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ABSTRACT

Sparse Mixture of Experts (SMoE) has emerged as a breakthrough approach for
achieving unprecedented scalability in deep learning. By enabling models to expand
their parameter count exponentially while selectively activating only a small subset
of parameters per sample, SMoEs maintain high efficiency. However, SMoE models
are susceptible to routing fluctuations, leading to instability and non-robustness.
In this work, we unveils SMoE-based attention as a point estimate of a regression
function of a three-layer hierarchical mixture of experts regression. Through this
probabilistic graphical model (PGM) framework, we highlight the conditional
independence in expert-selection process of tokens, which exposes the model
to routing fluctuation and non-robustness. Motivated by this PGM framework,
we propose Mutual-Inform SMoEs, including Similarity and Attention-Inform
SMoE, which eliminate the assumption of conditional independence by allowing
tokens to directly influence each other on expert-decisions. We theoretically
demonstrate that our methods lower the entropy in decision-making, enabling more
confident and consistent expert assignments. Finally, we empirically validate our
models on ImageNet classification and Wikitext-103 language modeling, showing
significant improvements in reducing routing fluctuations, enhancing performance,
and increasing model robustness compared to baseline Transformer-SMoE models.

1 INTRODUCTION

Mixture of Experts (MoEs) (Jacobs et al., 1991; Jordan & Jacobs, 1994) has been widely used as
a principle approach to scale up the number of parameters of deep neural networks while introduc-
ing an affordable computation. As a result, MoEs appears in almost all applications of machine
learning and deep learning including large language model (Devlin et al., 2018; Radford et al.,
2019; Raffel et al., 2020; Kaplan et al., 2020; Brown et al., 2020; Touvron et al., 2023), vision
understanding (Neil & Dirk, 2020; Bao et al., 2021; 2022; Li et al., 2023; Bai et al., 2024), and
many other applications (Subramanian et al., 2024; Gaur et al., 2021; Gormley & Murphy, 2011).
A recent variation of Mixture of Experts (MoEs), called Sparse MoEs (SMoEs) (Shazeer et al.,
2017), has been introduced to enhance model size to billion-parameter while maintaining constant
computational costs by modularizing the network and activating only specific subsets of experts for
each input. Therefore, SMoEs has been applied successfully in translation models (Lepikhin et al.,
2020), pre-training (Fedus et al., 2022; Artetxe et al., 2021), GPT-3 level one-shot performance (Du
et al., 2022), image classification (Riquelme et al., 2021), and so on.

1.1 BACKGROUND MULTIHEAD ATTENTION

For a given input sequence X := [x1, · · · ,xN ]⊤ ∈ RN×Dx of N > 1 feature vectors in Dx ≥ 1
dimensions, self-attention transforms X into the output sequence H in the following two steps:

Step 1. Given each attention head h, the input sequence X is projected into the query matrix Qh,
the key matrix Kh, and the value matrix Vh via three linear transformations: Qh = XW⊤

Q,h;Kh =

XW⊤
K,h;Vh = XW⊤

V,h, where WQ,h,WK,h ∈ RD×Dx , and WV,h ∈ RDv×Dx (D ≥ 1) are
the weight matrices. We denote Qh := [q1,h, · · · , qN,h]

⊤,Kh := [k1,h, · · · ,k⊤
N,h, and Vh :=

[v1,h, · · · ,vN,h]
⊤, where the vectors qi,h,ki,h,vi,h for i = 1, · · · , N are the query, key, and value

vectors, respectively.
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Step 2. The output sequence is then computed as Hh = softmax
(
QhKh

⊤/
√
D
)
Vh := AhVh,

where the softmax function is applied to each row of the matrix A = softmax(QhK
⊤
h ). This

matrix Ah ∈ RN×N and its component aij,h for i, j = 1, · · · , N are called the attention matrix and
attention scores for head h, respectively.
Multi-head Attention (MHA) In MHA, multiple heads are concatenated to compute the final output.
Let H ≥ 1 be the number of heads and W′O ∈ RHD×HD be the projection matrix for the output.
The multi-head attention is defined as

Ū = MHA(X) = Concat(H1, . . . ,HH)W
′

O =
1

H

H∑
h=1

AhVhWO,h, (1)

where [WO,1, . . . ,WO,H ] = HW
′

O and WO,h ∈ RD×HD.

1.2 BACKGROUND SPARSE MIXTURE OF EXPERT IN TRANSFORMER

A (Sparse) Mixture-of-Experts ((S)MoE) model consists of a router and K experts. For each input
token ūi ∈ RD, the router computes the affinity scores between ūi and each expert as rk(ūi), where
k = 1, 2, . . . ,K. The router’s score r(ūi) = [r1(ūi), r2(ūi), . . . , rK(ūi)]

⊤ = Wūi + b, where
W ∈ RK×D and b ∈ RK . MoE then takes the softmax of the router scores as coefficients for a
linear combination of expert outputs gk(ūi). To increase the capacity of the Transformer model while
not incur a heavy additional computation, SMoE instead uses a sparse gating function as a router,
selecting only M experts with the highest affinity scores. The TopM function is defined as:

TopM(r)[k] :=

{
rk, if rk is among the M largest elements of r
−∞, otherwise

The outputs from the M selected experts are then linearly combined as:

ōi =

K∑
k=1

softmax(TopM(r(ūi))[k])gk(ūi) (2)

We discuss the renormalization in Section E.

Routing fluctuation in SMoE. One of the major challenges in training SMoE Transformers is the
instability caused by fluctuating routing decisions during training (Dai et al., 2022; Zoph et al., 2022;
Chi et al., 2022). This instability leads to model non-robustness. Improving the consistency of
expert routing decisions is critical for model stability and overall model performance, since routing
fluctuations, especially in the later stages of training make it challenging to determine an appropriate
stopping point for training. For instance, even in the final epochs of training, upto 33% of tokens still
switch their assigned experts (c.f. Figure 2). This can result in different behavior during inference
depending on when training is halted. Therefore, reinforcing consistent routing decisions enhances
model robustness and improves overall performance.

1.3 CONTRIBUTIONS

We develop a probabilistic graphical model (PGM) framework for the attention-(S)MoE block, within
which we highlight the conditional independence in expert selection for each individual token, a
property that makes it prone to routing fluctuations. Building on this insight, we propose a novel
notion of (S)MoE, named Mutual-Inform (S)MoE, which encourages the assignment of similar tokens
to the same expert. By letting other tokens directly influence one’s routing decision, we demonstrate
that the model reduces routing fluctuations, resulting in enhanced robustness.

Our contributions are four-fold:

• We present a novel probabilistic graphical framework (PGM) revealing that attention-(S)MoE is a
point estimate of the regression function in a three-layer hierarchical mixture of expert regression.
Through this PGM perspective, we show the conditional independence in token’s expert selection,
leading to routing fluctuation, and model non-robustness.

2
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Figure 1: PGM for Baseline-MoE (G1), Attention-Inform MoE (G2), Similarity-Inform MoE (G3). In this
figure, X̃ denotes the random variable of the input sequence, x̃i is the i-th token in the X sequence, h̃i is the
index of the selected head for token i-th, z̃i denotes the index of the attention head and position, and Ẽ denotes
the stacked matrix of ẽ1, . . . , ẽN

• Within the PGM framework, we propose a novel notion of (Sparse) Mixture-of-Experts, named
Mutual-Inform (S)MoE, where expert decisions are no longer made conditionally independently
from each token. Instead, tokens influence each other’s expert selection based on their similarities
and relevance. This correspondence can be computed directly between the input tokens in the MoE
layers, or derived from the attention layer, yielding two mechanism of Mutual-Inform (S)MoE:
Similarity-Inform (S)MoE and Attention-Inform (S)MoE.

• In our theoretical analysis, we show that our methods reduce the entropy in decision-making
processes of indecisive tokens. This reduction in entropy facilitates more confident and consistent
expert assignments.

• Finally, we demonstrate the advantages and robustness of Mutual-Inform SMoE models across
various tasks and domains, including ImageNet classification and Wikitext-103 language modeling.

Organisation. We first interpret the attention-(S)MoE through the lens of probabilistic graphical
model in Section 2. Leveraging this new insight, we discuss novel class of (S)MoEs, named Mutual-
Inform (S)MoE in Section 3. Experiments on language modeling, ImageNet classification, and
empirical analysis are given in Section 4. Finally, we conclude the paper in Section 6. Additional
materials are deferred to the Appendices.

Notation. We denote a random matrix as X̃, and its specific realization as X. Similarly, a random
vector is represented by x̃, with its realization as x. Scalars random variable are are denoted by
non-bold letters, such as x̃ and its realization is x.

2 A GRAPHICAL PROBABILITY FRAMEWORK FOR ATTENTION-MOE

Probabilistic graphical models (PGMs) provide a framework to understand conditional dependencies
of and perform inference on variables. In this section, we demonstrate that multihead attention in
MoE can be interpreted as a point estimate of a three-layer hierarchical mixture of expert regression.
From this graphical model perspective, we uncover the underlying assumptions about the conditional
independence between variables, highlighting the limitations that can arise from these assumptions.

2.1 CONNECTION BETWEEN MULTIHEAD ATTENTION AND 2-LAYER HIERARCHICAL MOE
REGRESSIONS

This section shows that multihead-attention is the regression function of a two-layer hierarchical
mixture of expert regressions. Considering a regression problems, which given any sequence
X̃ = [x̃1, . . . , x̃N ]T , we want to form a prediction f(X̃) of the target sequence variable Õ =

3
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[õ1, . . . , õN ]T . Suppose that by doing so, we incur the average square loss:

inf
f

E[L(X̃, Õ)] = inf
f

∫
∥f(X)−O∥2F p(X,O) dx1 . . . dxN do1 . . . doN ,

where p(X,O) is a joint density of the distribution of X and O. The optimal regression function is

f⋆(X) = E[Õ | X̃ = X] =
[
E[õ1 | X̃ = X], . . . ,E[õN | X̃ = X]

]
. (3)

As a result, we are interested in obtaining f⋆
i (X) = E[õi | X] for i = 1, . . . , N . The detailed

derivation of the optimal regression function is given in Appendix B.

Multihead Attention as a special case. We present a graphical model G1 in Figure 1 (Left).
Let us define the following variables: ũi is the output variable of interest, z̃i = (h′, j) is the
index of the attention head and position, h̃i = h is the index of the selected head for each i,
and x̃j is the input variable observed at position j. The graphical model G1 admits the following
generating process: 1. P(h̃i = h | x̃i) = 1

H , for all h = 1, . . . ,H , 2. P(z̃i = (h′, j) | h̃i =

h,X) = softmax
(
(WQ,hxi)

⊤WK,hxj/
√

Dqk

)
I(h′ = h), 3. P(ũi | z̃i = (h′, j), x̃j = xj) =

N (ũi|WO,h′WV,h′xj , σ
2I), where σ > 0 is a standard deviation scalar.

Now, we use Ũ as our target variable i.e., Ũ plays the role of Õ in Equation 3. As discussed, our
goal is to estimate E[ũi | X̃ = X] for i = 1, . . . , N , the conditional expectation of ũi given X̃ = X.
Using the tower rule, we take expectations over ũi conditioned on z̃i, h̃i, and X̃:

E[ũi | X̃] = E
[
E
[
E[ũi | z̃i, h̃i, X̃] | h̃i, X̃

]
|X̃
]
=

1

H

H∑
h=1

WO,h

N∑
j=1

softmax

(
q⊤
i,hkj,h√

D

)
vj,h,

which is the multihead attention (see Equation 1). The detailed derivation is given in Appendix B.

2.2 ATTENTION-(S)MOE AS A POINT ESTIMATE OF A THREE-LAYER HIERARCHICAL MOE

In this section, we show that the attention-MoE is a point estimate of the regression function in a
three-layer hierarchical mixture of experts, and attention-SMoE is its sparse version. We discuss
further the graphical model G1. Let ẽi ∈ {1, . . . ,K} represent the expert assigned to token i. Each
token variable ũi can choose one of K experts.

Probabilistic graphical model. The graphical model G1 admits the following generating process
after the generation in the previous session (Section 2.1): 4. The probability of selecting expert k
for token i, given its embedding ui, is determined by a softmax function: P(ẽi = k | ũi = ui) =
softmax(u⊤

i W[k] + b[k]), where W, b are defined in Section 1.2, 5. The output õi conditioned on
the expert assignment ẽi = k and the token embedding ũi = ui follows a Gaussian distribution:
P(õi | ũi = ui, ẽi = k) ∼ N (õi | gk(ui), I), where gk(ui) is the expert-specific function.

Optimal regression function. Now, our goal is to estimate the conditional expectation of the
output õi given token X̃ i.e., E[õi | X]. Using the tower rule, we compute the expectation over
õi by conditioning on ũi, ẽi, and X̃. Following the PGM G1 we have (õi ⊥⊥ X̃ | ũi, ẽi) , and
(ẽi ⊥⊥ X̃ | ũi). We obtain:

E[õi | X] = E
[
E[E[õi | ẽi, ũi] | ũi

]
|X̃
]
= E

[
K∑

k=1

softmax(u⊤
i Wk)gk(ui)|X̃

]
. (4)

We obtain final equality in (4) since E[õi | ũi = ui, ẽi = k] = gk(ui). Attention-MoE approximates
this expectation by using a constant estimate of ũi given X, rather than fully marginalizing over the
distribution of ui. This simplification results in a discriminant block and introduces a biased estimate:

ōi = E[õi | ũi = E[ũi | X]] = MoE(MHA(X)[i]),

where the MoE block leverages the output of the multi-head attention (MHA) to approximate the
latent representation ũi.

Remark. From this interpretation, Attention-SMoE is a special case of the general MoE where
P(ẽi = k | ũi = ui) = TopM_Renormalize(softmax(Wũi + b))[k]. Therefore, we can formulate

4
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the probabilistic graphical model (PGM) of MoE in general terms, with SMoE following as a specific
instance of this formulation.

From the graphical model G1, we observe that expert selections for each individual token are
conditionally independent given the tokens, meaning (ẽi ⊥⊥ ẽj |X̃) for all i, j. This lack of interaction
between tokens’ decisions can lead to routing fluctuation. To elaborate, at the end of training,
when the learning rate is significantly small and the model parameters stabilize, we expect minimal
changes in routing decisions, given that the approximation function is reasonably smooth and token
representations do not change considerably. However, empirical evidence shows this is not the
case. In Section 4, we present an empirical analysis demonstrating that upto 33% of tokens still
switch their assigned experts in the final epochs, highlighting a persistent instability in routing.
This observation suggests that similar tokens should be routed to the same expert, but the current
independent routing does not guarantee this from happening. By letting tokens influencing others’
expert selection, we could reduce fluctuation and ensure more stable, consistent routing decisions.

3 MUTUAL-INFORM (S)MOES

Leveraging token similarity to guide expert selection can both reduce routing fluctuations and
facilitate expert learning by presenting less diverse input to each expert. In this section, from the PGM
perspective, we introduce the notion of Mutual-Inform MoEs, where expert decisions are directly
dependent based on tokens’ correspondence. These correspondence can be computed directly from
token embeddings ũi within the MoE layers, given the Similarity-Inform mechanism (Section 3.1) or
derived from the attention layer, a variation we call Attention-Informed MoE (Section 3.2). Their
sparse version, Similarity-Infom SMoEs and Attention-Inform SMoE are derived accordingly as
special cases, forming the notion of Mutual-Inform SMoEs. In Section 3.3, we present an entropy
analysis of the Mutual-Inform MoE model to highlight the advantage of our method in reducing
routing fluctuation. Specifically, we demonstrate how our approach lowers the entropy of indecisive
or less confident tokens, making them less prone to fluctuations in their routing decisions.

3.1 TOKEN ROUTING WITH SIMILARITY-INFORM

This section introduces a novel approach to token routing that leverages token similarities to inform
decision-making, addressing the limitations of independent routing observed in SMoEs.

Probabilistic graphical model. We present a PGM G2 in Figure 1 (Middle) that encapsulates the
conditional dependencies of expert decisions for tokens. We introduce a similarity variable s̃i that
quantifies the likelihood of token ũi being similar to other tokens ũj . After a similar generative
process in Section 2.1 and step 4 in Section 2.2 , G2 admit the following additional generation:

5. The similarity is computed using a scaled dot-product attention mechanism:

P(s̃i = j | Ũ = U) = softmax

(
uT
i Wsuj

τ

)
(5)

where Ws is a learnable parameter matrix and τ > 0 is a temperature parameter controlling the
sharpness of the similarity distribution.

6. The final expert decision for token i is then defined as:

P(d̃i = k | ẽ = e, s̃i = j) = I(k = ej). (6)

Here, ẽ = [ẽ1, . . . , ẽn]
T represents the choice of expert for all token for token i with ei as its

realization. Equation 6 implies that similar tokens are more likely to be routed to the same expert,
promoting consistency in the processing of related information.

7. As in Section 2.2, we assume that P(õi | ũi = ui, d̃i = k) = N (õi | gk(ui), I).

Optimal regression function. To determine the best prediction for each token õi, given X̃, we
compute the expectation E[õi | X̃]. Unlike previous cases, here we condition on Ũ, d̃i and X̃,
as the decision d̃i is not independent of ũj given ũi. In addtion, from the PGM G2, we have

5
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õi ⊥⊥ {ũj}j ̸=i | (d̃i, ũi). Thus:

E[õi | X̃] = E
[
E
[
E[õi | d̃i, ũi = ui] | Ũ

]
| X̃
]
= E

[
K∑

k=1

P(d̃i = k | Ũ)gk(ui) | X̃

]
. (7)

From Equation (4), the probability of final expert assignment given Ũ of token i is

P(d̃i = k | Ũ) =

N∑
j=1

K∑
e1=1

· · ·
K∑

eN=1

P(d̃i = k | ẽ = e, s̃i = j)

N∏
i′=1

P(ẽi′ = ei′ | ũi)P(s̃i = j | Ũ)

=

N∑
j=1

P(ẽj = k | ũj)P(s̃i = j | Ũ).

(8)
Substitude into Equation (5), we get:

E[õi | X̃] = E

 K∑
k=1

N∑
j=1

P(ẽj = k | ũj)P(s̃i = j | Ũ)gk(ui) | X̃

 . (9)

Similar to MoE-transformer block, a point estimate of the regression function in Equation (7) can be
obtained by conditioning on the point Ũ = E[Ũ | X̃ = X] = MHA(X) = Ū = [ū1, . . . , ūN ]T

ōi =

K∑
k=1

N∑
j=1

P(ẽj = k | ūj ])P(s̃i = j | Ū)gk(ūi). (10)

Similarity-Inform (S)MoE. With the previous results, we now define Similarity-Inform (S)MoE:

Definition 1. (Similarity-Inform SMoE) Given a input sequence of tokens input X, the output of
the multi-head attention layer is Ū = MHA(X) = [ū1, . . . , ūN ]T , the normalized expert score
ei = [softmax(r1(ūi)), . . . , softmax(rK(ūi))] for each token i and the similarity score S[i, j] =
softmax

(
ūT
i Wsūj/τ

)
, Similarity-Inform MoE computes the output ōi at token i as

ōi =

K∑
k=1

N∑
j=1

S[i, j]ej [k]gk(ūi).

and its special version Similarity-Inform SMoE calculates

ōi =

K∑
k=1

TopM_Renormalize
( N∑
j=1

S[i, j]ej
)
[k]gk(ūi). (11)

By incorporating token similarities, encourages experts to specialize in handling clusters of similar
tokens, leading to more efficient learning and better performance. In addition, the approach is less
likely to make drastically different routing decisions for similar tokens, hence, leads to reduction in
routing fluctuations and improve robustness.

3.2 TOKEN ROUTING WITH ATTENTION-INFORM

The routing decision for each token can also be informed via their dependency capture in the attention
layers. Instead of directly basing the final decision d̃i of each token on the similarity variable s̃i as
Similarity-Inform (S)MoEs, we establish a link from the variable zi — which represents the token
that token i attends to in the attention layer — to the decision d̃i. In this way, rather than computing
the similarity matrix based on Ū, the input of SMoE layers, we utilize the similarity information
directly from the attention layer to inform the expert choice for tokens. This approach also leads
to a consistent decision process because the attention layers inherently capture the relationships
between tokens. This means the choice of which expert a token is routed to is aligned with the token’s
interactions in the attention mechanism.

6
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Probabilistic graphical model. The method is presented in the PGM G3 in Figure 1 (Right), which
shares a similar generative process (Step 1, 2, 3) in Section 2.1 and Step 4 in Section 2.2, with the
following additional generation:

5. Unlike the graph G2, under the graph G3, d̃i is no longer conditional independent of X̃ given Ũ
i.e., P(d̃i = k | ẽ = e, z̃i = (h′, j)) = I(k = ej).

Optimal regression function. The best guess of õi given X̃ in Equation 5 becomes:

E[õi | X̃] = E

[
K∑

k=1

P(d̃i = k | Ũ, X̃)gk(ui)] | X̃

]
(12)

Lemma 1 provides the key result for computing this expectation. The details derivation of Lemma 1
is found in Appendix A.1

Lemma 1. The dependency of d̃i on Ũ and X̃ = [x1, . . . ,xN ]T is given by

P(d̃i = k | Ũ, X̃) =

H∑
h=1

N∑
j=1

P(ẽj = k | ũj)P(z̃i = (h, j) | h̃i = h, ũi, X̃)P(h̃i = h | ũi, X̃)

=

H∑
h=1

N∑
j=1

H′[i, h]A′
h[i, j]E[j, k],

(13)
where E[j, k] = P(ẽi = k | ũi = ui) and the posteriors

A
′

h[i, j] := P(z̃i = (h, j) | h̃i = h, ũi, X̃) =
Ah[i, j]N (ũi | WO,hWV,hxj , σ

2I)∑
j′ Ah[i, j′]N (ũi | WO,hWV,hxj′ , σ2I)

,

H
′
[i, h] := P(h̃i = h | ũi,X) =

H[i, h]
∑

j Ah[i, j]N (ũi | WO,hWV,hxj , σ
2I)∑

h′H[i, h′]
∑

j′ Ah′ [i, j′]N (ũi | WO,h′WV,h′xj′ , σ2I)
,

with the prior Ah[i, j] = P(z̃i = (h, j) | h̃i = h,X) and H[i, h] = P(h̃i = h | xi).

Lemma 1 unveils a sophisticated decision-making process in the Attention-Inform MoE, where the
final routing decision for a token is influenced by the decisions of other tokens as well as the relevance
of each attention head. This formulation can be interpreted as a two-stage influence process: First,
each token’s original decision is adjusted by the decisions of other tokens, weighted by A′

h[i, j],
which represents the "responsibility" of token j in explaining token i’s representation within attention
head h. Then, these weighted decisions from each head are further weightedly combined by H ′[i, h],
which represents the responsibility of head h in explaining token i. This hierarchical weighting
scheme allows the model to integrate context from multiple attention patterns.

Substitute the results of Lemma 1 to Equation (12), given X̃ = X, the best guess of õi is obtained as

E[õi | X̃] = E

 H∑
h=1

K∑
k=1

N∑
j=1

H′[i, h]A′
h[i, j]E[j, k]gk(ui) | X̃

 . (14)

To mitigate the computational cost of full posterior inference across all heads, we propose an
approximation that enhances posterior certainty while reducing computational overhead. For all
i = 1, . . . , N , we approximate H′[i, h] as follows:

H̄[i, h] = I(h = h∗ := argmin
h

E[H(Ah[i])]), (15)

where H(Ah[i]) is the entropy of attention score for token i at head h and the expectation E[H(Ah[i])]
is taken over tokens i. This means that only the attention head with the lowest average entropy should
contribute to the posteriors. The final point estimate of the regression function in Equation (12) can
be obtained by conditioning on the point Ũ = E[Ũ | X̃ = X], resulting in

ōi =

K∑
k=1

N∑
j=1

A′
h∗ [i, j]ēj [k]gk(ūi), (16)
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where ēj [k] = P(ẽi = k | ũi = ūi).

Attention-Inform (S)MoE. With the previous results, we define Attention-Inform (S)MoE.
Definition 2. (Attention-Inform (S)MoE) Given an input sequence of tokens X, the output of the
multihead attention layer is Ū = MHA(X) = [u1, . . . ,uN ]T , the normalized expert score ēi =

[softmax(r1(ūi)), . . . , softmax(rK(ūi))] for each token i and the posterior score A
′

h∗ computed
as in Definition 1 with h∗ being the head index with lowest average attention entropy defined in
Equation (19), the Attention-Inform MoE computes the output ōi at token i as in Equation (16) while
its SMoE version, the Attention-Inform SMoE computes

ōi =

K∑
k=1

TopM_Renormalize
( N∑
j=1

A
′

h∗ [i, j]ēj
)
[k]gk(ūi). (17)

3.3 ON THE ENTROPY ANALYSIS OF MUTUAL-INFORM MOE

When the model is uncertain in its routing decision, a small perturbation in either weight space or
input space would cause a change in its discrete decision. As a result, high entropy in expert selection
scores of a token suggests increased routing fluctuation in SMoE. In this section, we demonstrate that
Mutual-Inform MoE reduces routing fluctuations by lowering the entropy of routing scores.

For any i = 1, . . . , N , and define Ji = {j | H(ẽj | ũj) ≤ H(ẽi | ũi)}. Here, we slightly abuse
the notation of entropy H, using it interchangeably for both a random variable and its associated
distribution.. Let Mutual-Inform MoE be applied to token i with the set Ji. The score function
s(i, j), capturing the correspondence between token i and j ∈ Ji, is either defined as s(i, j) =
softmax

(
ūT
i Wsūj/τ

)
, or s(i, j) = A′

h∗ [i, j] from Lemma 1. We show that the Mutual Inform
MoE provides an upper bound in the entropy of the weighted decision:

Proposition 1. Let pi = [p1, . . . , pK ]T be the distribution of the final decision variable d̃i, repre-
senting the final routing score of token i. Whereas the original routing score of token i, as defined in
Definition 1, is denoted as ēi. Applying Mutual-Inform MoE to recalculate the tokens’ decision score

yields pi =

|Ji|∑
j=1

s(i, j)ēj . Thus, the upper bound of entropy of the final decision is given by:

H(pi) ≤
|Ji|∑
j=1

s(i, j)H(ēj) +H(si), (18)

where si = [s(i, 1), . . . , s(i, |Ji|)]T . And as τ → 0 (for Similarity-Inform) or σ → 0 (for Attention-
Inform), H(pi) ≤ H(ēi).

In Proposition 1, σ is the standard deviation of ūi, which affects s(i, j) = A′
h∗ [i, j] as defined in

Lemma 1. The proof of Proposition 1 is given in Appendix A.2. Mutual-Inform MoE approach can
effectively reduce routing fluctuation in Sparse Mixture of Experts (SMoE) models by lowering the
entropy of the routing scores. A high entropy in the expert choices indicates uncertainty in token
routing, which can lead to fluctuations in the routing decisions. Our approach provides an upper
bound on the entropy of the final decision for each token, showing that as the temperature approaches
zero, the entropy of the final decision reduces compared to the entropy of the original routing score.
Thus, the model can improve its decision certainty, reducing the fluctuation in token routing. In
practice, we relax constraints by letting Ji = {1, . . . , N}, where N is the number of tokens.

4 EXPERIMENTAL RESULTS

To demonstrate the advantages of Mutual-Inform SMoE, we perform extensive experiments on
ImageNet classification and Wikitext-103 language modeling. We further show the significant
improvement in model robustness by evaluating the model with adversarially and naturally perturbed
version of these datasets.

Language modeling on Wikitext-103. Table 1 highlights the significant performance and robustness
improvements of our Mutual-Inform SMoEs compared to SMoE and GLAM (Generalist Language
Model) (Du et al., 2022) baselines on the Wikitext-103 language modeling benchmark, using TopM
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Table 1: PPL evaluation (lower is better) with the clean and attacked Wikitext-103 test set Baseline SMoE,
Attention-Inform SMoE, and Similarity-Inform SMoE.

Model/Metric Clean Wikitext-103 Attacked Wikitext-103

Valid PPL Test PPL Valid PPL Test PPL

SMoE (M = 1) 39.55 40.75 48.82 50.21
Similarity-inform SMoE (M = 1) 37.78 39.18 46.93 48.66
Attention-inform SMoE (M = 1) 38.02 39.35 47.20 48.72

SMoE (M = 2) 33.29 34.84 41.75 43.59
Similarity-inform SMoE (M = 2) 30.75 32.03 38.33 39.92
Attention-inform SMoE (M = 2) 31.31 32.23 39.68 40.91

GLAM (k = 2) 37.55 39.10 48.01 49.75
Similarity-inform GLAM (M = 2) 33.72 34.92 42.19 43.72
Attention-inform GLAM (M = 2) 35.17 36.71 44.17 45.85

Figure 2: Comparison of routing fluctuation and entropy ratio across layers for Baseline SMoE, Attention-
Inform SMoE, and Similarity-Inform SMoE

experts (M=1 or M=2). Performance is evaluated using perplexity scores on both the validation and
test sets, where lower values indicate better model performance. Additionally, the table presents
results from an adversarial scenario, where the dataset undergoes word swap attacks, allowing for a
robust assessment of the models. Across all configurations, the proposed Mutual-Inform mechanisms,
both Similarity and Attention-Inform SMoE, consistently outperform their baseline counterparts.
Notably, the Similarity-Inform SMoE with M = 2 experts achieves the lowest perplexity scores on
both clean and adversarial datasets, demonstrating its effectiveness in improving language modeling
performance and resilience against adversarial perturbations. Similarly, GLAM-based models follow
these trends, with Mutual-Inform variants showing considerable improvements over their standard
implementations. These results underscore the clear advantage of the Mutual-Inform approach in
both performance and robustness.

ImageNet Classification. Table 2 demonstrates the improvement in performance and robustness of
our methods compared to the baseline V-MoE (Riquelme et al., 2021) model. Both the Similarity-
Inform and Attention-Inform variants show consistent gains in the clean data and across consis-
tently more robust than the DeiT baseline under other adversarial examples and out-of-distribution
dataset, including the ImageNet-C (common data corruption and perturbations, such as adding
noise and blurring the images) (Hendrycks & Dietterich, 2019), ImageNet-A (adversarial examples)
(Hendrycks et al., 2021b), ImageNet-R (out of distribution generalization) (Hendrycks et al., 2021a),
and ImageNet-O (out-of-distribution detection) (Hendrycks et al., 2021b) datasets.

Table 2: Test set accuracy of different ImageNet variants on Baseline SMoE, Attention-Inform SMoE, and
Similarity-Inform SMoE. All SMoE models are trained only on the original ImageNet dataset.

Model Params IN-1K IN-R IN-A IN-C
Top-1 ↑ Top-1 ↑ Top-1 ↑ Top-1 ↑

V-MoE (baseline) 297M 72.71 35.42 5.27 48.72
Similarity-Inform V-MoE 297M 73.21 36.58 5.60 50.45
Attention-Inform V-MoE 297M 73.33 36.66 6.78 50.85

Next, we demonstrate the reduction in entropy and routing fluctuation of Mutual-Inform (S)MoEs,
empirically on Wikitext-103 with top M = 2 experts. In addition, we conducted further analysis on
the case of M = 1 in Appendix C.2, and visualize the load-balancing property in Appendix D.2.

Mutual-Inform MoE reduces routing fluctuation Figure 2 (Left) compares the routing fluctuation
of the Baseline SMoE, Attention-Inform SMoE, and Similarity-Inform SMoE. The fluctuation rate,
computed as the proportion of tokens that switch one or both expert choices between consecutive last
training epochs (from epoch 59 to 60), provides insight into routing stability. The baseline SMoE
exhibits the highest overall fluctuation rates, particularly in the initial layers. In contrast, both the
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Attention-Inform and Similarity-Inform SMoE methods demonstrate markedly lower fluctuation rates
across all layers. The Similarity-Inform SMoE, in particular, maintains consistently low fluctuation
rates throughout the network, indicating better stability in routing decisions. The Attention-Inform
SMoE shows an overall significant improvement in routing fluctuation over the baseline.

Mutual-Inform MoE reduces decision entropy. Figure 2 (Right) illustrates our models’ average
rate of entropy of tokens’ routing decisions across layers to the baseline SMoE. This rate of entropy
is computed for epoch 59, which is the epoch immediately preceding the final epoch where routing
fluctuation is observed. Our proposed methods, Attention-Inform and Similarity-Inform SMoE,
demonstrate lower average entropy compared to the baseline SMoE (the rate is smaller than 1).
This trend aligns with the lower routing fluctuation observed in the left graph, suggesting that our
approaches lead to more stable and consistent routing decisions. The Similarity-Inform SMoE, in
particular, maintains lower entropy in the all layers, corresponding to its better stability in routing
decisions. These results further demonstrates the advantage of our methods, leading to more consistent
routing decision and model robustness.

5 RELATED WORK

Routing fluctuation as been discussed in existing literature. Nguyen et al. (2024) mentions that various
SMoE routers Csordás et al. (2023); Do et al. (2023) suffer from routing fluctuation without proposing
solutions. In addition Su et al. (2024) suggests that due to the variation of learnable parameters in the
router. StableMoE (Dai et al., 2022) has been proposed to reduce the routing fluctuation problem
by using two training stages. During the initial training phase, StableMoE develops a balanced and
cohesive routing strategy, which it then distills into a lightweight router that operates independently
of the backbone model. In the second training phase, StableMoE uses the distilled router to establish
the token-to-expert assignments and locks this assignment in place to ensure a stable routing strategy.
SMoE-dropout Chen et al. (2023) is another work that also provides another solution to improve the
stability of the model. This method initially randomizes and freezes the router during training to
provide stable routing strategies Zoph et al. (2022) examine several approaches to improve stability
including removing multiplicative interactions, injecting model noise, and constraining activations
and gradients. After the examination, the authors propose the router z-loss which enhance the training
stability with no quality degradation. Chi et al. (2022) proposes to estimate the routing scores between
tokens and experts on a low-dimensional hypersphere to achieve more consistent routing compared
to the conventional approach. Feedforward layers are replaced by hash layers in (Roller et al., 2021)
to to keep routing choices consistent. Lewis et al. (2021) formulates routing as a linear assignment
problem that globally maximizes token-expert similarities for increasing the stability. Our work is
orthogonal to these approaches: to reduce routing fluctuation, we encourage tokens to influence each
other’s routing decision based on their similarity.

6 CONCLUDING REMARKS

We have presented a probabilistic graphical model view point of attention-(S)MoE. From the new
perspective, we have introduced a novel notion of (S)MoEs, named Mutual-Inform (S)MoEs, where
expert decisions are made from all input tokens via their similarities and relevance. We have proposed
two variants of Mutual-Inform (S)MoEs i.e., Similarity-Inform (S)MoE and Attention-Inform (S)MoE,
in which a token’s routing decision can be influenced by others’. We proved that our methods help
improve confidence in the decision-making processes by reducing the entropy of expert assignments.
Finally, we carry out extensive experiments on ImageNet classification and Wikitext-103 language
modeling to demonstrate the advantages and robustness of our Mutual-Inform (S)MoE models. A
limitation of our paper is that we have not considered a generative model that capture the token
generation process in our PGM. Studying transformer-MoE from a generative model perspective is
an exciting research direction. We leave it for future work.
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A TECHINCAL PROOFS

Notation: Given an event A, we use P(A) to denote the probability of event A. We use E[X̃] to
denote the expectation of X̃

A.1 PROOF OF LEMMA 1

Restate Lemma 1
Lemma 1. The dependency of d̃i on Ũ and X̃ = [x1, . . . ,xN ]T is given by

P(d̃i = k | Ũ, X̃) =

H∑
h=1

N∑
j=1

P(ẽj = k | ũj)P(z̃i = (h, j) | h̃i = h, ũi, X̃)P(h̃i = h | ũi, X̃)

=

H∑
h=1

N∑
j=1

H′[i, h]A′
h[i, j]E[j, k],

where E[j, k] = P(ẽi = k | ũi = ui) and the posteriors

A
′

h[i, j] := P(z̃i = (h, j) | h̃i = h, ũi, X̃) =
Ah[i, j]N (ũi | WO,hWV,hxj , σ

2I)∑
j′ Ah[i, j′]N (ũi | WO,hWV,hxj′ , σ2I)

,
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H
′
[i, h] := P(h̃i = h | ũi, X̃) =

H[i, h]
∑

j Ah[i, j]N (ũi | WO,hWV,hxj , σ
2I)∑

h′H[i, h′]
∑

j′ Ah′ [i, j′]N (ũi | WO,h′WV,h′xj′ , σ2I)
,

with the prior Ah[i, j] = P(z̃i = (h, j) | h̃i = h, X̃) and H[i, h] = P(h̃i = h | xi).

Review the generalization of the graph G3. The method is presented in the PGM G3 in Figure 1
(Right), with the following generative process:

1. P(h̃i = h | x̃i) =
1
H , for all h = 1, . . . ,H .

2. P(z̃i = (h′, j) | h̃i = h,X) = softmax
(
(WQ,hxi)

⊤WK,hxj/
√
Dqk

)
I(h′ = h).

3. P(ũi | z̃i = (h′, j), x̃j = xj) = N (ũi|WO,h′WV,h′xj , σ
2I). where σ > 0 is a standard

deviation scalar.
4. The probability of selecting expert k for token i, given its embedding ui, is determined by

a softmax function: P(ẽi = k | ũi = ui) = softmax(u⊤
i W[k] + b[k]), where W, b are

defined in Section 1.2
5. Unlike the graph G2, under the graph G3, d̃i is no longer conditional independent of X̃ given

Ũ i.e., P(d̃i = k | ẽ = e, z̃i = (h′, j)) = I(k = ej).
6. The final expert decision for token i is then defined as:

P(d̃i = k | ẽ = e, s̃i = j) = I(k = ej).

Here, ẽ = [ẽ1, . . . , ẽn]
T represents the choice of expert for all token for token i with ei as

its realization. Equation 6 implies that similar tokens are more likely to be routed to the
same expert, promoting consistency in the processing of related information.

7. P(õi | ũi = ui, d̃i = k) = N (õi | gk(ui), I).

Proof: Following the above generative process, starting with the probability of final decision for
token i given the sequence Ũ and X̃:

P(d̃i = k | Ũ, X̃) =

H∑
h=1

H∑
h′=1

N∑
j=1

K∑
e1=1

· · ·
K∑

eN=1

P(d̃i = k | ẽ = e, z̃i = (h′, j))

× P(z̃i = (h′, j) | h̃i = h, ũi, X̃)P(h̃i = h | ũi, X̃)

N∏
i′=1

P(ẽi′ = ei′ | ũi),

(19)

where P(ẽ = e | Ũ, X̃) =
∏N

i′=1 P(ẽi′ = ei′ | ũi) since ẽi, for i = 1, . . . , N is conditionally
mutually independent and conditionally independent on X̃ given Ũ. Equation (19) computes the
mutual-inform expert decision probability by marginalizing over all possible over head selections,
attention positions, and original expert assignments.

By combining terms and using the expert assignment indicator from step 5, the RHS of Equation (19)
becomes:

H∑
h=1

H∑
h′=1

N∑
j=1

P(ẽj = k | ũj)P(z̃i = (h′, j) | h̃i = h, ũi,X)P(h̃i = h | ũi, X̃)

=

H∑
h=1

N∑
j=1

P(ẽj = k | ũj)P(z̃i = (h, j) | h̃i = h, ũi,X)P(h̃i = h | ũi, X̃)

(20)

The posterior distribution of attention variable given the observation of MoE input ũi is

P(z̃i = (h′, j) | h̃i = h, ũi, X̃) =
P(z̃i = (h′, j) | h̃i = h, X̃)P(ũi | z̃i = (h′, j),xj)∑
j′ P(z̃i = (h′, j)′ | h̃i = h, X̃)P(ũi | z̃i = (h′, j)′,x′

j)

=


Ah[i, j]N (ũi | WO,hWV,hxj , I)∑
j′ Ah[i, j′]N (ũi | WO,hWV,hxj′ , I)

= A
′

h[i, j], if h′ = h,

0, otherwise,
(21)
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where Ah is the attention matrix of head h.
Then, the posterior probability of head index given input ũi of the (S)MoE and input X̃ of the
attention. This represents the responsibility of head h in explaining token i.

P(h̃i = h | ũi, X̃) =
P(h̃i = h | xi)

∑N
j=1 P(z̃i = (h′, j) | h̃i = h, X̃)P(ũi | z̃i = (h′, j),xj)∑H

h′=1 P(h̃i = h′ | xi)
∑

j′ P(Zi,h′ = j′ | h̃i = h′, X̃)P(ũi | Zi,h′ = j′,x′
j)

=
H[i, h]

∑
j Ah[i, j]N (ũi | WO,h′WV,h′xj , I)∑

h′H[i, h′]
∑

j′ Ah′ [i, j′]N (ũi | WO,h′WV,h′xj′ , I)

= H
′
[i, h].

(22)
Thus, we have derived the complete dependency of d̃i on Ũ and X through the expert selection

process of Attention-Inform SMoE, proving Lemma 1.

A.2 PROOF OF PROPOSITION 1

Restate Proposition 1
Proposition 1. Let pi = [p1, . . . , pK ]T be the distribution of the final decision variable d̃i, repre-
senting the final routing score of token i. Whereas the original routing score of token i, as defined in
Definition 1, is denoted as ēi. Applying Mutual-Inform MoE to recalculate the tokens’ decision score

yields pi =

|Ji|∑
j=1

s(i, j)ēj . Thus, the upper bound of entropy of the final decision is given by:

H(pi) ≤
|Ji|∑
j=1

s(i, j)H(ēj) +H(si). (23)

where si = [s(i, 1), . . . , s(i, |Ji|)]T . And as τ → 0 (for Similarity-Inform) or σ → 0 (for Attention-
Inform), H(pi) ≤ H(ēi).

Proof: From pi =

|Ji|∑
j=1

s(i, j)ēj , omitting dependencies of d̃i and ẽj for convenience, we have d̃i

is the mixture of |Ji| discrete distribution of ẽj with the probability mass ēi. Denote t̃i is the latent
random variable of that admit the weighting coefficient as probability distribution. We obtain the
decomposition of joint entropy as follow

H(d̃i, t̃i) = H(t̃i) +H(d̃i | t̃i) = H(t̃i) +

|Ji|∑
j=1

s(i, j)H(ẽj)

Since entropy is non-negative,

H(d̃i, t̃i) = H(d̃i) +H(t̃i | d̃i) ≥ H(d̃i)

Hence,

H(d̃i) ≤ H(t̃i) +

|Ji|∑
j=1

s(i, j)H(ẽj) ≤ H(t̃i) +H(ẽi)

because for any j ∈ Ji, H(ẽi) > H(ẽj). Therefore, when τ → 0 or σ → 0, H(t̃i) → 0, and
H(d̃i) ≤ H(ẽi) or H(pi) ≤ H(ēi). Again, here, we slightly abuse the notation of entropy H, using
it interchangeably for both a random variable and its associated distribution.

The final piece of this Proposition’s proof is to verify the above limit. For τ → 0, the temperature-
softmax distribution gradually morphs into an one-hot distribution, and thus its entropy goes to 0.
Similarly for σ → 0, P(ũi | z̃i = (h′, j), x̃j = xj) = N (ũi|WO,h′WV,h′xj , σ

2I) also converges
to the Dirac delta function centered at the mean. This means that the closest mean will give a density
greatly dominating the others, in turn making A′

h∗ the one-hot distribution, yielding zero entropy.

With that, we have proved Proposition 1.
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A.3 SMOE EQUIVALENCE AND ITS PROOF

Renormalization. We define the normalization of top M operator as

TopM_Renormalize(r̄)[j] :=
TopM(r̄)[j]∑K
k=1 TopM(r̄)[k]

.

We obtain the equivalent of (2):

ōi =

K∑
k=1

TopM_Renormalize(r̄(ūi))[k]gk(ūi) (24)

This linear coefficient calculation process is equivalence to an alternative implementations of
SMoE, which calculates the softmax probability in Eq. 2 before selecting the Top-M, r̄(ūi) =
[softmax(r1(ūi)), . . . , softmax(rK(ūi))]

⊤ = [r̄1, . . . , r̄K ]⊤, which then gets renormalized to be-
come a proper distribution.

Proof: We want to show that (25) is equivalent of (2), which we restate below for further clarity:

ōi =

K∑
k=1

softmax(TopM(r(ūi))[k])gk(ūi),

Let j be a permutation of [n] such that rjk ≥ rjl for all k > l; that is, j is a reordering of r in
decreasing order. Since exponentiation is an increasing function, the post-softmax components retain
the same decreasing order; that is:

exp(rjk)∑K
i=1 exp(ri)

≥ exp(rjl)∑K
i=1 exp(ri)

for all k > l. We now prove that Top-M before softmax is equivalent to TopM_Renormalize, divided
into two cases:

- If k ≤ M , we have:

softmax(TopM(r))jk =
exp(rjk)∑M

l=1 exp(rjl) +
∑K

l=M+1 exp(−∞)

=
exp(rjk)∑M
l=1 exp(rjl)

=
exp(rjk)∑K

m=1 exp(rm)
/

∑M
l=1 exp(rjl)∑K
m=1 exp(rm)

= softmax(r)jk/

M∑
l=1

softmax(r)jl

= TopM_Renormalize(softmax(r))jk .

- Similarly, if k > M , we get softmax(TopM(r))jk = TopM_Renormalize(softmax(r))jk = 0.

As we covered all possible values of k, we thus concludes our proof.

B DERIVATION

Optimal Regression Function.

inf
f

E[L(X̃, Õ)] = inf
f

∫
∥f(X)−O∥2F p(X,O) dx1 . . . dxN do1 . . . doN ,

where p(X,O) is a joint density of the distribution of X and O. We solve the optimization by setting
the gradient of E[L(X̃, Õ)] w.r.t f(X) to 0, then find the root of the equation: ∇f(X)E[L(X̃, Õ)] =

17
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2
∫
(f(X)−O) p(X,O) do1 . . . doN = 0. We get

f⋆(X) =

∫
Up(X,O)do1 . . . doN

p(X)

= E[Õ | X̃ = X] =
[
E[õ1 | X = X], . . . ,E[õN | X = X]

]
.

Multihead Attention.

E[ũi | X̃] = E
[
E
[
E[ũi | z̃i, h̃i, X̃] | h̃i, X̃

]
|X̃
]

=

H∑
h

N∑
j

P(z̃i = (h, j) | h̃i = h,X)P(h̃i = h | xi)E[ũi | z̃i = (h, j),xj ]

=
1

H

H∑
h=1

WO,h

N∑
j=1

softmax

(
q⊤
i,hkj,h√
Dqk

)
vj,h.

MoE Transformer Block.

E[õi | X] = E
[
E[E[õi | ẽi, ũi] | ũi

]
|X̃
]

= E
[ K∑

k

softmax(u⊤
i Wk)E(Oi | ũi = ui, ẽi = k)|X̃

]
= E

[
K∑

k=1

softmax(u⊤
i Wk)gk(ui)|X̃

]
.

C EXPERIMENTS DETAILS

C.1 WIKITEXT-103 LANGUAGE MODELING

Dataset: The WikiText-103 dataset , sourced from Wikipedia, is crafted to examine extended
contextual relationships. Its training component encompasses roughly 28,000 articles, totaling 103
million words. These articles are segmented into blocks of about 3,600 words each. The validation
and test sets consist of 60 articles each, with word counts of 218,000 and 246,000 respectively,
amounting to approximately 268,000 words combined. To assess the resilience of our methods, we
employ TextAttack’s word swap attack to modify both the validation and test data. This adversarial
method randomly substitutes words with "AAA," challenging the model’s ability to accurately predict
subsequent words in the sequence.

Models and baselines: In our study, we utilize the Switch Transformer (denoted as SMoE in our
data presentations) and GLaM as baseline models. The Switch Transformer substitutes all multilayer
perceptron (MLP) layers with SMoE layers, while GLaM replaces every alternate MLP layer. Our
standard model for experiments is medium-sized with 6 layers. Each model incorporates 16 experts
in every models, selecting Top-1 or Top-2 experts (K = 2) per input. All models employ an identical
sparse router function, comprising a linear network that processes input data, followed by TopK and
Softmax functions. The models undergo 60 epochs of training, while GLaM models train for 80
epochs without any additional load balancing loss. Our implementation builds upon the codebase
developed by , which is publicly accessible at https://github.com/ofirpress/sandwich_transformer and
https://github.com/giangdip2410/CompeteSMoE/tree/main.

The SMoE baseline-medium size models contains 6 layers, and 215M parameters with model sizes
of 352. Whereas that config for SMoE baseline-large size and GLAM are (12 layers, 388M, model
size = 512) and (6 layers, 201M, model size = 352 ) respectively

In all our Mutual-Inform SMoEs, we set the hyperparameter τ = 1. In Similarity-Inform SMoE,
instead of learning Ws in (5), we set Ws = I for the save of computation and to avoid introduce
extra parameters. In Attention-Inform SMoE, we set the hyperparameter σ = 1.
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Figure 3: Comparison of Routing Fluctuation and Entropy RatioAcross Layers for Baseline SmoE Top-1,
Attention-Inform SMoE Top-1, and Similarity-Inform SMoE Top-1

C.2 IMAGENET-1K OBJECT RECOGNITION

Datasets: Our study employs the ImageNet-1K dataset, which consists of 1.28 million training
images and 50,000 validation images across 1,000 object classes. The model is trained for object
recognition. To evaluate resilience to input data distribution shifts, we use ImageNet-A (IN-A) . This
dataset includes adversarially filtered images from a 200-class subset of ImageNet-1K. We also test
our model’s ability to generalize to abstract visual representations using ImageNet-R (IN-R) , which
contains various artistic renditions of images.

Model and baselines: For our ImageNet-1K object recognition task and standard robustness bench-
marks, we employ a small Vision Mixture of Experts (V-MoE) model as the SMoE baseline. This
V-MoE variant is composed of 8 Vision Transformer (ViT) blocks, with the MLPs in the final two
blocks replaced by SMoE layers. In our Mutual-Inform SMoEs, we alternate between Attention-
Inform SMoE and Similarity-Inform SMoE layers, replacing every other MLP layer. All our vision
SMoE models select 2 experts (M = 2) per patch at each SMoE layer. We adhere to the training
configurations and settings outlined in the cited work. The codebase for this implementation is pub-
licly available at https://github.com/google-research/vmoe/. Similar to the experiments on Language
Modeling, we also we set the hyperparameter τ = 1 and Ws = I in Similarity-Inform SMoE.

The VMoE baseline has 8 layers, with model size is 512 and 60M parameters.

D ADDITIONAL EXPERIMENTS AND ANALYSIS

D.1 ROUTING FLUCTUATION AND ENTROPY OF SMOES TOP-1

Attention-inform SMoE Top-1 reduces routing fluctuation Figure 3 (Left) compares the routing
fluctuation of the baseline SMoE Top-1 and Attention-Inform SMoE for Top-1 routing. The fluctuation
rate, computed as the proportion of tokens that switch their expert choice between consecutive
last training epochs (from epoch 59 to 60), provides insight into routing stability. The Baseline
SMoE exhibits higher fluctuation rates across all layers. In contrast, the Attention-Inform SMoE
demonstrates consistently lower fluctuation rates across all layers. The Attention-Inform SMoE
maintains more stable routing decisions throughout the network, indicating improved consistency
in expert utilization. These results suggest that our proposed Attention-Inform method significantly
enhances routing stability compared to the baseline approach, potentially leading to more consistent
and efficient utilization of experts in the Mixture of Experts model. The results also aligns with the
better performance and enhancement in robustness of Attention-Inform SMoE Top-1 in Table 1.

Attention-inform SMoE Top-1 reduces decision entropy Figure 3 (Right) illustrates the ratio of
average entropy of tokens’ routing decisions across layers for the Attention-Inform SMoE compared
to the baseline SMoE for epoch 59. The Attention-Inform SMoE demonstrates consistently lower
entropy levels compared to the baseline SMoE across all layers, as evidenced by ratios below 1.0.
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(a) SMoE (b) Attention-Inform SMoE (c) Similarity-Inform SMoE

Figure 4: Comparison of expert routing distribution for Baseline SMoE, Attention-Inform SMoE,
and Similarity-Infom SMoE

Table 3: PPL evaluation (lower is better) with the clean and attacked Wikitext-103 on valid set and test set of
SMoE-medium size variants, M=2

Model/Metric Clean Wikitext-103 Attacked Wikitext-103

Valid PPL Test PPL Valid PPL Test PPL

SMoE (M = 2) 33.29 34.84 41.75 43.59
Similarity-inform SMoE (M = 2) 30.75 32.03 38.33 39.92
Attention-inform SMoE (M = 2) 31.31 32.23 39.68 40.91

X-MoE (M=2) 33.05 34.49 41.68 42.96
Similarity-inform X-MoE 31.83 33.06 39.92 41.28
Attention-inform X-MoE 32.06 33.24 40.35 41.73

SMoE-dropout 33.08 34.67 41.11 43.09
Similarity-inform SMoE-dropout 32.47 33.69 40.6 41.99
Attention-inform SMoE-dropout 32.21 33.91 40.56 42.17

This trend aligns with the lower routing fluctuation observed in the left graph, suggesting that our
approach leads to more stable and consistent routing decisions.

D.2 MUTUAL-INFORM SMOE ALLEVIATES LOAD IMBALANCE.

Figure 4 plots the distribution of token across experts on the VMoE architecture when we run the
ImageNet test set through our model variants. As we can see from the histograms, for the baseline
model, expert 3 and 4 have to take in noticeably more tokens than others. In contrast, our Mutual-
Inform SMoE models spread out tokens much more evenly across experts, resembling a uniform
distribution. By implicitly inducing load balancing, as input tokens move from busier experts to
others, we reduce the breath of information the former experts have to learn, giving them capacity to
be more specific; and prevent the freer experts from not having to learn much, as they now have to
handle a wider range of input tokens.

D.3 COMPARISON WITH PREVIOUS WORKS

To further investigate the advantages of our Mutual-inform SMoE, we compare and adapt our
proposed models to X-MoE, previous work that addresses routing fluctuation in MoE models, and
SMoE-dropout, another method that improves upon the standard SMoE. While both X-MoE and
SMoE-dropout show improved performance over the standard SMoE baseline, as shown in Table 3,
our Mutual-inform SMoE variants still significantly outperform them, as evidenced by the lower
PPL scores across both Clean and Attacked Wikitext-103 datasets. Furthermore, when we integrate
our proposed methods with these models to create Similarity-inform X-MoE, Attention-inform
X-MoE, Similarity-inform SMoE-dropout, and Attention-inform SMoE-dropout variants, we observe
substantial improvements over their respective baselines, with consistent PPL reductions in both
validation and test sets. These results demonstrate not only the superior performance of our approach
but also its effectiveness as a plug-and-play solution that can enhance various MoE architectures and
improve model robustness.
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Table 4: Top-1 test accuracy on Stanford Sentiment Treebank 5, 2 (SST5, SST2), and Banking-77 (B77)
finetuning task.

Model sst5 sst2 banking77

SMoE 36.54 70.23 83.96
Similarity-inform SMoE 37.91 71.72 85.19
Attention-inform SMoE 38.89 72.41 85.84

Table 5: PPL evaluation (lower is better) with the clean and attacked Wikitext-103 test set Baseline SMoE
(large size), Attention-Inform SMoE (large size), and Similarity-Inform SMoE (large size)

Model/Metric Clean Wikitext-103 Attacked Wikitext-103

Valid PPL Test PPL Valid PPL Test PPL

SMoE (M = 2) 28.737 30.378 36.43 38.34
Similarity-inform SMoE (M = 2) 27.06 28.34 34.65 36.28
Attention-inform SMoE (M = 2) 27.26 28.69 34.69 36.37

D.4 FINETUNING ON DOWNSTREAM TASKS

Regarding the adaptivity of the proposed SMoEs, we show the performance of the pretrained SMoE,
the pretrained Similarity-inform SMoE, and the pretrained Attention-inform SMoE in fine-tuning.
In particular, we report the test accuracy on Stanford Sentiment Treebank 5, 2 (SST5, SST2), and
Banking-77 (B77) in Table 4. From the table, we observe that Attention-inform SMoE leads to the
highest accuracy for all datasets. Moreover, Similarity-inform SMoE also yields better accuracy than
the conventional SMoE. Overall, the result suggests that our proposed Similarity-inform SMoE and
Attention-inform SMoE have better adaptivity compared to the conventional SMoEs.

D.5 SCALABILITY OF MUTUAL-INFORM SMOES

We compare SMoE, the proposed Similarity-inform SMoE, and the proposed Mutual-inform SMoE
with a large model size (about 390 million parameters) in Table 5. We observe that the scaling
law happens i.e., all models perform better in language modeling when having more parameters.
Moreover, we still observe that Similarity-inform SMoE and Attention-inform SMoE lead to better
results than the conventional SMoE. Among all three methods, Similarity-inform SMoE is the best
method.

D.6 EXPERIMENTS WITH CHANGE IN NUMBER OF EXPERTS AND TOP-M

To evaluate performance across different model configurations, we experiment with varying numbers
of experts (16 vs 32) and active experts (top-1, top-2 vs top-8). Across all these settings, both
Similarity-inform SMoE and Attention-inform SMoE consistently demonstrate better performance
compared to the baseline SMoE, achieving lower PPL scores on both Clean and Attacked Wikitext-
103 datasets (Table 6. When using 32 experts, our methods achieve PPL reductions of up to 1.56
PPL compared to the baseline, and when increasing to top-8 active experts, they maintain their
advantage with improvements of up to 1.64 PPL. These consistent performance gains across different
architectural configurations demonstrate the robustness and effectiveness of our proposed methods
regardless of the underlying model configuration.

D.7 COMUPUTATION AND MEMORY

We compare the computational complexity and memory complexity of using mutual inform techniques
compared to the conventional approach without them. In particular, we measure the computational
time and computational memory of Similarity-Inform SMoE and Attention-Inform SMoE divided
by the corresponding computational time and computational memory of the conventional SMoE in
Table 7. Similarly, we report the ratio for the case of XMoE and SMoE-dropout in Table 7. From the
table, we can see that mutual-inform variants only increase the computational complexities slightly.
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Table 6: PPL evaluation (lower is better) with the clean and attacked Wikitext-103 test set of baseline SMoEs
and Mutual-Inform SMoE(s) with different number of experts and Top-M

Model/Metric Clean Wikitext-103 Attacked Wikitext-103

Valid PPL Test PPL Valid PPL Test PPL

SMoE (M = 1, K = 16) 39.55 40.75 48.82 50.21
Similarity-inform SMoE (M = 1, K = 16) 37.78 39.18 46.93 48.66
Attention-inform SMoE (M = 1, K = 16) 38.02 39.35 47.20 48.72

SMoE (M = 2, K = 16) 33.29 34.84 41.75 43.59
Similarity-inform SMoE (M = 2, K = 16) 30.75 32.03 38.33 39.92
Attention-inform SMoE (M = 2, K = 16) 31.31 32.23 39.68 40.91

SMoE (M = 8, K = 16) 33.48 34.92 41.36 42.98
Similarity-inform SMoE (M = 8, K = 16) 32.5 33.81 40.6 42.37
Attention-inform SMoE (M = 8, K = 16) 31.97 33.28 39.98 41.45
SMoE (M = 2, K = 32) 31.82 33.41 39.9 41.79
Similarity-inform SMoE (M = 2„ K = 32) 30.41 31.62 38.23 39.77
Attention-inform SMoE (M = 2, K = 32) 30.39 31.85 37.8 39.65

Table 7: Computation and Memory Ratio of forward pass (compared to the baselines SMoE, XMoE and
SMoE-dropout) comparison for different SMoE-medium size variants, Top-M = 2

Model Computation Ratio Memory Ratio

Similarity-Inform SMoE 1.048 1.008
Attention-Inform SMoE 1.070 1.060

Similarity-Inform XMoE 1.026 1.009
Attention-Inform XMoE 1.038 1.060

Similarity-Inform SMoE-dropout 1.047 1.008
Attention-Inform SMoE-dropout 1.064 1.060

Table 8: Perplexity comparison for different SMoE variants with various τ values on validation and test sets

Model Valid PPL Test PPL

SMoE 33.29 34.84
Similarity-SMoE (τ=0.1) 32.79 34.01
Similarity-SMoE (τ=1.0) 30.75 32.03
Similarity-SMoE (τ=2.0) 30.68 32.88
Similarity-SMoE (τ=

√
352) 32.26 33.83

Attention-SMoE (σ=0.1) 31.93 32.67
Attention-SMoE (σ=1.0) 31.31 32.23
Attention-SMoE (σ=2.0) 31.13 32.85
Attention-SMoE (σ=

√
352) 31.62 32.90

D.8 HYPERPARAMETER ABLATION

We present the ablation study for the hyperparameters temperatures τ in Similarity-SMoE and σ in
Attention-SMoE. Table8 demonstrates that both Similarity-SMoE and Attention-SMoE are relatively
insensitive to their respective temperature parameters (τ and σ). Across different values including
0.1, 1, 2, and

√
352 (where 352 is the model size). In the case of Similarity-SMoE, too large τ or too

small τ can lead to an decrease in performance.
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E ADDITIONAL MATERIALS

Renormalization. We define the normalization of top M operator as

TopM_Renormalize(r̄)[j] :=
TopM(r̄)[j]∑K
k=1 TopM(r̄)[k]

.

We obtain the equivalent of (2):

ōi =

K∑
k=1

TopM_Renormalize(r̄(ūi))[k]gk(ūi) (25)

For a proof of equivalence, please refer to Sec. A.3.

This linear coefficient calculation process is equivalence to an alternative implementations of
SMoE, which calculates the softmax probability in Eq. 2 before selecting the Top-M, r̄(ūi) =
[softmax(r1(ūi)), . . . , softmax(rK(ūi))]

⊤ = [r̄1, . . . , r̄K ]⊤, which then gets renormalized to be-
come a proper distribution.
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