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Abstract
Recent advancements in Vision-Language-Action
(VLA) models have leveraged pre-trained Vision-
Language Models (VLMs) to improve the gen-
eralization capabilities. VLMs, typically pre-
trained on vision-language understanding tasks,
provide rich semantic knowledge and reasoning
abilities. However, prior research has shown that
VLMs often focus on high-level semantic con-
tent and neglect low-level features, limiting their
ability to capture detailed visual and spatial in-
formation. These aspects, which are crucial for
robotic control tasks, remain underexplored in
existing pre-training paradigms. In this paper,
we investigate the training paradigm for VLAs,
and introduce UP-VLA, a Unified VLA model
training with both multi-modal Understanding
and future Prediction objectives, enhancing both
high-level semantic comprehension and low-
level spatial understanding. Experimental results
show that UP-VLA achieves a 33% improvement
on the Calvin ABC-D benchmark compared to
the previous state-of-the-art method. Addition-
ally, UP-VLA demonstrates improved success
rates in real-world manipulation tasks, particu-
larly those requiring precise spatial information.
Code can be found at https://github.com/
CladernyJorn/UP-VLA.

1. Introduction
Constructing Vision-Language-Action (VLA) models (Bro-
han et al., 2023; Li et al., 2023b) capable of solving multiple
tasks in open environments has become a central focus
of research in robotics. A promising approach for VLA
models involves fine-tuning large-scale pre-trained Vision-
Language Models (VLMs) (Li et al., 2023a; Wang et al.,
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Figure 1. UP-VLA is pre-trained with both multi-modal under-
standing objective and future prediction objective to better capture
both high-level semantic information and low-level spatial details,
enhancing embodied decision-making tasks.

2022; Dai et al., 2024; Driess et al., 2023) on robotic action
datasets, incorporating appropriate action modeling compo-
nents (Jang et al., 2022; Li et al., 2023b; Wu et al., 2023;
Zhang et al., 2024; Kim et al., 2024; Zheng et al., 2024b; Cui
et al., 2025). This method enables VLA models to inherit
the semantic knowledge and reasoning capabilities encoded
in powerful VLMs, thereby enhancing decision-making in
unknown environments.

However, previous works have identified certain weaknesses
in VLMs, particularly in capturing low-level information
and understanding physical dynamics (Zheng et al., 2024a;
Chen et al., 2024a). Zheng et al. (2024a) highlighted that
VLMs are weak in low-level vision tasks without additional
training. Chen et al. (2024a); Wen et al. (2024) pointed
out that pretrained VLMs lack spatial understanding and
fail to capture low-level details such as distance and size
differences. Furthermore, studies (Balazadeh et al., 2024;
Ghaffari & Krishnaswamy, 2024; Li et al., 2024) have re-
vealed significant challenges in VLMs’ ability to understand
physical dynamics. These limitations are largely attributed
to the pre-training paradigm of VLMs (Wen et al., 2024;
Chen et al., 2024a), which prioritizes multi-modal under-
standing tasks, such as Visual Question Answering (VQA),
that enhance semantic reasoning but may overlook low-level
details that are crucial for embodied decision-making tasks.
While the generalization advantages offered by current pre-

1

https://github.com/CladernyJorn/UP-VLA
https://github.com/CladernyJorn/UP-VLA


A Unified Understanding and Prediction Model for Embodied Agent

training approaches are desirable, they raise an important
question: can a better training pipeline be developed to
combine the strengths of both worlds, retaining semantic
understanding while also emphasizing low-level features
critical for control?

In this paper, we re-consider the pre-training approach
for VLA models. Rather than focusing exclusively on
high-level semantic information like in vision-language pre-
training, we propose a training paradigm that emphasizes
both high-level semantic understanding and low-level visual
patterns. Inspired by prior papers on visual pre-training
(Wu et al., 2023; Guo et al., 2024), we introduce a novel
training paradigm for VLA models that aligns representa-
tions with both high-level features using the multi-modal
understanding dataset and low-level features through future
predictive generation. Specifically, we co-train an auto-
regressive model with a flexible attention mask on three
types of datasets, as illustrated in Figure 1.

Our experiments validate the effectiveness of our new train-
ing paradigm for VLA models. As summarized in Figure
2, we tested three clusters of tasks ranging from simulation
to real world settings to assess different abilities of the al-
gorithms. ABCD→D and real-seen focus on evaluating the
model’s in-distribution multitask learning capabilities, real-
unseen focus on real-world semantic generalization, while
the remaining two tasks measure the methods’ adaptation
and precise control abilities. In alignment with our previous
analysis, the VLM-based VLA model demonstrates rela-
tively strong performance in both in-distribution multitask
settings and the real-world generalization task (real-unseen).
Conversely, visual prediction-based pre-training achieves
relatively better scores in tasks requiring adaptation and pre-
cise control (real-precise and ABC-D). Notably, UP-VLA
achieves a 33% improvement on the Calvin ABC→D gener-
alization benchmark and shows significant improvement in
real-world task. These results highlight the effectiveness of
UP-VLA method in retaining both semantic and low-level
features. Our contributions can be summarized as follows.

1. Motivated by recent insights into the limitations of
VLMs, we integrate video datasets rich in detailed
information and dynamic contexts into the pre-training
of VLA models to enhance their capabilities.

2. We introduce a novel training paradigm for VLA mod-
els that combines both vision-language understanding
and future prediction objectives, enabling the capture
of both high-level semantic and low-level visual pat-
terns essential for embodied agents.

3. We achieve significant improvements in success rates
across both simulated and real-world manipulation
tasks. Additionally, we conduct an ablation study to
validate the effectiveness of two types of pre-training.
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Action ActionFuture Image
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VLM-based VLA model                                                      Prediction-based model
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Figure 2. Comparison between UP-VLA, VLM-based VLA mod-
els and prediction-based models. The bottom-right chart illustrates
the performance across multiple tasks in both simulated and real-
world environments. We select the best model from each type of
method

2. Related Works
VLA Models for Generalist Robot Policies Recent studies
have explored the application of VLMs (Li et al., 2023a;
Wang et al., 2022; Dai et al., 2024; Driess et al., 2023; Wang
et al., 2023; Zhao et al., 2025; Ding et al., 2025; Song et al.,
2025; Ding et al., 2024) in robotics, leveraging their strong
understanding of linguistic instructions and visual scenes.
A notable example is RT-2 (Brohan et al., 2023), which
directly utilizes VLMs to generate discrete action tokens
autoregressively, demonstrating the semantic grounding ca-
pabilities of VLA methods. Recent works aim to enhance
VLA models with better generalization performance (Kim
et al., 2024; O’Neill et al., 2023), cross-embodiment con-
trol capabilities (Black et al., 2024), and improved reason-
ing efficiency (Zhang et al., 2024). The previous work,
3D-VLA (Zhen et al., 2024), also explored co-training for
multi-modal understanding and generation, but focused on
introducing 3d information and employed a separate diffu-
sion model for generation. In contrast, our approach uses
a unified model to handle multi-modal input and mainly
focuses on addressing the limitations of VLA models in
visual perception and physical dynamics.

Visual Pretraining Methods for Robotics Leveraging pre-
trained vision models for robotic perception has become
a crucial area of research in robot control. Early works
(Brohan et al., 2022; Jang et al., 2022) employed pretrained
vision encoders like ViT (Dosovitskiy et al., 2020) and Ef-
ficientNet (Tan & Le, 2019) to encode visual observations.
Recently, numerous studies have incorporated generative
models (Ho et al., 2020; Blattmann et al., 2023) for train-
ing policies via future frame prediction (Guo et al., 2024;
Ding et al., 2024) and video generation (Du et al., 2024).
For example, SuSIE (Black et al., 2023) learns robot ac-
tions by predicting keyframes, while GR-1 (Wu et al., 2023)
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directly pretrains policies through video generation. PAD
(Guo et al., 2024) employs diffusion models to predict fu-
ture images and multi-step actions simultaneously. IGOR
(Chen et al., 2024b) uses latent actions that compress vi-
sual changes as the intermediate goal for low-level actions.
These studies highlight that visual prediction tasks can ben-
efit models’ visual generalization to unseen scenes. Our
approach leverages autoregressive VLMs to predict future
images, capturing physical dynamics with rich visual infor-
mation.

3. Preliminaries
VLA for Language Conditioned Robot Control The
language-conditioned manipulation problem is considered
a decision sequence under the environment modeled by a
free-form language instruction l specifying a certain task
and the initial observation o1. For demonstrations D =
{τ1, τ2, · · · , τn}, where each frame τi = {(ot, at)}Tt=1 con-
sists visual observations o and actions a. Vision-Language-
Action (VLA) models typically train VLMπθ as a robotic
action policy by minimizing the error between â ∼ πθ(o, l).
Leveraging the multi-modal understanding capability of
VLM, VLA has better generalization across tasks, espe-
cially enhanced semantic understanding of unseen objects
and improved ability to understand or reason complex natu-
ral language instructions.

Unified Vision-Language Pretraining via Autoregressive
Modelling Unified multi-modal language models are ca-
pable of understanding and generation. An effective and
scalable approach is to improve the VLMs with an additional
image generation task, as demonstrated in works like SeeD-
X (Ge et al., 2024) and Showo (Xie et al., 2024). Following
these approaches, we utilize a discrete image encoder to
handle encoding and decoding for image-generation tasks,
while employing a continuous vision encoder for multi-
modal understanding and reasoning tasks. During training,
the LLM input is prompted based on the task type in the
following format:

{|MMU |, (u1, u2, · · · , un), (l1, l2, · · · , lm)}
{|T2I|, (l1, l2, · · · , lm), (v1, v2, · · · , vn)}

where l represents language tokens, and u, v correspond to
continuous and discrete image tokens for different tasks.

4. Methodology
Our goal is to develop a better training schema for VLAs.
In this section, we describe the details of UP-VLA. We
first build our backbone on top of a unified VLM. Then,
we design a unified mechanism to bridge the gap between
visual prediction with multi-modal understanding. Finally,
we enhance action learning with unified prediction and un-

derstanding prompting techniques.

4.1. Backbone

As illustrated in Figure 3, we employ Phi-1.5 (Li et al.,
2023c) as the underlying large language model. For multi-
modal understanding tasks, we follow the standard VLM
encoding approach, projecting images into the language
embedding space via a CLIP-ViT (Radford et al., 2021) en-
coder. These projected image features are then concatenated
with language embeddings and fed into the large language
model. For image prediction tasks, we encode the currently
observed image into discrete tokens using VQ-GAN (Esser
et al., 2021). Instead of using noise prediction or masked re-
construction, we directly predict future image tokens in the
corresponding position of output tokens, which encourages
the model to focus on the visual information in the current
frame and predict future changes conditioned on language.

4.2. Bridging Visual Prediction and Multi-modal
Understanding

To enable LLMs to possess both visual prediction and multi-
modal understanding capabilities, we incorporate both fu-
ture prediction tasks from robotics data and image-text pairs
during training. These two types of tasks can be encoded
into a unified format so they can be mixed and processed in
parallel through the LLM backbone. Therefore, we extend
the multitasking approach described in sec 3.

Multi-modal Understanding Given a paired image-text
question-answering set (I, L), we encode the image into
the language embedding space via a continuous encoder
and a connection layer E1, resulting u = {ui}Mi=0 = E1(I).
These embeddings are concatenated with text embeddings
l = {li}Ni=0 to form the multi-modal input. To generate
a text sequence that can focus on the image while com-
prehending the language, we modify the causal attention
mechanism so that image tokens can attend to each other,
as shown in Figure 4(a). Finally, we use an autoregressive
manner to predict the next language token. This task can be
briefly described as L̂ = πMMU

θ (I, L).

Future Visual Prediction For image prediction, given an
image and instruction pair (Ot, L) at time t, we encode the
current visual observation using a discrete encoder E2: vt =
{vi}Mi=0 = E2(Ot). Unlike multi-modal understanding
tasks, the objective in visual prediction is to encode future
visual observation by focusing on the instruction prompts.
Thus, as depicted in Figure 4(b), we place the image tokens
after the language tokens, enabling the image to attend to all
input information. Meanwhile, we introduce a new special
token PRE to denote this new task. Instead of using next
token prediction, we model the future image tokens at the
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Figure 3. Overview of UP-VLA. Our model unifies visual-language understanding, future image generation, and action learning in an
autoregressive manner. It takes the current visual scene and language instructions as inputs, produces a high-level understanding of the
scene, and subsequently predicts future images and robotic actions based on these understanding tokens.

same positions of the image tokens:

P (Ot+∆t|Ot, L) =

M∏
i=1

pθ(v
i
t+∆t|vt, l)

, and then use a discrete decoder to reconstruct the predicted
future observation image Ôt+∆t. This task can be succinctly
described as Ôt+∆t = πPRE

θ (Ot, L).

4.3. Enhancing Action Learning with Joint Prediction
and Understanding

While previous VLA method leverages the muli-modal un-
derstanding knowledge of pre-trained VLM, it fails to ex-
ploit the rich visual information and the physical dynamics.
To address this limitation, we propose a joint prediction-
and-understanding action learning mechanism. We integrate
action output with image prediction tasks. Given the cur-
rent observation-instruction pair (Ot, L), our model predicts
both future observations and a sequence of actions at each
time step: (Ôt+∆t, Ât:t+∆t) = πPRE

θ (Ot, L), where Â cor-
responds to the final layer features at the positions of the
action tokens.

In addition, as shown in Figure 4(c), we extend the language
instruction input with scene descriptions generated by the
model itself. The expanded input prompt is:

L′ = [E1(O
′
t), π

MMU
θ (Ot, Lprompt), L]

where L is the language instruction and O′
t represents vari-

ous visual information at the current time step. The obser-
vation O′

t, after processing through the continuous vision
encoder E1 = MLP (V IT ), is mapped into the language
embedding space E1(O

′
t) which can be directly used as lan-

guage tokens. The final component πMMU
θ (Ot, Lprompt) is

the generated description of the current scene, whereLprompt
is a specific prompt, such as “describe this image”.

Finally, we generate actions via joint prediction:

(Ôt+∆t, Ât:t+∆t) = πPRE
θ (Ot, L

′)

We use a small policy head to output low-level actions, con-
sisting of a MAP module (a single-layer attention module)
and a linear layer: ât:t+∆t = MLP (MAP (Ât:t+∆t))

4.4. Training Strategy

We initialize the backbone of UP-VLA using Show-o (Xie
et al., 2024). During training, we fully fine-tune the pa-
rameters of the LLM and freeze all encoders. The training
process can be divided into two stages. In the first stage,
we aim to endow the VLM with both visual prediction and
multi-modal understanding capabilities. In the second stage,
we focus on learning actions using robot data. We apply
different sampling ratios for different tasks.

4.4.1. TRAINING PIPELINE

Prediction and Understanding Pretraining Stage. We
mix training data across two domains: one part is from
Bridge (Walke et al., 2023), which includes 25k robotic
arm demonstrations. We use this data for future prediction.
Another part is from LLava-tuning-665k (Liu et al., 2024),
which includes 665k image-text pairs for enhancing high-
level understanding capability.

Prediction with Action Tuning Stage.The model is fine-
tuned on downstream embodied tasks. We train UP-VLA
using the joint prediction-and-understanding action learning
approach in sec 4.3. We continue to co-train with the image-
text pairs to preserve multi-modal understanding ability.
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Figure 4. Illustration of the unified prompting and attention mechanism. We use special tokens to segment input sequences and identify
task types. For MMU tasks, consecutive image tokens are placed before the language tokens, allowing image tokens to attend to one
another. For image prediction, images are positioned after the language tokens, enabling them to attend to all prior information and predict
future images that align with the language instructions. For action learning, which combines understanding and prediction, tokens from
both tasks are concatenated, allowing actions to attend to both high-level scene understanding and low-level visual information.

Figure 5. Visualization of our evaluation environments. The left is Calvin (Mees et al., 2022) in which we test on both ABC→D and
ABCD→D settings. For real world, we train our model on simple tasks and test on more complex scenarios.

4.4.2. TRAINING OBJECTIVE

The UP-VLA method involves three modeling targets: lan-
guage modeling for multi-modal understanding, image mod-
eling for visual prediction, and action modeling for embod-
ied tasks.

Language Modeling for multi-modal Understanding.
Given M visual tokens u = {ui}Mi=0 and N text tokens
l = {li}Ni=0, we maximize the likelihood of the next token
using cross-entropy loss:

LMMU =
∑
i

log pθ(li|u, l1, · · · , li−1)

Image Modeling for Visual Prediction. For the future
image prediction task, given M current image tokens vt =
{vi}Mi=0 N and instruction tokens l = {li}Ni=0, we use cross-

entropy to predict future image tokens vt+∆t = {v′i}Mi=0:

LPRE =
∑
j

log pθ(v
′
j |l, v1, · · · , vj , · · · , vM )

Action Modeling for Embodied Tasks. We minimize the
mean squared error (MSE) between the predicted relative
position âpos and the ground-truth actions apos. The discrete
status aend of the end-effector is optimized with binary
cross-entropy loss (BCE):

LACT =
∑

||âpos − apos||22 +BCE(âend, aend)

We use varying weights to combine these three losses:

L = λ1LMMU + λ2LPRE + λ3LACT
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5. Experiments
UP-VLA is a versatile vision-language-action model that
can perform multi-modal understanding and future predic-
tion while generating robot actions. In this section, we
evaluate UP-VLA in two domains including the simulation
CALVIN benchmark (Mees et al., 2022) and a real-world
panda manipulation environment to verify the effectiveness
of our UP-VLA framework.

5.1. Experiment Setup and baseline

Setups. For simulation evaluation, we utilize CALVIN
(Mees et al., 2022), an open-source benchmark to learn long-
horizon language-conditioned tasks. As shown in Figure
5(a), the CALVIN environment comprises 4 different scenes
denoted ABCD. We evaluate UP-VLA on both ABCD-D
and ABC-D settings.

Our real-world experiments involve multiple table-top ma-
nipulation tasks on the Franka-Emika Panda robot, including
picking and placing, routing cables, pressing buttons, and
opening drawers. Specifically, we collect over 2k demon-
strations above 6 skills. As shown in Figure 5(b), we train
UP-VLA on simple scenes while testing it on more complex
settings. We place several seen and unseen objects on the
table to introduce distractions and test whether the model
can grasp entirely new objects to verify its semantic ground-
ing capabilities. Meanwhile, we evaluate the model’s ability
to perform more fine-grained tasks, such as routing cables,
grasping smaller unseen blocks, or picking up a pen. More
details of dataset can be found in Appendix B.

Baselines. We mainly compare UP-VLA with two types of
baselines: VLM-based VLA methods and future-prediction-
based methods (mainly including future image generation,
goal generation and video generation). All baselines in our
experiment are listed as below:

• RT-1 (Brohan et al., 2022): a small robot action trans-
former using pretrained Efficient-Net (Tan & Le, 2019)
as vision encoder.

• Diffusion Policy (Chi et al., 2023): a small action
model using diffusion model.

• Robo-Flamingo (Li et al., 2023b): a typical VLA
model consists of a pretrained VLM and an LSTM
policy head.

• 3D-VLA (Zhen et al., 2024): a unified VLA model
that enable 3D reasoning, multi-modal goal generation,
and action planning. Different from UP-VLA, 3D-
VLA mainly focuses on introducing 3D knowledge
into VLM (LLM).

• UP-VLA-RT-2: an apple-to-apple baseline that makes
use of the same backbone with UP-VLA and direct
output actions autoregressively (reimplementation of

RT-2(Brohan et al., 2023) or OpenVLA (Kim et al.,
2024)).

• Uni-Pi (Du et al., 2024): learns to generate future se-
quences and then output actions with an inverse kine-
matics model.

• Susie (Black et al., 2023): first generates goal image
and then learns a goal-conditioned diffusion policy.

• GR-1 (Wu et al., 2023): pretrains a transformer on
video prediction task and then finetune on robot data
to learn multi-task robot manipulation.

• UP-VLA-phi-w/o-mmu: UP-VLA initialized from Phi-
1.5 (Li et al., 2023c) and is trained without multi-modal
understanding tasks, serves as a reimplemented GR-1
under the same setting of our method.

• 3D Diffuser Actor (Ke et al., 2024): learn a 3D diffu-
sion policy using depth image with camera pose.

5.2. Simulation Evaluation

Table 1 and Table 2 presents the experimental results in
simulation environments. UP-VLA achieves the highest
performance on both ABC→D and ABCD→D tasks. Com-
pared to other baselines, which perform significantly worse
on ABC→D than on ABCD→D, UP-VLA achieves higher
completion lengths in both scenarios, indicating that our
method has better multitask learning and generalization ca-
pabilities in simulation tasks.

Effectiveness of Visual Prediction. Comparing VLA-based
methods and prediction-based methods in Table 1, it is ev-
ident that previous VLA approaches underperform in sim-
ulation tasks relative to prediction-based methods. For ex-
ample, RoboFlamingo, achieves a length of 2.47, which is
less than GR-1’s length of 3.06. This suggests that relying
solely on vision-language understanding pretraining can be
limiting in tasks that emphasize visual generalization. Our
method addresses this limitation by incorporating visual pre-
diction into the original VLA framework. Compared to UP-
VLA-RT-2, which uses only action learning and achieves a
completion length of 1.44, UP-VLA with visual prediction
significantly improves the length to 4.08. This demonstrates
that integrating visual prediction can substantially enhance
the performance of original VLA methods.

Effectiveness of multi-modal Understanding. Compared
to prediction-based methods, the UP-VLA method demon-
strates superior performance. To further investigate the
factors contributing to the performance improvement, we
design UP-VLA-phi-w/o-mmu as a baseline to eliminate the
variable of model backbone differences. This method ini-
tializes UP-VLA using a pure LLM, phi1.5 (Li et al., 2023c)
and performs pretraining on the Bridge dataset for future
prediction and is then finetuned with downstream robot task.
Unlike UP-VLA, UP-VLA-phi-w/o-mmu does not include
multi-modal understanding training, nor does it incorporate
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Method Type Task Tasks completed in a row
1 2 3 4 5 Avg. Len ↑

RT-1 other ABC→D 0.533 0.222 0.094 0.038 0.013 0.90
Diffusion Policy* other ABC→D 0.402 0.123 0.026 0.008 0.000 0.56
3D Diffuser Actor other ABC→D 0.938 0.803 0.662 0.533 0.412 3.35

3D-VLA VLA ABC→D 0.447 0.163 0.081 0.016 0.000 0.71
UP-VLA-RT-2* VLA ABC→D 0.612 0.389 0.236 0.138 0.062 1.44
Robo-Flamingo VLA ABC→D 0.824 0.619 0.466 0.331 0.235 2.47

Uni-Pi Prediction ABC→D 0.560 0.160 0.080 0.080 0.040 0.92
Susie Prediction ABC→D 0.870 0.690 0.490 0.380 0.260 2.69
GR-1 Prediction ABC→D 0.854 0.712 0.596 0.497 0.401 3.06

UP-VLA-phi-w/o-mmu* Prediction ABC→D 0.844 0.705 0.604 0.520 0.430 3.13
UP-VLA Prediction&VLA ABC→D 0.928 0.865 0.815 0.769 0.699 4.08

Table 1. Zero-shot long-horizon evaluation on the Calvin benchmark where agent is asked to complete five chained tasks sequentially.
Results marked with an asterisk (*) indicate those that we reproduced, while the rest are copied from the original papers. UP-VLA
achieves the best performance, demonstrating that our approach exhibits strong generalization capabilities in simulated environments.

Method Type Task Tasks completed in a row
1 2 3 4 5 Avg. Len ↑

RT-1 other ABCD→D 0.844 0.617 0.438 0.323 0.227 2.45
Robo-Flamingo VLA ABCD→D 0.964 0.896 0.824 0.740 0.660 4.09

GR-1 Prediction ABCD→D 0.949 0.896 0.844 0.789 0.731 4.21
UP-VLA Prediction&VLA ABCD→D 0.962 0.921 0.879 0.842 0.812 4.42

Table 2. Zero-shot long-horizon evaluation on the Calvin ABCD→D benchmark. Results of baselines are copied from original papers.

image comprehension in the language prompts during out-
put. As shown in Table 1, UP-VLA-phi-w/o-mmu performs
worse than UP-VLA, which indicates that injecting multi-
modal understanding into the model during training helps
improve its generalization ability in new scenarios.

5.3. Real Robot Evaluation

For real-world experimental results, we train RT-1 (Brohan
et al., 2022), Diffusion Policy (Chi et al., 2023) on our
datasets (using the open-source code and testing them on
the same physical hardware). To ensure a fair comparison,
we reproduce RT-2 (Brohan et al., 2023) and GR-1 (Wu
et al., 2023) using our dataset and backbone, referred to
as UP-VLA-RT-2 and UP-VLA-phi-w/o-mmu, respectively.
We report the success rate of each task over 20 attempts
during real-world roll-out.

Figure 6 presents the results of our evaluation on three
types of real-world tasks. UP-VLA demonstrates significant
improvement across all tasks. Specifically, for tasks seen
during training, as shown on the left side of Figure 5(b),
the three methods based on the UP-VLA backbone outper-
form RT-1 and Diffusionpolicy, indicating that using LLM
backbone exhibit superior multitasking capabilities.

For unseen tasks, we first test the ability to grasp new objects

not encountered during training, as shown in the middle of
Figure 5. UP-VLA-RT-2 outperforms UP-VLA-phi-w/o-
mmu, suggesting that multi-modal understanding aids se-
mantic generalization ability. UP-VLA demonstrates better
visual-semantic generalization for these tasks, proving that
our approach effectively aligns multi-modal understanding
with objects and actions. The right side of Figure 6 shows
the performance on tasks requiring more precise operations
(e.g., routing cables, grasping small objects, and picking up
previously unseen pens). These tasks demand the model’s
enhanced spatial understanding and ability to perceive visual
details. As opposed to new objects, UP-VLA-Phi-w/o-mmu
excels at precise operations compared to UP-VLA-RT-2.
UP-VLA performs best on these tasks, highlighting that
the integration of future visual prediction enhances VLA’s
understanding of physical space and details.

5.4. Ablation Studies

In this section, we aim to understand each module in UP-
VLA. We compare the full UP-VLA with the following
methods: UP-VLA-w/o-MMU, which does not utilize the
LLava tuning dataset for multi-modal understanding, UP-
VLA-w/o-Bridge-Pretrain, which skips visual prediction
pretraining on the bridge dataset; UP-VLA-w/o-Prediction,
which bypasses visual prediction and directly learns actions;
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Figure 6. Results on real-world manipulation tasks.

Method ABC→D Real World
Avg.Len↑ Seen↑ Unseen↑

w/o MMU 3.89 0.85 0.20
w/o Bridge-Pretrain 2.74 0.65 0.30

w/o Prediction 1.44 0.65 0.35
w/o MMU-Condition 3.99 0.80 0.50

Full 4.08 0.80 0.58

Table 3. Ablating components of UP-VLA.

and UP-VLA-w/o-MMU-Condition, which omits the mech-
anism described in sec 4.3 that extends visual prediction
prompts using MMU. Table 3 presents the performance of
different ablation methods on simulated Calvin tasks and
real-world robot tasks.

How does the visual prediction mechanism affect the
performance of UP-VLA? After removing the visual pre-
diction task, performance of UP-VLA in Calvin drops from
4.08 to 1.44. This indicates that stronger visual supervi-
sion contributes to the model’s ability to generalize in new
environments. Furthermore, omitting the visual prediction
pretraining on the bridge dataset also led to noticeable per-
formance degradation, highlighting the importance of the
pretraining step for the VLM to learn the dynamics of the
physical world effectively.

Does multi-modal understanding enhance the general-
ization ability of the model? In real-world experiments,
removing MMU tasks or MMU-condition mechanisms from
training leads to comparable or higher performance on seen
tasks but results in a decline in performance on unseen ob-
jects. This observation indicates that joint training with
MMU and using MMU to augment input prompts are cru-
cial for semantic generalization and help prevent the model
from overfitting to the dataset.

5.5. Quantitative Results

Figure 7 visualizes the performance of UP-VLA in multi-
modal understanding question-answering (VQA) and future
prediction across different types of data.

Multi-modal Understanding As shown in Fig 7, it can be
observed that UP-VLA can identify the objects present in
embodied scenes and estimate their approximate relative
positions, which is critical for action learning. Therefore, ef-
fectively integrating MMU capabilities with action learning
is a promising approach to improving operational accuracy.
Additionally, we observe that the model’s identification of
the specific objects is sometimes inaccurate. This is likely
due to constraints in the scale of data and backbone, which
is a potential direction for future research.

Future Prediction Results of predicted images are shown
in Fig 7. UP-VLA demonstrates the ability to accurately
predict the positions of robot arms and objects based on
language instructions. However, we also identify some
limitations. For instance, in the Calvin D environment, the
predicted frames feature background colors that differ from
the input frames. The model tends to use background colors
from the training datasets (ABC). This issue is likely due to
insufficient pretraining for visual generation, which limits
the model’s generalization capability in generation tasks.

6. Conclusion
In this paper, we introduce UP-VLA, a vision-language-
action model that can understand, generate predicted future
images, and plan actions in the embodied environment. We
devise a novel VLA training paradigm that unifies policy
learning with visual prediction and multi-modal understand-
ing. Our results show that the use of future image prediction
can significantly improve the precision and visual general-
ization of policy. We also further enhance our model by
introducing multi-modal understanding knowledge to vi-
sual prediction-based policy learning, which demonstrates
stronger generalization ability in both semantic grounding
and spatial understanding.

Impact Statement
This paper presents a novel research to advance robot ma-
nipulation models with unifed training strategies. Given that
robots operate in the physical world under certain human
instructions, high-level semantic content and also low-level
visual and spatial details are crucial for accurate robot con-
trol. To mitigate this issue, our approach involves unified
training paradigm to force VLA to capture both semantic
information and learn dynamics of the physical world.
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A. Implementation Details
We use pretrained Showo-512x512(1.3B) (Xie et al., 2024) as the backbone and CLIP-VIT (Radford et al., 2021), MagVIT
(Yu et al., 2023) (VQ-GAN (Esser et al., 2021)). In the pretrain stage, we train UP-VLA for 20k steps with batch size of 64
on future prediction and vision-language understanding tasks. We apply a linear warmup at the first 1k steps. In the action
learning stage, we train UP-VLA with a batch size of 64.

B. Manipulation Dataset Details
For the simulation environment data, we follow the setups of the CALVIN benchmark (using its training sets and evaluation
sets).

In the real world, our training data is collected using both manual and scripted methods. Specifically, for tasks such as
grasping two types of toy fruits (carrot and eggplant), opening drawers, and routing cable tasks, we collect demonstrations
manually using a remote operation joystick, ensuring that the target objects are roughly evenly distributed in the field of
view. For grasping blocks of different colors, we use scripted policies. We randomly initialize the robotic arm’s position to
collect trajectories for these tasks.

For real-world evaluation, our tests primarily focus on unseen settings to validate the semantic generalization capability
of our method. We test whether the model can complete tasks despite the introduction of more distracting objects, a
broader range of positional variations, diverse backgrounds, and entirely new objects, e.g. different shapes of vegetables, an
arrow-shaped paper, unseen vegetables, toy pizza, and blocks with unseen color. We also design precise tasks to better test
model’s ability to handle visual details, like picking up a small ball or pen.
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