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ABSTRACT

We show that participating in federated learning can be detrimental to group fair-
ness. In fact, the bias of a few parties against under-represented groups (identified
by sensitive attributes such as gender or race) can propagate through the network to
all the parties in the network. We analyze and explain bias propagation in federated
learning on naturally partitioned real-world datasets. Our analysis reveals that
biased parties unintentionally yet stealthily encode their bias in a small number of
model parameters, and throughout the training, they steadily increase the depen-
dence of the global model on sensitive attributes. What is important to highlight is
that the experienced bias in federated learning is higher than what parties would
otherwise encounter in centralized training with a model trained on the union of
all their data. This indicates that the bias is due to the algorithm. Our work calls
for auditing group fairness in federated learning and designing learning algorithms
that are robust to bias propagation.

1 INTRODUCTION

Machine learning models can exhibit bias against demographic groups. Previous research has
extensively studied how machine learning algorithms can reflect and amplify bias in training data,
especially in centralized settings where data is held by a single party (Hardt et al., 2016; Dwork
et al., 2012; Calders et al., 2009; Hashimoto et al., 2018; Zhang et al., 2020; Blum and Stangl, 2020;
Lakkaraju et al., 2017). However, in practice, data is commonly owned by multiple parties and cannot
be shared due to privacy concerns. Federated learning (FL) provides a promising solution by enabling
parties to collaboratively learn a global model without sharing their data. In each round of FL, parties
share their local model updates computed on their private datasets with a global server that aggregates
them to update the global model. Despite the widespread adoption of FL in various applications such
as healthcare, recruitment, and loan evaluation (Rieke et al., 2020; Yang et al., 2019), it is not yet
fully understood how FL algorithms could magnify bias in training datasets.

Recent studies have investigated the problem of measuring and mitigating bias in federated learning
with respect to a single global distribution (Chu et al., 2021; Zeng et al., 2021a; Hu et al., 2022; Du
et al., 2021; Abay et al., 2020; Papadaki et al., 2021; 2022; Hu et al., 2022). However, in practice,
parties often have heterogeneous data distributions. Evaluating the model’s bias with respect to the
global distribution does not accurately reflect the fairness of the FL model with respect to parties’
local data distributions, which are relevant to end-users. This is the critical problem that we address
in this paper. Specifically, we investigate the following questions: How does participating in FL affect
the bias and fairness of the resulting models compared to models which are trained in a standalone
setting? Does FL provide parties with the potential fairness benefits of centralized training on the
union of their data? Can parties with biased datasets negatively impact the experienced fairness of
other parties on their local distributions? How and why does the bias of a small number of parties
affect the entire network? To the best of our knowledge, we provide the first comprehensive analysis
of how FL algorithms impact local fairness.

We provide an empirical analysis based on real-world datasets. We show that FL might not sustain
the benefits of collaboration in terms of fairness, as compared to its accuracy benefit. Specifically,
compared with the standalone models, we find that the model trained in a centralized setting can be,
on average, fairer on local data distributions. However, in those cases, the FL models, trained on
the same dataset, can be more biased. This suggests that the FL algorithm itself can introduce new
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bias in the final model. Furthermore, we demonstrate that FL impacts different parties in different
ways. Specifically, we find a strong correlation between parties’ fairness gap in the standalone setting
and the fairness benefit they obtain from joining FL: parties with a greater bias in the standalone
setting (caused by their local data) would receive a fairer model from FL. In contrast, FL has negative
impacts on parties with a less significant bias in the standalone setting, resulting in a more biased
model in FL. We further demonstrate that this is due to the fact that FL propagates bias: bias from a
few parties can influence all parties in the network, hence aggravating the fairness problem globally.

Finally, we offer potential explanations for how bias is propagated in FL. Specifically, we show that
local updates from biased parties increase the dependency between the model’s predictions and the
sensitive attributes. Such an increase is achieved by the norm increase in a small number of parameters
(around 6% of the model parameters in some experiments). This increase then propagates to the
global model through aggregation, subsequently impacting all other parties. In addition, we show
that the fairness gap of the final model can be governed by adjusting the value of those parameters.
Surprisingly, we find that scaling these parameters can either reduce the model’s bias to a small value
of 0.05 (on a measurement scale of 0 to 1) with only a 0.6% drop in accuracy or increase the bias to a
large value of 0.96 with an 11% drop in accuracy.

2 BACKGROUND

Federated Learning. In this paper, we consider the conventional federated learning (FL) setting.
(McMahan et al., 2017). The FL framework consists of a network of K parties, where each party
k ∈ [K] holds a local dataset D̃k of size nk, sampled from a local data distribution Dk. The objective
of each party is to train a model that minimizes the loss on their local data distribution Dk. To
achieve this goal, FL trains a global model to minimize the average loss across parties, which is
expressed as minθ

1
N

∑K
k=1 nkL(θ, D̃k), where N is the sum of all local training dataset size. In

each communication round t, a global server sends the current global model to all parties. All parties
train the global model locally on their local dataset and send the updated local model to the server.
The server then aggregates those local models to obtain the new global model. We consider the case
where all parties participate in the training in each round, which helps to mitigate potential biases
that could arise from the non-uniform sampling of participating parties.

Group Fairness. Fairness has a wide variety of meanings in literature. Group fairness entails, in
particular, that the model should perform comparably across groups defined by sensitive attributes
(e.g., sex). It is now common practice to evaluate discrimination in a model (or system) based on
quantitative measurements of group fairness. In light of this, we focus on two widely-used group
fairness notions, equalized odds (Hardt et al., 2016) and demographic parity (Dwork et al., 2012).
To formally define those fairness notions, we assume each data point is associated with a sensitive
attribute a ∈ A, and we use X and Y to denote the input features and the true label. To measure
fairness, we use the fairness gap with respect to Equalized Odds Difference, defined as

∆EO(θ,D) := max
a,a′∈A,y∈Y

|Pr
D

(fθ(X) = +|A = a, Y = y)− Pr
D

(fθ(X) = +|A = a′, Y = y)|

with an ideal value equal to zero (perfectly fair). Furthermore, in many applications, there exists a
favorable prediction from the model (e.g., grant the loan). We assume the positive prediction (+)
as the favorable outcome. Demographic parity (Dwork et al., 2012) group fairness notion asks the
model to give a favorable label to groups with equal rates. Similarly, the fairness gap with respect to
Demographic Parity is defined as follows:

∆DP (θ,D) := max
a,a′∈A

|Pr
D

(fθ(X) = +|A = a)− Pr
D

(fθ(X) = +|A = a′)|

with an ideal value equal to zero. In the rest of the paper, we use the fairness gap ∆ (including ∆EO

and ∆DP ) to measure the bias (fairness) of a model. The more significant fairness gap means the
model is more biased (less fair). We will use bias or unfairness interchangeably.

Measuring the impact of FL. Federated learning aims to enhance model performance compared to
standalone training and achieve comparable performance to centralized training. Thus, in order to
evaluate the impact of FL on local fairness, we use centralized training and standalone training as
baselines. In standalone training, each party trains a model θk independently to minimize the loss
on its training data D̃k. Note that the standalone model’s fairness gap for a party is contributed by
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herself. Therefore, we use the fairness gap of a party’s standalone model to represent the party’s bias.
In contrast, in centralized training, all local training datasets from all parties are combined, and a
centralized model θc is trained using this global training dataset. We define the benefit of FL and
collaboration (i.e., centralized training) in terms of fairness and accuracy using these baselines. The
benefit of FL for each party k is defined as the difference between the standalone model θk and the
FL model θg. This difference reveals the extent to which a party benefits from participating in FL.
Specifically, for a party k, we define the accuracy benefit of FL as Acc(θg,Dk)−Acc(θk,Dk) and
fairness benefit of FL as ∆(θk,Dk)−∆(θg,Dk). Similarly, the benefit of collaboration is based on
the difference between the standalone model and the centralized model. This difference indicates
how much an individual party could gain from collaborating with others by sharing the entire training
dataset. We compute the average benefit of FL or collaboration across all parties in the network. A
positive benefit indicates that FL (or collaboration) improves accuracy or fairness, while a negative
benefit implies that FL or collaboration has a detrimental effect.

Measuring bias aside fairness gap. Measuring the bias of a model based on the fairness gap reveals
the model’s performance disparity across groups but does not explain why the model is biased.
Specifically, it does not reveal whether the prediction of the model is attributed to the sensitive
attribute or any other insensitive attributes whose distributions vary between groups. The former is
typically referred to as disparate treatment (direct discrimination) as the sensitive attribute directly
influences the model prediction (Grabowicz et al., 2022; Zafar et al., 2017). Towards measuring
bias in this aspect, we employ the feature attribution method to explain the model’s prediction on
each data point. More precisely, given a model fθ, and the input features x = (x1, x2, ..., xd), the
attribution of the prediction at input x relative to a baseline input x′ is a vector (a1, ..., ad) where ai
is the contribution of xi to the prediction of fθ(x). We use Integrated Gradient (Sundararajan et al.,
2017) to compute the feature attribution, which only requires a few calls to the gradient operation.
Following the suggestions by Sundararajan et al. (2017), we use the average feature values computed
on the whole test dataset as the baseline for non-sensitive and non-binary sensitive features. For the
binary sensitive attribute, we use the opposite feature value as the baseline. For instance, if the test
input is (Sex: female, Age:28), the baseline input would be (Sex: male, Age: average age over the
data points). By employing this feature attribution, we are able to discover the bias associated with
disparate treatment. For more details about the Integrated Gradient, please refer to the original paper
(Sundararajan et al., 2017).

3 EMPIRICAL ANALYSIS

Our objective is to understand how FL impacts fairness for parties. We start by comparing the average
performance between FL and baselines (i.e., standalone training and centralized training) to answer
the following question: does FL improve fairness for parties compared to standalone training, and
does FL provide the same benefit as centralized training in terms of fairness? Our findings in
Section 3.2 demonstrate that FL can exacerbate fairness issues for parties and does not retain the
fairness benefit of collaboration, thus not achieving comparable performance to centralized training.

We further investigate how FL impacts performance for each party to answer the following questions:
does FL provide the same benefit in terms of fairness for parties, and what causes the disparate
impact of FL on parties’ fairness? Our analysis in Section 3.3 shows that FL can propagate bias
among parties. As a result, FL improves fairness for parties with greater bias while worsening fairness
issues for parties with less bias.

Finally, we investigate how the bias is propagated in FL. The analysis in Section 3.4 shows that
biased parties encode the bias in a few parameters through local updates, which are propagated to the
aggregated model and ultimately to other parties via parameter aggregation.

3.1 SETUP

We use the two datasets with different tasks for our empirical analysis: US Census Data and
CelebA (Liu et al., 2015). The US Census dataset consists of census data from different places
in the US. We naturally partition the dataset based on the source of the data. Thus, we have 51
parties in total, representing 50 states in the US and Puerto Rico. We consider three tasks defined
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Table 1: Average benefit of collaboration and FL. The lowest accuracy and highest fairness gap are
bold. The standard deviation across five runs is indicated between parentheses. The green arrows
(red arrows) represent the positive (negative) impacts of FL or centralized learning compared to
standalone training (i.e., FL or centralized training increases the accuracy or decreases the fairness
gap compared to standalone training).

Accuracy ∆EO ∆DP

Dataset Standalone Centralized FedAvg Standalone Centralized FedAvg Standalone Centralized FedAvg

Income- Race .738 (.001) .787 (.003) ↑↑↑ .785 (.002) ↑↑↑ .506 (.026) .478 (.013) ↓↓↓ .514 (.021) ↑↑↑ .321 (.011) .307 (.012) ↓↓↓ .322 (.004) ↑↑↑
Income- Sex .738 (.001) .787 (.003) ↑↑↑ .785 (.002) ↑↑↑ .146 (.007) .177 (.030) ↑↑↑ .198 (.007) ↑↑↑ .167 (.005) .203 (.008) ↑↑↑ .217 (.005) ↑↑↑
Health- Race .683 (.002) .714 (.002) ↑↑↑ .709 (.001) ↑↑↑ .226 (.013) .17 (.021) ↓↓↓ .161 (.021) ↓↓↓ .108 (.004) .079 (.004) ↓↓↓ .072 (.008) ↓↓↓
Health- Sex .683 (.002) .714 (.002) ↑↑↑ .709 (.001) ↑↑↑ .042 (.003) .034 (.002) ↓↓↓ .029 (.005) ↓↓↓ .019 (.002) .015 (.002) ↓↓↓ .013 (.004) ↓↓↓

Employment- Race .759 (.001) .824 (.002) ↑↑↑ .823 (.001) ↑↑↑ .374 (.023) .243 (.010) ↓↓↓ .237 (.003) ↓↓↓ .287 (.009) .240 (.007) ↓↓↓ .241 (.010) ↓↓↓
Employment- Sex .759 (.001) .824 (.002) ↑↑↑ .823 (.001) ↑↑↑ .092 (.004) .059 (.005) ↓↓↓ .059 (.003) ↓↓↓ .054 (.003) .040 (.007) ↓↓↓ .038 (.006) ↓↓↓
CelebA (Age)- Sex .812 (.004) .852 (.007) ↑↑↑ .863 (.002) ↑↑↑ .219 (.01) .222 (.024) ↑↑↑ .264 (.012) ↑↑↑ .226 (.006) .223 (.031) ↓↓↓ .238 (.016) ↑↑↑

in the folktables (Ding et al., 2021): Income (ACSIncome) 1, Health (ACSPublicCoverage), and
Employment (ACSEmployment). We train two-layer neural network models for all the tasks. We
consider the binary notion of sex (i.e., male and female) and multi-value race as the sensitive attribute
for every task. Each party has 1, 000 training points and 2, 000 test points. Note that we use a
large test dataset to ensure an accurate estimation of the fairness gap with respect to parities’ test
distribution. For CelebA, an image dataset consisting of 200, 000 celebrity images, we focus on the
age prediction task and use the binary attribute "Male" (male and non-male) as the sensitive attribute,
which we refer to as the Sex attribute. We partition the data uniformly at random among all parties
and train CNN models. We also consider non-IID partitioning on the CelebA dataset, and the results
are presented in Appendix B. In all experiments, we report the average results over five runs with
different random seeds. We use FedML (He et al., 2020), a PyTorch (Paszke et al., 2019)-based
library for FL, to train models in FL. We also use Captum (Kokhlikyan et al., 2020) to compute
feature attribution. For further details on the datasets and models, please refer to Appendix A.

3.2 COLLABORATION VIA FL CAN WORSEN FAIRNESS ISSUE

Table 1 presents the average accuracy and fairness gaps of the centralized model, FL model, and
standalone models on local datasets. Centralized training is observed to improve accuracy and fairness
at the same time for parties. For instance, on the Income dataset, centralized training improves the
accuracy by 6% and reduces the fairness gap across racial groups by 5.5% with respect to equalized
odds and by 5.5% with respect to demographic parity. However, FL may not achieve the same benefit
as centralized training in terms of fairness and can even exacerbate the fairness issue for parties. For
example, on the Income dataset, the EO fairness gap of the FL model for the sex groups increases
by 35%, and the DP fairness gap increases by 29.9%, compared to standalone models. We include
results for other popular FL algorithms, including FedNova (Wang et al., 2020), Scaffold Karimireddy
et al. (2020b), FedOpt (Reddi et al., 2020), FedProx Li et al. (2020), and Mime (Karimireddy et al.,
2020a), in Table 2 in Appendix B, which show a similar pattern to that of the FedAvg algorithm.
Appendix B provides more detailed results on other FL algorithms. The centralized and FL models
are trained on the same dataset. The difference between the FL model and the centralized model
in terms of fairness suggests FL algorithm can introduce more bias compared to standard training.
Therefore, the explanation of how bias is introduced during standard training in the centralized setting
may not fully explain how FL introduces bias. In the following, we further explore how FL impacts
fairness from the party level.

3.3 FL PROPAGATES BIAS AMONG PARTIES

Disparate impact of FL on group fairness across parties. Figure 1 illustrates the benefit of FL on
fairness and accuracy for parties. We observe that FL improves accuracy for almost all parties, and the
variance in accuracy improvement across parties is small. On the other hand, the fairness benefit of FL
is negative for most parties. It implies that most parties obtain a more biased model in FL compared
to standalone training. Furthermore, we notice that the variance in the fairness benefits across parties
is large, suggesting that although all parties have the same global model in FL, they do not benefit
from the FL model equally (each party evaluates the model performance on their local test dataset).

1We use the Adult Reconstruction dataset (Sarah et al., 2020).
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Figure 2: Correlation between the fairness gap of the standalone model and the benefit of FL -
Income. The x-axis shows the fairness gap of the standalone model, and the y-axis shows the fairness
benefit of FL, which is the fairness gap of the standalone model subtracted by that of the FL model
(defined in Section 2). The Pearson correlation coefficients between the fairness gap of the parties’
standalone models and the fairness benefit they obtain from FL are presented. The p-value for all
settings is smaller than 0.0001.

Figure 3: Dynamic of fairness gap during the training - Income (Sex, DP). Figure shows the
fairness gap of the global model and locally updated model for the most biased party and least biased
party in the first 30 rounds (Figure 16 in Appendix B shows the results for all training rounds.). The
most (least) biased party has the highest (lowest) fairness gap in the standalone setting. The fairness
gap in the standalone setting for those parties is shown in the title.

Figure 1: Accuracy and Fairness Bene-
fit of FL - Income (Sex). The benefit of
FL is the increase in accuracy or reduc-
tion in the fairness gap of the FL model
compared to standalone training.

To explore the impact of FL on fairness at the party level,
Figure 2 shows strong correlations between the fairness
benefit a party obtains in FL and the fairness gap of the
standalone model for the party, i.e., the bias level of the
party. This finding highlights the disparate impact of FL on
fairness: FL can improve fairness for more biased parties
but at the cost of worsening the issue for less biased parties.

Contradiction between aggregation and local update.
During the training process of FL, we observe that aggre-
gation and local update contradict each other, shown in
Figure 3. Local update from the least biased party, whose
standalone model has the lowest fairness gap, reduces the
fairness gap of the model. However, this reduction is elimi-
nated by the aggregation step. Conversely, the local update
from the most biased party increases the fairness gap of
the model, which is then reduced by aggregation. This
finding implies that the aggregation contributes to the disparate impact of FL on fairness, improving
fairness for more biased parties but worsening the fairness for less biased parties compared to the
standalone setting.

Biased parties negatively influence other parties via aggregation throughout the training.
Why does aggregation have disparate impacts on local fairness for parties? Specifically, we ask
which party’s local update causes the increase (or decrease) of the fairness gap for other parties via
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Figure 4: Influence graphs - Income (DP). The figure shows the most influential pairs of parties
(with respect to demographic parity), with nodes on the top representing parties that influence other
parties and the nodes on the bottom representing parties that are influenced by others. The number
inside the node represents the party index, and the color of the node represents the fairness gap in
the standalone setting. Green edges (resp. red edges) connect pairs of parties where the top party
positively (negatively) influences the bottom party. We show the top 5 pairs with maximal positive
influence and the top 5 pairs with maximal negative influence.

Figure 5: Correlation between the influence
and standalone bias - Income (DP). The y-axis
represents the average influence of each party.
The Pearson correlation coefficient between the
fairness gap a party obtains in the standalone
setting and the impact she has on local fairness
for parties in FL are shown in the figure.

Figure 6: Cumulative influence - Income (DP).
The y-axis shows the cumulative influence of
each party on all parties up until the current
round. The results for the top five most biased
parties (parties with the highest fairness gap) and
the top five least biased parties (parties with the
lowest fairness gap) are presented.

aggregation. To answer this question, we look into the influence of a party’s local update on other
parties’ fairness via aggregation. More precisely, we compute the influence of party i on party j as
the fairness gap increase when party i’s local update is removed from the aggregation in each round
t and sum over all the training rounds. Formally, we define the influence of party i on party j as
Ii,j =

∑T
t=1 ∆(θt,−i, Dj) − ∆(θt, Dj), where θt is the global model (i.e., the aggregated model

overall local updated models) and θt,−i is the aggregated model over local updated models from
parties excluding party i. If party i improves fairness for party j, the influence is positive and vice
versa. We compute the influence for all pairs of parties, and the most influential pairs are shown in
Figure 4. We observe that a less biased party has a positive influence on fairness for other parties,
while a more biased party has a negative influence on other parties. This result shows that a biased
party can negatively influence other parties’ fairness via aggregation throughout the training.

Furthermore, we investigate the relationship between a party’s bias (i.e., the bias of the party’s
standalone model) and its average influence on all parties’ fairness (i.e.,

∑K
k=1 Ii,k/K). The results

are presented in Figure 5, which shows a strong correlation between these two factors. This finding
further supports our conclusion that the more biased parties have a stronger negative influence on
other parties’ fairness, while the less biased parties have a stronger positive influence.

Finally, we analyze the dynamics of the influence of the top 5 most biased parties (i.e., parties with the
largest fairness gap in the standalone setting) and the top 5 least biased parties, as shown in Figure 6.
We observe that the influence of the most biased parties is monotonically increasing throughout
the training, while the influence of the least biased parties is decreasing. In other words, biased
parties consistently have a negative influence on others’ fairness gaps, while less biased parties have
a positive influence. These results suggest that FL can propagate bias among parties: the bias from
biased parties negatively influence the fairness of other parties via aggregation throughout the training.
Next, we will explore how the bias is propagated in FL.
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Figure 7: Histogram of feature attribution value for the sensitive attribute - Income (Sex). The
average attribution value for the female group and male group is shown in the figure. The results are
computed on all test data points over five different runs. We show the results for the most biased
party with the highest fairness gap in the standalone setting.

Figure 8: Dynamic of absolute attribution value
for the sensitive attribute - Income (Sex). The
results of different models are shown in different
lines. We present the results for the most biased
party and the least biased party.

Figure 9: Effect of local update and aggregation
on the attribution value - Income (Sex). We
show the attribution value for sex attribute before
and after aggregation for the most biased party
and the least biased party during the training.

3.4 HOW IS BIAS PROPAGATED IN FL?

Disparate treatment causes large fairness gaps. Our first investigation explores what the bias
represents, specifically whether the bias increase in FL is directly caused by the disparate treatment
of the model among sensitive groups. To answer this question, we utilize Integrated Gradients (Sun-
dararajan et al., 2017) to measure the attribution of each input feature to the models’ predictions
with respect to the positive class. Figure 7 shows the attribution value distribution for the sensitive
attribute "Sex" over individual test points from the female and male groups. We notice that the sex
attribute has a large attribution value for the standalone model’s predictions and the FL model’s
predictions. This finding implies that the predictions of those models are heavily dependent on the
sensitive attribute of the test data. Moreover, the sensitive attribute affects the model predictions
differently for the male and female groups, with the average attribution value being positive for the
male group and negative for the female group. Furthermore, we find that there is minimal difference
in the attribution value for other attributes with respect to the female and male groups (see Figure 19
in Appendix B). This indicates that the large fairness gap in the models is not caused by the distinct
distribution of other insensitive attributes over protected groups; rather, it is mainly caused by the
models’ disparate treatment of protected groups.

FL model learns more biased patterns. In Figure 7, we compare the attribution value of “Sex”
for different models and find that, while the predictions of the FL model depend less heavily on
the sensitive attribute compared to those of the standalone model, the dependence is still stronger
than that of the centralized model. This suggests that the FL model learns a more biased pattern
compared to what could be learned in the centralized setting. Figure 8 shows the dynamic of the
average absolute feature attribution for “Sex” during the training. We find that standalone training
increases the model’s dependence on the sensitive attribute throughout training for the most biased
party, but centralized training decreases it. This suggests that collaboration through centralized
training improves local fairness by guiding the model to learn less biased features. In FL, however,
the absolute attribution value barely changes after 100 rounds and remains significantly greater than
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Figure 10: Effect of a few parameters on fairness - Income (Sex). (a) Effect of local update and
aggregation on the parameter values: The y-axis shows the norm of parameters that are directly
computed on the sensitive attribute, normalized by the parameter norm of the first layer. We show
the dynamic of this parameter norm during FL for the aggregated model and locally updated model
for the parties who benefit most from FL and suffer the most from FL (represented by the line
with “Benefit” and “Suffer” respectively). (b) Correlation between standalone bias and parameter
values: The x-axis shows the bias a party receives in the standalone setting, and the y-axis shows
the normalized norm of parameters (associated with sex attribute) for the locally updated model in
the last round. (c) Effect of scaling the parameter values: The figure shows the model performance
in terms of accuracy and fairness gap when the parameter values (associated with sex attribute) are
multiplied by a scaling factor.

that in the centralized setting. This implies that the FL algorithm may introduce bias to the final
model by inhibiting the model from learning less biased features.

Biased parties increase the model dependence on the sensitive attribute. Figure 9 shows the
attribution value of the aggregated model and locally updated model from the most biased party
and least biased party. We observe that the biased party increases the global model dependence on
sensitive attributes during the local update, and this increase persists throughout the training. In
contrast, the least biased party reduces the dependence on the sensitive attribute, which is aligned
with the trend of the fairness gap in Figure 3. This suggests that the biased parties have a negative
impact on the fairness of other parties by increasing the model’s dependence on the sensitive attribute.

Bias is encoded in a few parameters. Biased parties increase the model dependence on the
sensitive attribute. But how does this increase propagate to other parties in the network? Since
parties share the model parameters of the local model with the server, the bias is likely encoded in
the model parameters. Therefore, we investigate which parameters are related to the model’s bias.
Intuitively, the parameters used to extract sensitive attribute information impact the attribution value
of the sensitive attribute to the model prediction. If the absolute value (signal) of those parameters is
substantial, the value of the sensitive attribute will significantly affect the model’s prediction. In our
evaluation, the sensitive attribute is part of the input feature, so the parameters directly applied to the
“Sex” attribute in the first layer of the neural network should contribute to the model’s bias.

Figure 10(a) shows the normalized norm of the parameters associated with the sensitive attribute
for the most and least biased parties in the aggregated and locally updated models. The normalized
norm is defined as the norm of parameters associated with the sensitive attribute divided by the
parameter norm of the first layer. We observe that the least biased party reduces the parameter norm,
hence decreasing the model’s sensitivity to the sensitive attribute. On the other hand, the biased
party increases the norm for those parameters, amplifying the impact of the sensitive attribute on
the model’s prediction. Through aggregation, this amplification will be propagated to the global
model. Figure 10(b) reveals a moderate correlation between the fairness gap party experiences in the
standalone setting and the normalized parameter norm for the parameters used to extract sensitive
attribute information. This implies that biased parties increase the parameter value associated with
sensitive attributes during the local update, thereby boosting the model’s susceptibility to the sensitive
attribute.

Controlling fairness gap by scaling a few parameters. To further investigate the impact of
the parameters associated with the sensitive attribute (i.e., 104 parameters out of 1, 792) on model
fairness, we examine the effect of scaling these parameters on the fairness gap in Figure 10(c). We
find that the fairness gap can be greatly widened or narrowed at the expense of a moderate degree of
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accuracy. Specifically, by scaling the parameter value by 0.1 for the trained FL model, we significantly
reduce the EO gap by 74.6% (from 0.198 to 0.05) and the DP gap by 69.1% (from 0.217 to 0.067)
with just a moderate accuracy loss of 0.8% (from 0.785 to 0.779). In contrast, scaling the same set
of parameters by a factor of 10 increases the EO gap to 0.96 (the maximal fairness gap is 1), which
is almost five times larger, and increases the DP gap by 259% to 0.78, while reducing the accuracy
from 0.785 to 0.67. These findings explain how bias is propagated in FL: biased parties magnify the
impact of sensitive attributes on model predictions by increasing the model parameter used to extract
sensitive attributes. This rise in parameters is subsequently propagated to the global model through
aggregation, further aggravating the issue of fairness for other parties. Our results explain how bias is
propagated in FL: Biased parties encode bias in a few parameters through a local update, and
this bias is consequently propagated to the entire network through parameter aggregation.

4 RELATED WORK

Fairness has received considerable attention due to the growing deployment of machine learning
in decision-making processes. Various definitions of fairness have been presented (Hardt et al.,
2016; Dwork et al., 2012; Calders et al., 2009). Specifically, group fairness requires that the model
behave similarly for groups defined by a sensitive attribute (e.g., race). While how machine learning
algorithms propagate data bias to the final model has been extensively investigated in a centralized
setting (Blum and Stangl, 2020; Lakkaraju et al., 2017; Rambachan and Roth, 2020; Friedler et al.,
2019; Dullerud et al., 2022), the effect of FL on model fairness is not yet fully understood.

The existing literature on fairness in FL mainly focuses on the performance disparity of FL models
across parties, rather than demographic groups (Li et al., 2021; Zhao and Joshi, 2022; Li et al., 2019;
Mohri et al., 2019; Deng et al., 2020; Donahue and Kleinberg, 2021; Hao et al., 2021; Zhou et al.,
2021; Yu et al., 2020; Lyu et al., 2020). However, we focus on group fairness, which concerns
performance disparity among groups. In terms of group fairness, Abay et al. (2020) listed a few
potential sources of bias in FL. Recently, considerable progress has been made in training group
fair models in FL (Abay et al., 2020; Chu et al., 2021; Zeng et al., 2021a; Hu et al., 2022; Du
et al., 2021; Ezzeldin et al., 2021). Nonetheless, the majority of these works suggest techniques for
achieving fairness on a single test distribution. Instead, we focus on fairness issues for parties. Some
studies (Cui et al., 2021; Papadaki et al., 2022) proposed algorithms to improve local fairness for
parties. Our purpose, instead, is to gain a comprehensive understanding of how FL influences local
fairness on its own, which we believe is equally crucial as designing fair algorithms.

5 FUTURE WORK & CONCLUSION

Future Work. In this work, we have investigated how bias is propagated in FL when the sensitive
attribute is included as an input feature. In practice, however, sensitive attributes may be prohibited
from being included in input features. In such situations, the model may still be heavily biased due to
variables that are correlated with the (unobserved) sensitive attribute. For instance, a person’s zip
code may be highly correlated with their race, a phenomenon known as "redlining". A promising
direction for future work is to identify which model parameters contribute to the bias and to audit the
bias propagation in this setting. Another important direction is to design FL algorithms that are robust
to bias propagation. In Appendix E, we briefly discuss a few potential ways to achieve this goal.

Conclusion. Federated learning has become increasingly popular in various applications with
significant individual-level consequences, making it essential to anticipate the possible bias introduced
by FL. Our paper takes the first step in this direction by providing a comprehensive analysis of the
impact of FL on local fairness for parties. We demonstrated that the FL algorithm could introduce
bias on its own which may exacerbate the issue of fairness for the involved parties. Moreover, we
showed that this exacerbation is not evenly distributed among parties, as FL can propagate bias among
them. Finally, we explained how bias is propagated in FL: biased parties encode their bias into the
local updates by increasing the signal of a few parameters steadily throughout the training process,
which is then propagated to the global model via aggregation and, ultimately, to other parties.
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are numerous protected groups outside those considered in the analysis, such as those defined by
multiple sensitive attributes. The propagation of bias against fine-grained subgroups may be even
more substantial than we found in the paper.
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APPENDIX

This appendix is divided into five sections. Appendix A provides additional details about the
experimental setups, including information about the models, datasets, and hyperparameters used.
Appendix B presents further experimental results that support the claims made in the paper. In
Appendix C, we discuss the results of an existing fair FL algorithm. Appendix D extends our analysis
to real-world medical datasets. Finally, in Appendix E, we discuss potential methods for mitigating
bias in FL.

A DETAILS ABOUT EXPERIMENT SETUP

A.1 DATASETS AND MODELS

We explain the datasets and models used in the paper.

Census Dataset We use the datasets provided by folktables. In particular, we consider the ACSIn-
come, ACSPublicCoverage, and ACSEmployment tasks defined in the forlktables. In the ACSIncome,
the goal is to predict whether an individual’s Income is above $50,000. In the ACSEmployment task,
the goal is to predict whether an individual is employed. Similarly, in the Health (i.e., ACSPublicCov-
erage) task, the objective is to predict whether an individual is covered by public health insurance.
We use the same pre-processing as in the folktables and train a fully connected neural network model
with one hidden layer of 32 neurons for Income and 64 neurons for Employment and Health tasks.
For all the tasks, we use the RELU activation function. We use an SGD optimizer with a learning
rate of 0.001 for centralized training on Health and Employment datasets and 0.1 for other settings,
and the batch size is 32. We train the NN models for 200 epochs. In FL, each client updates the
global mdoel for 1 epoch and shares it with the server. We encode the categorical features based on
the encoding template provided in folktables. After the encoding, the input feature size for Income
is 54, 154 for Health, and 109 for Employment. We consider sex and race as sensitive attributes.
Accordingly, there are two gender groups (male and female) and nine racial groups ("White alone,"
"Black or African American alone," "American Indian alone," "Alaska Native alone," and "American
Indian and Alaska Native tribes specified; or American Indian or Alaska Native, not specified and no
other," "Asian alone," "Native Hawaiian and Other Pacific Islander alone," "Some Other Race alone,"
"Two or More Races").

CelebA Dataset We train CNN models on the dataset with one CNN layer whose output channel
is 32, kernel size is 3, and stride is 1. We use ’same’ padding for the CNN layer. Following this
CNN layer, we have the Batch normalization layer and Max Pooling layer. After which, we have the
connected layer. We train the model for 500 communication rounds or epochs with SGD optimizer.
The learning rate is 0.1, and the batch size is 128. The train, test, and validation datasets ratio for
each party is 6:2:2.

A.2 HYPER-PARAMETER FOR FL ALGORITHMS AND IMPLEMENTATION

In our paper, we also evaluate various popular FL algorithms, including FedNova (Wang et al., 2020),
Scaffold Karimireddy et al. (2020b), FedOpt (Reddi et al., 2020), FedProx Li et al. (2020), and
Mime (Karimireddy et al., 2020a). We use the same local learning rate and the number of the local
epoch as in FedAvg. We provided the detailed hyper-parameters for each of the algorithms in our
code (See supplementary). We run all experiments on Ubuntu with two NVIDIA TITAN RTX GPUs.

A.3 DATA HETEROGENEITY

Figure 11 shows the fraction of samples for each subgroup across all parties, while Figure 12 shows the
histogram of subgroup proportions for each party. We observe that the parties have different fractions
of samples from each group in the Income dataset, indicating that their local data distributions are
dissimilar. In contrast, for the Health and Employment datasets, parties have similar fractions of
samples from each subgroup, suggesting that their data distributions are more alike than those of the
Income dataset.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 BIAS PROPAGATION EFFECT

Census dataset We show the bias propagation effect of FL for the Health and Employment task in
Figure 13 and 14 respectively.

CelebA We show the bias propagation effect of FL on CelebA dataset. Besides partitioning the
data in an IID manner (we refer to as setting (i)), we also evaluate two different settings, where we
change the number of samples from the minority subgroup (the female group with the “Not Young”
age label). In this way, we aim to change the data bias in the local training datasets for clients. In
particular, in setting (ii), half of the parties have more samples from the minority subgroup than
another half of the parties. The ratio is 8:2. In setting (iii), a single party has half of the data from
the minority subgroup, and the data is then iid partitioned among the other parties. In the figure, we
find that the in the non-iid setting, the more biased parties have a larger and more positive benefit,
while FL hurts the less biased parties. Figure 15 shows the correlation between the fairness gap of the
standalone model and the benefit a party gets in the FL. We find that the in the non-iid setting, the
more biased parties have a larger and more positive benefit, while FL hurts the less biased parties.

B.2 AGGREGATION CONTRADICTS WITH LOCAL UPDATE

Figure 16 shows the dynamic of the fairness gap for the aggregated model and locally updated model
from the most biased party and least biased party during the training.

B.3 INFLUENCE SUB-GRAPHS

We show the top 10 maximal positive and top 10 maximal native influence client pairs in Figure 17
and the top 15 in Figure 18. We can see that the less biased client has a strong positive influence on
other clients while the more biased client has a strong negative influence on other clients.

B.4 ATTRIBUTION VALUE FOR SENSITIVE ATTRIBUTE

We show the attribution value for all input features for the most biased party and least biased party
in Figure 19 and Figure 20, respectively. We observe that the attribution value for other features
is similar for female and male groups. However, the sex attribute has the largest attribution value
and affects the groups differently. It implies that the models are highly dependent on the sensitive
attribute (i.e., "Sex") for making predictions.

B.5 EFFECT OF FL ALGORITHM

Table 2 shows results on other FL algorithms, including FedNova (Wang et al., 2020), Scaffold Karim-
ireddy et al. (2020b), FedOpt (Asad et al., 2020), FedProx Li et al. (2020), and Mime (Karimireddy
et al., 2020a). We find that when the FL model achieves higher accuracy than standalone models,
the fairness gap of the FL model can be higher than that of standalone models. This observation
is consistent across multiple FL algorithms. This strong evidence implies that the improvement of
accuracy in FL can come at the cost of fairness. In addition, this is not unique to only the FedAvg
algorithm.

B.6 GROUP PERFORMANCE

In Figure 21, we present the model ROC on groups to illustrate the performance disparity across
groups. Surprisingly, there is no huge difference between the ROC between groups. In contrast,
Figure 22 shows the noticeable difference between groups with respect to the precision-recall curve,
especially for the most biased party. The main reason is that the dataset is imbalanced. Thus, ROC is
usually misleading. On the precision-recall curve, we find that the model achieves a higher precision
on the majority (i.e., Male group) compared to the minority group (i.e., Female group).
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Table 2: Benefit of collaboration on local datasets - Various FL algorithms (Income). The
standard deviation across five runs is indicated between parentheses.

Race Sex
Algorithm Accuracy ∆EO ∆DP ∆EO ∆DP

Standalone 0.738 (0.001) 0.506 (0.026) 0.321 (0.011) 0.146 (0.007) 0.167 (0.005)
FedAvg 0.785 (0.002) 0.514 (0.021) 0.322 (0.004) 0.198 (0.007) 0.217 (0.005)

FedNova 0.785 (0.002) 0.517 (0.023) 0.322 (0.004) 0.203 (0.008) 0.22 (0.006)
Scaffold 0.695 (0.007) 0.406 (0.213) 0.233 (0.156) 0.099 (0.047) 0.077 (0.025)
FedOpt 0.78 (0.001) 0.525 (0.023) 0.322 (0.008) 0.201 (0.005) 0.218 (0.004)
FedProx 0.783 (0.002) 0.515 (0.024) 0.324 (0.006) 0.199 (0.011) 0.219 (0.009)
Mime 0.786 (0.002) 0.521 (0.027) 0.321 (0.01) 0.2 (0.01) 0.218 (0.007)

B.7 EFFECT OF SCALING OTHER PARAMETERS

Figure 23 shows a comparison of the model’s performance when scaling different model parameters.
Specifically, we examine the impact of scaling the parameters in the first layer of the neural network
that does not have any computation on the Sex attribute (referred to as "Other parameters"), as well as
the parameter related to the Sex attribute (referred to as "Related parameters"). The results indicate
that up-scaling or down-scaling other parameters do not significantly affect the fairness gap while
scaling the related parameters has a considerable impact on model fairness. This finding supports
our hypothesis that the model’s bias is primarily encoded in a few model parameters. In FL, biased
parties introduce bias during local training by increasing the weights for those related parameters.
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Table 3: Effect of Fair FL (Abay et al., 2020) - (Income). The standard deviation across five runs
is indicated between parentheses. The "Sensitive Attribute" column indicates the sensitive attribute
used in the reweighting algorithm.

Race Sex
Algorithm Sensitive Attribute Accuracy ∆EO ∆DP ∆EO ∆DP

Standalone - 0.738 (0.026) 0.506 (0.19) 0.321 (0.117) 0.146 (0.071) 0.167 (0.063)
FedAvg - 0.785 (0.017) 0.514 (0.195) 0.322 (0.086) 0.198 (0.05) 0.217 (0.037)

Global reweighting Race 0.783 (0.002) 0.353 (0.016) 0.212 (0.012) 0.204 (0.006) 0.219 (0.005)
Local reweighting Race 0.783 (0.002) 0.367 (0.008) 0.222 (0.005) 0.196 (0.005) 0.214 (0.006)
Global reweighting Sex 0.781 (0.001) 0.516 (0.031) 0.318 (0.01) 0.044 (0.005) 0.084 (0.003)
Local reweighting Sex 0.781 (0.001) 0.521 (0.03) 0.323 (0.004) 0.045 (0.005) 0.08 (0.005)

C EVALUATION ON EXISTING FAIR FL

Table 3 presents the results for a fair FL algorithm proposed by Abay et al. (2020), which uses
a reweighting algorithm proposed in the centralized setting (Kamiran and Calders, 2012). The
algorithm involves assigning weights to each subgroup (defined by the label and a sensitive attribute)
before FL, based on the local or global training dataset. This is called "local reweighting" or "global
reweighting," respectively. During FL, parties update the FL model to minimize the weighted
loss. The table presents the accuracy and fairness gap of the FL algorithm using local and global
reweighting for the Income, Health, and Employment datasets.

We found that applying reweighing algorithms in FL reduces the average fairness gap across parties.
This is due to the fact that, after reweighing, the parties that were initially biased do not introduce
significant bias to the model during local training, resulting in a reduction of the fairness gap in the
FL model.

However, we also noted that the fairness gap in the model remains high for the Race sensitive
attribute, indicating that the global and local reweighing algorithms do not entirely eliminate bias in
FL. Furthermore, we would like to highlight some concerns regarding the fair FL algorithm:

1. The fair FL algorithm enhances the performance of the minority group at the expense of the
majority group. Figure 24 illustrates that the minority group (i.e., the Female group) has
a better performance after the reweighing, but at the cost of reduced performance for the
majority.

2. When improving fairness with respect to one sensitive attribute, the fairness issue with
respect to another sensitive attribute may worsen, as shown in Table 3. For instance, when
applying local reweighing to reduce bias with respect to the "Sex" attribute, the fairness
gap with respect to "Race" increased from 0.514 (results on FedAvg) to 0.521, indicating
that reweighing to improve fairness with respect to Sex may amplify the bias with respect
to Race. This implies that the bias with respect to Race can still propagate in FL, and our
analysis remains valid.

3. The reweighing algorithms assume that parties are interested in mitigating the bias with
respect to the same sensitive attribute, which may not be the case in practice. Figure 25
shows the fairness gap of standalone models with respect to different sensitive attributes. We
observe that many parties have a low fairness gap with respect to one sensitive attribute and a
high fairness gap with respect to another sensitive attribute. Thus, parties may aim to enhance
fairness with respect to different sensitive attributes, which renders this reweighing algorithm
unsuitable. This problem is more prevalent in FL, given the different data distributions of
parties.
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Table 4: Effect of FL on the real-world medical dataset - (ISIC2019). The standard deviation
across four runs is indicated between parentheses.

Setting Party 1 Party 2 Party 3 Party 4
Algorithm Accuracy ∆Acc Accuracy ∆Acc Accuracy ∆Acc Accuracy ∆Acc

Standalone .658 (.008) .024 (.018) .972 (.009) .013 (.007) .77 (.024) .06 (.04) .717 (.057) .019 (.006)
FedAvg .546 (.117) .056 (.044) .908 (.118) .047 (.058) .702 (.108) .13 (.025) .536 (.108) .066 (.027)

Centralized .672 (.056) .033 (.016) .973 (.007) .011 (.011) .782 (.02) .06 (.032) .725 (.019) .056 (.049)

D EXTENDING TO A REAL-WORLD MEDICAL DATASET

We evaluate the effect of FL on local fairness on a real-world medical dataset, ISIC2019 (Abay et al.,
2020; Tschandl et al., 2018; Combalia et al., 2019), which contains dermoscopic images of skin
lesions collected from six medical centers. The task is to classify dermoscopic images among nine
different diagnostic categories. We filter out medical centers with less than 1900 images and regard
each medical center with over 1900 images as a party (4 centers remain after filtering). For every
party, we randomly select 1500 and 400 images for training and validation, respectively. We regard
the binary notion of Sex as our sensitive attribute. In this multi-class and medical dataset setting,
we measure the bias (fairness gap) based on the accuracy gap across groups. Following (Ogier du
Terrail et al., 2022) 2, we train EfficientNets (Tan and Le, 2019), the state-of-the-art model structure
for medical data, under the centralized, FL, and standalone setting. The accuracy and fairness gap for
each client in different settings are shown in Table 4.

FedAvg does not improve accuracy, possibly due to data heterogeneity among parties (as shown in
Figure 26), resulting in the model’s instability and slow convergence, which is known as ‘client-drift’
issue (Karimireddy et al., 2020b).

Moreover, the FedAvg model results in a higher accuracy gap between groups, worsening the fairness
issue compared to the standalone setting or the centralized setting (see the fairness gaps for party 1,
party 3, and party 4 as examples). Our results suggest that, in real-world settings, FedAvg may not
improve accuracy compared to the standalone setting for the local data distribution and may even
exacerbate the fairness issue, leading to a more biased model.

2https://github.com/owkin/FLamby
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E POTENTIAL MITIGATION

In this section, we suggest some potential solutions to reduce the effect of bias propagation in FL.
Our hope is that this will inspire further research on developing fair FL in the future.

Personalized FL Our study has revealed that aggregate updates, which involve the average local
update from all parties, may result in a higher bias than local updates for less biased parties (see
Figure 3). This can cause bias from other parties to propagate to the local model, thus increasing
the local fairness gap. To mitigate the bias propagation effect, one possible approach is to avoid
completely overwriting the local model with the global model. Personalized Federated Learning
(PFL) techniques (Li et al., 2021) have recently been proposed to address this issue by focusing on
improving the model’s accuracy. PFL can be a promising direction for developing fairness-aware
personalized federated learning approaches that can help reduce the bias propagation effect in FL.

Fair Representation Learning Our analysis demonstrated that bias is encoded in a small number
of parameters in the first layer of the neural network, which is typically considered the feature
extractor (as illustrated in Figure 10). This suggests that the FL model is biased because the learned
representation is biased, heavily influenced by the sensitive attribute. To address this issue, one
possible solution is to implement fair representation learning techniques (Zemel et al., 2013; Zhao
et al., 2019; Liu et al., 2022; Zeng et al., 2021b) that aim to learn a feature extractor which is fair,
meaning that it minimizes the dependence on the sensitive attribute while still retaining enough
information about the task (or input features). Therefore, using fair representation learning in FL can
potentially mitigate the propagation of bias effects.
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Figure 11: Fraction of samples for each subgroup - Sex
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Figure 12: Histogram of the fraction of samples for each group with positive label - Sex

Figure 13: Correlation between the fairness gap of the standalone model and the benefit obtained
from FL - Health

Figure 14: Correlation between the fairness gap of the standalone model and the benefit obtained
from FL - Employment

Figure 15: Correlation between the fairness gap of the standalone model and the benefit obtained
from FL - CelebA (Age)
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Figure 16: Dynamic of ∆DP during the training - Income (sex). Figure shows the fairness gap
for the aggregated model and local updated model from the most biased party and least biased party
during the training. The most (least) biased party is the party with the highest (lowest) fairness gap in
the standalone setting. The fairness gap in the standalone setting for those parties is shown in the title.

Figure 17: Influence subgraph - Income (∆DP ) Top 10 maximal positive influential pair and top 10
maximal negative influential pair. The green edge and red edge represent the positive and negative
influence, respectively. The color of the node represents the fairness gap in the standalone setting.
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Figure 18: Influence subgraph - Income (∆DP ) Top 15 maximal positive influential pair and top 15
maximal negative influential pair. The green edge and red edge represent the positive and negative
influence, respectively. The color of the node represents the fairness gap in the standalone setting.

Figure 19: Feature attribution value - Income (Most biased party) We shows the feature attribution
value for all the input features. The model trained in FL and standalone setting has a large dependency
on the sensitive attribute "Sex".

Figure 20: Feature attribution value - Income (Least biased party) We shows the feature attribution
value for all the input features. The model trained in FL and standalone setting has a large dependency
on the sensitive attribute "Sex".
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Figure 21: Receiver operating characteristic (ROC) of different models on groups - (Income, Sex)

Figure 22: Precision-Recall curve (PRC) of different models on groups - (Income, Sex)
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Figure 23: Effect of scaling model parameters - (Income, Sex)

Figure 24: Effect of Fair FL algorithm (Abay et al., 2020) on group performance - (Income, Sex)

Figure 25: Fairness gap of standalone models with respect to different sensitive attributes - (Income).
Each point represents the result for a single party in one run. We show the fairness gap with respect
to different sensitive attributes differs a lot for each party.
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Figure 26: Number of samples from each class for each party - ISIC2019
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