
Published as a conference paper at COLM 2024

An In-Context Learning Agent for Formal Theorem-Proving

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin & Swarat Chaudhuri
Department of Computer Science
The University of Texas at Austin
{amitayush, george.tsoukalas, ywen, jxin31415}@utexas.edu, swarat@cs.utexas.edu

Abstract

We present an in-context learning agent for formal theorem-proving in
environments like Lean and Coq. Current state-of-the-art models for the
problem are finetuned on environment-specific proof data. By contrast, our
approach, called COPRA, repeatedly asks a high-capacity, general-purpose
large language model (GPT-4) to propose tactic applications from within a
stateful backtracking search. Proposed tactics are executed in the underly-
ing proof environment. Feedback from the execution is used to build the
prompt for the next model query, along with selected information from the
search history and lemmas retrieved from an external database. We evalu-
ate our implementation of COPRA on the miniF2F benchmark for Lean and
a set of Coq tasks from the CompCert project. On these benchmarks, COPRA
significantly outperforms few-shot invocations of GPT-4. It also compares
favorably against finetuning-based approaches, outperforming REPROVER,
a state-of-the-art finetuned approach for Lean, in terms of the pass@1 metric.
Our code and data are available at https://github.com/trishullab/copra.

1 Introduction

The ability of large language models (LLMs) to learn in-context (Brown et al., 2020) is among
the most remarkable recent findings in machine learning. Since its introduction, in-context
learning has proven fruitful in a broad range of domains, from text and code generation
(OpenAI, 2023b) to image generation (Ramesh et al., 2021) to game-playing (Wang et al.,
2023a). In many tasks, it is now best practice to prompt a general-purpose, black-box LLM
rather than finetune smaller-scale models.

In this paper, we investigate the value of in-context learning in the discovery of formal
proofs written in frameworks like Lean (de Moura et al., 2015) and Coq (Huet et al., 1997).
Such frameworks allow proof goals to be iteratively simplified using tactics such as variable
substitution and induction. A proof is a sequence of tactics that iteratively “discharges” a
given goal.

Automatic theorem-proving is a longstanding challenge in computer science (Newell et al.,
1957). Traditional approaches to the problem were based on discrete search and had difficulty
scaling to complex proofs (Bundy, 1988; Andrews & Brown, 2006; Blanchette et al., 2011).
More recent work has used neural models — most notably, autoregressive language models
(Polu & Sutskever, 2020; Han et al., 2021; Yang et al., 2023) — that generate a proof tactic by
tactic.

The current crop of such models is either trained from scratch or fine-tuned on formal
proofs written in a specific proof framework. By contrast, our method uses a highly capable,
general-purpose, black-box LLM (GPT-4-turbo (OpenAI, 2023a) *) that can learn in context.
We show that few-shot prompting of GPT-4 is not effective at proof generation. However,
one can achieve far better performance with an in-context learning agent (Yao et al., 2022;
Wang et al., 2023a; Shinn et al., 2023) that repeatedly invokes GPT-4 from within a higher-
level backtracking search and uses retrieved knowledge and rich feedback from the proof

*For brevity, we refer to GPT-4-turbo as GPT-4 in the rest of this paper.

1

https://github.com/trishullab/copra

Published as a conference paper at COLM 2024

environment. Without any framework-specific training, our agent achieves performance
comparable to — and by some measures better than — state-of-the-art finetuned approaches.

Figure 1: Overview of COPRA. COPRA takes as input a
formal theorem statement and performs a stateful proof
search through an in-context learning agent. At each
step of search, the agent has access to the search his-
tory, error feedback from the proof environment, and
relevant lemmas retrieved from a database, which are
formatted according to a prompt serialization protocol.

Figure 1 gives an overview of our
agent, called COPRA. † The agent
takes as input a formal statement
of a theorem and optional natural-
language hints about how to prove
the theorem. At each time step, it
prompts the LLM to select the next
tactic to apply. LLM-selected tac-
tics are “executed” in the under-
lying proof assistant. If the tactic
fails, COPRA records this informa-
tion and uses it to avoid future fail-
ures.

Additionally, the agent uses lem-
mas and definitions retrieved from
an external database to simplify
proofs. Finally, we use a symbolic
procedure (Sanchez-Stern et al.,
2020) to only apply LLM-selected
tactics when they simplify the
current proof goals (ruling out,
among other things, cyclic tactic
sequences).

Our use of a general-purpose LLM makes it easy to integrate our approach with different
proof environments. Our current implementation of COPRA allows for proof generation in
both Lean and Coq. To our knowledge, this implementation is the first proof generation
system with this capability.

We evaluate COPRA using the miniF2F (Zheng et al., 2021) benchmark for competition-level
mathematical reasoning in Lean, as well as a set of Coq proof tasks (Sanchez-Stern et al.,
2020) from the CompCert (Leroy, 2009) project on verified compilation. In both settings,
COPRA outperforms few-shot calls to GPT-4. On miniF2F, COPRA outperforms REPROVER,
a state-of-the-art finetuned approach for Lean theorem-proving, in terms of the established
pass@1 metric. Using a refinement of the pass@1 metric, we show that COPRA can converge
to correct proofs with fewer model queries than REPROVER as well as PROVERBOT9001, a
state-of-the-art approach for Coq. Finally, we show that a GPT-4-scale model is critical for
this setting; an instantiation of COPRA with GPT-3.5 is less effective.

To summarize our contributions, we offer: (i) a new approach to formal theorem-proving,
called COPRA, that combines in-context learning with search, knowledge retrieval, and
the use of rich feedback from the underlying proof environment; (ii) a systematic study of
the effectiveness of the GPT-4-based instantiation of COPRA, compared to few-shot GPT-4
invocations, ablations based on GPT-3.5, and state-of-the-art finetuned baselines; (iii) an
implementation of COPRA, which is the first open-source theorem-proving system to be
integrated with both the Lean and Coq proof environments.

2 Problem Formulation

A (tactic-based) theorem-prover starts with a set of unmet proof obligations and applies a
sequence of proof tactics to progressively eliminate these obligations. Each obligation o is a
pair (g, h), where g is a goal and h is a hypothesis. The goal g consists of the propositions that
need to be proved in order to meet o; the hypothesis h is the set of assumptions that can be
made in the proof of g. The prover seeks to reduce the obligation set to the empty set.

†COPRA is an acronym for “In-context Prover Agent”.

2

Published as a conference paper at COLM 2024

(a)

theorem
mod_arith_2

(x : N) : x % 2
= 0

→ (x * x) % 2
= 0 :=

begin
intro h,
rw mul_mod,
rw h,
rw zero_mul,
refl,

end

(b)

x: N
h: x % 2 = 0
⊢ x * x % 2 = 0

(c)

begin
intro h,
have h1 : x = 2

* (x / 2)
:= (nat.
mul_div_cancel
' h).symm,

rw h1,
rw nat.

mul_div_assoc
_

(show 2 | 2,
from dvd_refl
_),

rw [mul_assoc,
nat.
mul_mod_right
],

end

Figure 2: (a) A Lean theorem and a correct
proof found by COPRA. (b) Proof state after
the first tactic. (c) An incorrect proof gener-
ated by GPT-4.

Figure 2-(a) shows a formal proof, in the
Lean language (de Moura et al., 2015), of
a basic theorem about modular arithmetic
(the proof is automatically generated using
COPRA). The first step of the proof is the
intro tactic, which changes a goal P → Q
to a hypothesis P and a goal Q. The next
few steps use the rw (rewrite) tactic, which
applies substitutions to goals and hypothe-
ses. The last step is an application of the
refl (reflexivity) tactic, which asserts defi-
nitional equivalences.

In code generation settings, LLMs like GPT-
4 can often generate complex programs
from one-shot queries. However, one-shot
queries to GPT-4 often fail at even relatively
simple formal proof tasks.

Figure 2-(c) shows a GPT-4-generated incor-
rect Lean proof of our example theorem.

By contrast, we follow a classic view of
theorem-proving as a discrete search prob-
lem (Bundy, 1988). Specifically, we offer an
agent that searches the state space of the un-
derlying proof environment and discovers
sequences of tactic applications that con-
stitute proofs. The main differences from
classical symbolic approaches are that the search is LLM-guided, history-dependent, and
can use natural-language insights provided by the user or the environment.

Now we formalize our problem statement. Abstractly, let a proof environment consist of:

• A set of states O. Here, a state is either a set O = {o1, . . . , ok} of obligations oi, or of the
form (O, w), where O is a set of obligations and w is a textual error message. States of the
latter form are error states, and the set of such states is denoted by Err.

• A set of initial states, each consisting of a single obligation (gin, hin) extracted from a
user-provided theorem.

• A unique goal state QED is the empty obligation set.
• A finite set of proof tactics.
• A transition function T(O, a), which determines the result of applying a tactic a to a state

O. If a can be successfully applied at state O, then T(O, a) is the new set of obligations
resulting from the application. If a is a “bad” tactic, then T(O, a) is an error state (O, we),
where we is some feedback that explains the error. Error states (O, w) satisfy the property
that T((O, w), a) = (O, w) for all a.

• A set of global contexts, each of which is a natural-language string that describes the theorem
to be proven and insights (Jiang et al., 2022b) about how to prove it. The theorem-proving
agent can take a global context as an optional input and may use it to accelerate search.

Let us lift the transition function T to tactic sequences by defining:

T(O, α) =

{
T(O, a1) if n = 1
T(T(O, ⟨a1, . . . , an−1⟩), an) otherwise.

The theorem-proving problem is now defined as follows:
Problem 1 (Theorem-proving). Given an initial state Oin and an optional global context χ,
find a tactic sequence α (a proof) such that T(Oin, α) = QED.

In practice, we aim for proofs to be as short as possible.

3

Published as a conference paper at COLM 2024

3 The COPRA Agent

The COPRA agent solves the theorem-proving problem via a GPT-4-directed depth-first
search over tactic sequences. Figure 3 shows pseudocode for the agent. At any given point,
the algorithm maintains a stack of environment states and a “failure dictionary” Bad that
maps states to sets of tactics that are known to be “unproductive” at the state.

At each search step, it pushes the current state on the stack and retrieves external lemmas
and definitions relevant to the state. After this, it serializes the stack, Bad(O), the retrieved
information, and the optional global context into a prompt and feeds it to the LLM. The
LLM’s output is parsed into a tactic and executed in the environment.

One outcome of the tactic could be that the agent arrives at QED or makes some progress in
the proof. A second possibility is that the new state is an error. A third possibility is that the
tactic is not incorrect but does not represent progress in the proof. We detect this scenario
using a symbolic progress check as described below. The agent terminates successfully after
reaching QED and rejects the new state in the second and third cases. Otherwise, it recursively
continues the proof from the new state. After issuing a few queries to the LLM, the agent
backtracks.

Progress Checks. Following Sanchez-Stern et al. (2020), we define a partial order ⊒ over
states that indicates when a state is “at least as hard” as another. Formally, for states O1 and
O2 with O1 /∈ Err and O2 /∈ Err, O1 ⊒ O2 iff

∀oi = (gi, hi) ∈ O2. ∃ok = (gk, hk) ∈ O1. gk = gi ∧ (hk ⊆ hi).
Intuitively, O1 ⊒ O2 if for every obligation in O2, there is a stronger obligation in O1. While
comparing the difficulty of arbitrary proof states is not well-defined, our definition helps us
eliminate some straightforward cases. Particularly, these cases include those proof states
whose goals match exactly and one set of hypotheses contains the other.

COPRA(O, χ)

1 PUSH(st, O)
2 ρ← RETRIEVE(O)
3 for j← 1 to t
4 do p← PROMPTIFY(st, Bad(O), ρ, χ)
5 a ∼ PARSETACTIC(LLM(p))
6 O′ ← T(O, a)
7 if O′ = QED
8 then terminate successfully
9 else if O′ ∈ Err or

∃O′′ ∈ st. O′ ⊒ O′′
10 then add a to Bad(O)
11 else COPRA(O′, χ)
12 POP(st)

Figure 3: The search procedure in COPRA. T is
the environment’s transition function; st is a stack,
initialized to be empty. Bad(O) is a set of tactics,
initialized to ∅, that are known to be bad at O.
LLM is an LLM, PROMPTIFY generates a prompt,
PARSETACTIC parses the output of the LLM into a
tactic (repeatedly querying the LLM in case there
are formatting errors in its output), and RETRIEVE
gathers relevant lemmas and definitions from an
external source. The overall procedure is called
with a state Oin and an optional global context χ.

As shown in Figure 3, the COPRA pro-
cedure uses the ⊒ relation to only take
actions that lead to progress in the
proof. Using our progress check, CO-
PRA avoids cyclic tactic sequences that
would cause nontermination.

Prompt Serialization. The rou-
tines PROMPTIFY and PARSETACTIC to-
gether constitute the prompt serialization
protocol and are critical to the success of
the policy. Now we elaborate on these
procedures.

PROMPTIFY carefully places the differ-
ent pieces of information relevant to
the proof in the prompt. It also in-
cludes logic for trimming this informa-
tion to fit the most relevant parts in the
LLM’s context window. Every prompt
has two parts: the “system prompt”
(see more details in Appendix A.3) and
the “agent prompt.”

The agent prompts are synthetically
generated using a context-free gram-
mar and contain information about the
state stack (including the current proof
state), the execution feedback for the previous action, and the set of actions we know to
avoid at the current proof state.

The system prompt describes the rules of engagement for the LLM. It contains a grammar
(distinct from the one for agent prompts) that we expect the LLMs to follow when it

4

Published as a conference paper at COLM 2024

Figure 4: A “conversation” between the LLM and the search algorithm in COPRA. Query #1,
Query #2, . . . represent queries made as the proof search progresses. The column labeled
Query #i depicts the prompt at time step i and the corresponding LLM response. The LLM
response is parsed into a tactic and executed, with the error feedback incorporated into the
next prompt.

proposes a course of action. The grammar carefully incorporates cases when the response is
incomplete because of the LLM’s token limits. We parse partial responses to extract the next
tactic using the PARSETACTIC routine. PARSETACTIC also identifies any formatting errors
in the LLM’s responses, possibly communicating with the LLM multiple times until these
errors are resolved.

Figure 4 illustrates a typical “conversation” between the LLM and COPRA’s search algorithm
via the prompt serialization protocol. Note, in particular, the prompt’s use of the current
goals, the stack, and error feedback for the last executed tactic.

4 Evaluation
Benchmarks. We primarily evaluate COPRA on the Lean proof environment using miniF2F-
test (Zheng et al., 2021) benchmark. This benchmark comprises 244 formalizations of
mathematics problems from (i) the MATH dataset (Hendrycks et al., 2021), (ii) high school
mathematics competitions, (iii) hand-designed problems mirroring the difficulty of (ii).
Broadly, these problems fall under three categories: number theory, algebra, and induction.

To evaluate COPRA’s ability to work with multiple proof frameworks, we perform a sec-
ondary set of experiments on the Coq platform. Our benchmark here consists of a set of a
theorems drawn from the CompCert compiler verification project (Leroy, 2009). The dataset
was originally evaluated on the PROVERBOT9001 system (Sanchez-Stern et al., 2020). Due
to budgetary constraints, our evaluation for CompCert uses 118 of the 501 theorems used in
the original evaluation of PROVERBOT9001. For fairness, we include all 98 theorems proved
by PROVERBOT9001 in our system. The remaining theorems are randomly sampled.

Implementing COPRA. Our implementation of COPRA is LLM-agnostic, and functions
as long as the underlying language model is capable of producing responses which parse
according to the output grammar. We instantiate the LLM to be GPT-4-turbo as a middle-
ground between quality and affordability. Because of the substantial cost of GPT-4 queries,
we cap the number of queries that COPRA can make at 60 for the majority of our experiments.

5

Published as a conference paper at COLM 2024

In both Lean and Coq, we instantiate the retrieval mechanism to be a BM25 search. For
our Lean experiments, our retrieval database is mathlib (mathlib Community, 2020), a
mathematics library developed by the Lean community. Unlike miniF2F, our CompCert-
based evaluation set is accompanied by a training set. Since COPRA relies on a black-box
LLM, we do not perform any training with the train set, but do use it as the retrieval
database for our Coq experiments.

Inspired by DSP (Jiang et al., 2022b), we measure the efficacy of including the natural-
language (informal) proof of the theorem at each search step in our Learn experiments.
We use the informal theorem statements in miniF2F-test to generate informal proofs of
theorems using few-shot prompting of the underlying LLM. The prompt has several exam-
ples, fixed over all invocations, of informal proof generation given the informal theorem
statement. These informal proofs are included as part of the global context. Unlike miniF2F,
which consists of competition problems originally specified in natural language, our Com-
pCert evaluation set comes from software verification tasks that lack informal specifications.
Hence, we do not run experiments with informal statements and proofs for Coq.

Initially, we run COPRA without access to the retrieval database. By design, COPRA may
backtrack out of its proof search before the cap of 60 queries has been met. With the
remaining attempts on problems yet to be solved, COPRA is restarted to operate with
retrieved information, and then additionally with informal proofs. This implementation
affords lesser expenses, as appending retrieved lemmas and informal proofs yields longer
prompts, which incur higher costs. More details are discussed in Appendix A.1.1.

Baselines. We perform a comparison with the few-shot invocation of GPT-4 in both the
miniF2F-test and CompCert domains. The “system prompt” in the few-shot approach
differs from that of COPRA, containing instructions to generate the entire proof in one
response, rather than going step-by-step. For both COPRA and the few-shot baseline, the
prompt contains several proof examples which clarify the required format of the LLM
response. The proof examples, fixed across all test cases, contain samples broadly in the
same categories as, but distinct from, those problems in the evaluation set.

For our fine-tuned baselines, a challenge is that, to our knowledge, no existing theorem-
proving system targets both Lean and Coq. Furthermore, all open-source theorem proving
systems have targeted a single proof environment. As a result, we had to choose different
baselines for the Lean (miniF2F) and Coq (CompCert) domains.

Our fine-tuned baseline for miniF2F-test is REPROVER, a state-of-the-art retrieval-
augmented open-source system that is part of the LeanDojo project (Yang et al., 2023).
We also compare against LLEMMA-7b and LLEMMA-34b (Azerbayev et al., 2023). In the
CompCert task, we compare with PROVERBOT9001 (Sanchez-Stern et al., 2020), which,
while not LLM-based, is the best public model for Coq.

Ablations. We consider ablations of COPRA which use GPT-3.5 and CodeLlama (Roziere
et al., 2023) as the underlying model. We also measure the effectiveness of backtracking
in COPRA’s proof search. Additionally, we ablate for retrieved information and informal
proofs as part of the global context during search.

Metric. The standard metric for evaluating theorem-provers is pass@k (Lample et al., 2022).
In this metric, a prover is given a budget of k proof attempts; the method is considered
successful if one of these attempts leads to success. We consider a refinement of this metric
called pass@k-with-n-queries. Here, we measure the number of correct proofs that a prover
can generate given k attempts, each with a budget of n queries from the LLM or neural
model. We enforce that a single query includes exactly one action (a sequence of tactics)
to be used in the search. We want this metric to be correlated with the number of correct
proofs that the prover produces within a specified wall-clock time budget; however, the cost
of an inference query on an LLM is proportional to the number of responses generated per
query. To maintain the correlation between the number of inference queries and wall-clock
time, we restrict each inference on the LLM to a single response (see Appendix A.1.2 for
more details).

6

Published as a conference paper at COLM 2024

Evaluation on miniF2F-test

Approach
pass@k

-with-n-queries
k× n (Timeout)

%
proved

Few-Shot (CodeLlama) 1 × 1 (600) 0.0%

Few-Shot (GPT 3.5) 1 × 1 (600) 2.8%

COPRA (CodeLlama) 1 × 500 (600) 5.73%

COPRA (GPT-3.5) 1 × 60 (600) 9.02%

Few-Shot 1 × 1 (600) 13.52%

Few-Shot (T = 0.7) 60‡ × 1 (600) 15.98%

REPROVER (- Retrieval) 1 × 1076 (600) 22.13%

COPRA (- Backtracking) 1 × 60 (600) 24.59%

REPROVER 1 × 3751 (600) 25.00%

LLEMMA-34b 1 × 3200 (600) 25.82%

LLEMMA-7b 1 × 3200 (600) 26.23%

COPRA 1 × 60 (600) 26.63%

COPRA (+ Retrieval) 1 × 60 (600) 29.09%

COPRA
(+ Retrieval + Informal) 1 × 60 (600) 29.92%

COPRA
(+ Retrieval + Informal) 1 × 100 (1200) 30.74%

Table 1: Aggregate statistics for COPRA and the base-
lines on miniF2F dataset. Note the various ablations
of COPRA with and without retrieval or informal
proofs. The timeout is a wall-clock time budget in
seconds allocated across all attempts. Unless other-
wise specified, (i) COPRA uses GPT-4 as the LLM (ii)
the temperature (T) is set to 0.

COPRA vs. Few-Shot LLM Queries.
Statistics for the two approaches, as
well as a comparison with the few-
shot GPT-3.5 and GPT-4 baselines,
appear in Table 1. As we see, CO-
PRA offers a significant advantage
over the few-shot approaches. For
example, COPRA solves more than
twice as many problems as the few-
shot GPT-4 baseline, which indicates
that the state information positively
assists the search. Furthermore, we
find that running the few-shot base-
line with 60‡ attempts (provided a
nonzero temperature), exhibits con-
siderably worse performance com-
pared to COPRA. This indicates that
COPRA makes more efficient use of
queries to GPT-4 than the baseline,
even when queries return a single tac-
tic (as part of a stateful search), as
opposed to a full proof. We include
further details in Appendix A.1.1.

COPRA is capable of improving the
performance of GPT-3.5, CodeLlama
over its few-shot counterpart. We
note that the use of GPT-4 seems es-
sential, as weaker models like GPT-
3.5 or CodeLlama have a reduced
ability to generate responses follow-
ing the specified output format.

Comparison with Finetuned Ap-
proaches on miniF2F. Figure 5
shows our comparison results for
the miniF2F domain. With a purely
in-context learning approach, CO-
PRA outperforms REPROVER, prov-

ing within just 60 queries theorems that REPROVER could not solve after a thousand queries.
This is remarkable given that REPROVER was finetuned on a curated proof-step dataset
derived from Lean’s mathlib library. For fairness, we ran REPROVER multiple times with
16, 32, and 64 (default) as the maximum number of queries per proof-step. We obtained the
highest success rates for REPROVER with 64 queries per proof-step. We find that COPRA
without retrieval outperforms REPROVER.

Our pass@1 performance surpasses those of the best open-source approaches for miniF2F-
test on Lean. COPRA proves 29.09% of theorems in miniF2F-test theorems, which exceeds
that of LLEMMA-7b & LLEMMA-34b, (Azerbayev et al., 2023) and REPROVER (Yang et al.,
2023). It is important to note that these methods involve training on curated proof data,
while COPRA relies only on in-context learning.

We also establish a correlation between the number of queries needed for a proof and wall-
clock time in Figure 6 and Table 3 (more details are discussed in Appendix A.1.3). Although
the average time per query is higher for COPRA, COPRA still finds proofs almost 3x faster
than REPROVER. This can explained by the fact that our search is more effective as it uses 16x
fewer queries than REPROVER (see Table 2). The average time per query includes the time
taken to execute the generated proof step by the interactive theorem prover. Hence, a more

‡To ensure fairness we matched the number of attempts for Few-Shot (GPT-4) baseline with the
number of queries COPRA took to pass or fail for each theorem.

7

Published as a conference paper at COLM 2024

effective model can be slow in generating responses while still proving faster compared to a
model with quicker inference, by avoiding the waste of execution time on bad proof-steps.

Figure 5: COPRA vs. REPROVER on the
miniF2F benchmark.

Qualitative Analysis of Proofs. We performed
an analysis of the different categories of miniF2F
problems solved by COPRA and REPROVER. Fig-
ure 8 and Figure 9 (in Appendix A.2) show that
COPRA proves more theorems in most of the cat-
egories and takes fewer steps consistently across
all categories of problems in miniF2F as com-
pared to REPROVER. Additionally, we find that
certain kinds of problems, for example, Interna-
tional Mathematics Olympiad (IMO) problems
and theorems that require induction, are difficult
for both approaches.

From our qualitative analysis, there are
certain kinds of problems where our language-
agent approach seems especially helpful.
For instance, Figure 7 shows a problem in the
‘numbertheory’ category that REPROVER could
not solve. More examples of interesting proofs
that COPRA found appear in the Appendix A.2
in Figure 10.

Effectiveness of Backtracking, Informal Proofs,
and Retrieval. We show the ablation for the
backtracking feature of COPRA in Table 1. We find that backtracking is useful when proofs
are longer or more complex, as COPRA is more likely to make mistakes which require
amending. We include additional examples in Figure 12 (in Appendix A.2).

Figure 6: COPRA vs. REPROVER on
the miniF2F benchmark on the pass@n-
seconds metric.

From Table 1, we see that retrieval helps in prov-
ing more problems. Retrieval reduces the ten-
dency of the model to hallucinate the lemma
names and provides the model with existing
lemma definitions it otherwise may not have
known. We include a proof generated by COPRA
that uses a retrieved lemma in Figure 7.

We experiment with adding model-generated in-
formal proofs as global context in COPRA’s proof
search. As evidenced in Table 1, COPRA is able
to outperform PACT (Han et al., 2021) and the
state-of-the-art (29.6%) expert iteration method
(Polu et al., 2022) in a pass@1 search through
the incorporation of informal proofs. Further-
more, increasing the maximum query count to
100 enables a further increase in COPRA’s perfor-
mance to 30.74%. An example of a proof found
when incorporating informal proofs is shown in
Figure 15 (see Appendix A.5).

Test-Set Memorization Concerns. Given that
the pretraining corpus of GPT-4 is not publicly
available, it is imperative to assess for the pos-
sibility of test-set leakage in our experiments.
We perform an analysis of those proofs checked into the open-source miniF2F repository
compared to those proofs COPRA discovers.

We categorize those proofs available in miniF2F according to the number of tactics required
and the complexity of the tactic arguments. These results can be found in detail in Ap-
pendix A.1.4. As seen in Table 4, we find that COPRA reproduces none of the “long” proofs

8

Published as a conference paper at COLM 2024

in miniF2F-test repository. Setting aside those cases where the proof consists of a single
tactic, approximately 91.93% of the proofs generated by COPRA either bear no overlap
to proofs in miniF2F, or no proof has been checked in. We provide examples of proofs
generated by our approach compared to those included in miniF2F in Figure 11.

theorem mathd_numbertheory_100
(n : N)
(h0 : 0 < n)
(h1 : nat.gcd n 40 = 10)
(h2 : nat.lcm n 40 = 280) :
n = 70 :=
begin

have h3 : n * 40 = 10 * 280 := by
rw ←[nat.gcd_mul_lcm n 40, h1, h2],
exact (nat.eq_of_mul_eq_mul_right (
by norm_num : 0 < 40) h3),

end

Figure 7: A theorem that requires retrieval. CO-
PRA used BM25 to find the lemma “gcd mul lcm :
(n m : N+) : (gcd n m) ∗ (lcm n m) = n ∗ m” which
led to the proof while REPROVER failed to prove
this theorem. It is important to note that just retriev-
ing the correct lemma is not sufficient, but knowing
how to use it correctly is equally important. The
Figure 18 shows how COPRA utilizes the capabili-
ties of LLM to correctly use the retrieved lemma in
the proof.

Coq Experiments COPRA can prove a
significant portion of the theorems in
our Coq evaluation set. As shown in
Figure 16 (in Appendix A.5), COPRA
slightly outperforms PROVERBOT9001
when both methods are afforded the
same number of queries. COPRA with
retrieval is capable of proving 57 of 118
theorems within our cap of 60 queries.
Furthermore, COPRA exceeds the few-
shot baselines utilizing GPT-4 and GPT-
3.5, which could prove 36 and 10 the-
orems, respectively, on our CompCert-
based evaluation set. Some example
Coq proofs generated by COPRA are
shown in Appendix A.5 in Figure 17.

5 Related Work

Neural Theorem-Proving. There is
a sizeable literature on search-based
theorem-proving techniques based on
supervised learning. Neural models are
trained to predict a proof step given a

context and the proof state, then employed to guide a search algorithm (e.g. best-first or
depth-limited search) to synthesize the complete proof.

Early methods of this sort (Yang & Deng, 2019; Sanchez-Stern et al., 2020; Huang et al., 2019)
used small-scale neural networks as proof step predictors. Subsequent methods, starting
with GPT- f (Polu & Sutskever, 2020), have used language models trained on proof data.

PACT (Han et al., 2021) enhanced the training of such models with a set of self-supervised
auxiliary tasks. Lample et al. (2022) introduced HyperTree Proof Search, which uses a
language model trained on proofs to guide an online MCTS-inspired, search algorithm.

Among results from the very recent past, REPROVER trains a retrieval-augmented trans-
former for proof generation in Lean. LLEMMA performs continued pretraining of the
CodeLlama 7B & 34B on a math-focused corpus. Baldur (First et al., 2023) generates the
whole proof in one-shot using an LLM and then performs a single repair step by passing error
feedback through an LLM finetuned on (incorrect proof, error message, correct proof) tuples.
AlphaGeometry (Trinh et al., 2024) integrates a transformer model trained on synthetic
geometry data with a symbolic deduction engine to prove olympiad geometry problems. In
contrast to these approaches, COPRA is entirely based on in-context learning.

We evaluated COPRA in the Lean and Coq environments. However, significant attention
has been applied to theorem proving with LLMs in the interactive theorem prover Isabelle
(Paulson, 1994). Theorem-proving systems for Lean and Isabelle are not directly comparable
due to the substantial differences in automation provided by each language. Isabelle
is equipped with Sledgehammer (Paulson & Blanchette, 2015), a powerful automated
reasoning tool that calls external automated theorem provers such as E (Schulz, 2002) and
Z3 (De Moura & Bjørner, 2008) to prove goals. Thor (Jiang et al., 2022a) augmented the PISA
dataset (Jiang et al., 2021) to include successful Sledgehammer invocations, and trained a
language model to additionally predict hammer applications. Integrating these ideas with
the COPRA approach is an interesting subject of future work.

9

Published as a conference paper at COLM 2024

The idea of using informal hints to guide proofs was first developed in DSP (Jiang et al.,
2022b), which used an LLM to translate informal proofs to formal sketches that were then
completed with Isabelle’s automated reasoning tactics. Zhao et al. (2023) improved on
DSP by rewriting the informal proofs to exhibit a more formal structure and employs a
diffusion model to predict the optimal ordering of the few-shot examples. LEGOProver
(Wang et al., 2023b) augmented DSP with a skill library that grows throughout proof
search. Lyra (Zheng et al., 2023) iterated on DSP by utilizing error feedback several times to
modify the formal sketch, using automated reasoning tools to amend incorrect proofs of
intermediate hypotheses. DSP, LEGOProver, and Lyra heavily rely on Isabelle’s hammer
capabilities (which are not present in other ITPs like Lean) and informal proofs for formal
proof generation (see Appendix A.1.5 for details). Moreover, the requirement for informal
proofs in these approaches prohibits their application in the software verification domain,
where the notion of informal proof is not well-defined. However, we propose a domain-
agnostic stateful search approach within an in-context learning agent which iteratively uses
execution feedback from the ITP with optional use of external signals like retrieval and
informal proofs.

In-Context Learning Agents. Several distinct in-context learning agent architectures have
been proposed recently (Significant-Gravitas, 2023; Yao et al., 2022; Shinn et al., 2023; Wang
et al., 2023a). These models combine an LLM’s capability to use tools Schick et al. (2023),
decompose a task into subtasks (Wei et al., 2022; Yao et al., 2023), and self-reflect (Shinn
et al., 2023). However, COPRA is the first in-context learning agent for theorem-proving.

6 Conclusion
We have presented COPRA, the first in-context-learning approach to theorem-proving in
frameworks like Lean and Coq. The approach departs from prior LLM-based theorem-
proving techniques by performing a history-dependent backtracking search by utilizing
in-context learning, the use of execution feedback from the underlying proof environment,
and retrieval from an external database. We have empirically demonstrated that COPRA
significantly outperforms few-shot LLM invocations at proof generation and also compares
favorably to finetuned approaches.

As for future work, we gave GPT-4 a budget of at most 60 queries per problem for cost
reasons. Whether the learning dynamics would drastically change with a much larger
inference budget remains to be seen. Also, it is unclear whether a GPT-4-scale model is truly
essential for our task. We have shown that the cheaper GPT-3.5 agent is not competitive
against our GPT-4 agent; however, it is possible that a Llama-scale model that is explicitly
finetuned on interactions between the model and the environment would have done better.
While data on such interactions is not readily available, a fascinating possibility is to generate
such data synthetically using the search mechanism of COPRA.

7 Reproducibility Statement

We are releasing all the code needed to run COPRA as supplementary material. The code
contains all “system prompts” described in Section Appendix A.3 and Appendix A.4, along
with any other relevant data needed to run COPRA. However, to use our code, one must use
their own OpenAI API keys. An issue with reproducibility in our setting is that the specific
models served via the GPT-4 and GPT-3.5 APIs may change over time. In our experiments,
we set the “temperature” parameter to zero to ensure the LLM outputs are as deterministic
as possible.

Funding Acknowledgements. This work was partially supported by NSF awards CCF-
1918651, CCF-2403211, and CCF-2212559, and a gift from the Ashar Aziz Foundation.

10

Published as a conference paper at COLM 2024

References
Andrews, P. B. and Brown, C. E. Tps: A hybrid automatic-interactive system for developing

proofs. Journal of Applied Logic, 4(4):367–395, 2006.

Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D., McAleer, S., Jiang, A. Q., Deng, J.,
Biderman, S., and Welleck, S. Llemma: An open language model for mathematics, 2023.

Blanchette, J. C., Bulwahn, L., and Nipkow, T. Automatic proof and disproof in isabelle/hol.
In Frontiers of Combining Systems: 8th International Symposium, FroCoS 2011, Saarbrücken,
Germany, October 5-7, 2011. Proceedings 8, pp. 12–27. Springer, 2011.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

Bundy, A. The use of explicit plans to guide inductive proofs. In 9th International Conference
on Automated Deduction: Argonne, Illinois, USA, May 23–26, 1988 Proceedings 9, pp. 111–120.
Springer, 1988.

De Moura, L. and Bjørner, N. Z3: an efficient smt solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’08/ETAPS’08, pp. 337–340, Berlin, Heidelberg, 2008.
Springer-Verlag. ISBN 3540787992.

de Moura, L., Kong, S., Avigad, J., Van Doorn, F., and von Raumer, J. The Lean theorem
prover (system description). In Automated Deduction-CADE-25: 25th International Confer-
ence on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pp. 378–388.
Springer, 2015.

First, E., Rabe, M. N., Ringer, T., and Brun, Y. Baldur: whole-proof generation and repair
with large language models. arXiv preprint arXiv:2303.04910, 2023.

Han, J. M., Rute, J., Wu, Y., Ayers, E. W., and Polu, S. Proof artifact co-training for theorem
proving with language models. arXiv preprint arXiv:2102.06203, 2021.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and
Steinhardt, J. Measuring mathematical problem solving with the math dataset. 2021.

Huang, D., Dhariwal, P., Song, D., and Sutskever, I. Gamepad: A learning environment for
theorem proving. In ICLR, 2019.

Huet, G., Kahn, G., and Paulin-Mohring, C. The coq proof assistant a tutorial. Rapport
Technique, 178, 1997.

Jiang, A. Q., Li, W., Han, J. M., and Wu, Y. Lisa: Language models of isabelle proofs. In 6th
Conference on Artificial Intelligence and Theorem Proving, pp. 378–392, 2021.

Jiang, A. Q., Li, W., Tworkowski, S., Czechowski, K., Odrzygóźdź, T., Miłoś, P., Wu, Y.,
and Jamnik, M. Thor: Wielding hammers to integrate language models and automated
theorem provers. Advances in Neural Information Processing Systems, 35:8360–8373, 2022a.

Jiang, A. Q., Welleck, S., Zhou, J. P., Li, W., Liu, J., Jamnik, M., Lacroix, T., Wu, Y., and
Lample, G. Draft, sketch, and prove: Guiding formal theorem provers with informal
proofs. arXiv preprint arXiv:2210.12283, 2022b.

Lample, G., Lacroix, T., Lachaux, M.-A., Rodriguez, A., Hayat, A., Lavril, T., Ebner, G.,
and Martinet, X. Hypertree proof search for neural theorem proving. Advances in Neural
Information Processing Systems, 35:26337–26349, 2022.

Leroy, X. Formal verification of a realistic compiler. Communications of the ACM, 52(7):
107–115, 2009.

11

Published as a conference paper at COLM 2024

mathlib Community, T. The lean mathematical library. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, POPL ’20. ACM, January
2020. doi: 10.1145/3372885.3373824. URL http://dx.doi.org/10.1145/3372885.3373824.

Newell, A., Shaw, J. C., and Simon, H. A. Empirical explorations of the logic theory machine:
a case study in heuristic. In Papers presented at the February 26-28, 1957, western joint
computer conference: Techniques for reliability, pp. 218–230, 1957.

OpenAI. GPT-4 technical report, 2023a.

OpenAI. GPT-4 and GPT-4 turbo, 2023b. URL https://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo.

Paulson, L. and Blanchette, J. Three years of experience with sledgehammer, a practical link
between automatic and interactive theorem provers. 02 2015. doi: 10.29007/tnfd.

Paulson, L. C. Isabelle: A generic theorem prover. Springer, 1994.

Polu, S. and Sutskever, I. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I., and Sutskever, I. Formal
mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344, 2022.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever, I.
Zero-shot text-to-image generation. In International Conference on Machine Learning, pp.
8821–8831. PMLR, 2021.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X. E., Adi, Y., Liu, J., Re-
mez, T., Rapin, J., et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

Sanchez-Stern, A., Alhessi, Y., Saul, L., and Lerner, S. Generating correctness proofs with
neural networks. In Proceedings of the 4th ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, pp. 1–10, 2020.

Schick, T., Dwivedi-Yu, J., Dessı̀, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N.,
and Scialom, T. Toolformer: Language models can teach themselves to use tools. arXiv
preprint arXiv:2302.04761, 2023.

Schulz, S. E - a brainiac theorem prover. AI Commun., 15(2,3):111–126, aug 2002. ISSN
0921-7126.

Shinn, N., Cassano, F., Labash, B., Gopinath, A., Narasimhan, K., and Yao, S. Reflexion:
Language agents with verbal reinforcement learning. arXiv preprint arXiv:2303.11366,
2023.

Significant-Gravitas. Autogpt. https://github.com/Significant-Gravitas/Auto-GPT, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solving olympiad geometry without
human demonstrations. Nature, 625(7995):476–482, 2024.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., and Anandkumar, A.
Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023a.

Wang, H., Xin, H., Zheng, C., Li, L., Liu, Z., Cao, Q., Huang, Y., Xiong, J., Shi, H., Xie, E.,
Yin, J., Li, Z., Liao, H., and Liang, X. Lego-prover: Neural theorem proving with growing
libraries. 2023b.

12

http://dx.doi.org/10.1145/3372885.3373824
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

Published as a conference paper at COLM 2024

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Yang, K. and Deng, J. Learning to prove theorems via interacting with proof assistants. In
International Conference on Machine Learning, pp. 6984–6994. PMLR, 2019.

Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song, P., Yu, S., Godil, S., Prenger, R., and
Anandkumar, A. Leandojo: Theorem proving with retrieval-augmented language models.
arXiv preprint arXiv:2306.15626, 2023.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., and Cao, Y. React: Synergizing
reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y., and Narasimhan, K. Tree
of thoughts: Deliberate problem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Zhao, X., Li, W., and Kong, L. Decomposing the enigma: Subgoal-based demonstration
learning for formal theorem proving. 2023.

Zheng, C., Wang, H., Xie, E., Liu, Z., Sun, J., Xin, H., Shen, J., Li, Z., and Li, Y. Lyra: Orches-
trating dual correction in automated theorem proving. arXiv preprint arXiv:2309.15806,
2023.

Zheng, K., Han, J. M., and Polu, S. Minif2f: a cross-system benchmark for formal olympiad-
level mathematics. arXiv preprint arXiv:2109.00110, 2021.

13

Published as a conference paper at COLM 2024

A Appendix

A.1 Evaluation Details

A.1.1 COPRA Implementation Setup Details

We introduce a common proof environment for COPRA, which can also be used by any other
approach for theorem-proving. The proof environment has a uniform interface that makes
COPRA work seamlessly for both Lean and Coq. It also supports the use of retrieval from
external lemma repositories and the use of informal proofs when available (as in the case of
miniF2F). In the future, we plan to extend COPRA to support more proof languages.

COPRA provides support for various LLMs other than the GPT-series, including open-
sourced LLMs like Llama 2 (Touvron et al., 2023) and Code Llama (Roziere et al., 2023). For
most of our experiments, all the theorems are searched within a timeout of 600 seconds (10
minutes) and with a maximum of 60 LLM inference calls (whichever exhausts first). To make
it comparable across various LLMs, only one response is generated per inference. All these
responses are generated with the temperature set to zero, which ensures that the responses
generated are more deterministic, focused, and comparable. In one of our ablations with
few-shot GPT-4, we use set the temperature to 0.7 and run more than 1 attempt. The number
of attempts for few-shot GPT-4 matches the number of queries COPRA takes to either
successfully prove or fail to prove a certain theorem. This comparison is not completely
fair for COPRA because individual queries focus on a single proof step and cannot see the
original goal, yet measures a useful experiment which indicates the benefits of COPRA’s
stateful search under a fixed budget of API calls to GPT-4.

We use GPT-3.5, GPT-4 (OpenAI, 2023b), and CodeLLama (Roziere et al., 2023) to test the
capabilities of COPRA. We find that it is best to use COPRA’s different capabilities in an
ensemble to enhance its performance while also minimizing cost. Therefore, we first try
to find the proof without retrieval, then with retrieval, and finally with informal proofs (if
available) only when we fail with retrieval. The informal proofs are used more like informal
sketches for the formal proof and are generated in a separate few-shot invocation of the LLM.
Thereafter, COPRA simply adds the informal proofs to its prompt which guides the search.
To ensure fairness in comparison, we make sure that the number of guidance steps is capped
at 60 and the 10-minute timeout is spread across all these ensemble executions. The use of a
failure dictionary (see Section 3) enables fast failure (see Table 3) which helps in using more
strategies along with COPRA within the 60 queries cap and 10-minute timeout. From Table 2,
it is clear that despite the significant overlap between the different ablations, the ensemble
covers more cases than just using one strategy with COPRA. While extra lemmas are often
useful, the addition of extra information from retrieval may also be misleading because the
retriever can find lemmas that are not relevant to proving the goal, so the best performance
is acquired by using the different capabilities in the manner we describe. Similarly, the use
of informal proofs as a sketch for formal proofs can potentially increase the number of steps
needed in a formal proof, decreasing the search efficacy. For example, an informal proof can
suggest the use of multiple rewrites for performing some algebraic manipulation which can
be easily handled with powerful tactics like linarith in Lean. Table 5 shows the number of
tokens used in our prompts for different datasets.

A.1.2 Metric: pass@k-with-n-queries

We consider the metric pass@k-with-n-queries to assess the speed of the proposed approach
and the effectiveness of the LLM or neural network to guide the proof search. It is a
reasonable metric because it does a more even-handed trade-off in accounting for the time
taken to complete a proof and at the same time ignores very low-level hardware details.

Different approaches need a different amount of guidance from a neural model to find the
right proof. For example, approaches like Baldur (First et al., 2023), DSP (Jiang et al., 2022b),
etc., generate the whole proof all at once. On the other hand, GPT- f (Polu & Sutskever,
2020), PACT (Han et al., 2021), REPROVER (Yang et al., 2023), Proverbot (Sanchez-Stern et al.,
2020), and COPRA generate proofs in a step-by-step fashion. We argue that pass@k-with-n-

14

Published as a conference paper at COLM 2024

Evaluation on miniF2F-test

Approach Avg. Query in Total Avg. Query on Failure Avg. Query on Pass

REPROVER (- Retrieval) 350.7 427.24 81.6

REPROVER 1015.32 1312.89 122.62

COPRA 21.73 28.23 3.83

COPRA (+ Retrieval) 37.88 50.90 7.38

Table 2: Aggregate effectiveness statistics for COPRA and the baselines on miniF2F dataset.
We can see the various ablations of COPRA with and without retrieval.

Approach Avg. Time In Seconds
Per Proof Per Query

On Pass On Fail All On Pass On Fail All
ReProver (on CPU - retrieval) 279.19 618.97 543.78 3.42 1.45 1.55
ReProver (on GPU - retrieval) 267.94 601.35 520.74 2.06 0.44 0.48
ReProver (on GPU + retrieval) 301.20 605.29 529.27 2.46 0.46 0.52
COPRA (GPT-3.5) 39.13 134.26 122.21 15.97 9.43 9.53
COPRA (GPT-4) 67.45 370.71 289.92 17.61 13.09 13.34
COPRA (GPT-4 + retrieval) 117.85 678.51 510.78 15.97 13.33 13.48

Table 3: Average time taken by our approach (COPRA) and REPROVER on miniF2F dataset.
We split the values according to the success of the proof search on that problem. We also
report values per query.

queries is a fairer metric to compare these different types of approaches because it correlates
with the effectiveness of the proof-finding algorithm in an implementation-agnostic way.
Since the exact time might not always be a good reflection of the effectiveness because of
hardware differences, network throttling, etc., it makes sense to not compare directly on
metrics like pass@k-minutes or pass@k-seconds. Not only these metrics will be brittle and
very sensitive to the size, hardware, and other implementation details of the model, but not
every search implementation will be based on a timeout. For example, PROVERBOT9001
does not use timeout-based search (and hence we don’t compare on the basis of time with
PROVERBOT9001).

A.1.3 pass@k-with-n-queries versus wall-clock time

We show that pass@k-with-n-queries, correlates well with wall-clock time for finding proofs
by using the metric pass@k-seconds. pass@k-seconds measures the number of proofs that an
approach can find in less than k seconds. The plot in Figure 6 shows that pass@k-seconds
follows the same trend as pass@k-with-n-queries as shown in Figure 5.

We can use the comparison of COPRA with REPROVER (Yang et al., 2023) on the miniF2F
dataset to explain the correlation between finding proofs fast and pass@k-with-n-queries.
From Table 3, we know that on average the time taken per guidance (which includes time
taken to execute the proof steps on ITP as well) is around 0.52 seconds for REPROVER and
13.48 seconds for COPRA. Given that REPROVER’s guidance LLM is small, we can assume
that REPROVER does not take any time (zero time) to query its LLM and spends most of
the 0.52 seconds running the proof steps on ITP. Now, we can reasonably estimate GPT-4
average response time to be approximately 13 seconds from Table 3. However, we see
that the number of guidance used by REPROVER (from Table 2) is about 16x higher on
success. Interestingly, this also shows up in the wall clock time, which is around 3x higher
for REPROVER on success, so there is a tradeoff between the two, but the number of queries
dominates when the guidance model is of low quality. Hence, given a high-quality guidance
model, we can empirically argue that asymptotically the search will converge to a proof
faster (assuming a proof is achievable with the guidance model).

15

Published as a conference paper at COLM 2024

A.1.4 Data Leakage in GPT-4

A key risk with closed-source pretrained models like GPT-4 is data leakage, i.e., overlaps
between the evaluation set and the pretraining set. Naturally, we cannot be certain that
COPRA does not benefit from such leakage. However, there are several reasons to believe
that data leakage is not a significant contributor to our results.

First, we note that COPRA significantly outperforms few-shot invocations of GPT-4. If the
results on COPRA were significantly tainted by data leakage, we would have expected better
performance from few-shot GPT-4.

Second, it is highly unlikely that GPT-4 has been trained on proof-state and tactic pair
generated by hooking up the Lean ITP. Not all the formal proofs of the miniF2F test dataset
are available online (only 80 proofs are available in Lean). Furthermore, if one were to
manually annotate (proof state, tactic) pairs, one would need ground truth tactics to annotate
with, the majority of which do not appear in miniF2F-test. Given that GPT-4 is a general-
purpose LLM, it is highly unlikely that while training GPT-4 the miniF2F dataset was first
manually annotated, and then proof-state and tactic pair information was collected by
hooking up the Lean ITP.

Also, in our agent interactions, we limit ourselves only to the goal at that point. There is
no mention of the original theorem anywhere (except for the very first proof-state), so the
chances that GPT-4 can correlate any intermediate state with the original theorem are slim,
unless it has learned a model of Lean’s kernel, which is highly unlikely. It is also improbable
that GPT-4 has seen the proof-state in the same format that we use, let alone using the
execution feedback which has not been used in any known previous works for Lean.

One could hypothesize that some of the few-shot GPT-4 proofs might be influenced by
potential training on the miniF2F dataset. However, this does not seem to be true because
we see that most of the proofs we generated were either not mentioned in the miniF2F test
dataset or completely different from the manually written proofs in the miniF2F test dataset
(including the first step mismatch). Table 4 shows the detailed analysis of proofs generated
by COPRA and the proofs mentioned in miniF2F test dataset for Lean. From the Table 4, it is
clear that most of the proofs generated by COPRA are different from the proofs mentioned
in the miniF2F. The ones that are exactly the same are simple single-tactic proofs that just
use exactly one of the linarith, nlinarith, or norm num tactics without any arguments. If
we set aside these straightforward simple cases, then about 91.93% of the proofs generated
by COPRA are either different from the proofs mentioned in the miniF2F or do not have
a proof mentioned in the miniF2F dataset. Out of all proofs generated by COPRA about
25.33% proofs are for theorems that have no proofs mentioned in the miniF2F test dataset
as compared to 22.95% for REPROVER. Some of the proofs generated by our approach as
compared to proofs mentioned in the miniF2F test dataset are shown in Figure 11.

Finally, the ability of agent interactions to enhance the basic LLM approach seems to
transcend OpenAI’s LLMs. We ran COPRA on the recently released CodeLlama. From
Table 2, COPRA improved CodeLlama’s capabilities to prove theorems by about 5% on
miniF2F dataset. This indicates that the in-context learning capabilities that we build are
transferable and LLM-agnostic.

A.1.5 Comparison with methods using Isabelle and informal proofs

An interactive theorem prover (ITP) is a software tool to assist with the development of
formal proofs by human-machine collaboration. This involves a sort of interactive proof
editor, or other interfaces, with which a human can guide the search for proofs. A formal
proof written in an interactive theorem prover can be verified automatically by computers,
whereas an informal proof is written in natural language can only be verified by a human.
Generally, formal proofs are much more rigorous and pedantic than informal proofs. So
informal proof can be loosely considered as a proof sketch based on which one can write
rigorous machine-checkable formal proofs.

Note that the accuracy numbers of DSP-like approaches (Jiang et al., 2022b; Zhao et al.,
2023; Zheng et al., 2021) are not directly comparable to ours because they use a differ-

16

Published as a conference paper at COLM 2024

Proofs
found in

miniF2F-test

Proofs
NOT in
miniF2F

Total

Single-Tactic
Simple Proofs

Two-Tactic
Proofs

Longer
OR

Complex
Proofs

Total

Tactics Used
——

Proof Count
linarith norm num nlinarith two tactics

> 2 tactics
OR

1 tactic
multi-args

sorry

Proof
Count 11 12 2 16 39 80 164 244

Exact
Match
COPRA
Count

7 10 0 5 0 22 0 22

1st Tactic
Match
COPRA
Count

7 10 0 8 4 29 0 29

Distinct
COPRA
Count

4 2 2 9 17 34 19 53 / 75
70.67%

Distinct
COPRA
Count

ex
Single-Tactic

- - - 9 17 34 19 53 / 58
91.37%

All
COPRA
Count

11 12 2 14 17 56 19 75

Table 4: Analysis of proof generated by COPRA (GPT-4 + Retrieval + Informal) on miniF2F
test dataset for Lean. See Table 1 for details about various ablations.

ent proof language. These approaches use Isabelle, which, unlike Lean, allows the use
of powerful automatic reasoning tools like Sledgehammer. Methods following the DSP
pipeline use informal proofs for formal proof synthesis. While this strategy works well on
mathematics-competition benchmarks like miniF2F, it is less applicable to domains such as
software verification, where there is often no informal specification, as well as domains that
use customized, domain-specific formalizations. Furthermore, having access to informal
proofs (human-written or LLM-generated) shifts the problem of synthesizing the formal
proof towards an autoformalization problem, as the LLM is likely to have seen correct
natural language proofs of miniF2F problems in its training. Additionally, unlike DSP-like
approaches which tend to use pass@100 or pass@200, we only use pass@1.

A.2 Example Proofs Generated for miniF2F

Figure 10 shows some other interesting proofs generated by our approach on miniF2F
dataset. Figure 8 and Figure 9 shows the breakdown of theorems proved in various cat-
egories by COPRA versus REPROVER. Figure 10 shows some interesting miniF2F proofs
as done by COPRA. Figure 11 shows the comparison of proofs mentioned in the miniF2F
repository versus the proofs discovered by COPRA. Figure 12 shows the proofs which were
only possible because of our backtracking feature.

A.3 System Prompts For miniF2F

Parts of the ‘system prompt’ used by COPRA for theorem proving in Lean are shown in Fig.
13.

17

Published as a conference paper at COLM 2024

Figure 8: Breakdown of theorems proved in various categories by COPRA (GPT-4 + retrieval
+ informal proof): Problems solved in different categories in miniF2F test dataset. Notice
that ‘IMO’ and ‘Induction’ problems are hard for both approaches. COPRA does more
problems than REPROVER in most of the categories.

Figure 9: Breakdown of theorems proved in various categories by COPRA (GPT-4 + retrieval
+ informal proof): Number of queries needed in different categories in miniF2F test dataset.
Notice that COPRA takes very less queries to solve the problems in each category.

18

Published as a conference paper at COLM 2024

(a)

theorem
mathd_numbertheory_100

(n : N)
(h0 : 0 < n)
(h1 : nat.gcd n 40 = 10)
(h2 : nat.lcm n 40 = 280) :

n = 70 :=
begin

have h3 : n * 40 = 10 *
280 := by rw ←[nat.

gcd_mul_lcm n 40, h1,
h2],

exact (nat.
eq_of_mul_eq_mul_right
(by norm_num : 0 <

40) h3),
end

(b)

theorem
mathd_numbertheory_447
:

∑ k in finset.filter (˘ x,
|3x) (finset.Icc 1

49), (k % 10) = 78 :=
begin

norm_num [finset.
sum_filter, finset.Icc
],
ring,

end

(c)

theorem mathd_algebra_158
(a : N)
(h0 : even a)
(h1 : ↑∑ k in finset.

range 8, (2 * k + 1) -
↑∑ k in finset.

range 5, (a + 2 * k)
= (4:Z)) :

a = 8 :=
begin

simp only [finset.
sum_range_succ,
finset.sum_range_zero,
add_zero, finset.
sum_const, finset.
card_range,
nsmul_eq_mul, finset.
sum_add_distrib,
finset.mul_sum,
finset.sum_mul] at h1,

norm_num at h1,
linarith,

end

(d)

theorem
mathd_numbertheory_341

(a b c : N)
(h0 : a ≤ 9 ∧ b ≤ 9 ∧ c

≤ 9)
(h1 : nat.digits 10

((5ˆ100) % 1000) = [c,
b,a]) :

a + b + c = 13 :=
begin

norm_num at h1,
cases h1,

linarith,
end

(e)

theorem amc12b_2002_p7
(a b c : N)
(h0 : 0 < a ∧ 0 < b ∧ 0 < c)
(h1 : b = a + 1)
(h2 : c = b + 1)
(h3 : a * b * c = 8 * (a + b

+ c)) :
aˆ2 + (bˆ2 + cˆ2) = 77 :=
begin

rw [h1, h2] at h3,
ring_nf at h3,
rw [h1, h2],
ring_nf,
simp [h1, h2] at *,
ring_nf at *,
nlinarith,

end

Figure 10: Some other interesting proofs generated for miniF2F by COPRA. The length of
the proofs generated shows that interaction with the environment helps in fixing the errors
encountered while writing long proofs. These long sequences of rewrites are not easy to
synthesize without knowing the exact execution feedback from the environment which
often contains the hint to fix the rewrites.

19

Published as a conference paper at COLM 2024

(a.1)

theorem mathd_numbertheory_3 :
(∑ x in finset.range 10, ((x + 1)ˆ2)) %

10 = 5 :=
begin

dec_trivial!,
end

(b.1)

theorem mathd_algebra_209
(σ : equiv R R)
(h0 : σ.2 2 = 10)
(h1 : σ.2 10 = 1)
(h2 : σ.2 1 = 2) :
σ.1 (σ.1 10) = 1 :=

begin
rw ←[h0, ← h2],
simp,

end

(c.1)

theorem mathd_numbertheory_229 :
(5ˆ30) % 7 = 1 :=

begin
have five_to_thirty_is_one :

(5ˆ30 : zmod 7) = 1 :=
begin

have five_to_the_six_is_one : (5ˆ6 :
zmod 7) = 1, by dec_trivial,
have break_power : (5ˆ30 : zmod 7) =
(5ˆ6)ˆ5, by norm_num,
rw break_power,
rw five_to_the_six_is_one,
norm_num,

end,
change 5ˆ30 ≡ 1 [MOD 7],
rw ←zmod.eq_iff_modeq_nat,
exact_mod_cast five_to_thirty_is_one,

end

(a.2)

theorem mathd_numbertheory_3 :
(∑ x in finset.range 10, ((x + 1)ˆ2)) %

10 = 5 :=
begin

simp only [finset.sum_range_succ,
finset.sum_range_zero, add_zero,
pow_two],
norm_num,

end

(b.2)

theorem mathd_algebra_209
(σ: equiv R R)
(h0 : σ.2 2 = 10)
(h1 : σ.2 10 = 1)
(h2 : σ.2 1 = 2) :
σ.1 (σ.1 10) = 1 :=

begin
apply_fun œ.inv_fun at h1,
rw equiv.inv_fun_as_coe at h1,
rw ←h0 at h1,
rw ←h2 at h1,
rw ←h0,
rw equiv.inv_fun_as_coe at h0,
apply_fun œ at h1,
rw equiv.inv_fun_as_coe at h1,
rw ←h2,
rw equiv.inv_fun_as_coe at h2,
simp [equiv.symm_apply_apply],

end

(c.2)

theorem mathd_numbertheory_229 :
(5ˆ30) % 7 = 1 :=
begin

norm_num,
end

Figure 11: Some proofs found by COPRA as compared to the proofs mentioned in the
miniF2F test dataset. It is interesting to see that the proofs generated by COPRA are different
from the proofs mentioned in the repository. This is especially true when the proofs are
longer. It is also worth noting that occasionally COPRA can find very simple proofs for
longer proofs mentioned in miniF2F test dataset. (a.1), (b.1), and (c.1) show the proofs as
mentioned in the miniF2F dataset, while (a.2), (b.2), and (c.2) show the corresponding proofs
generated by COPRA.

20

Published as a conference paper at COLM 2024

(a)

theorem
mathd_algebra_158

(a : N)
(h0 : even a)
(h1 : ↑∑ k in finset.

range 8, (2 * k + 1)
- ↑∑ k in finset.

range 5, (a + 2 * k)
= (4:Z)) :

a = 8 :=
begin

simp only [finset.
sum_range_succ,
finset.
sum_range_zero,
add_zero, finset.
sum_const, finset.
card_range,
nsmul_eq_mul,
finset.
sum_add_distrib,
finset.mul_sum,
finset.sum_mul] at
h1,
norm_num at h1,
linarith,

end

(b)

theorem mathd_algebra_44
(s t : R)
(h0 : s = 9 - 2 * t)
(h1 : t = 3 * s + 1) :
s = 1 ∧ t = 4 :=
begin

split,
rw h1 at h0,
rw h0,
linarith,
rw h0 at h1,
rw h1 at h0,
linarith,

end

(c)

theorem aime_1990_p4
(x : R)
(h0 : 0 < x)
(h1 : xˆ2 - 10 * x - 29

̸= 0)
(h2 : xˆ2 - 10 * x - 45

̸= 0)
(h3 : xˆ2 - 10 * x - 69

̸= 0)
(h4 : 1 / (xˆ2 - 10 * x

- 29) + 1 / (xˆ2 -
10 * x - 45) - 2 /
(xˆ2 - 10 * x - 69)
= 0) :

x = 13 :=
begin

ring_nf at h4,
have h5 : (x ˆ 2 -
10 * x - 29) * (x ˆ
2 - 10 * x - 45) *
(x ˆ 2 - 10 * x -
69) ̸= 0 :=
mul_ne_zero (
mul_ne_zero h1 h2) h

3,
field_simp [h5] at h

4,
ring_nf at h4,
nlinarith,

end

(d)

theorem amc12b_2002_p7
(a b c : N)
(h0 : 0 < a ∧ 0 < b ∧ 0

< c)
(h1 : b = a + 1)
(h2 : c = b + 1)
(h3 : a * b * c = 8 * (a

+ b + c)) :
aˆ2 + (bˆ2 + cˆ2) = 77

:=
begin

rw [h1, h2] at h3,
ring_nf at h3,
rw [h1, h2],
ring_nf,
simp [h1, h2] at *,
ring_nf at *,
nlinarith,

end

(e)

theorem mathd_algebra_113
(x : R) :
xˆ2 - 14 * x + 3 ≥ 7ˆ2 - 14

* 7 + 3 :=
begin

apply le_of_sub_nonneg,
ring_nf,
have : (x - 14) * x + 49
= (x - 7) ˆ 2, by ring,
rw this,
apply pow_two_nonneg,

end

Figure 12: Some interesting proofs generated for miniF2F dataset which were generated
because of COPRA’s backtracking capabilities.

21

Published as a conference paper at COLM 2024

You are a proficient formal theorem-proving agent in Lean 3. You are tasked
with predicting the next proof step given the current proof state, which
is described in the following format:

↪→

↪→

1. All the goals are described under the `[GOALS]` keyword. Each goal
following `[GOALS]` is described under the keyword `[GOAL] i`, where
`i` is a positive integer. For example, `[GOAL] 1`, `[GOAL] 2`, etc.

↪→

↪→

2. Within each `[GOAL] i` keyword, the goal is described as a
human-readable serialized version of the proof state as shown while
running the `lean` command. Each goal may be accompanied by hypotheses,
which are described under the keyword `[HYPOTHESES] i`. Each hypothesis
following `[HYPOTHESES] i` starts with the prefix `[HYPOTHESIS]`. Apart
from goals and hypotheses, the OPTIONAL keywords `[DEFINITIONS] i` and
`[THEOREMS] i` may appear, which respectively describe the relevant
definitions of symbols and terms used in that goal and some potentially
useful theorems or lemmas which might help in proving the goal. Each
definition within `[DEFINITIONS]` starts with the prefix `[DEFINITION]`.
Similarly, each theorem/lemma within `[THEOREMS]` starts with the prefix
`[THEOREM]`. If you choose to use a theorem described in `[THEOREMS] i`,
be SURE that it applies and is useful for proving the goal.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

3. The `[STEPS]` keyword is used to describe the proof-steps which were
used to obtain the current proof state from the original theorem. Each
proof step starts with the prefix `[STEP]` and is a valid Lean tactic.
For example, `[STEPS][STEP]rw h1 at h2,[STEP]{linarith},`.

↪→

↪→

↪→

4. Sometimes the `[INCORRECT STEPS]` keyword will appear, which describes
proof-steps which should NOT be generated. For example, `[INCORRECT
STEPS][STEP]apply h1,[STEP]rw ←h1`. **DO NOT** generate these
`[INCORRECT STEPS]` again, as they are failed proof steps which have
already been tried. Re-generating such proof steps will cause
backtracking and early termination of your proof search.

↪→

↪→

↪→

↪→

↪→

5. There is also an optional `[LAST STEP]` keyword which describes the
proof-step generated last time. If the proof-step was incorrect, then
it is also followed by an error message from Lean 3 environment
described with the `[ERROR MESSAGE]` keyword. For example, `[LAST
STEP]linarith,\n[ERROR MESSAGE]linarith failed to find a
contradiction\nstate:\nx y : R,\nh1 : x = 3 - 2 * y,\nh2 : 2 * x - y =
1\n⊢ false`. You can use the error message as guidance in predicting a
correct proof-step. Do not generate tactics which you believe will
result in the same error. If the proof-step was correct then it is
followed by the keyword `[SUCCESS]`. For example, `[LAST
STEP]linarith,[SUCCESS]`. Do NOT generate the last proof-step again if
it was NOT successful, this will also cause early termination of your
proof search.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

6. Sometimes there can be errors in the format of the generated response.
This is reported using the keyword `[ERROR]` followed by the error
message. For example, `[ERROR]\nInvalid response:\n'Great! The proof is
complete.', \nStopping Reason: 'stop'.\n Please respond only in the
format specified.[END]`. This means that the response generated by you
was not in the specified format.

↪→

↪→

↪→

↪→

↪→

Start your response with `[RUN TACTIC]` followed by the tactic which will
help in proving the current proof state, and then `[END]`. For example,
`[RUN TACTIC] induction c, [END]`. Do NOT finish the proof in one shot
ending with `end`, which signifies the end of a Lean 3 proof. Generate
exactly ONE proof-step. Multiple proof steps are more error prone,
because you will not get a chance to see intermediate proof state
descriptions.............

↪→

↪→

↪→

↪→

↪→

↪→

Figure 13: Parts of “system prompt” used by COPRA for Lean.

22

Published as a conference paper at COLM 2024

Prompt Token Statistics for different settings

Setting Min. Token Count Max. Token Count Avg. Token Count

miniF2F 33 1828 322.61

miniF2F (+ Retrieval) 181 4355 824.21

miniF2F (+ Retrieval + Informal) 192 4355 955.20

CompCert (+ Retrieval) 292 116574 3219.79

Table 5: Aggregate prompt token statistics for COPRA on miniF2F and CompCert dataset.

A.4 System Prompts For CompCert

Parts of the ‘system prompt’ used by COPRA for theorem proving in Coq are shown in Fig.
14.

A.5 Example Proofs generated For CompCert

Figure 16 shows the number of proofs done by COPRA versus PROVERBOT9001 varying
with the number of queries on CompCert benchmark. Figure 17 shows some interesting
proofs generated by our approach on the CompCert dataset.

23

Published as a conference paper at COLM 2024

You are a proficient formal theorem-proving agent in Coq. You are tasked
with predicting the next proof step given the current proof state, which
is described in the following format:

↪→

↪→

1. All the goals are described under the `[GOALS]` keyword. Each goal
following `[GOALS]` is described under the keyword `[GOAL] i`, where
`i` is a positive integer. For example, `[GOAL] 1`, `[GOAL] 2`, etc.

↪→

↪→

2. Within each `[GOAL] i` keyword, the goal is described as a
human-readable serialized version of the proof state as shown while
running the `lean` command. Each goal may be accompanied by hypotheses,
which are described under the keyword `[HYPOTHESES] i`. Each hypothesis
following `[HYPOTHESES] i` starts with the prefix `[HYPOTHESIS]`. Apart
from goals and hypotheses, the OPTIONAL keywords `[DEFINITIONS] i` and
`[THEOREMS] i` may appear, which respectively describe the relevant
definitions of symbols and terms used in that goal and some potentially
useful theorems or lemmas which might help in proving the goal. Each
definition within `[DEFINITIONS]` starts with the prefix `[DEFINITION]`.
Similarly, each theorem/lemma within `[THEOREMS]` starts with the prefix
`[THEOREM]`. If you choose to use a theorem described in `[THEOREMS] i`,
be SURE that it applies and is useful for proving the goal.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

3. The `[STEPS]` keyword is used to describe the proof-steps which were used
to obtain the current proof state from the original theorem. Each proof
step starts with the prefix `[STEP]`, and is a valid Coq tactic ending
with a `.`. For example, `[STEPS][STEP]intros a.[STEP]induction a.`

↪→

↪→

↪→

4. Sometimes the `[INCORRECT STEPS]` keyword will appear, which describes
proof-steps which should NOT be generated. For example, `[INCORRECT
STEPS][STEP]apply mul_assoc.[STEP]rewrite <- H.`. **DO NOT** generate
these `[INCORRECT STEPS]` again, as they are failed proof steps which
have already been tried. Re-generating such proof steps will cause
backtracking and early termination of your proof search.

↪→

↪→

↪→

↪→

↪→

5. There is also an optional `[LAST STEP]` keyword which describes the
proof-step generated last time. If the proof-step was incorrect, then
it is also followed by an error message from Coq environment described
with the `[ERROR MESSAGE]` keyword. For example, `[LAST
STEP]reflexivity.[ERROR MESSAGE]Error: In environment\nn : nat\nUnable
to unify "n" with "n + 0".`. You can use the error message as guidance
in predicting a correct proof-step. Do not generate tactics which you
believe will result in the same error. If the proof-step was correct
then it is followed by the keyword `[SUCCESS]`. For example, `[LAST
STEP]reflexivity.[SUCCESS]`. Do NOT generate the last proof-step again
if it was NOT successful, this will also cause early termination of your
proof search.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

6. Sometimes there can be errors in the format of the generated response.
This is reported using the keyword `[ERROR]` followed by the error
message. For example, `[ERROR]\nInvalid response:\n'Great! The proof is
complete.', \nStopping Reason: 'stop'.\n Please respond only in the
format specified.[END]`. This means that the response generated by you
was not in the specified format.

↪→

↪→

↪→

↪→

↪→

Start your response with `[RUN TACTIC]`, followed by the tactic which will
help in proving the current proof state, and then `[END]`. For example,
`[RUN TACTIC]destruct c.[END]`. Do NOT finish the proof in one shot
ending with `Qed`, which signifies the end of a Coq proof. Generate
exactly ONE proof-step. Multiple proof steps are more error prone,
because you will not get a chance to see intermediate proof state
descriptions. In particular, do not generate tactics which could be
split into smaller tactics as you will not be able to view the
intermediate proof states during these rewrites. The tactic `admit` is
NOT a valid proof step, do NOT generate it.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Ensure that the proof step you generate is (1) valid (2) helpful

Figure 14: Parts of “system prompt” used by COPRA for Coq.

24

Published as a conference paper at COLM 2024

theorem mathd_algebra_107
(x y : R)
(h0 : xˆ2 + 8 * x + yˆ2 - 6 * y = 0) :
(x + 4)ˆ2 + (y-3)ˆ2 = 5ˆ2 :=
begin

have h1 : (x + 4) ˆ 2 = x ˆ 2 + 8 * x + 16 := by ring,
have h2 : (y - 3) ˆ 2 = y ˆ 2 - 6 * y + 9 := by ring,
rw [h1, h2],
ring_nf,
linarith,

end

Figure 15: An interesting proof generated by COPRA while using informal proofs hints generated via
GPT-4.

Figure 16: COPRA vs. PROVERBOT9001 on the CompCert benchmark.

25

Published as a conference paper at COLM 2024

(a)
gss :
forall l v m,
(set l v m) l = match l with R

r =>↪→

v | S sl ofs ty =>
Val.load_result

(chunk_of_type ty) v
end.

↪→

↪→

Proof.
intros l v m.
destruct l as [r | s o t].
- unfold set.
destruct (Loc.eq (R r) (R

r)); [reflexivity |
contradiction].

↪→

↪→

- unfold set.
destruct (Loc.eq (S s o t)

(S s o t));
[reflexivity |
contradiction].

↪→

↪→

↪→

Qed.

(b)
eq : forall (p q: loc), {p =

q} + {p <> q}.↪→

Proof.
decide equality.
- apply mreg_eq.
- decide equality.
- decide equality.
apply Pos.eq_dec.
decide equality.
- decide equality.

Qed.

(c)
disjoint_cons_right

:↪→

forall a l1 l2,
disjoint l1 (a ::

l2) -> disjoint
l1 l2.

↪→

↪→

Proof.
intros a l1 l2

H.↪→

unfold
disjoint.↪→

intros x1 x2 H1
H2.↪→

apply H.
assumption.
right.
assumption.

Qed.

(d)
eq_int_type :

forall (x y:
int_type),
{x=y} + {x<>y}.

↪→

↪→

↪→

Proof.
decide

equality.↪→

Qed.

(e)
set_locals_lessdef

: forall e1
e2,
env_lessdef e1
e2 -> forall
il,
env_lessdef
(set_locals il
e1)
(set_locals il
e2).

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Proof.
intros e1 e2 H.
induction il as

[| a il'].↪→

- apply H.
- intros.
apply

set_var_lessdef.↪→

apply IHil'.
apply

Val.lessdef_refl.↪→

Qed.

Figure 17: Some other interesting proofs generated for CompCert by COPRA. We can see that
these proofs are long, and often use ‘apply’ tactic which shows that COPRA can effectively
use the retrieved information to discharge given proof states.

26

Published as a conference paper at COLM 2024

`[GOALS]`
`[GOAL] 1`
n = 70 `# The goal we want to prove (or proof state)`
`[HYPOTHESES] 1 # Assumptions about the goal`
`[HYPOTHESIS]` n : N
`[HYPOTHESIS]` h0 : 0 < n
`[HYPOTHESIS]` h1 : n.gcd 40 = 10
`[HYPOTHESIS]` h2 : n.lcm 40 = 280

`[THEOREMS] 1 # The retrieved lemmas from BM25 which can help prove goal`
`[THEOREM]` pnat.gcd_mul_lcm : (n m : N+) : (gcd n m) * (lcm n m) = n * m
`[THEOREM]` tactic.is_prime_helper : (n : N) (h1 : 1 < n) (h2 :

nat.min_fac n = n) : nat.prime n↪→

`[THEOREM]` pnat.lcm_coe : (n m : N+)

`[INCORRECT STEPS] # Previous mistakes on the given proof state`
`# Each mistake is listed with the ‘STEP’ keyword.`

`[STEP]` apply nat.eq_of_mul_eq_mul_left (by norm_num : 0 < 40),
rw ←pnat.gcd_mul_lcm,
repeat { rw pnat.gcd_coe },
repeat { rw pnat.lcm_coe },
norm_num,
....
`[STEP]` have h3 : n * 40 = nat.gcd n 40 * nat.lcm n 40, from

pnat.gcd_mul_lcm (〈n, h0〉) 〈40, dec_trivial〉,↪→

`[STEP]` rw nat.gcd_mul_lcm,
`[STEP]` rw pnat.gcd_mul_lcm at h1,

`[LAST STEP]` # Last prediction
have h3 : n * 40 = 10 * 280, from pnat.gcd_mul_lcm (subtype.mk n h0)

(subtype.mk 40 dec_trivial),↪→

linarith,

`[ERROR MESSAGE] # Error message on the last step`
Got error in 'have h3 : n * 40 = 10 * 2...':
error: invalid type ascription, term has type
pnat.gcd 〈n, h0〉 〈40, _〉 * pnat.lcm 〈n, h0〉 〈40, _〉 = 〈n, h0〉 * 〈40, _〉 ...

`[END]`
`---`
`# Prediction by GPT-4`
`[RUN TACTIC]`
have h3 : n * 40 = 10 * 280, by rw [←nat.gcd_mul_lcm n 40, h1, h2],
linarith,
`[END]`

Figure 18: We can see from this example that to be able to capitalize the well-retrieved
lemmas, the models need to learn how to use those lemmas as well. In our case, BM25 does
a very good job of retrieving the best lemmas, however, GPT-4 could not use it correctly in
the first couple of tries. It was only because of our novel stateful backtracking approach
that we could capture the previous mistakes along with the last error message all in the
same prompt which dissuaded the GPT-4 from making repeated mistakes and getting to the
right prediction. It is also important to note that we could not solve this problem without
retrieval, but once we know the list of relevant lemmas, knowing how to use them becomes
extremely important. Given this example, it should not be surprising that even when other
retrieval methods like DPR perform better than BM25, COPRA has an edge because it can
act as per the rich feedback it gets from the environment. Another interesting idea one can
try is to let COPRA create a search query to control the retrieved lemma, which can make a
simple BM25 search more effective than DPR.

27

