σ(ãi,j [RL2

(θ⋆)]i,j) > 0, we ob-
serve that sign([RL2

(θ⋆)]i,j) is +1
for links and −1 for nonlinks, and thus β can be viewed as the radius of the hypersphere, cen-
tered in x⋆

i , which encapsulates all y⋆
j for which the node index pair i, j constitute a link in the

embedded graph. This corresponds to a unit disk graph (Clark et al., 1990) defined across two embed-
dings X,Y instead of a single embedding X. Examining the full reconstruction R = RL2

(X,Y, β),
we see that the xi and yj node embeddings encode the source and target nodes, respectively, in the
pairwise relations between nodes in the graph.

Checking for perfect reconstruction: To check if an exact embedding has been found, we have to
check if the reconstructed adjacency matrix Â from the embeddings is the same as the original A.
This is done by calculating the Frobenius error between them ||Â−A||F/||A||F which poses issues with
both runtime and memory usage when working with large graphs as it requires the dense adjacency
matrix. For this reason, we propose a different approach to check if an exact embedding has been
found exploring that the metric properties allow us to employ different similarity searching techniques
(Zezula et al., 2006; Yianilos, 1993). In particular, we use the fixed-radius nearest neighbors search
based on KD-trees which can be constructed in linearithmic time (Knuth, 1998; Friedman et al., 1977;
Bentley, 1975). If we find all the nearest neighbors within the distance β in the embedding space,
we can compare the found neighbors with the sparsely represented edge index lists. The worst case
runtime for making the comparison would be O(N2), which happens in the case that everything in
the graph is connected. As large graphs are mostly very sparse (Barabási & Pósfai, 2016) with edges
typically scaling sub-linearithmically the effective runtime will be much lower (Nakis et al., 2022).

Scalable inference: When working with very large graphs a lot of memory will be required to store
the full dense adjacency matrices, which is necessary for the reconstruction check using Frobenius
error. The reconstruction check can be done with only the sparse representation of the proposed
nearest neighbors full reconstruction check, but we still need to address the issue of memory when
calculating the loss and learning the representation. Two sampling methods that try to get around the
issue of memory on very large graphs are random node sampling (Leskovec & Faloutsos, 2006) and
negative sampling/case-control inference (Hamilton, 2020; Raftery et al., 2012).

Random Node (RN) sampling: In random node (RN) sampling (Leskovec & Faloutsos, 2006)
a random set of nodes is sampled uniformly amongst the original N nodes. We let b denote the
set of sampled node indices, the optimization objective in Equation 3 can be reformulated as:
LRN(R)

∆
= −

∑
i∈b
∑

j∈b log σ(ãi,jri,j). This is equivalent to inducing a subgraph from the nodes
in b and performing an optimization step on this subgraph as if it was the original adjacency matrix.
When using RN sampling where each node has an equal probability of being in the induced sample,
we might end up not preserving the structural properties of the graph. In Stumpf et al. (2005) they
show that RN sampling does not retain the power law degree distribution for scale-free networks.

6

Published as a conference paper at ICLR 2025

Case-control (CC) sampling: Case control (Raftery et al., 2012) or negative sampling as formulated
in Mikolov et al. (2013); Goldberg et al. (2014) and also explained in Hamilton (2020) considers all
nodes in the graph which we denote V . For each of the node indices i′ all the links are collected l

(i′)
1

and for k ∈ Z+ sample k ·
∣∣∣l(i′)1

∣∣∣ non-links uniformly, denoted by l
(i′)
0 . In practice, we set k = 5.

Defining l1 =
⋃

i′∈V{l
(i′)
1 } and l0 =

⋃
i′∈V{l

(i′)
0 } the loss from Equation 3 can be redefined as:

LCC(R)
∆
=
∑

ri∈l̂1(− log σ(ri)) +
∑

rj∈l̂0(−wj log σ(rj)) (6)

Where l̂1 and l̂0 corresponds to the sets of links and non-links in l1 and l0, e.g. RL2
. wj =

N−|l(j)1 |
|lj0|

is a node specific recalibration weight based on the amount of links and non-links.

Hierarchical Block Distance Model approximation and hinge loss active set optimization: Sam-
pling methods visit only a very small fraction of the network during training which can especially
become an issue for exact reconstruction of large-scale networks potentially creating problems with
convergence of the model, as well as convergence speed. We therefore propose a two-stage opti-
mization approach based on the linearithmically scaling (O(N log(N)) hierarchical block distance
model (HBDM) originally proposed in the context of the Poisson likelihood (Nakis et al., 2022). To
achieve perfect reconstruction from an HBDM initialized solution we further exploit that the hinge
loss reduces the loss function to only consider missclassified dyads but with same stationary points
for exact network reconstruction as Equation 3. Specifically, we start by optimizing the HBDM
based on the following augmentation of the method to the Bernoulli log-likelihood:

LHBDM(R)
∆
=
∑
i ̸=j

yi,j=1

(
β − ||xi − yj ||2

)
−

KL∑
kL=1

(∑
i,j∈CkL

log(1 + exp(β − ||xi − yj ||2))

)

−
L∑

l=1

Kl∑
k=1

Kl∑
k′ ̸=k

(
log(1 + exp(β − ||µ(l)

k − µ
(l)
k′ ||2))

)
, (7)

in which a hierarchical structure akin to a KD-tree is used to reduce the softplus contribution
from the likelihood based on approximating this part of the likelihood using an optimally learned
hierarchical structure based on the current learned embedding space thereby providing an accurate
approximation of the full likelihood (Nakis et al., 2022). By optimizing the embedding space using
HBDM only a relatively small number of dyads will remain misclassified as a result of the block
approximation. The Hierarchical Block Distance Model (HBDM) uniquely characterizes the entire
likelihood of large-scale graphs without sampling, achieving linearithmic space and time complexity
through a hierarchical approximation of the total likelihood via metric clustering under Euclidean
distance. The sums over terms l, k, L,K refer to the K clusters and L layers used by HBDM, while
YN×N = (yi,j) ∈ 0, 1N×N represents the adjacency matrix of the graph, where yi,j = 1 if the pair
(i, j) ∈ E, otherwise it is 0 for all 1 ≤ i, j ≤ N . Our model uses HBDM for initializing its latent
space to provide a "hot" start.

In the second stage, we explore that for perfect reconstruction the stationary points of the Bernoulli
likelihood and hinge loss are the same. This enables to use a zero-margin hinge loss optimization
procedure that operates only over the active set of misclassified dyads (identified using the linearithmic
reconstruction check) as opposed to all dyads in the logistic loss Equation 3 to efficiently achieve
perfect reconstruction:

LHL(R)
∆
=

∑
(i,j)∈S

max(0,−ãi,jri,j)), (8)

where S is the active set. The active set S is then updated after each iteration via the KD-tree-based
perfect reconstruction check until perfect reconstruction is achieved. This HBDM initialization allows
our model to misclassify very few pairs, denoted as M , with M ≪ N2 (observed empirically) for
large graphs. The model then iterates only over these misclassified pairs, identified using KD-trees
and the metric properties of the LDM. These pairs are easily accounted for by the proposed analytical
hinge loss optimization without computational constraints. Consequently, our model can achieve
perfect reconstruction of large-scale graphs efficiently. To our knowledge, we are the first to achieve

7

Published as a conference paper at ICLR 2025

Table 1: Graphs used in the experiments along with
some statistics. Comp. Arboricity denotes the max-
imal arboricity obtained considering as subgraphs
only the connected components of the graph as
the actual arboricity requires infeasible exhaustive
evaluation of all combinations of subsets of nodes
thus providing a lower bound on the arboricity.

Dataset Nodes Type Avg. Max Degree / Connected Total
Degree Comp. Arboricity Components Triangles

Cora 2708 undirected 3.90 168 / 5.75 78 1630
CiteSeer 3327 undirected 2.74 99 / 4.0 438 1167
Facebook 4039 directed 21.85 1043 1 1612010
ca-GrQc 5242 undirected 5.53 81 / 7.0 355 48260
wiki-Vote 7115 directed 14.57 893 24 608389
p2p-Gnutella04 10876 directed 3.68 100 1 934
ca-HepPh 12008 undirected 19.74 491 / 21.0 278 3358499
PubMed 19717 undirected 4.50 171 / 4.5 1 12520

com-amazon 334863 undirected 5.53 549 / 5.53 1 667129
roadNet-PA 1088092 undirected 2.83 9 / 4.0 206 67150

0 10 20 30 40

0

10

20

30

40

Adjacency matrix

PCAModel L2Model LatentEigenModel

1

2

3

4

E
E

D

Mean EED observations with standard deviation

Figure 3: Visualization of the training statistics
over 100 test runs on the synthetic block graph
seen in the left figure. The bar is the mean exact
embedding dimension (EED) and the error bars
correspond to the standard deviation of the mea-
surements. An extended version of this figure can
be seen in the supplementary A.6.

(a) l=1 (b) l=3 (c) l=6

Figure 4: Reordered adjacency matrices
of the com-amazon network at different
hierarchy levels learned by HBDM.

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

1.5

2.0

Fr
ob

en
iu

s E
rro

r

Rank 16
Full Dataset *
RN *
CC *
HBDM *

0 2000 4000 6000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ob

en
iu

s E
rro

r

Rank 32
Full Dataset *
RN *
CC *
HBDM *

0 500 1000 1500 2000 2500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ob

en
iu

s E
rro

r

Rank 64
Full Dataset *
RN *
CC *
HBDM *

Figure 5: Comparison of case-control (CC), random node
sampling (RN), HBDM, and full likelihood inference on
the Cora network.

this and provide such an efficient optimization procedure. The HBDM has linearithmic complexity,
and we have empirically observed that after very few HBDM iterations, the number of misclassified
pairs is in the linearithmic scale. This results in an overall linearithmic complexity for our proposed
method, making it a highly scalable method, much more efficient than competing baselines.

3 RESULTS AND DISCUSSION

The methods introduced are tested on commonly used graph datasets: Cora, Citeseer, Pubmed
(Yang et al., 2016), ca-HepPh (Leskovec et al., 2005; Gehrke et al., 2003), and ca-GrQc (Leskovec
et al., 2007) which are all different publication and citation networks, Facebook (Yang et al., 2020)
which is a subset of the Facebook network, wiki-Vote (Leskovec et al., 2010b;a) consisting of
voting on Wikipedia, the peer to peer network p2p-Gnutella04 (Leskovec et al., 2007; Ripeanu et al.,
2002), the Amazon network (Yang & Leskovec, 2012), and Roadnet-PA which is a road network
of Pennsylvania (Leskovec et al., 2008). Many of the graphs are retrieved from the SNAP Datasets
collection (Leskovec & Krevl, 2014) or PyTorch Geometric (Fey & Lenssen, 2019). The datasets are
all preprocessed by ignoring edge weights, i.e., each entry in the adjacency graph is either 0 or 1. We
list graph statistics for the datasets in Table 1, as well as note the edge type, i.e., directed/undirected.
Optimization is performed using the ADAM optimizer (Kingma & Ba, 2014), with the learning rate
halved after k steps of no improvement. The initial learning rate and k vary by loss function and
dataset, assessed qualitatively. Experiments run for up to 30,000 epochs, with rank intervals adjusted
per dataset and prior results (Chanpuriya et al., 2020). See the supplementary material for details.

Searching for the optimal embedding dimension D∗: 5 searches have been carried out for each of
the datasets and the minimum exact embedding dimension (D∗) has been reported along with the
mean and standard deviation across the analyses of each network. These results are presented in
Table 2 along with the exact embedding dimensions reported by Chanpuriya et al. (2020). Notably, in
Chanpuriya et al. (2020) all networks were analyzed as undirected whereas we presently preserve the
directed structure of the directed networks to highlight that the directionality of links can naturally
be accounted for by the exact embedding. As a result, the results can only be directly compared
for the five undirected networks. In Chanpuriya et al. (2020) self-links were further included in the
modeling, but we presently do not model self-links ignoring these in the loss function. However,

8

Published as a conference paper at ICLR 2025

Table 2: Lowest exact embedding dimensions (D∗) found for each
dataset across 5 searches along with the mean and standard deviations
across the searches. We have marked directed networks with a "*" as
these will not be comparable with Chanpuriya et al. (2020) as they
converted all networks to undirected networks.

Dataset D∗ (L2) D∗ (LPCA) D∗ (Eigenmodel) D∗ (L2, hinge loss) D∗

Margin of 0 Chanpuriya et al.

Cora 6 (6.2 σ 0.45) 9 (9.8 σ 0.45) 9 (9.4 σ 0.85) 7 (7 σ 0) 16
Citeseer 6 (6.7 σ 0.55) 9 (9.2 σ 0.45) 9 (9.2 σ 0.45) 7 (7 σ 0) 16
Facebook* 20 (20.67 σ 0.52) 22 (22.8 σ 0.45) 21 (22.6 σ 0.89) 20 (20 σ 0) -
ca-GrQc 8 (8 σ 0) 10 (10.8 σ 0.45) 10 (10.4 σ 0.55) 8 (8 σ 0) 16
Wiki-Vote* 41 (42.33 σ 1.97) 45 (45.8 σ 0.45) 45 (46.4 σ 1.34) 42 (42.2 σ 0.45) 48
p2p-Gnutella04* 14 (14 σ 0) 17 (17.8 σ 0.45) 17 (18 σ 0.71) 16 (16 σ 0) 32
ca-HepPh 16 (16 σ 0) 19 (19.8 σ 0.84) 19 (19.4 σ 0.55) 16 (16.67 σ 0.52) 32
Pubmed 14 (14 σ 0) 17 (17.8 σ 0.45) 17 (17.4 σ 0.55) 16 (16 σ 0) 48

Table 3: Lowest exact em-
bedding dimensions (D∗)
found for the two large-scale
networks, com-amazon and
roadNet-PA.

com-amazon roadNet-PA

D∗ (L2) 13 16

in the supplementary A.3, we include the modeling of self-links for direct comparison and find
that this has little influence on the extracted embedding dimensionality D∗. From the results we
see that using the proposed efficient search scheme, we identify the existence of solutions with
substantially lower optimal embedding dimension D∗ than previously reported and substantially
lower than the bounds in terms of maximal degree D = 2kmax + 1 (Chanpuriya et al., 2020) and
arboricity 4⌈α⌉2 + 1 (Chanpuriya et al., 2023) as presently evaluated only across each component
of the graphs. Additionally, these results align with the theoretical result from Theorem 2.1, i.e.,
D∗ for the RL2

-embedding is at least as good as the RLPCA-embedding. For Cora, the RLPCA

solution has a D∗ that is three dimensions larger than the RL2
-embedding. This is likely due to the

optimization being increasingly difficult for lower dimensions, causing the training process to get
stuck in local minima rather than finding the expected (or approximate) optimal solutions, as we
according to Theorem 2.1 can analytically extract an embedding of dimension D∗LPCA = D∗L2 + 2
directly from the RL2

solution.

Instability of training procedure: As with many other machine learning algorithms, optimizing for
the embeddings is dependent on initialization and hyperparameter settings, i.e., number of epochs,
learning rate, etc. As a result there are no guarantees that the lowest possible D∗ is identified. The
optimization procedure is initialized with random embedding matrices, and this can lead to the model
getting stuck in local minima. We showcase this behavior using synthetic data in Figure 3. We run
the training procedure for each of the RL2

-, REIG- and RLPCA-models, where we start by testing
if we can embed it in 1 dimension, moving up to 2 dimensions if not possible, and so on, until
convergence. We do this 100 times for each model. We observe that RL2 , and REIG reliably extract
their respective lowest embedding dimensions of D = 1 and D = 2 whereas the RLPCA-model is
less reliable and only in a few of the runs correctly identifies the D = 3 solution.

Statistics of the reconstructed graph for embedding dimensions below the optimal D∗: In
Figure 6, we present graph statistics for the Cora network, to illustrate the impact of additional
compression on the reconstructed graph as D < D∗. Notably, the statistics for D∗ represent the
ground truth, reflecting perfect graph reconstruction. Figure 6a illustrates how the average degree of
the reconstructed network evolves as the network is compressed into lower-dimensional embedding
spaces than the lowest exact dimension. Figure 6b demonstrates that the average shortest path length
of the reconstructed graph decreases with increasing compression, reflecting the network’s structural
simplification. The graph density, as provided in Figure 6c, is consistent with the observed increase
in average degree, also rises as the network becomes more compressed. Finally, Figure 6d highlights
the increasing percentage of misclassified dyads as the model is further compressed, emphasizing its
diminishing ability to accurately reconstruct the original network. (See also supplementary A.10.)

Scalable exact network embeddings: In Figure 5, we compare case-control (CC) inference, random
node (RN) sampling, and the HBDM inference to inference using the full likelihood considering
the Cora network. We observe that the HBDM outperforms the alternative similar linearithmic
O(N logN) specified CC and RN sampling procedures providing scalable inference while achieving
convergence relatively close to the convergence using the full likelihood. In Table 3 the achieved
exact embedding dimension of the two large networks are given. This demonstrates that the two-
phase procedure is scalable, but due to computational costs, we leave the search for a tighter bound
on their embedding dimension for future work. In Figure 4 we visualize the Amazon network
organized according to the exact embedding using the corresponding HBDM induced hierarchical
approximation structure of this embedding. The exact embedding effectively captures the underlying

9

Published as a conference paper at ICLR 2025

D = 7 D = 6 D = 5 D = 4 D = 3 D = 2 D = 1
Latent Dimension

5

10

15

20

25

Av
er

ag
e

D
eg

re
e

Cora D* = 7

(a) Average Degree

D = 7 D = 6 D = 5 D = 4 D = 3 D = 2 D = 1
Latent Dimension

3.5

4.0

4.5

5.0

5.5

6.0

Av
g

S
ho

rte
st

 P
at

h
Le

ng
th Cora D* = 7

(b) Average Shortest Path

D = 7 D = 6 D = 5 D = 4 D = 3 D = 2 D = 1
Latent Dimension

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

G
ra

ph
 D

en
si

ty

Cora D* = 7

(c) Graph Density

D = 7 D = 6 D = 5 D = 4 D = 3 D = 2 D = 1
Latent Dimension

0.0

0.1

0.2

0.3

0.4

0.5

0.6

%
 o

f M
is

s-
cl

as
si

fie
d

D
ya

ds Cora D* = 7

(d) Miss-classified Dyads

Figure 6: Graph statistics for the reconstructed graph as the latent dimension decreases from the exact
embedding dimension (D∗) to (D = 1) for Cora. (D∗) ensures perfect reconstruction.

community structure with high within-block densities, while progressively revealing more detailed
network structures as we traverse the hierarchy.

4 CONCLUSION, LIMITATIONS AND BROADER IMPACT

Our work explores the intrinsic dimensionality of graphs by posing the question of just how few
dimensions are needed to represent a graph in a way that allows for perfect reconstruction. Through
metric models, we demonstrate both theoretically and empirically that we can construct more
expressive embedding spaces than LPCA (Chanpuriya et al., 2020) and at the same time exploit
metric properties to linearithmically, O(N logN), scale the inference of exact network embeddings
to large graphs. Using our framework we achieve substantially lower embedding dimensions than
previously reported. Surprisingly, we also observe from our large-scale network analysis that even
large networks can be modeled exactly using very low-dimensional representations. We anticipate
our efficient exact network embeddings can have wide applications within network science from
the visualization and extraction of communities as presently highlighted to graph representation
learning tasks including node classification and link prediction in which the LDM based on Euclidean
distance has demonstrated strong performance using low-dimensional representations (Nakis et al.,
2022). Furthermore, we anticipate that exact embeddings can have important applications within
efficent network motif discovery (Milo et al., 2002; Vespignani, 2003) to the characterization of
network resilience and path properties based on the extracted topology induced by the exact network
embedding. The approach can also be used to identify the interpolation threshold which has previously
been used to define comparatively suitable network representations (Gu et al., 2021).

Our approach does not necessarily identify the lowest possible network embedding dimension but
an upper bound D∗ and can be prone to issues of local minima, see also section 3. We presently
considered metric embedding by the L2-norm as originally proposed for the latent distance model
(Hoff et al., 2002) which enabled us to establish a direct relationship to the embedding dimensions
of LPCA. However, we note that other metric embedding approaches for instance as proposed
relying on the L∞ norm (Bonato et al., 2012; Bonato, 2017; Boratko et al., 2021) or hyperbolic
geometry (Krioukov et al., 2009; Boguñá et al., 2010; Papadopoulos et al., 2012; Thomas et al., 2016;
Muscoloni et al., 2017; Nickel & Kiela, 2017b; 2018) may enable lower dimensional representations
than the ones presently achieved. In the supplementary material A.1, we contrast the performance
of the Euclidean embeddings to embeddings based on the Poincaré disk model, finding that the two
embedding approaches perform very similar in terms of the estimated exact embedding dimensionality.
Notably, our scalable inference procedure directly generalizes to other metric embedding approaches
and future work should further investigate properties of other choices of geometry on the extracted
dimensionality D∗.

Whereas we expect exact embeddings to be useful for a variety of graph representation learning tasks
care has to be taken in the context of link prediction as exact embeddings will imply learning explicitly
to also characterize links set to zero as zero. As such, the approach may only provide meaningful
predictions when treating links as missing from the loss function (using the hold-out method) if used
for link-prediction (Miller et al., 2009) as opposed to the traditional approach setting links to zero
and predicting that they were changed (Liben-Nowell & Kleinberg, 2003). Low-dimensional exact
embeddings can be directly used for network visualization and low-dimensional representation as
presently highlighted. This however can also be used for surveillance purposes in which the compact
representations induced by the embeddings provide low-dimensional node-specific fingerprints which
can be used for profiling and identification purposes.

10

Published as a conference paper at ICLR 2025

ETHICS STATEMENT

The authors declare no conflicts of interest.

REPRODUCIBILITY STATEMENT

All code for reproducing the experiments is available at:
https://github.com/AndreasLF/HowLowCanYouGo. Furthermore, all data sets used in the
experimentation are publicly available.

REFERENCES

Albert-László Barabási and Márton Pósfai. Network Science. Cambridge University Press, 2016.
ISBN 9781107076266. doi: 10.1007/978-1-4614-6744-1.

Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In Inter-
national Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=r1eiqi09K7.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Communica-
tions of the ACM, 18(9):509–517, 9 1975. ISSN 15577317. doi: 10.1145/361002.361007. URL
https://dl.acm.org/doi/10.1145/361002.361007.

Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet with
hyperbolic mapping. Nature Communications, 1(1), September 2010. ISSN 2041-1723. doi:
10.1038/ncomms1063. URL http://dx.doi.org/10.1038/ncomms1063.

Anthony Bonato. The geometry of social networks. Notes Can. Math. Soc, 48:12–13, 2017.

Anthony Bonato, Jeannette Janssen, and Paweł Prałat. Geometric protean graphs. Internet Mathemat-
ics, 8(1-2):2–28, 2012.

Michael Boratko, Dongxu Zhang, Nicholas Monath, Luke Vilnis, Kenneth L Clarkson, and Andrew
McCallum. Capacity and bias of learned geometric embeddings for directed graphs. Advances in
Neural Information Processing Systems, 34:16423–16436, 2021.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. GraRep: Learning graph representations with global
structural information. International Conference on Information and Knowledge Management,
Proceedings, 19-23-Oct-2015:891–900, 10 2015. doi: 10.1145/2806416.2806512.

Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Charalampos E.
Tsourakakis. Node Embeddings and Exact Low-Rank Representations of Complex Networks.
Neural Information Processing Systems, 2020.

Sudhanshu Chanpuriya, Ryan Rossi, Anup B. Rao, Tung Mai, Nedim Lipka, Zhao Song, and
Cameron Musco. Exact representation of sparse networks with symmetric nonnegative em-
beddings. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 21023–21038. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/428ceef2cd8a53add7213e04d1746479-Paper-Conference.pdf.

Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk graphs. Discrete mathematics,
86(1-3):165–177, 1990.

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric. 3
2019. URL https://arxiv.org/abs/1903.02428v3.

Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication complexity.
Journal of Computer and System Sciences, 65(4):612–625, 2002.

11

https://github.com/AndreasLF/HowLowCanYouGo
https://openreview.net/forum?id=r1eiqi09K7
https://openreview.net/forum?id=r1eiqi09K7
https://dl.acm.org/doi/10.1145/361002.361007
http://dx.doi.org/10.1038/ncomms1063
https://proceedings.neurips.cc/paper_files/paper/2023/file/428ceef2cd8a53add7213e04d1746479-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/428ceef2cd8a53add7213e04d1746479-Paper-Conference.pdf
https://arxiv.org/abs/1903.02428v3

Published as a conference paper at ICLR 2025

Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An Algorithm for Finding
Best Matches in Logarithmic Expected Time. ACM Transactions on Mathematical Software
(TOMS), 3(3):209–226, 9 1977. ISSN 15577295. doi: 10.1145/355744.355745. URL https:
//dl-acm-org.proxy.findit.cvt.dk/doi/10.1145/355744.355745.

Johannes Gehrke, Paul Ginsparg, and Jon Kleinberg. Overview of the 2003 KDD Cup. SIGKDD
Explor., 5(2):149–151, 12 2003. ISSN 1931-0145. doi: 10.1145/980972.980992.

Yoav Goldberg, Omer Levy, Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean. word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding method.
2 2014. URL https://arxiv.org/abs/1402.3722v1.

Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-
17-August-2016:855–864, 7 2016. ISSN 2154-817X. doi: 10.1145/2939672.2939754. URL
https://arxiv.org/abs/1607.00653v1.

Weiwei Gu, Aditya Tandon, Yong-Yeol Ahn, and Filippo Radicchi. Principled approach to the
selection of the embedding dimension of networks. Nature Communications, 12(1):3772, 2021.

William L. Hamilton. Graph Representation Learning. 2020. doi: 10.1007/978-3-031-01588-5.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. Advances in Neural Information Processing Systems 30 (NeurIPS), pp. 1024–1034, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation Learning on Graphs: Methods
and Applications. 2017b.

Hamed Hatami, Pooya Hatami, William Pires, Ran Tao, and Rosie Zhao. Lower bound methods for
sign-rank and their limitations. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2022). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik, 2022.

Peter D Hoff. Modeling homophily and stochastic equivalence in symmetric relational data. Advances
in neural information processing systems, 20, 2007.

Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent Space Approaches to Social Network
Analysis. Journal of the American Statistical Association, 97(460):1090–1098, 12 2002. ISSN
0162-1459. doi: 10.1198/016214502388618906.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A Method for Stochastic Optimization. 3rd
International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings,
12 2014. URL https://arxiv.org/abs/1412.6980v9.

Donald E. Knuth. The Art of Computer Programming: Sorting and searching, volume 3. Addison
Wesley Longman, second edition, 3 1998.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch,
2020.

Dmitri Krioukov, Fragkiskos Papadopoulos, Amin Vahdat, and Marián Boguñá. Curvature and
temperature of complex networks. Physical Review E, 80(3), September 2009. ISSN 1550-2376.
doi: 10.1103/physreve.80.035101. URL http://dx.doi.org/10.1103/PhysRevE.80.
035101.

Jure Leskovec and Christos Faloutsos. Sampling from Large Graphs. 2006.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset Collection, 6
2014. URL http://snap.stanford.edu/data.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over Time: Densification Laws,
Shrinking Diameters and Possible Explanations. 2005.

12

https://dl-acm-org.proxy.findit.cvt.dk/doi/10.1145/355744.355745
https://dl-acm-org.proxy.findit.cvt.dk/doi/10.1145/355744.355745
https://arxiv.org/abs/1402.3722v1
https://arxiv.org/abs/1607.00653v1
https://arxiv.org/abs/1412.6980v9
http://dx.doi.org/10.1103/PhysRevE.80.035101
http://dx.doi.org/10.1103/PhysRevE.80.035101
http://snap.stanford.edu/data

Published as a conference paper at ICLR 2025

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution. ACM Transactions on
Knowledge Discovery from Data (TKDD), 1(1), 3 2007. ISSN 15564681. doi: 10.1145/1217299.
1217301. URL https://dl.acm.org/doi/10.1145/1217299.1217301.

Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community Structure in
Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. Internet
Mathematics, 6(1):29–123, 10 2008. ISSN 15427951. doi: 10.1080/15427951.2009.10129177.
URL https://arxiv.org/abs/0810.1355v1.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links in
online social networks. Proceedings of the 19th International Conference on World Wide Web,
WWW ’10, pp. 641–650, 2010a. doi: 10.1145/1772690.1772756. URL https://dl.acm.
org/doi/10.1145/1772690.1772756.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social media. In-
ternational Conference on Human Factors in Computing Systems, 2:1361–1370, 2010b. doi:
10.1145/1753326.1753532.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In
Proceedings of the twelfth international conference on Information and knowledge management,
pp. 556–559, 2003.

Miller McPherson. A blau space primer: prolegomenon to an ecology of affiliation. Industrial and
Corporate Change, 13(1):263–280, 2004.

Miller Mcpherson, Smith-Lovin Lynn, and James M Cook. Birds of a Feather: Homophily in Social
Networks. Source: Annual Review of Sociology, 27:415–444, 2001.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representa-
tions of Words and Phrases and their Compositionality. Advances in Neural Information Processing
Systems, 10 2013. ISSN 10495258. URL https://arxiv.org/abs/1310.4546v1.

Kurt Miller, Michael Jordan, and Thomas Griffiths. Nonparametric latent feature models for link
prediction. Advances in neural information processing systems, 22, 2009.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs:
Simple building blocks of complex networks. Science, 298(5594):824–827, 10 2002. ISSN
00368075. doi: 10.1126/SCIENCE.298.5594.824/SUPPL{_}FILE/MILOSOMV4.PDF. URL
https://www.science.org/doi/10.1126/science.298.5594.824.

Alessandro Muscoloni, Josephine Thomas, Sara Ciucci, Ginestra Bianconi, and Carlo Cannistraci.
Machine learning meets complex networks via coalescent embedding in the hyperbolic space.
Nature Communications, 8, 11 2017. doi: 10.1038/s41467-017-01825-5.

Nikolaos Nakis, Abdulkadir Celikkanat, Sune Lehmann, and Morten Morup. A Hierarchical Block
Distance Model for Ultra Low-Dimensional Graph Representations. IEEE Transactions on
Knowledge and Data Engineering, 36(4):1399–1412, 4 2022. ISSN 15582191. doi: 10.1109/
TKDE.2023.3304344. URL https://arxiv.org/abs/2204.05885v2.

M E J Newman. The structure and function of complex networks. SIAM Review, 45:167–256, 3
2003. ISSN 00361445. doi: 10.1137/s003614450342480. URL https://arxiv.org/abs/
cond-mat/0303516v1.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-
tations. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017a. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
Advances in neural information processing systems, 30, 2017b.

13

https://dl.acm.org/doi/10.1145/1217299.1217301
https://arxiv.org/abs/0810.1355v1
https://dl.acm.org/doi/10.1145/1772690.1772756
https://dl.acm.org/doi/10.1145/1772690.1772756
https://arxiv.org/abs/1310.4546v1
https://www.science.org/doi/10.1126/science.298.5594.824
https://arxiv.org/abs/2204.05885v2
https://arxiv.org/abs/cond-mat/0303516v1
https://arxiv.org/abs/cond-mat/0303516v1
https://proceedings.neurips.cc/paper_files/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf

Published as a conference paper at ICLR 2025

Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In International conference on machine learning, pp. 3779–3788. PMLR,
2018.

Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri V. Krioukov. Network mapping by
replaying hyperbolic growth. IEEE/ACM Transactions on Networking, 23:198–211, 2012. URL
https://api.semanticscholar.org/CorpusID:5285847.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learning of Social Represen-
tations. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 701–710, 3 2014. doi: 10.1145/2623330.2623732. URL http://arxiv.
org/abs/1403.6652http://dx.doi.org/10.1145/2623330.2623732.

Adrian E Raftery, Xiaoyue Niu, Peter D Hoff, and Ka Yee Yeung. Fast inference for the latent
space network model using a case-control approximate likelihood. Journal of computational and
graphical statistics, 21(4):901–919, 2012.

Alexander A Razborov and Alexander A Sherstov. The sign-rank of ac ˆ0. SIAM Journal on
Computing, 39(5):1833–1855, 2010.

M. Ripeanu, Ian T Foster, and Adriana Iamnitchi. Mapping the Gnutella Network: Properties of
Large-Scale Peer-to-Peer Systems and Implications for System Design. arXiv.org, 2002.

M. Angeles Serrano, Dmitri Krioukov, and Marian Boguna. Self-similarity of complex net-
works and hidden metric spaces. Physical Review Letters, 100(7), 10 2007. doi: 10.1103/
PhysRevLett.100.078701. URL http://arxiv.org/abs/0710.2092http://dx.doi.
org/10.1103/PhysRevLett.100.078701.

C. Seshadhri, Aneesh Sharma, Andrew Stolman, and Ashish Goel. The impossibility of low-rank
representations for triangle-rich complex networks. Proceedings of the National Academy of Sci-
ences of the United States of America, 117(11):5631–5637, 3 2020. ISSN 10916490. doi: 10.1073/
PNAS.1911030117. URL www.pnas.org/cgi/doi/10.1073/pnas.1911030117.

Michael P.H. Stumpf, Carsten Wiuf, and Robert M. May. Subnets of scale-free networks are
not scale-free: Sampling properties of networks. Proceedings of the National Academy of Sci-
ences of the United States of America, 102(12):4221–4224, 3 2005. ISSN 00278424. doi:
10.1073/PNAS.0501179102/SUPPL{_}FILE/01179SUPPTEXT.PDF. URL https://www.
pnas.org/doi/abs/10.1073/pnas.0501179102.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-scale In-
formation Network Embedding. WWW 2015 - Proceedings of the 24th International Conference on
World Wide Web, pp. 1067–1077, 3 2015. doi: 10.1145/2736277.2741093. URL http://arxiv.
org/abs/1503.03578http://dx.doi.org/10.1145/2736277.2741093.

Josephine Thomas, Alessandro Muscoloni, Sara Ciucci, Ginestra Bianconi, and Carlo Cannistraci.
Machine learning meets network science: dimensionality reduction for fast and efficient embedding
of networks in the hyperbolic space. 02 2016. doi: 10.48550/arXiv.1602.06522.

Alessandro Vespignani. Evolution thinks modular. Nature Genetics 2003 35:2, 35(2):118–119,
10 2003. ISSN 1546-1718. doi: 10.1038/ng1003-118. URL https://www.nature.com/
articles/ng1003-118.

Jaewon Yang and Jure Leskovec. Defining and Evaluating Network Communities based on Ground-
truth. Knowledge and Information Systems, 42(1):181–213, 5 2012. ISSN 02193116. doi:
10.1007/s10115-013-0693-z. URL https://arxiv.org/abs/1205.6233v3.

Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Sourav S. Bhowmick, and Juncheng Liu. PANE:
scalable and effective attributed network embedding. VLDB Journal, 32(6):1237–1262, 9 2020.
doi: 10.1007/s00778-023-00790-4. URL http://arxiv.org/abs/2009.00826http:
//dx.doi.org/10.1007/s00778-023-00790-4.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting Semi-Supervised Learning
with Graph Embeddings. 33rd International Conference on Machine Learning, ICML 2016, 1:
86–94, 3 2016. URL https://arxiv.org/abs/1603.08861v2.

14

https://api.semanticscholar.org/CorpusID:5285847
http://arxiv.org/abs/1403.6652 http://dx.doi.org/10.1145/2623330.2623732
http://arxiv.org/abs/1403.6652 http://dx.doi.org/10.1145/2623330.2623732
http://arxiv.org/abs/0710.2092 http://dx.doi.org/10.1103/PhysRevLett.100.078701
http://arxiv.org/abs/0710.2092 http://dx.doi.org/10.1103/PhysRevLett.100.078701
www.pnas.org/cgi/doi/10.1073/pnas.1911030117
https://www.pnas.org/doi/abs/10.1073/pnas.0501179102
https://www.pnas.org/doi/abs/10.1073/pnas.0501179102
http://arxiv.org/abs/1503.03578 http://dx.doi.org/10.1145/2736277.2741093
http://arxiv.org/abs/1503.03578 http://dx.doi.org/10.1145/2736277.2741093
https://www.nature.com/articles/ng1003-118
https://www.nature.com/articles/ng1003-118
https://arxiv.org/abs/1205.6233v3
http://arxiv.org/abs/2009.00826 http://dx.doi.org/10.1007/s00778-023-00790-4
http://arxiv.org/abs/2009.00826 http://dx.doi.org/10.1007/s00778-023-00790-4
https://arxiv.org/abs/1603.08861v2

Published as a conference paper at ICLR 2025

P. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces.
ACM-SIAM Symposium on Discrete Algorithms, 1993.

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity Search The Metric
Space Approach. 32, 2006. doi: 10.1007/0-387-29151-2. URL http://link.springer.
com/10.1007/0-387-29151-2.

Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Homophily, Structure, and Content
Augmented Network Representation Learning. pp. 609–618, 2 2017. doi: 10.1109/ICDM.2016.
0072.

Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network Representation Learning:
A Survey. IEEE Transactions on Big Data, 6(1):3–28, 3 2020. ISSN 23327790. doi: 10.1109/
TBDATA.2018.2850013.

15

http://link.springer.com/10.1007/0-387-29151-2
http://link.springer.com/10.1007/0-387-29151-2

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 EXPERIMENTS WITH A HYPERBOLIC DISTANCE MODEL

To verify that our method extends to other metric spaces than the Euclidean, we run the EED search
procedure using a hyperbolic distance model, based on the Poincaré ball model as seen in ((Nickel &
Kiela, 2017a)), as this model formulation is well-suited for gradient-based optimization. Concretely,
we optimize using the Riemannian ADAM implementation from the geoopt library(Kochurov et al.,
2020), which is based on (Becigneul & Ganea, 2019).

Table 4: Extended version of Figure 2. Lowest exact embedding dimensions (D∗) found for each
dataset across 5 searches along with the mean and standard deviations across the searches, including
the Hyperbolic distance model. See Figure 1 for graph statistics for each of the graphs. Results using
hinge loss are obtained with a margin of 0. ∗∗Currently only 3 searches have been performed for the
Hyperbolic model on Pubmed.

Dataset D∗ (L2) D∗ (LPCA) D∗ (Eigenmodel) D∗ (L2) D∗ D∗ (Hyperbolic)
Hinge loss Chanpuriya et al. Hinge loss

Cora 6 (6.2 σ 0.45) 9 (9.8 σ 0.45) 9 (9.4 σ 0.85) 7 (7 σ 0) 16 7 (7.4 σ 0.49)
Citeseer 6 (6.7 σ 0.55) 9 (9.2 σ 0.45) 9 (9.2 σ 0.45) 7 (7 σ 0) 16 7 (7.8 σ 0.40)
Facebook* 20 (20.67 σ 0.52) 22 (22.8 σ 0.45) 21 (22.6 σ 0.89) 20 (20 σ 0) - 20 (20.6 σ 0.49)
ca-GrQc 8 (8 σ 0) 10 (10.8 σ 0.45) 10 (10.4 σ 0.55) 8 (8 σ 0) 16 8 (8.8 σ 0.40)
Wiki-Vote* 41 (42.33 σ 1.97) 45 (45.8 σ 0.45) 45 (46.4 σ 1.34) 42 (42.2 σ 0.45) 48 45 (46.0 σ 1.55)
p2p-Gnutella04* 14 (14 σ 0) 17 (17.8 σ 0.45) 17 (18 σ 0.71) 16 (16 σ 0) 32 17 (17.6 σ 0.49)
ca-HepPh 16 (16 σ 0) 19 (19.8 σ 0.84) 19 (19.4 σ 0.55) 16 (16.67 σ 0.52) 32 18 (18.6 σ 0.80)
Pubmed 14 (14 σ 0) 17 (17.8 σ 0.45) 17 (17.4 σ 0.55) 16 (16 σ 0) 48 18 (18.67 σ 0.47)∗∗

A.2 PROOF OF THEOREM 2.1

In this section we provide the proof of Theorem 2.1.

Theorem A.1. Let D∗LPCA and D∗L2
denote the lowest possible exact embedding dimension for a

graph embedding obtained by optimization w.r.t. the RLPCA-reconstruction and RL2 -reconstruction
respectively. Then:

D∗LPCA − 2 ≤ D∗L2
≤ D∗LPCA (9)

Proof. Recall that the probability of a link at index pair (i, j) in LPCA is given by p(Ai,j) =

σ

([
XY⊤

]
i,j

)
and recall that this implies that a link exists if and only if

[
XY⊤

]
i,j

> 0.

We note that the signs of X and Y are invariant to scaling by positive scalars, and we define γ := [γ]i
and α := [α]j , where γi, αj ∈ R+. We can now write:

sign
(
XY⊤

)
= sign

(
diag (γ)XY⊤ diag (α)

)
= sign

(
X̃Ỹ⊤

)
.

From this expression, we can ensure row-wise normalization of the factorization matrices, i.e.∥∥∥x̃(row)
i

∥∥∥
2
=
∥∥∥ỹ(row)

j

∥∥∥
2
= 1, by setting γi =

∥∥∥x(row)
i

∥∥∥−1
2

and αj =
∥∥∥y(row)

j

∥∥∥−1
2

.

Considering the metric embeddings, the distance ∥x̃i − ỹj∥2 is always non-negative and therefore β
also has to be non-negative as it is used to separate links (i.e., β > ∥x̃i − ỹj∥2) from non-links (i.e.,
β < ∥x̃i − ỹj∥2). Since both these terms are positive, we can express an exact metric embedding
equivalently in squared terms:

sign
(
β − ∥x̃i − ỹj∥2

)
= sign

(
β2 − ∥x̃i − ỹj∥22

)
= sign

(
β2 −

(
1 + 1− 2x̃iỹ

⊤
j

))
.

Setting β =
√
2 simplifies to sign

(
2x̃iỹ

⊤
j

)
and since multiplying by 2 does not change the sign, we

confirm that the metric embedding can represent the same information as the LPCA-embedding, i.e.
sign

(
β − ∥x̃i − ỹj∥2

)
= sign

(
x̃iỹ

⊤
j

)
.

16

Published as a conference paper at ICLR 2025

As we can write the metric model through an LPCA model augmented with two extra dimensions:

β2 −
(
∥xi∥22 + ∥yj∥22 − 2xiy

⊤
j

)
=
[
−1 ∥yj∥22 xi

] ∥xi∥22 − β2

−1
2y⊤j

 ,

this demonstrates that the LPCA-embedding needs at least two more dimensions to capture the same
information as the metric embedding.

A.3 EXPERIMENTS INCLUDING SELF-LINKS

The experiments in Chanpuriya et al. (2020) were based on self-loops and for direct comparison
we therefore here also include the corresponding experiments in which we set the diagonal of all
networks to one (i.e., include self-loops). 10 experiments were run and the results are reported in
Table 5. The hyperparameters for the experiment are reported in Table 6.

Table 5: Lowest exact embedding dimensions (D∗) found for each dataset across 10 searches along
with the mean and standard deviations across the searches. Self-loops are considered. Note that in
Chanpuriya et al. (2020) all their graphs were converted to undirected graphs and the rank comparison
is therefore not directly comparable for the directed networks. See Figure 1 for graph statistics for
each of the graphs.

Dataset D∗ (L2) D∗ (LPCA) D∗

(Chanpuriya et al., 2020)

Cora 6 (6.1 σ 0.3162) 9 (9 σ 0) 16
Citeseer 7 (7 σ 0) 9 (9.556 σ 0.526) 16
Facebook 20 (20 σ 0) 21 (22.3 σ 1.16) -
ca-GrQc 8 (8 σ 0) 9 (10.2 σ 0.7888) 16
Wiki-Vote 42 (42.8 σ 0.4216) 42 (44.1 σ 1.449) 48
p2p-Gnutella04 16 (16 σ 0) 17 (17.7 σ 0.483) 32
ca-HepPh 17 (17.1 σ 0.3162) 19 (18.7 σ 0.483) 32
Pubmed 15 (15 σ 0) 16 (17.4 σ 0.6992) 48

Table 6: Hyperparameters for exact embedding search. 10 experiments were carried out for both the
LPCA and the L2 model.

Dataset # epochs Initial learning rate LR-scheduler patience (k) Search range

Cora 30, 000 1.0 500 [1, 50]
Citeseer 30, 000 1.0 500 [1, 50]
Facebook 30, 000 1.0 500 [1, 50]
ca-GrQc 30, 000 1.0 500 [1, 50]
Wiki-Vote 30, 000 1.0 500 [1, 50]
p2p-Gnutella04 20, 000 0.1 500 [1, 50]
ca-HepPh 20, 000 1.0 500 [1, 50]
Pubmed 20, 000 1.0 500 [1, 50]

A.4 HYPERPARAMETERS USED FOR RESULTS WITHOUT SELF-LINKS

The hyperparameters used for the experiments not considering self-links (Figure 2) are presented in
Table 7.

A.5 THE ADVANTAGE OF INITIALIZING THE EMBEDDING SPACE BY SVD

We used a low-rank SVD of a higher-rank embedding space to initialize the search of the embedding
space at the next rank in the Algorithm 1. In Figure 7 we demonstrate the difference between this
"hot start" approach and a randomly initialized embedding space i.e. "cold start".

17

Published as a conference paper at ICLR 2025

Table 7: Hyperparameters for exact embedding search not considering self-links (see results in
Figure 2). 5 experiments were carried out for both the LPCA and the L2 model.

Dataset # epochs Initial learning rate LR-scheduler patience (k) Search range

Cora 30, 000 1.0 200 [1, 64]
Citeseer 30, 000 1.0 200 [1, 64]
Facebook 30, 000 1.0 200 [1, 96]
ca-GrQc 30, 000 1.0 200 [1, 80]
Wiki-Vote 30, 000 1.0 200 [1, 50]
p2p-Gnutella04 30, 000 0.1 200 [1, 80]
ca-HepPh 30, 000 1.0 200 [1, 80]
Pubmed 30, 000 1.0 200 [1, 80]

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ob

en
iu

s E
rro

r

Rank 40
SVD Hot Start *
Cold Start *

0 500 1000 1500 2000 2500 3000 3500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ob

en
iu

s E
rro

r

Rank 20
SVD Hot Start *
Cold Start *

0 5000 10000 15000 20000 25000 30000
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ob

en
iu

s E
rro

r

Rank 10
SVD Hot Start
Cold Start

0 2000 4000 6000 8000 10000 12000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ob

en
iu

s E
rro

r

Rank 15
SVD Hot Start *
Cold Start *

0 5000 10000 15000 20000 25000 30000
Epoch

0.2

0.4

0.6

0.8

1.0

Fr
ob

en
iu

s E
rro

r

Rank 13
SVD Hot Start
Cold Start

0 5000 10000 15000 20000 25000 30000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ob

en
iu

s E
rro

r

Rank 14
SVD Hot Start
Cold Start

Figure 7: SVD and random initialization (cold start) for some search steps for the dataset PubMed.
The search was initialized at rank 80 (randomly initialized) and then low-rank SVD-initialization
was used for the proceeding search steps. Additionally, we have initialized training with random
initialization for each search step. The legend is marked with ∗ if an exact embedding was achieved.

18

Published as a conference paper at ICLR 2025

A.6 VISUALIZATION OF TRAINING STATISTICS ON SYNTHETIC GRAPHS

0 10 20 30 40
0

10

20

30

40

2 blocks
0 10 20 30 40

0

10

20

30

40

5 blocks

0 10 20 30 40
0

10

20

30

40

10 blocks
0 10 20 30 40

0

10

20

30

40

25 blocks

L2
Mod

el

PCAMod
el

Hyp
erb

oli
cM

od
el

La
ten

tE
ige

nM
od

el

Models

0

1

2

3

4

5

6

E
E

D

Mean EED observations with standard deviation
Number of blocks

2 blocks
5 blocks
10 blocks
25 blocks

Figure 8: Visualization of the training statistics over 100 test runs on the synthetic graphs seen in the
left figure. The bar is the mean exact embedding dimension (EED) and the error bars correspond to
the standard deviation of the measurements. All runs are performed using hinge loss.

0 10 20 30 40 50 60
Number of blocks in synthetic graph

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n
EE

D

Mean EED on a synthetic graph with 120 nodes and different number of blocks
Model

Min EED (PCA)
Min EED (L2)
Min EED (LatentEigen)
Min EED (Hyperbolic)
PCA
L2
LatentEigen
Hyperbolic

Figure 9: EED for different models and different block sizes in synthetic networks with different
amounts of blocks similar to those in Figure 8.

A.7 THE HIERARCHICAL BLOCK DISTANCE MODEL

Given a Bernoulli log-likelihood over a latent distance model, where YN×N = (yi,j) ∈ 0, 1N×N

represents the adjacency matrix of the network, where yi,j = 1 if the pair (i, j) ∈ E, otherwise it is 0
for all 1 ≤ i, j ≤ N . The total network log-likelihood is defined as:

logP (Y |Λ) =
∑
i̸=j

(
yijηij − log(1 + exp (ηij))

)
=

∑
i ̸=j:yij=1

ηij −
∑
i̸=j

log(1 + exp (ηij)) , (10)

where ηij are the log-odds, ηij = β − ∥xi − yj∥2. Scaling the optimization of such an expression
is not feasible as the second term requires the computation of all node pairs scaling as O(N2). In

19

Published as a conference paper at ICLR 2025

contrast, the first term scale with the number of edges, i.e. O(N logN) Nakis et al. (2022) making
its computation scalable for large networks.

To scale the LDM to large-scale networks, the HBDM procedure approximates
∑

i ̸=j log(1 +

exp(ηij)) by enforcing a hierarchical block structure similar to stochastic block models. Specifically,
HBDM employs a hierarchical divisive clustering procedure. It is worth noting that the original work
by Nakis et al. [2022] focused on a Poisson likelihood and undirected networks. In this study, we
extend their approach to a Bernoulli likelihood, adapting it for directed networks.

We define the total representation matrix Z = [X;Y], which combines the source and target node
embeddings through concatenation. The matrix Z is then structured into a hierarchy using a tree-based
divisive clustering approach, resulting in a cluster dendrogram.

The tree’s root represents a single cluster encompassing the entire set of the concatenated latent
variable embeddings, Z. At each level of the tree, the cluster is recursively partitioned until the leaf
nodes contain no more than the desired number of nodes, Nleaf . The number of leaf nodes, Nleaf, is
chosen based on the HBDMs’ linearithmic complexity upper bound and thus set to Nleaf = logN .
This results in approximately K = N/ log(N) total clusters. At each tree level, the tree-nodes
represent clusters corresponding to that level’s height. When partitioning a non-leaf node, the split is
performed only on the set of data points assigned to the parent tree-node (cluster). For each tree level,
the pairwise distances between data points in different tree-nodes are used to define the distances
between the corresponding cluster centroids. These distances are then used to compute the likelihood
contribution of the blocks. Binary splits are applied iteratively to the non-leaf tree-nodes, progressing
down the tree. When all tree nodes are treated becomes leaves (contain maximum logN points), the
HBDM analytically computes the pairwise distances within each cluster to determine the likelihood
contribution of the corresponding analytical blocks. This computation incurs a linearithmic cost
of O(KN2

leaf) = O(N logN). Moreover, this approach preserves the homophily and transitivity
properties of the model, as explicitly shown in the paper.

The total HBDM expression for our approach is defined as:

LHBDM(R)
∆
=
∑
i ̸=j

yi,j=1

(
β − ||xi − yj ||2

)
−

KL∑
kL=1

(∑
i,j∈CkL

log(1 + exp(β − ||xi − yj ||2))

)

−
L∑

l=1

Kl∑
k=1

Kl∑
k′ ̸=k

(
log(1 + exp(β − ||µ(l)

k − µ
(l)
k′ ||2))

)
, (11)

where l ∈ 1, . . . , L denotes the l-th level of the dendrogram, kl is the cluster index at each tree level,
and µ

(l)
k represents the corresponding centroid.

A.7.1 THE EUCLIDEAN CLUSTERING OF HBDM, RESPECTING METRIC PROPERTIES

Finally, in order for the clustering to preserve the metric properties of the Euclidean space, the HBDM
defines a Euclidean version of K-means clustering. The divisive clustering procedure relies on the
following Euclidean norm objective:

J(r,µ) =

N∑
i=1

K∑
k=1

rik|zi − µk|2, (12)

where k denotes the cluster index, zi is the i-th data point, rik is the cluster responsibility or
assignment, and µk is the cluster centroid. Since the loss function for K-means with the Euclidean
norm does not provide closed-form updates, the proposed method introduces the following auxiliary
loss function:

Equation 12 as:

J+(ϕ, r,µ) =

N∑
i=1

K∑
k=1

rik

(
||zi − µk||22

2ϕik
+

1

2
ϕik

)
, (13)

20

Published as a conference paper at ICLR 2025

where ϕ are the auxiliary variables, while in Nakis et al. (2022) they show how this auxiliary functions
accounts for optimizing Equation 12.

A.8 HBDM SEARCH

The active set used in the hinge loss optimization is reduced significantly by using the solution
obtained from the HBDM framework as described in Nakis et al. (2022) and adapted to binary graphs.
This reduced active set is then optimized by the hinge loss with a margin of 0. A KDTree is used to
query neighbors within the radius of β and this is used to update the active set and thus determine
which nodes are reconstructed correctly. From Figure 10 we observe empirically that the HBDM
has reduced the active set enough to optimize using the hinge loss and we further observe that the
next search step hot started with the low-rank SVD of the previous full reconstruction also starts at a
sufficiently small active set size.

A.9 COMPUTE RESOURCES USED

The experiments on the smaller graphs, i.e., all the graphs except com-amazon and roadNetPA can all
be run on consumer-grade hardware. More specifically we used a 2023 Macbook Pro with an M3 Pro
chip. For the larger datasets we used a high-performance compute cluster equipped with an Nvidia
A100 GPU and multiple Intel Xeon Gold CPUs with either 16 or 24 cores.

A.10 ADDITIONAL STATISTICS OF THE RECONSTRUCTED GRAPH FOR EMBEDDING
DIMENSIONS BELOW THE OPTIMAL D∗:

We provide pairwise comparisons between the optimal dimension (D∗) and lower dimensions
for (i) Degree Distribution, (ii) Clustering Coefficient Distribution, and (iii) Shortest Path Length
Distribution. Figure Figure 11 shows results for the Cora dataset while Figure Figure 12 the results
for the Facebook dataset, highlighting increasing deviations in distributions as dimensions move
further below (D∗).

A.11 PERFECTLY RECONSTRUCTING RANDOM NETWORKS:

We investigate whether our proposed approach can perfectly reconstruct random networks with a
ground-truth latent dimension, for both Euclidean and Hyperbolic geometries. To generate random
graphs, we sample D-dimensional random vectors uniformly within a ball of radius R (with R = 1
for the Poincaré disk model) and assign a scalar bias to ensure realistic network sparsity. Links are
then generated via Bernoulli sampling. Our findings indicate that stochastic network generation
prevents the recovery of exact embedding dimensions (EED), even in high-dimensional settings.
However, by making network generation deterministic — linking nodes when dij ≤ β — perfect
reconstruction is achieved. We set the number of nodes for all networks as N = 1000, and D = 3, 8.
The results are summarized in Table 8.

Table 8: Comparison between EED found by the hyperbolic model and the Euclidean model for
synthetic networks generated according to 3- and 8-dimensional hyperbolic and Euclidean geometric
structures, respectively.

Synthetic Dataset D∗ (Hyperbolic Model) D∗ (Euclidean Model)

Hyperbolic 3D 5 4
Hyperbolic 8D 9 9
Euclidean 3D 3 3
Euclidean 8D 8 8

21

Published as a conference paper at ICLR 2025

0 100 200 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
M

isc
la

ss
ifi

ed
 D

ya
ds

 (%
)

Search step 1 *
(Rank 16)

HBDM Phase
Hinge Loss Phase

0 100 200 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Search step 2 *
(Rank 11)

0 200 400 600
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Search step 3 *
(Rank 8)

0 5000 10000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Search step 4
(Rank 6)

0 1000 2000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Search step 5
(Rank 7)

(a) Cora

0 200 400
Epoch

0.00

0.05

0.10

0.15

0.20

M
isc

la
ss

ifi
ed

 D
ya

ds
 (%

)

Search step 1 *
(Rank 16)

HBDM Phase
Hinge Loss Phase

0 100 200 300
Epoch

0.00

0.05

0.10

0.15

0.20

Search step 2 *
(Rank 11)

0 200 400 600
Epoch

0.00

0.05

0.10

0.15

0.20

Search step 3 *
(Rank 8)

0 5000 10000
Epoch

0.00

0.05

0.10

0.15

0.20

Search step 4
(Rank 6)

0 500 1000
Epoch

0.00

0.05

0.10

0.15

0.20

Search step 5 *
(Rank 7)

(b) Citeseer

0 200 400 600
Epoch

0.0

0.5

1.0

1.5

M
isc

la
ss

ifi
ed

 D
ya

ds
 (%

)

Search step 1 *
(Rank 30)

HBDM Phase
Hinge Loss Phase

0 250 500 750
Epoch

0.0

0.5

1.0

1.5

Search step 2 *
(Rank 24)

0 1000 2000
Epoch

0.0

0.5

1.0

1.5

Search step 3 *
(Rank 21)

0 5000 10000
Epoch

0.0

0.5

1.0

1.5

Search step 4
(Rank 19)

0 5000 10000
Epoch

0.0

0.5

1.0

1.5

Search step 5
(Rank 20)

(c) Facebook

0 200 400 600
Epoch

0.0

0.1

0.2

0.3

M
isc

la
ss

ifi
ed

 D
ya

ds
 (%

)

Search step 1 *
(Rank 80)

HBDM Phase
Hinge Loss Phase

0 100 200 300 400
Epoch

0.0

0.1

0.2

0.3

Search step 2 *
(Rank 40)

0 200 400 600 800
Epoch

0.0

0.1

0.2

0.3

Search step 3 *
(Rank 20)

0 1000 2000 3000 4000 5000
Epoch

0.0

0.1

0.2

0.3

Search step 4
(Rank 10)

0 1000 2000 3000 4000
Epoch

0.0

0.1

0.2

0.3

Search step 5 *
(Rank 15)

0 1000 2000 3000 4000 5000
Epoch

0.0

0.1

0.2

0.3

Search step 6
(Rank 12)

0 1000 2000 3000 4000 5000
Epoch

0.0

0.1

0.2

0.3

Search step 7
(Rank 13)

0 1000 2000 3000 4000
Epoch

0.0

0.1

0.2

0.3

Search step 8
(Rank 14)

(d) Pubmed

0 200 400 600
Epoch

0.0

0.1

0.2

0.3

0.4

M
isc

la
ss

ifi
ed

 D
ya

ds
 (%

)

Search step 1 *
(Rank 30)

HBDM Phase
Hinge Loss Phase

0 1000 2000
Epoch

0.0

0.1

0.2

0.3

0.4

Search step 2 *
(Rank 21)

0 2000 4000
Epoch

0.0

0.1

0.2

0.3

0.4

Search step 3
(Rank 16)

0 2000 4000
Epoch

0.0

0.1

0.2

0.3

0.4

Search step 4
(Rank 18)

0 250 500 750
Epoch

0.0

0.1

0.2

0.3

0.4

Search step 5 *
(Rank 19)

(e) p2p-Gnutella04

Figure 10: Percentage of misclassified dyads for different steps of the search algorithm using HBDM.
The run is marked by a ∗ if an exact embedding was achieved.

22

Published as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175
Degree

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

of
 N

od
es

D* = 7
D = 6

(a) Degree Distribution Comparison
D∗ = 7 vs D = 6

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Coefficient

0

2

4

6

8

D
en

si
ty

D* = 7
D = 6

(b) Clustering Coefficient Distribu-
tion Comparison D∗ = 7 vs D = 6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Path Length

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

D* = 7
D = 6

(c) Shortest Path Length Compari-
son D∗ = 7 vs D = 6

0 25 50 75 100 125 150 175
Degree

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

of
 N

od
es

D* = 7
D = 5

(d) Degree Distribution Comparison
D∗ = 7 vs D = 5

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Coefficient

0

2

4

6

8

D
en

si
ty

D* = 7
D = 5

(e) Clustering Coefficient Distribu-
tion Comparison D∗ = 7 vs D = 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

D* = 7
D = 5

(f) Shortest Path Length Compari-
son D∗ = 7 vs D = 5

0 50 100 150 200
Degree

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

of
 N

od
es

D* = 7
D = 4

(g) Degree Distribution Comparison
D∗ = 7 vs D = 4

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Coefficient

0

2

4

6

8

D
en

si
ty

D* = 7
D = 4

(h) Clustering Coefficient Distribu-
tion Comparison D∗ = 7 vs D = 4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Path Length

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

D* = 7
D = 4

(i) Shortest Path Length Compari-
son D∗ = 7 vs D = 4

0 25 50 75 100 125 150 175 200
Degree

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

of
 N

od
es

D* = 7
D = 3

(j) Degree Distribution Comparison
D∗ = 7 vs D = 3

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Coefficient

0

2

4

6

8

D
en

si
ty

D* = 7
D = 3

(k) Clustering Coefficient Distribu-
tion Comparison D∗ = 7 vs D = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
en

si
ty

D* = 7
D = 3

(l) Shortest Path Length Compari-
son D∗ = 7 vs D = 3

0 50 100 150 200 250 300 350
Degree

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

of
 N

od
es

D* = 7
D = 2

(m) Degree Distribution Compari-
son D∗ = 7 vs D = 2

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Coefficient

0

2

4

6

8

D
en

si
ty

D* = 7
D = 2

(n) Clustering Coefficient Distribu-
tion Comparison D∗ = 7 vs D = 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Path Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

si
ty

D* = 7
D = 2

(o) Shortest Path Length Compari-
son D∗ = 7 vs D = 2

Figure 11: Additional pairwise graph statistics comparison for the reconstructed graph as the latent
dimension decreases from the exact embedding dimension (D∗) for the Cora network. (D∗) ensures
perfect reconstruction.

23

Published as a conference paper at ICLR 2025

0 200 400 600 800 1000
Degree

0.000

0.005

0.010

0.015

0.020

0.025

Fr
ac

tio
n

of
 N

od
es

D* = 20
D = 15

(a) Degree Distribution Comparison
D∗ = 20 vs D = 15

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Coefficient

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
ty

D* = 20
D = 15

(b) Clustering Coeff. Distribution
Comparison D∗ = 20 vs D = 15

0 1 2 3 4 5 6 7 8
Path Length

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

D* = 20
D = 15

(c) Shortest Path Length Compari-
son D∗ = 20 vs D = 15

0 200 400 600 800 1000
Degree

0.000

0.005

0.010

0.015

0.020

0.025

Fr
ac

tio
n

of
 N

od
es

D* = 20
D = 10

(d) Degree Distribution Comparison
D∗ = 20 vs D = 10

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Coefficient

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
ty

D* = 20
D = 10

(e) Clustering Coeff. Distribution
Comparison D∗ = 20 vs D = 10

0 1 2 3 4 5 6 7 8
Path Length

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

D* = 20
D = 10

(f) Shortest Path Length Compari-
son D∗ = 20 vs D = 10

0 200 400 600 800 1000
Degree

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fr
ac

tio
n

of
 N

od
es

D* = 20
D = 8

(g) Degree Distribution Comparison
D∗ = 20 vs D = 8

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Coefficient

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
ty

D* = 20
D = 8

(h) Clustering Coeff. Distribution
Comparison D∗ = 20 vs D = 8

0 1 2 3 4 5 6 7 8
Path Length

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

D* = 20
D = 8

(i) Shortest Path Length Compari-
son D∗ = 20 vs D = 8

0 200 400 600 800 1000
Degree

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fr
ac

tio
n

of
 N

od
es

D* = 20
D = 5

(j) Degree Distribution Comparison
D∗ = 20 vs D = 5

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Coefficient

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
ty

D* = 20
D = 5

(k) Clustering Coeff. Distribution
Comparison D∗ = 20 vs D = 5

0 1 2 3 4 5 6 7 8
Path Length

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

D* = 20
D = 5

(l) Shortest Path Length Compari-
son D∗ = 20 vs D = 5

0 200 400 600 800 1000
Degree

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fr
ac

tio
n

of
 N

od
es

D* = 20
D = 2

(m) Degree Distribution Compari-
son D∗ = 20 vs D = 2

0.0 0.2 0.4 0.6 0.8 1.0
Clustering Coefficient

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
ty

D* = 20
D = 2

(n) Clustering Coeff. Distribution
Comparison D∗ = 20 vs D = 2

0 2 4 6 8 10 12 14
Path Length

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

D* = 20
D = 2

(o) Shortest Path Length Compari-
son D∗ = 20 vs D = 2

Figure 12: Additional pairwise graph statistics comparison for the reconstructed graph as the latent
dimension decreases from the exact embedding dimension (D∗) for the Facebook network. (D∗)
ensures perfect reconstruction.

24

	Introduction
	Related work
	Contributions

	Methods
	Results and discussion
	Conclusion, limitations and broader impact
	Appendix
	Experiments with a Hyperbolic distance model
	Proof of theorem 2.1
	Experiments including self-links
	Hyperparameters used for results without self-links
	The advantage of initializing the embedding space by SVD
	Visualization of training statistics on synthetic graphs
	The Hierarchical Block Distance Model
	The Euclidean Clustering of HBDM, respecting metric properties

	HBDM Search
	Compute resources used
	Additional Statistics of the reconstructed graph for embedding dimensions below the optimal D*:
	Perfectly Reconstructing Random Networks:

