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Abstract001

Retrieved documents containing noise will hin-002
der Retrieval-Augmented Generation (RAG)003
from detecting answer clues, necessitating004
noise filtering mechanisms to enhance accu-005
racy. Existing methods use re-ranking or sum-006
marization to identify the most relevant sen-007
tences, but directly and accurately locating an-008
swer clues from these large-scale and complex009
documents remains challenging. Unlike these010
document-level operations, we treat noise filter-011
ing as a sentence-level MinMax optimization012
problem: first identifying the potential clues013
from multiple documents using contextual in-014
formation, then ranking them by relevance, and015
finally retaining the least clues through trunca-016
tion. In this paper, we propose FineFilter, a017
novel fine-grained noise filtering mechanism018
for RAG consisting of a clue extractor, a re-019
ranker, and a truncator. We optimize each mod-020
ule to tackle complex reasoning challenges: (1)021
Clue extractor firstly uses sentences containing022
the answer and similar ones as fine-tuned tar-023
gets, aiming at extracting sufficient potential024
clues; (2) Re-ranker is trained to prioritize ef-025
fective clues based on the real feedback from026
generation module, with clues capable of gen-027
erating correct answer as positive samples and028
others as negative; (3) Truncator takes the mini-029
mum clues needed to answer the question (trun-030
cation point) as fine-tuned targets, and performs031
truncation on the re-ranked clues to achieve032
fine-grained noise filtering. Experiments on033
three QA datasets demonstrate that FineFilter034
significantly outperforms baselines in terms of035
performance and inference cost. Further analy-036
sis on each module shows the effectiveness of037
our optimizations for complex reasoning 1.038

1 Introduction039

Retrieval-Augmented Generation (RAG) has040

demonstrated impressive performance across var-041

1Our code is available at https://anonymous.4open.
science/r/FineFilter-5BE0

Figure 1: An illustration of the challenge in locating
accurate answer clues from retrieved documents. The
baseline RECOMP and RichRAG pick an incorrect clue
from the 1th document, whereas our FineFilter relies on
the extraction, reranking, and truncation to identify the
correct clue from the 4th document.

ious knowledge-intensive NLP tasks (Chen et al., 042

2022; Huang et al., 2023; Gao et al., 2023), but its 043

effectiveness heavily depends on the relevance of 044

the retrieved documents (Liu et al., 2024). When 045

retrieved documents contain noise or irrelevant in- 046

formation (Zhu et al., 2024), the generation model 047

struggles to detect answer clues because noise in- 048

terferes with self-attention’s ability to reason over 049

the correct context. Therefore, it is crucial to filter 050

out irrelevant and low-value contexts. 051

Current noise filtering methods primarily utilize 052

re-ranking (Wang et al., 2025; Ke et al., 2024) or 053

summarization (Xu et al., 2024; Zhu et al., 2024) 054

models to identify the most relevant sentences, 055

aiming at increasing the information density for 056

RAG reasoning. The former re-ranks retrieval re- 057

sults based on metrics such as answer contribution 058

or user preference. The latter retains the query- 059

relevant sentences through summarization models. 060

However, directly and accurately locating answer 061

clues from the retrieved documents remains chal- 062

lenging, especially in complex reasoning scenar- 063

ios. As shown in Figure 1, all the five documents 064

recalled from a retriever contain query-relevant in- 065

formation. Both baseline RichRAG and RECOMP 066
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select the relevant sentences from the 1th document,067

yet they produce incorrect answers. This is because068

these documents contain a multitude of seemingly069

relevant but unhelpful noisy information. Such070

document-level filtering is too coarse and struggles071

to capture effective answer clues precisely. There-072

fore, a fine-grained operation is required to retain073

sufficient and effective context for RAG.074

We treat the fine-grained noise filtering as075

a sentence-level MinMax optimization problem.076

First, we leverage contextual information to iden-077

tify potential answer clues, which form the max-078

imal subset capable of answering the question.079

Then, we carefully compare and re-rank these clues080

based on their completeness and relevance to the081

query in order to move effective clues to the fore-082

front. Finally, we retain only the most essential083

clues through truncation, with the goal of mini-084

mizing reasoning costs for RAG. As shown in Fig-085

ure 1, our approach first identifies the potential086

clues with a red background, then re-ranks these087

clues, ultimately placing the correct answer clue at088

the top. Notably, the last three clues are redundant089

and should be filtered out to improve the informa-090

tion density of the reasoning clues for RAG.091

In this paper, we propose a novel fine-grained092

noise filtering mechanism for RAG, named Fine-093

Filter, consisting of a clue extractor, a re-ranker,094

and a truncator. It leverages the clue extractor095

and re-ranker to provide sufficient and effective096

reasoning clues to the generation model while em-097

ploying the truncator to filter noise to reduce rea-098

soning costs. We design three optimization strate-099

gies for each module to tackle complex reasoning100

challenges: (1) Clue extractor uses all sentences101

containing the answer and their similar sentences102

based on KNN clustering as fine-tuning targets,103

since we find that RAG requires more relevant con-104

textual information to reason the correct answer for105

multi-hop questions. Thus, the fine-tuned extractor106

can extract sufficient potential clues for complex107

reasoning. (2) Re-ranker is trained to prioritize108

effective clues based on the real feedback from109

the generation module, with clues capable of gen-110

erating correct answers as positive samples while111

others as negative. (3) Truncator takes the mini-112

mal number of clues (truncation point) required for113

RAG to generate correct answers as the fine-tuning114

target. Based on the predicted point, the re-ranked115

clues are truncated to achieve fine-grained noise116

filtering.117

We conduct experiments on three open-domain118

question answering datasets, i.e., NQ, TriviaQA, 119

and HotpotQA. The experimental results show that, 120

whether based on LLaMA3 or Mistral, FineFilter 121

outperforms the baseline models in terms of per- 122

formance while significantly reducing the context 123

required for inference. Further analysis of each 124

module demonstrates the effectiveness of our op- 125

timization strategies for complex reasoning. The 126

innovations in this paper are as follows: 127

• We frame noise filtering as a sentence-level 128

MinMax optimization, where the extractor 129

and re-ranker gather sufficient and effective 130

reasoning clues, while the truncator filters out 131

noise to reduce reasoning costs. 132

• Three strategies tackle complex reasoning: 133

KNN-based extractor gathers sufficient rel- 134

evant context, while re-ranker and truncator 135

adapt quickly and effectively to RAG systems 136

using generator feedback. 137

• Experiments on three datasets show that filter- 138

ing out unimportant noisy sentences enhances 139

inference performance and efficiency. 140

2 Related Work 141

Retrievers often fetch noisy content, reducing out- 142

put accuracy, while overly long contexts further hin- 143

der model efficiency. To address these challenges, 144

some researchers utilize re-ranking methods to pri- 145

oritize more relevant sentences. RichRAG (Wang 146

et al., 2025) uses a generative list-wise ranker to 147

generate and rank candidate documents, ensuring 148

the answer is comprehensive and aligns with the 149

model’s preferences. Ke et al. (2024) proposes 150

a novel bridge mechanism to optimize the con- 151

nection between retrievers and LLMs in retrieval- 152

augmented generation, improving performance in 153

question-answering and personalized generation 154

tasks. However, reranking sentences may disrupt 155

the original logical structure of the document and 156

generate unfaithful clues. 157

Other researchers utilize abstractive or extractive 158

summarization models to identify query-relevant 159

answer clues. Xu et al. (2024) propose leveraging 160

LLMs as abstractive filters to compress retrieved 161

text by targeting the most relevant sentences. Zhu 162

et al. (2024) apply the information bottleneck prin- 163

ciple to filter noise, striving to strike a balance 164

between conciseness and correctness. Despite its 165

potential benefits, this method is associated with 166
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Figure 2: The architecture of FineFilter includes three modules: clue extractor, re-ranker, and truncator. The top
displays their training strategies and annotated data, while the bottom shows the noise filtering during inference.

high computational complexity during the training167

process, posing additional challenges for practi-168

cal implementation. Xu et al. (2024); Wang et al.169

(2023) explore extractive filters to select the most170

relevant sentences. While these methods help elim-171

inate irrelevant information, they also face the risk172

of over-compression, which may lead to a reduc-173

tion in output accuracy. In another approach, Li174

et al. (2023) introduce the concept of Selective Con-175

text, which eliminates redundant content based on176

self-information metrics to enhance the efficiency177

of LLM inference. However, this technique may178

compromise the semantic coherence of the context.179

3 Problem Formulation180

Given a query q and a set of retrieved documents181

D = {d1, . . . , dn}, where each document di con-182

sists of a set of sentences Si = {si1, . . . , sini
}, ni183

is the number of sentences in di. The objective184

of the noise filtering task is to identify an optimal185

subset S∗ ⊆
⋃n

i=1 Si such that a language model186

fθ generates the correct answer y for the query q187

with the highest probability. The optimal subset188

S∗ can be determined by the following MinMax189

optimization: 190

S∗ = argmin |S ′ |, 191

S ′
= argmax

S⊆
⋃n

i=1 Si

fθ(y|S, q), 192

where S ′
is the subset that is most capable of pro- 193

ducing the correct answer, and |S ′ | is the number of 194

sentences in S ′
. The selection of S∗ should dynam- 195

ically adapt to the real feedback of a RAG system to 196

balance informativeness and conciseness, ensuring 197

a trade-off between computational efficiency and 198

answer accuracy. The problem can be formalized 199

as an NP-hard combinatorial optimization prob- 200

lem (Wu et al., 2023), selecting the smallest, most 201

relevant answer clues from a large set of documents 202

to improve answer accuracy. 203

4 Methodology 204

In this section, we propose a three-stage noise fil- 205

tering mechanism for RAG, called FineFilter, as 206

shown in Figure 2. FineFilter consists of three mod- 207

ules: the clue extractor, the clue re-ranker, and the 208

adaptive truncator. First, the clue extractor maxi- 209

mizes information gain to select potential answer 210

clues from multiple documents, reducing the search 211
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Figure 3: The Exact Match performance of LLaMA3-
8B-Instruct on three QA datasets between the top-5 doc-
uments and answer-containing sentences. The answer-
containing sentences refer to all sentences in the same
top-5 documents where the ground-truth answer appears,
regardless of their query relevance.

space and improving the relevance of the candidate212

set. Next, the clue re-ranker optimizes the ranking213

of sentences using pairwise loss, ensuring the most214

relevant clues are prioritized. Finally, the adap-215

tive clue truncator truncates the minimal necessary216

context, ensuring a balance between computational217

efficiency and answer accuracy.218

4.1 Clue Extractor219

The goal of clue extractor is to identify potential220

answer clues from multiple documents and con-221

struct a smaller query-relevant candidate set to re-222

duce search space. We compare the performance223

of answer-containing sentences and the original re-224

trieved documents in downstream tasks, as shown225

in Figure 3. We can see that filtering out the226

low-value information from the documents ben-227

efits RAG reasoning. Although not all answer-228

containing sentences are query-relevant, they ap-229

proximate the maximal subset capable of address-230

ing user queries and can serve as the optimization231

target for the clue extractor.232

To optimize the sentence extraction process, we233

first introduce the concept of information gain.234

Given a query q and a set of candidate sen-235

tences S = {s1, s2, . . . , sn}, the information gain236

IG(q, si) of sentence si is defined as:237

IG(q, si) = H(q)−H(q | si),238

where H(q) represents the entropy of the query239

q, measuring the uncertainty of the query; and240

H(q | si) represents the uncertainty of the query241

given the sentence si. In question answering tasks,242

information gain measures the reduction of uncer-243

tainty in the query by including a particular sen-244

tence. Typically, sentences that contain the answer 245

directly reduce the unresolved part of the query, 246

helping the model better understand the core of the 247

query and improve the accuracy of the downstream 248

generation module. 249

Based on this information gain concept, we 250

first extract sentences from the retrieved docu- 251

ment collection that contain the ground-truth an- 252

swer as extraction targets. Given the query q, 253

the ground-truth answer y and retrieved sentences 254

S = {s1, s2, . . . , sn}, the answer-containing sen- 255

tences is defined as: 256

Sa = {sj |y ⊑ sj , sj ∈ S}, 257

where y ⊑ sj indicates that y is a substring of sj . 258

Then, we finetune an LLM model as the clues 259

Extractor to generate answer-containing sen- 260

tences Sa based on the query q and the re- 261

trieved sentences S with a specific prompt(see 262

Appendix A.1). The loss function of Extractor 263

model is defined as: 264

Lextra = − logPθ(Sa|q,S). 265

Finally, our clue extractor has the ability to gen- 266

erate the potential candidate clues based on the user 267

query and retrieved documents in the inference: 268

Sc = Extractor(q,S). 269

KNN-based Extraction We find that answer- 270

containing sentences significantly improve perfor- 271

mance on the simple QA dataset, i.e., NQ, but 272

less so on the complex QA dataset, i.e., TriviaQA 273

and HotpotQA, as shown in Figure 3. Therefore, 274

we propose a KNN-based similar sentence extrac- 275

tion strategy for complex reasoning scenarios. For 276

simple questions, we directly select sentences con- 277

taining the answer as the extractor’s optimization 278

targets, as these sentences provide the key infor- 279

mation to answer the question and significantly 280

reduce the uncertainty. For more complex ques- 281

tions, we first select sentences containing the an- 282

swer and then further select sentences semantically 283

similar to the answer using the K-Nearest Neigh- 284

bors (KNN) method (Guo et al., 2003). Although 285

these sentences may not directly contain the an- 286

swer, they provide contextual information related 287

to the question’s answer, helping the model better 288

understand the nature of the question and gener- 289

ate a more accurate answer. We utilize both the 290

answer-containing sentences and the KNN-based 291
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similar sentences as the extractor’s optimization tar-292

gets. This KNN-based strategy allows the system293

to respond to queries of varying complexity flex-294

ibly, ensuring higher accuracy while minimizing295

computational overhead.296

4.2 Clue Reranker297

The sentences selected by the clue extractor often298

contain multiple relevant clues, but their relevance299

may vary, requiring further re-ranking. To achieve300

this, we train a re-ranker using pairwise loss to301

optimize the ranking model, ensuring that the most302

relevant sentences are ranked at the front.303

Training We use the real RAG-generated feed-304

back to annotate the training data for the re-ranker,305

as the QA performance on complex questions heav-306

ily depends on the characteristics of the genera-307

tion module. First, we pair each of the extracted308

clue sentences scj ∈ Sc with the query q as (scj , q),309

where sentence scj that enables the downstream gen-310

eration module to produce the correct answer for311

q is considered as positive sample spositive, while312

other sentences are treated as negative samples313

snegative.2 The goal of Reranker is to minimize314

the following pairwise loss function (Karpukhin315

et al., 2020) to improve the relevance ranking:316

Lrerank = − log
esim(q,spositive)

esim(q,spositive) + esim(q,snegative)
,317

where sim(q, ∗) is the semantic similarity be-318

tween the query q and the sentence ∗ by Reranker319

model. By minimizing this loss function, the320

Reranker model can effectively identify the most321

relevant clues and prioritize them accordingly.322

Inference Given the query q and the extracted323

sentences Sc, Reranker model calculate the rele-324

vance score between every sentence scj ∈ Sc and325

query q. The re-ranked answer clues are defined326

as:327

Sr = Reranker(q,Sc).328

4.3 Adaptive Truncator329

The goal of the adaptive truncator is to capture the330

minimal necessary clues based on the complexity331

of the question and the content of the retrieval doc-332

uments, retaining sufficient clues to generate an333

2If no candidate clues can generate the correct answer, or
if all samples can generate the correct answer, the sample will
be removed from the annotated data.

accurate answer while further reducing reasoning 334

overhead. 335

Training To determine the optimal clues sub- 336

set St for each query q, we perform data anno- 337

tation based on the reranked answer clues Sr ob- 338

tained from the previous re-ranking step. Given a 339

query q and its re-ranked clues Sr = {sr1, . . . , srn}, 340

the objective is to identify the smallest subset 341

St such that the RAG system’s generation model 342

M can generate the correct answer y based on 343

q and St. We define Dk = {sr1, . . . , srk}, where 344

1 ≤ k ≤ n. The performance on each subset Dk 345

is evaluated by checking if the generation model’s 346

output M(q,Dk) matches the ground truth y. The 347

correctness condition is defined as: 348

Correct(q,Dk) =

{
1, if M(q,Dk) = y

0, otherwise
. 349

Since the reranker cannot guarantee that the most 350

relevant sentences are always ranked first, espe- 351

cially for complex questions, we iterate over the 352

subsets from largest to smallest, starting with Dn 353

and continuing to D1. The optimal subset St is the 354

smallest subset that generates the correct answer: 355

St = {sr1, . . . , srK}, 356

K = argmin
k

{k | Correct(q,Dk) = 1}. 357

If the RAG system cannot generate a correct an- 358

swer for any subset, then St = ∅, indicating that 359

no subset of the re-ranked sentences suffices to pro- 360

duce the correct answer. This method ensures that 361

the minimal necessary context St is used, optimiz- 362

ing the balance between information relevance and 363

computational efficiency. 364

During the model training stage, we fine-tune a 365

LLM based on the data annotations as the adaptive 366

truncator. The Truncator is trained to predict the 367

smallest index K of Sr that needed to answer each 368

query: 369

Ltruc = − logPθ(K|q,Sr). 370

Inference During inference, given a new query 371

q and its reranked sentences Sr, the Truncator 372

predicts the minimal index Kg and truncates Sr to 373

St = {Sr
1 , . . . , S

r
Kg

}. This ensures efficient utiliza- 374

tion of computational resources while maintaining 375

answer accuracy. Finally, the generation module 376

of RAG concatenates the query q with the filtered 377

answer clues St as a prompt(see Appendix A.3) to 378

reason the answer. 379
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NQ TriviaQA HotpotQA

Methods EM F1 CR TP EM F1 CR TP EM F1 CR TP

Closed-book 26.98 62.51 - - 30.54 68.86 - - 19.96 55.84 - -
Retrieval without Filtration

Top-1 document 36.81 69.21 5.17x 2.17 42.74 77.13 5.32x 3.11 25.54 60.09 4.83x 3.11
Top-5 documents 40.21 70.95 1.0x 1.69 48.32 80.16 1.0x 2.90 25.07 59.57 1.0x 1.82

LLaMA3-8B-Instruct
Retrieval with Filtration

RECOMP 37.12 69.43 11.97x 3.54 43.41 77.61 10.91x 3.25 24.59 59.26 12.95x 4.97
FILCO 32.43 64.78 17.43x 3.82 38.96 74.14 13.93x 3.47 20.12 56.03 11.77x 5.39
LongLLMLingua 36.96 69.25 4.56x 1.97 47.56 79.15 4.18x 3.04 24.31 58.93 4.45x 3.39
BottleNeck 39.72 70.14 14.32x 3.36 48.16 79.83 21.26x 4.32 25.64 60.23 13.21x 5.51
Ours 42.17 71.31 19.56x 3.72 48.81 80.33 20.77x 4.91 26.47 61.15 14.37x 5.73

Mistral-7B-Instruct
Retrieval with Filtration

RECOMP 36.95 69.25 13.83x 3.25 43.39 77.51 10.91x 3.17 24.34 59.16 7.24x 4.35
FILCO 32.59 64.83 16.35 3.09 38.47 73.87 12.83x 3.31 21.34 56.91 13.00x 4.73
LongLLMLingua 37.45 69.67 4.09x 1.58 47.84 79.23 4.31x 3.01 24.05 58.75 4.22x 3.36
BottleNeck 39.48 70.05 12.53x 3.01 48.03 79.97 15.24x 4.28 25.47 59.97 11.06x 4.75
Ours 41.93 71.12 17.43x 3.47 48.64 80.21 16.49x 4.49 26.03 60.78 14.89x 4.77

Table 1: Experimental results on NQ, TriviaQA, and HotpotQA datasets. EM = exact match, F1 = F1 score, CR
= compression ratio, TP = throughput (examples/second). We compare our FineFilter with Closed-book, Top-1,
Top-5, and various filtering methods (RECOMP, FILCO, LongLLMLingua, BottleNeck) on two basement models
LLaMA3-8B-Instruct and Mistral-7B-Instruct.

5 Experiments380

5.1 Experimental Setup381

Datasets We evaluate our method on three QA382

benchmark datasets: Natural Questions (NQ)383

(Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,384

2017) and HotpotQA(Yang et al., 2018). We uti-385

lize the adversarial Dense Passage Retriever (DPR)386

(Karpukhin et al., 2020) to retrieve the Top-5 pas-387

sages from the full Wikipedia passages for each388

question in these datasets.389

Evaluation Metrics For the three open-domain390

QA datasets, we evaluate end-task performance us-391

ing Exact Match (EM) and F1 score for the answer392

strings. EM measures exact correctness, while F1393

evaluates answers that are close to but not neces-394

sarily exact, offering a more nuanced view of how395

well-predicted answers overlap with the correct396

ones. To assess the computational cost of down-397

stream tasks, we introduce two metrics (Cao et al.,398

2024; Hwang et al., 2024): compression ratio (CR)399

and inference throughput (TP) on a single A6000-400

48G GPU. The CR is defined as the ratio of the401

original context length to the compressed context402

length. TP refers to the number of examples the403

model can process or generate per second during404

inference.405

Implementation Details We use LLaMA3-8B-406

Instruct (Dubey et al., 2024) and Mistral-7B-407

Instruct (Jiang et al., 2023) as the backbone large 408

language models. We fine-tune the two models 409

with LORA (Hu et al., 2021) as the clue extractor 410

and adaptive truncator for 16 epochs on a single 411

A6000-48G GPU. The initial learning rate is set 412

to 5e-4, and the batch size is set to 4. We select 413

the best model based on the performance of the 414

validation set. For clue reranker, we implement 415

Sentence-BERT (Reimers and Gurevych, 2020) us- 416

ing distilbert-base-uncased3. In the final generation 417

phase, we utilize the LLaMA2-7B (Touvron et al., 418

2023) model for the three QA datasets. 419

5.2 Baselines 420

We select three types of baselines, including no 421

filtration, extractive and abstractive filtration. 422

No Filtration We evaluate the following three 423

baselines: (i) Closed-book generation relying 424

solely on parametric knowledge, (ii) Top-1 re- 425

trieval using the highest-ranked document, and (iii) 426

Top-5 retrieval with direct concatenation of all re- 427

trieved documents. 428

Extractive Methods We choose RECOMP (Xu 429

et al., 2024) and LongLLMLingua (Jiang et al., 430

2024). RECOMP employs a fine-tuned cross- 431

encoder to identify salient sentences through dense 432

retrieval. LongLLMLingua utilizes question-aware 433

3https://huggingface.co/distilbert/
distilbert-base-uncased
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Methods EM

FineFilter 42.17
w/o clue extractor 39.70
w/o clue reranker 41.64
w/o adaptive truncator 42.03

Table 2: The Exact Match of abalation study on NQ test
set based on LLaMA3-8B-Instruct.

perplexity scoring with a dynamic programming434

algorithm to prune irrelevant tokens progressively435

in long contexts.436

Abstractive Methods We choose FILCO (Wang437

et al., 2023) and BottleNeck (Zhu et al., 2024).438

FILCO learns a context filtering model to dynami-439

cally identify key sentences and jointly optimizes440

with the generator for end-to-end content distilla-441

tion. Bottleneck leverages reinforcement learning442

and information bottleneck theory to optimize fil-443

tering and generation.444

5.3 Main Results445

The comparison results on NQ, TrivialQA, and446

HotpotQA datasets are shown in Table 1. From447

the results, we can see that: RAG improves down-448

stream task performance across three datasets.449

Using the top-5 documents generally outperforms450

using the top-1 document, indicating that incor-451

porating more contextual information improves452

model performance. Noise Filtering are crucial453

for further improving performance. Across454

multiple datasets, applying filtering methods signif-455

icantly reduces context length while maintaining456

performance close to that of the top-5 documents,457

effectively filtering out irrelevant information and458

enhancing accuracy. FineFilter outperforms base-459

lines across multiple models and datasets. Fine-460

Filter consistently surpasses all filtration baselines461

across LLaMA3 and Mistral, achieving superior462

EM and F1 performance and compression effi-463

ciency, i.e., 6% and 37% improvement of EM and464

CR than BottleNeck on NQ dataset with LLaMA3.465

FineFilter performs remarkably better than466

Top-5 documents on complex multi-hop tasks.467

Compared to other datasets, FineFilter shows a468

larger improvement on the HotpotQA dataset, i.e.,469

the EM improvement than Top-5 with LLaMA3470

is 5.4% on HotpotQA, 4.8% on NQ and 1.0% on471

TriviaQA, highlighting its exceptional ability in472

handling complex multi-hop reasoning tasks.473

Dataset Method EM

NQ Direct 39.41
Fine-tuned 41.43

TriviaQA Direct 44.37
Fine-tuned 48.58

HotpotQA Direct 24.71
Fine-tuned 26.12

Table 3: Performance comparison between Direct Ex-
traction and Fine-tuned Extraction across three datasets
based on LLaMA3-8B-Instruct.

5.4 Analysis 474

5.4.1 Ablation Study 475

To explore the impact of different components on 476

FineFilter, we use LLaMA3-8B-Instruct as the 477

base LLM and introduce the following variants 478

of FineFilter for ablation study:1) w/o clue extrac- 479

tor. LLaMA3-8B-Instruct, without fine-tuning, is 480

used to directly extract answer clues; 2) w/o clue 481

reranker. The original sentence ranking given by 482

the fine-tuned extractor is used; 3) w/o adaptive 483

truncator. No longer performs adaptive truncation 484

on the re-ranked clues. 485

As shown in Table 2, removing the clue extractor 486

and reranker leads to a significant drop in accuracy, 487

highlighting the critical role of these components 488

in the performance of FineFilter, with the clue ex- 489

tractor having a more pronounced impact on sub- 490

sequent steps. In contrast, removing the truncator 491

has a smaller impact on performance, as its contri- 492

bution primarily lies in improving RAG reasoning 493

efficiency. 494

5.4.2 Impact of Fine-tuning Clue Extractor 495

We analyze the impact of fine-tuning on the perfor- 496

mance of the Clue Extraction module by comparing 497

the following two approaches: 1) Direct Extraction. 498

Using LLM without fine-tuning to extract clue sen- 499

tences from retrieved documents based on extrac- 500

tion prompts (see Appendix A.1). 2) Fine-tuned 501

Extraction. Fine-tune the extraction model to select 502

the answer-containing sentences. 503

As shown in Table 3, the experimental results 504

demonstrate that fine-tuned extraction outperforms 505

direct extraction across all three datasets. Fine- 506

tuning allows the model to select more relevant sen- 507

tences by incorporating task-specific knowledge, 508

leading to significant performance improvements. 509

5.4.3 Impact of KNN-Based Extraction 510

We evaluate the impact of the KNN-based extrac- 511

tion strategy by adjusting its threshold, which de- 512
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Figure 4: An illustration of clue extraction model performance using LLaMA3-8B-Instruct on NQ, TriviaQA, and
HotpotQA datasets. The x-axis represents the KNN-clustering threshold, with the model incorporating more context
as the threshold increases.

Methods EM F1

BM25 41.51 71.03
BGE-rerank 41.73 71.06
Sentence-BERT(Ours) 42.03 71.21

Table 4: Comparison of different reranking methods on
NQ test set based on LLaMA3-8B-Instruct.

Dataset Method EM F1

NQ Random 41.23 71.01
Adaptive(Ours) 42.17 71.31

TriviaQA Random 48.67 80.23
Adaptive(Ours) 48.81 80.33

HotpotQA Random 26.28 61.06
Adaptive(Ours) 26.47 61.15

Table 5: Comparison of Random and our Adaptive Trun-
cation methods across NQ, TriviaQA, and HotpotQA
based on LLaMA3-8B-Instruct.

fines the distance of cosine similarity to the answer-513

containing sentences. When set to 0, the model514

selects sentences only containing the answer with-515

out KNN. As the threshold increases, the model516

gradually selects more semantically similar sen-517

tences to the answer, expanding the context and518

providing additional relevant information.519

As shown in Figure 4, we compare the perfor-520

mance of the model at different threshold values.521

For simple questions such as NQ, the KNN ex-522

traction strategy does not improve performance, as523

answers can typically be obtained directly from524

sentences containing the answers. For more com-525

plex questions such as HotpotQA and TriviaQA,526

the KNN strategy initially improves performance at527

lower thresholds but declines at higher thresholds528

due to increased noise.529

5.4.4 Impact of Different Reranker 530

To select a more effective re-ranking base model, 531

we compare BM25 (Robertson et al., 2009), 532

BGE-rerank (Xiao et al., 2024), and Sentence- 533

BERT(Reimers and Gurevych, 2020). As shown 534

in Table 4, the results demonstrate that Sentence- 535

BERT outperforms all baseline models in both EM 536

and F1 scores, so we chose it as the re-ranking base 537

model. 538

5.4.5 Adaptive vs. Random Truncation 539

To validate the effectiveness of our adaptive trun- 540

cation strategy, we compare it with random trunca- 541

tion. As shown in Table 5, our adaptive truncation 542

method outperforms random truncation in all met- 543

rics. This is because adaptive truncation dynami- 544

cally selects context based on the results feedback 545

from the downstream generator, retaining the most 546

relevant and informative content to improve model 547

performance. 548

6 Conclusion 549

In this paper, we introduce FineFilter, a novel fine- 550

grained noise filtering mechanism aimed at improv- 551

ing performance and reducing cost in RAG sys- 552

tems. By framing noise filtering as a sentence-level 553

MinMax optimization problem, FineFilter effec- 554

tively tackles the challenge of identifying relevant 555

clues in complex reasoning scenarios. Its three op- 556

timized modules leverage KNN clustering to obtain 557

sufficient relevant context and retain effective clues 558

based on generator feedback. Experiments show 559

that FineFilter outperforms baselines on three QA 560

datasets in both performance and efficiency. Future 561

work can explore more adaptive noise filtering that 562

dynamically adjusts based on query complex or 563

retrieval quality for complex reasoning tasks. 564
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7 Limitations565

Although FineFilter has made significant progress566

in clue extraction and computational efficiency,567

there is still the issue of system transferability. Fine-568

Filter fine-tunes the LLM based on downstream569

generator feedback, and if a new generative LLM is570

adopted, the filtering modules need to be retrained.571

This tight coupling results in increased transfer572

costs for the system.573
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A Prompt741

A.1 Prompt for Clue Extractor742

We show our prompt for clue extraction in Table 6,743

which plays a crucial role in identifying and select-744

ing relevant information from the input documents.745

This prompt is designed to guide the model in ex-746

tracting the most informative sentences, those most747

likely to contain the answer to the given question.748

A.2 Prompt for Adaptive Truncator749

We show our prompt for adaptive truncation in Ta-750

ble 7. The prompt is designed to guide the model751

in optimizing context truncation based on the com-752

plexity of the question and the quality of the docu-753

ment, thereby improving the efficiency of the lan-754

guage model. Specifically, given a question and a755

ranked list of sentences, the model’s task is to iden-756

tify and retain the most relevant sentences while757

truncating those that are irrelevant to the question.758

Through this process, the model is able to main-759

tain answer accuracy while reducing unnecessary760

information, thus enhancing processing efficiency.761

A.3 Prompt for Generator762

We use the LLaMA2-7B(Touvron et al., 2023)763

model as the final generator. During the generation764

phase, we design a specialized generator prompt765

to ensure that the generated answers are highly rel-766

evant to the questions. We show our prompt in767

Table 8. The prompt guides the model in generat-768

ing accurate and concise responses based on the769

given question and context.770

B Details of Experimental Settings771

We utilize LLaMA3-8B-Instruct (Dubey et al.,772

2024) and Mistral-7B-Instruct (Jiang et al., 2023)773

as the backbone language models, both of which774

demonstrate excellent performance across various775

tasks and exhibit high flexibility during fine-tuning.776

We apply the LORA method (Hu et al., 2021) for777

fine-tuning, which is an efficient low-rank adapta-778

tion technique that significantly reduces the com-779

putational cost of parameter updates while main-780

taining model performance. The LORA method is781

applied to the clue extractor and adaptive truncator.782

All training is conducted on a single A6000-48G783

GPU, with 16 training epochs. The initial learning784

rate is set to 5e-4, and the batch size is 4. Dur-785

ing training, we employ gradient accumulation to786

handle smaller batch sizes and improve training787

stability. The best model is selected based on the 788

performance of the validation set. 789

During the fine-tuning phase, we train the mod- 790

els on the three QA datasets, i.e., NQ, TriviaQA, 791

and HotpotQA. We employ the KNN-based sen- 792

tence selection method across all datasets. The 793

maximum number of samples is limited to 10000, 794

and the KNN-based sentence selection varies with 795

the ϵ value for each dataset: for NQ, ϵ is set to 0; 796

for TriviaQA, ϵ is set to 0.05; and for HotpotQA, 797

ϵ is set to 0.1. These adjustments ensure flexibil- 798

ity and accuracy in clue extraction for different 799

datasets. Additionally, data preprocessing is accel- 800

erated during each training epoch using 16 parallel 801

workers. The maximum input length is set to 7168 802

to accommodate large-scale context information. 803

For the clue reranker, we use Sentence- 804

BERT (Reimers and Gurevych, 2020) with the 805

distilbert-base-uncased model, which is effective 806

for generating high-quality sentence embeddings to 807

compute sentence similarity. During training, we 808

apply the Adam optimizer with a batch size of 64, 809

a learning rate of 2e-5, and 1000 warm-up steps. 810

The training lasts for 4 epochs. 811

C Case Study 812

We select examples from the NQ and HotpotQA 813

datasets, covering two typical question-answering 814

scenarios: one involving simple single-answer 815

questions and the other involving complex multi- 816

answer questions requiring reasoning. As shown 817

in Table 9 and Table 10 for the NQ dataset, and Ta- 818

ble 11 and Table 12 for the HotpotQA dataset, these 819

examples will demonstrate the advantages and ef- 820

fectiveness of the FineFilter method in handling 821

question answering tasks of varying complexity. 822
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Prompt for Clue Extractor

You are a highly skilled assistant special-
izing in extracting relevant information
from provided documents. Your task is
to identify and extract sentences from the
documents as much as possible that are
most directly useful for answering the given
question. Rank the sentences in order of
relevance, with the most relevant sentence
listed first. Preface each sentence with its
sequence number as follows:
Sentence 1:
......
Sentence n:

Question:
{Question}

Documents:
{Documents}

Table 6: Prompt for Clue Extractor.

Prompt for Adaptive Truncator

You are a highly skilled assistant specializ-
ing in optimizing language model efficiency
by truncating context based on question
complexity and document quality. Given
a question and a ranked list of sentences,
identify and retain the most relevant ones
while truncating the irrelevant sentences.

Question:
{Question}

Ranked List:
{Ranked List}

Table 7: Prompt for Adaptive Truncator.

Prompt for Generator

[INST]
<<SYS>>
You are a helpful, respectful, and honest
assistant. Please use the documents
provided to answer the query.
Documents:
{Documents}
<</SYS>>

{Question}
[/INST]

Table 8: Prompt for Generator.
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Question: what kind of beast is the beast from beauty and the beast
Correct Answer: a chimera
Retrieved Documents
Document 1:
Beast (Beauty and the Beast) The Beast is a fictional character who appears in Walt Disney Animation
Studios’ 30th animated feature film "Beauty and the Beast" (1991). He also appears in the film’s two
direct-to-video followups "" and "Belle’s Magical World". Based on the hero of the French fairy tale by
Jeanne-Marie Leprince de Beaumont, the Beast was created by screenwriter Linda Woolverton and
animated by Glen Keane. A pampered prince transformed into a hideous beast as punishment for his
cold-hearted and selfish ways, the Beast must, in order to return to his former self, earn the love of a
Document 2:
the arms and body of a bear, the eyebrows of a gorilla, the jaws, teeth, and mane of a lion, the tusks of
a wild boar and the legs and tail of a wolf. He also bears resemblance to mythical monsters like the
Minotaur or a werewolf. He also has blue eyes, the one physical feature that does not change whether
he is a beast or a human. As opposed to his original counterpart, Disney gave him a more primal
nature to his personality and mannerisms, which truly exploited his character as an untamed animal (i.e.
alternating between walking and
Document 3:
the Beast to resemble a creature that could possibly be found on Earth as opposed to an alien. The
initial designs had the Beast as humanoid but with an animal head attached as per the original fairy tale,
but soon shifted towards more unconventional forms. The earlier sketches of the Beast2019s character
design are seen as gargoyles and sculptures in the Beast’s castle. Inspired by a buffalo head that he
purchased from a taxidermy, Keane decided to base the Beast’s appearance on a variety of wild animals,
drawing inspiration from the mane of a lion, head of a buffalo, brow
Document 4:
the villagers. Beast (Beauty and the Beast) The Beast is a fictional character who appears in Walt
Disney Animation Studios’ 30th animated feature film “Beauty and the Beast” (1991). He also appears
in the film’s two direct-to-video follow-ups and “Belle’s Magical World.” Based on the hero of the
French fairy tale by Jeanne-Marie Leprince de Beaumont, the Beast was created by screenwriter Linda
Woolverton and animated by Glen Keane. A pampered prince transformed into a hideous beast as
punishment for his cold-hearted and selfish ways, the Beast must, in order to return to his former self,
earn the love of a person
Document 5:
of a gorilla, tusks of a wild boar, legs and tail of a wolf, and body of a bear. However, he felt it important
that the Beast’s eyes remain human. In fear that Glen Keane would design the Beast to resemble voice
actor Robby Benson, Walt Disney Studios chairman Jeffrey Katzenberg did not allow Keane to see
Benson during production of the film. The Beast is not of any one species of animal, but a chimera (a
mixture of several animals), who would probably be classified as a carnivore overall. He has the head
structure and horns of a buffalo

Table 9: An example from NQ, including Question, Correct Answer, and Top-5 Retrieved Documents.
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Method Summary Answer
Closed-book: - a bear
Top-5 Documents - a bear
Top-1 Document Beast (Beauty and the Beast) The Beast is a fictional char-

acter who appears in Walt Disney Animation Studios’ 30th
animated feature film "Beauty and the Beast" (1991). He
also appears in the film’s two direct-to-video followups ""
and "Belle’s Magical World". Based on the hero of the
French fairy tale by Jeanne-Marie Leprince de Beaumont,
the Beast was created by screenwriter Linda Woolverton and
animated by Glen Keane. A pampered prince transformed
into a hideous beast as punishment for his cold-hearted and
selfish ways, the Beast must, in order to return to his former
self, earn the love of a

a bear

RECOMP Beast (Beauty and the Beast) The Beast is a fictional char-
acter who appears in Walt Disney Animation Studios’ 30th
animated feature film "Beauty and the Beast" (1991).

a bear

FILCO the arms and body of a bear, the eyebrows of a gorilla, the
jaws, teeth, and mane of a lion, the tusks of a wild boar and
the legs and tail of a wolf.

a bear

Ours Sentence1:The Beast is not of any one species of animal,
but a chimera (a mixture of several animals), who would
probably be classified as a carnivore overal
Sentence2:of a gorilla, tusks of a wild boar, legs and tail of
a wolf, and body of a bear

a chimera

Table 10: Case study based on an example from NQ.
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Question: What writer worked on both The Ice Cream Man and and a 2007 fantasy comedy loosely
based on a Donald Henkel poem?
Correct Answer: David Dobkin
Retrieved Documents
Document 1:
Ice Cream Man (film) Ice Cream Man is a 1995 American horror comedy film produced and directed
by Norman Apstein, a director of pornographic films. In his first and only attempt at mainstream
filmmaking, and written by Sven Davison and David Dobkin (who later wrote and directed the films
"Wedding Crashers" and "Fred Claus"), and starring Clint Howard, Olivia Hussey, and David Naughton.
The plot follows a deranged man recently released from a psychiatric institution who opens an ice
cream factory where he begins using human flesh in his recipes. The film had an estimated 2 million
budget and was
Document 2:
“Water Tower and the Turtle” won the 39th Kawabata Yasunari Prize. The Japanese Ministry of
Education, Culture, Sports, Science and Technology recognized Tsumura’s work with a New Artist
award in 2016. Tsumura’s writing often employs Osaka-ben, a distinctive Japanese dialect spoken in
Osaka and surrounding cities. Kikuko Tsumura was born in Osaka, Japan in 1978. While commuting to
school, she read science fiction novels, especially the work of William Gibson, Philip K. Dick, and Kurt
Vonnegut, and began writing her own novel, “Manı̄ta” (“Maneater”), while still a third-year university
student. “Manı̄ta” won the 21st Dazai Osamu Prize and was
Document 3:
Sentai-style shows called “Go Sukashi!” based on a character by Shoko Nakagawa (who appears in
the films), and starring John Soares and Brooke Brodack. He has also published an online superhero-
genre-spoofing webcomic titled “Ratfist.” In September 2012, Fox Animation optioned TenNapel’s
published Graphix novel “Cardboard”, with plans for actor Tobey Maguire’s Material Pictures, graphic
novelist Doug TenNapel, and the Gotham Group to be executive producers. Fox plans to have the
picture developed under its WedgeWorks subsidiary. WedgeWorks director Chris Wedge (“Ice Age”) is
producing, and is considering directing the film as well. TenNapel has used Kickstarter to produce a
bound
Document 4:
The film industry, and his interest particularly in contemporary animated film from Eastern Europe —
particularly the work of Jan Lenica, Daniel Szczechura and Walerian Borowczyck — as well as the
Brothers Quay has been a marked influence on his work. He has published three novels. Weiner’s
1993 debut novel “The Museum of Love” was published by Bloomsbury UK and subsequently by
Kodansha in Japan, The Overlook Press in the United States and Canada, and Belfond in France. It
earned comparisons to William S. Burroughs, Céline, Jean Genet, David Lynch and Todd Haynes for
its blend of surrealism and dark
Document 5:
See her idol, Eudora Welty, Flagg won first prize in the writing contest for a short story told from the
perspective of an 11-year-old girl, spelling mistakes and all—a literary device that she figured was
ingenious because it disguised her own pitiful spelling, later determined to be an outgrowth of dyslexia.
An editor at Harper & Row approached her about expanding the story into a full-length novel. “I just
burst into tears and said, ‘I can’t write a novel,’” she told “The New York Times” in 1994. “‘I can’t
spell. I can’t diagram a sentence.’ He took my hand and

Table 11: An example from HotpotQA, including Question, Correct Answer, and Top-5 Retrieved Documents.

15



Method Summary Answer
Closed-book: - Quentin Tarantino
Top-5 Documents - Grady Hendrix
Top-1 Document Ice Cream Man (film) Ice Cream Man is a 1995 American

horror comedy film produced and directed by Norman Ap-
stein, a director of pornographic films, in his first and only
attempt at mainstream filmmaking, and written by Sven
Davison and David Dobkin (who later wrote and directed
the films "Wedding Crashers" and "Fred Claus"), and star-
ring Clint Howard, Olivia Hussey, and David Naughton.
The plot follows a deranged man recently released from
a psychiatric institution who opens an ice cream factory
where he begins using human flesh in his recipes. The film
had an estimated 2 million budget and was

David Dobkin

RECOMP Ice Cream Man (film) Ice Cream Man is a 1995 American
horror comedy film produced and directed by Norman Ap-
stein, a director of pornographic films.

Norman Apstein

FILCO Ice Cream Man (film) Ice Cream Man is a 1995 American
horror comedy film produced and directed by Norman Ap-
stein, a director of pornographic films.

Norman Apstein

Ours Sentence 1:Ice Cream Man (film) Ice Cream Man is a 1995
American horror comedy film produced and directed by
Norman Apstein, a director of pornographic films.
Sentence 2:in his first and only attempt at mainstream film-
making, and written by Sven Davison and David Dobkin
(who later wrote and directed the films "Wedding Crash-
ers" and "Fred Claus"), and starring Clint Howard, Olivia
Hussey, and David Naughton.

David Dobkin

Table 12: Case study based on an example from HotpotQA.
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