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Figure 1: Downsampling in vision backbones via uniform downsampling (fop) v.s. learned
downsampling (bottom, this work): Vision backbones downsample feature maps using uniform-grid
operators (e.g., pooling, top) and rely on uniform upsampling (e.g., bilinear interpolation, rop) for
image segmentation tasks. Our new backbone with spatial grouping layers learns to map pixels to a
reduced set of tokens, aligning with image boundaries during downsampling (botfom). This enables
scalable backbone-level native segmentation, i.e., without the need for dedicated segmentation heads.

Abstract

Uniform downsampling remains the de facto standard for reducing spatial reso-
lution in vision backbones. In this work, we propose an alternative design built
around a content-aware spatial grouping layer, that dynamically assigns tokens
to a reduced set based on image boundaries and their semantic content. Stacking
our grouping layer across consecutive backbone stages results in hierarchical seg-
mentation that arises natively in the feature extraction process, resulting in our
coined Native Segmentation Vision Transformer. We show that a careful design of
our architecture enables the emergence of strong segmentation masks solely from
grouping layers, that is, without additional segmentation-specific heads. This sets
the foundation for a new paradigm of native, backbone-level segmentation, which
enables strong zero-shot results without mask supervision, as well as a minimal
and efficient standalone model design for downstream segmentation tasks.

1 Introduction

Status quo. Modern hierarchical vision backbones [1, 2, 3] mirror the design principles of early
convolutional networks [4], organizing feature processing across multiple stages at progressively
lower spatial resolutions. While feature processing has been challenged, e.g., convolutions v.s. self-
attention, the downsampling stage has largely remained unchanged. Typically implemented via
the ubiquitous pooling or, more recently, strided convolutions [1], these operations treat all spatial
locations in a grid uniformly, irrespective of the image content. Such hierarchical feature extraction
forms the foundation for state-of-the-art image segmentation methods, where dedicated segmentation
heads [5, 6] learn to upsample and group the resulting features into semantically meaningful regions.

The uniform spatial treatment of features during downsampling manifests as feature misalignment
during upsampling operations, placing an additional burden on decoder heads to compensate for
inherent limitations in the backbone design [7, 8]. To this end, recent works [9, 10, 11, 12] explore
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alternative segmentation network designs and strategies for data-driven bottom-up pixel grouping
based on their semantic content. Despite their conceptual appeal, these methods fall short against
modern architectures due to either (i) algorithms with quadratic computational complexity relative
to input resolution [9, 10], or (ii) non-differentiable grouping operations that limit their scalability
and widespread practical use [11, 12], and necessitate the use of dedicated segmentation heads for
downstream segmentation tasks, instead of capitalizing on their pixel-grouping capabilities.

Native segmentation. We introduce Native Segmentation Vision Transformer (SeNaTra), a back-
bone architecture whose core component, the spatial grouping layer, replaces uniform grid-based
downsampling with learned dynamic assignment of visual tokens to semantically coherent groups
based on image content. Successive grouping operations across backbone stages naturally compose
into a mapping from input pixels to final tokens, effectively creating a multi-scale hierarchy of
segmentation masks for tokens at each backbone stage. We call this capability native segmenta-
tion, as it emerges from the backbone’s inherent region-aware representation, rather than external
heads [13, 6, 5]. It makes such external heads no longer strictly required, although empirically they
can still be beneficial.

Our design has two main methodological advantages over prior backbone-level grouping work:
(i) unlike methods using vanilla cross-attention [9, 10] or non-differentiable clustering [11, 12]
we employ differentiable, iterative clustering inspired by perceptual grouping algorithms [14, 15],
embedding a structured inductive bias that enables coherent groups to arise without direct supervision;
(ii) we ensure scalability through local grouping layers with restricted context windows in early
stages—enabling linear scaling with input resolution—while employing dense grouping only in the
final stage to efficiently produce whole-image segmentation masks. Overall, our design enables
scalable native segmentation while retaining efficiency and remaining end-to-end differentiable.

Key findings. We observe that in the absence of any mask supervision, super-pixel-like structures
emerge as a consequence of our network design (Figure 1, bottom), akin to classical superpixel
algorithms [16, 17, 18, 14], rather than being hand-crafted [19], or explicitly used as input [11].
These are further grouped into semantically meaningful regions in the final, dense grouping layer.
We validate our native segmentation capability on zero-shot segmentation tasks across multiple
established benchmarks and show that our model significantly outperforms prior art, including
models trained on an order of magnitude larger datasets, suggesting our architecture is data-efficient,
thanks to our grouping layer. When trained with explicit mask supervision for semantic and panoptic
segmentation on ADE20k [20] and COCO-panoptic [21] our method outperforms several strong
baselines without any dedicated segmentation heads, e.g., Rol heads [5] or Transformer decoders [6],
with a significantly reduced parameter and FLOP count. Furthermore, when used in conjunction with
such heads, SeNaTra consistently improves the performance of top-performing backbones.

In summary, we (i) propose a Native Segmentation Vision Transformer, that learns a hierarchical
segmentation of the visual input in the absence of any pixel/mask supervision. The key building block
of our network is (ii) our grouping layer that performs image-content-adaptive feature downsampling,
effectively replacing uniform, grid-based feature down/up-sampling layers, employed in consolidated
segmentation networks. Finally, (iii) we unveil a streamlined native segmentation network that obtains
masks in the absence of any dedicated heads, and excels at zero-shot segmentation, trained without
any pixel/mask supervision, as well as on standard semantic/panoptic segmentation benchmarks.

2 Related Work

Vision backbones Since the pioneering work of Neocognitron [22] and LeNet [23], Convolutional
Neural Networks (CNNs) have been propelling the advancements in data-driven computer vision.
These networks typically employ a hierarchy of convolutional layers that apply a set of learnable
filters to the input feature map, which are alternated with feature downsampling operations, yielding
hierarchy of multi-scale feature maps. Despite the rise of plain transformer-based architectures [24],
modern hierarchical backbones [1, 3, 25] are still dominant in dense prediction [26] and still adhere
to the same underlying design principle: they are organized in multiple feature extraction stages,
with uniform downsampling operations among them. In this work, we put our focus on the largely
overlooked downsampling operation, and show that by replacing it with our proposed spatial grouping
module, we can obtain a backbone with native segmentation capabilities.



Dense prediction. In the last decade, we witnessed a Cambrian explosion in network design for
dense prediction. Notable examples include Fully Convolutional Networks [27], encoder-decoder
architectures [28], and the pioneering work of [29, 30]. More recently, DETR [31] tackled end-to-end
detection as set prediction using Transformers, treating object proposals or segments as learnable
queries. MaskFormer [13, 6] capitalized on this design, and added a pixel decoder to upsample feature
maps, and trained it jointly with a backbone and transformer decoder to process queries. SeNaTra
can be used in conjunction with such segmentation heads to improve segmentation accuracy, or
produce high-quality native masks in the absence of such dedicated heads. Recent large-scale efforts
such as SAM and SAM2 [32, 26] have focused on introducing promptable segmentation and scaling,
combining massive data generation pipelines with standard ViT-based backbones [24, 33]. In contrast,
our work targets architectural innovation at the backbone level, introducing native segmentation
capabilities with potential to complement or simplify such frameworks.

Perceptual grouping. Prior to the advent of end-to-end segmentation methods, combinatorial
optimization was the main algorithmic tool for this task. Notable examples include the seminal work
of [17], which introduced efficient graph-based segmentation to adaptively merge regions based on
internal variation, and normalized cuts [34]. Traditional superpixel algorithms, such as SLIC [14],
emerged as efficient tools to obtain segments based on color similarity and proximity. Recognizing
segmentation’s inherent ambiguity, several methods explored progressively merging regions into
hierarchies of segments across multiple scales [18, 35]. Our approach draws inspiration from these
but reformulates them in the context of modern, end-to-end trainable vision backbones.

Several methods proposed learning-based mechanisms for pixel grouping. [36] introduced a dif-
ferentiable variant of the SLIC algorithm for task-specific superpixels. Similarly, [15] proposed a
differentiable variant of K-Means for unsupervised object discovery, which iteratively assigns image
pixels to a set of slots. While these approaches inspire our spatial grouping layer, we instead propose
a sparse and efficient design, and integrate it as a fundamental building block for modern backbones.

Grouping in vision backbones. GroupViT [9] and ClusterFormer [10] pioneered the design of
data-driven backbones with learnable downsampling operations. They group image constituents into
a reduced set of tokens using (dense) cross-attention layers, which hinder their scalability due to the
quadratic complexity of the attention operation w.r.t. input size. An orthogonal line of work [37]
accelerates vision transformers for classification tasks with heuristic-based token merging strate-
gies. By contrast, our approach is general, fully learnable, and scalable to large input resolutions
as early local layers rand educe input token set cardinality on which dense layers operate. This
enables our approach to be used in a variety of segmentation tasks and also significantly outper-
forms cross-attention-based grouping [10] in text-supervised semantic segmentation. Alternatively,
[11, 12] mitigate this issue using non-differentable super-pixel method [19] to obtain initial image
segmentation followed by data-driven grouping, while TCFormer [12] relies on an external clustering
method to group image constituents across multiple network layers. Our approach does not require
such non-differentiable clustering methods and consists solely of differentiable grouping layers. Our
streamlined design performs favorably compared to prior art in zero-shot segmentation. Moreover,
unlike the aforementioned works, we show it performs favorably both with and without dedicated
segmentation heads in downstream segmentation tasks.

3 Native Segmentation Vision Transformers

Our Native Segmentation Vision Transformer (SeNaTra) follows the standard structure of modern
hierarchical vision backbones [1, 2, 3], consisting of four stages that progressively reduce the spatial
resolution of feature maps while doubling their channel dimensions (Figure 2). Given an input image
of size H x W, the initial stage splits it into 4 X 4 patches to obtain initial token embeddings, and
each subsequent stage S;, i = 2, ..., 4 produces tokens at a resolution of (H/2!1) x (W/2+1).

In Section 3.1, we describe our spatial grouping layer that replaces uniform downsampling layers
in-between network stages. By composing these grouping layers our backbone builds a hierarchical
image representation that organizes pixels into increasingly large, semantically meaningful regions
(Figure 2 (a)). While our approach is general and task-agnostic, our learned downsampling operation
further enables boundary-preserving feature upsampling, especially beneficial in downstream dense
prediction tasks, such as segmentation, as presented in Section 3.2.



3.1 Content-aware Spatial Grouping Layer
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(a) Architecture overview (b) Spatial Grouping Layer (c) Learned upsampling
Figure 2: Overall model design. Visualization of our hierarchical architecture and its key components.
(a) Our backbone architecture consists of four processing stages interconnected by content-aware
grouping layers for downsampling. (b) Core operations of our Spatial Grouping Layer, which
computes soft token assignments and updates group features iteratively (detailed in Algorithm 1).
(c) The composition of learned assignment matrices across grouping layers in consecutive backbone
stages enables principled feature upsampling.

Learning semantically meaningful pixel groups. Uniform downsampling operations such as
pooling or strided convolutions, which are de facto standard in current architectures, treat all feature
locations in an image equally regardless of their feature content, and apply a fixed operation for
all input tokens. This approach is inherently limited in its ability to distinguish between high and
low-frequency regions and capture relevant details. To address this limitation, we propose to learn a
mapping between input and downsampled tokens that dynamically adapts to input features, instead
of solely relying on feature positions in a grid. Specifically, we map tokens with similar feature
embeddings, hence belonging to the same object or semantically meaningful region, to the same
output token in our downsampled representation. By learning such mapping, our model preserves
semantically meaningful boundaries within the image across its consecutive network stages.

Grouping algorithm. Building on this  Algorithm 1 Grouping layer over an input feature

intuition, we frame our task as a differen- map X for L iterations with sparsity.
tiable clustering process inspired by the

K-means [38, 39] and its modern differen- Input: Feature map X" € RV, Mask' Myoc€
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Qur full approach .is. f)uFlined in Algo— 10: XOU ¢ XU L LN(MLP(X°"))
rithm 1. We first initialize X°" with 2 |{. end for

strided convolution, as it is common prac- 12: return X, A% 4

tice [25, 3]. Then, for L iterations (L = 3
in our experiments), we alternate between two key steps: (i) computing a soft assignment matrix
from input tokens with a cross-attention-like operation (L3-5), and (ii) renormalizing this matrix
over columns to update X°" with a weighted mean over input tokens (L6-9). Intuitively, since

A € [0, 1]VXN “"" is row-normalized, each element A;l?s can be interpreted as the probability

tiable variant [15] where our output down- {0, 1}V <N
sampled tokens act as centroids, and input Learnable Modules: Strided Conv Conv; linear projections
tokens are iteratively assigned to them. For- Q. K, V; MLP, LI; rel. pos. bias B; temp. 7.
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with reduced spatial dimensions. Follow- down A
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that each input token X" gets mapped to an output downsampled token X;-’“‘. These assignment
probabilities are then used to update the corresponding features of X" (L9), which act as centroids.

'For clarity, we show a naive implementation with sparsity via M. (0 for enabled pairs, —oo otherwise).
See Appendix E.1 for our efficient implementation.



By repeating this process over L steps, we iteratively refine both the assignment probabilities as well
as the resulting features X °",

Local and dense grouping. A key limitation of Algorithm 1 lies in the cost of computing A"P* (L3)
due to the quadratic complexity w.rt. the cardinality of the input token set, N'™™, making it impractical
for high-resolution feature maps. Inspired by the SLIC algorithm for superpixel generation [14, 36],
for high-resolution feature maps we restrict the computation of cross-attention coefficients to a small
3 x 3 local window centered around each output token in X (see Figure 2 b). Intuitively, this
mechanism retains the flexibility of a learned downsampling operator, where input tokens can be
dynamically mapped to their downsampled counterparts, and injects a locality prior: input tokens
will be mapped to tokens that will be close in the resulting output space. This enables the notion of
locality in output tokens, allowing us to leverage commonly used local attention mechanisms [1, 3].
Computationally, this prior results in highly sparse A" and A%"" matrices that can be efficiently
computed with CUDA kernels (see Appendix E.1) and, overall, reduces the computational complexity
of our Grouping Layer from O(LN?*d) down to O(LNd) making it practical for high-resolution
maps. In our architecture, we use local grouping in the second and third stages, where higher-
resolution feature maps are processed. In the final stage, we enable dense, i.e., non-sparse, grouping,
which ensures that our model’s output tokens can merge regions and objects over the entire input
image.

Connection to Slot Attention. The core operations in our grouping layer are akin to those introduced
in Slot Attention [15]. Our downsampled tokens can be interpreted as slots that, instead of being
sampled from a random distribution, are initialized by a strided convolution layer over input tokens
X. Additional technical differences include replacing the GRU originally used to update slots, i.e.,
pixel groups, with a simpler skip connections (Algorithm 1, L9) and the use of relative positional
encodings to encode spatial relationships between input and output tokens (Algorithm 1, L3). More
importantly, the sparsity constraints in the cross-attention operation introduced in the previous
paragraph enable efficient processing of high-resolution inputs, making this differentiable grouping
mechanism practical for hierarchical vision backbones.

3.2 Native Segmentation

Composing assignments via Markov chain. By forwarding an image through our model, the
combined output of all n grouping layers yields two sets of matrices {A;”"}",, and {Adownmyn |
where each matrix A;™ (resp. A%°"") corresponds to the output of the grouping layer at stage i + 1,
with dimensions Ni* x N, As grouping layers are applied in consecutive stages, N = N;‘jrl for
eachi =1,...,n— 1. Now, recall that by construction, A;'ps is a row-stochastic matrix, where entries
can be interpreted as the probability of each input token being mapped to a subsequent downsampled
token. Each matrix A‘;p * can therefore be interpreted as a state transition matrix, and the overall
mapping from tokens at stage [ to tokens at an earlier stage [ — k € {1,...n — 1} can be interpreted
as a Markov chain with state transition probabilities given by:

ups . Aups ups down .__ down \T' down\T"
A = A D X XA A = (AT )T o (AP (D)

Where, analogously, since A%"" is a column-stochastic matrix, A?ﬂ‘:’l'ﬂr i, defines a mapping for tokens

from stage [ to [ + k. Therefore, any set X of arbitrary of N/ d-dimensional token embeddings
at stage [ can be upsampled to stage [ — k (resp. downsampled to [ + k) resolution via dot product
A;‘f 1— X s (re_sp.. A?i‘flfjr £X). Since 2!11 except for our las.t grouping layers utilize local grouping, at
most one matrix in the product of assignment matrices will be non-sparse. The product of all sparse
matrices involved is also block-sparse and can be efficiently computed (see Appendix E.1).

Backbone-level segmentation. The observations made in the previous paragraph enable a proba-
bilistic interpretation of hierarchically decomposing an image into segments. At each stage i, A}™,,
maps input tokens, i.e., image patches, to N,;’“‘ disjoint tokens, i.e., segments, where Nf“t decreases
with ¢. Our final stage 4 enables dense grouping, allowing tokens to encode segmentation masks
spanning the entire image. Notably, this can be achieved without explicit supervision of intermediate
transition matrices or their composition. Since grouping layers are differentiable, our entire archi-
tecture remains end-to-end trainable on standard image-level objectives through global pooling of
final-stage tokens. At inference time, applying a learned classification head or text embeddings to

final tokens, followed by upsampling via A™,, , enables zero-shot input-level predictions suitable



for semantic segmentation. Despite the absence of mask supervision, our grouping layer’s strong
inductive bias yields high-quality masks in this setup, as we show in Section 4.1.

Leveraging mask supervision. Image segmentation tasks can be divided into partitioning an
image into .S disjoint segments, and doing per-segment classification. While contemporary methods
rely on specialized heads to enable instance-level high-resolution predictions [6, 40], our model
directly encodes image partitions through input-output token mappings A}™, . at the backbone
level. This enables a minimalistic purely native approach: training only MLPs to classify our final
tokens with bipartite-matching losses. Furthermore, our model can be integrated into standard
segmentation frameworks with a key improvement: feature map upsampling and downsampling
operations, commonly used in pixel decoders, can be replaced with our grouping-based operations,
leading to improvements over the segmentation accuracy of state-of-the-art methods (Section 4.2).

4 Experiments

Overview. In the following, we extensively evaluate SeNaTra with w.r.. different supervision
regimes and task complexity. In Section 4.2, we start with mask-free supervision and study emerging
segmentation from image-class (Section 4.1.1) and image-caption (Section 4.1.2) supervision, com-
paring our model to state-of-the-art zero-shot segmentation methods. In Section 4.2, we train and
evaluate our model on standard datasets and benchmarks for semantic (Section 4.2.1) and panoptic
(Section 4.2.2) segmentation, comparing our direct segmentation model and backbone as drop-in
replacement against state-of-the-art. We analyze our design choices and contributions in Section 4.3.

Models. We evaluate three SeNaTra models: tiny (T), base (B), and large (L), with output embedding
dimension of 512, 1024, and 1536, following [3]. Full configurations are provided in Appendix D.

4.1 Learning Without Mask Supervision

4.1.1 ImageNet Classification

We train SeNaTra on ImageNet-1k and ImageNet-22k [41], following the training setup of [1]. We
visualize the learned group representations at different backbone stages in Figure 3, along with final
per-group activations for the predicted class (5¢" col), and refer to Appendix D.1 for quantitative
analysis and comparison with standard backbones [3]. While our network performs on-par with
state-of-the-art on ImageNet classification task, we observe that as a by-product of our network
design, our network produces a hierarchy of boundary-preserving super-pixel-like groups, combined
in the last, dense grouping layer into meaningful semantic regions (4‘" col). We emphasize we train
our models using output-level class supervision only. Our model retains state-of-the-art performance
w.r.t. classification, and, remarkably, learns per-pixel localization of objects without mask supervision
as a direct consequence of our proposed architectural changes.

4.1.2 Zero-shot Segmentation from Vision-Language Supervision

Setup. We pre-train SeNaTra with image-text pairs using softmax contrastive objective [42, 43],
borrowing hyperparameters from [44]. We evaluate our models in zero-shot semantic segmentation.
To obtain image group embeddings, we apply a linear projection layer to the final image (resp. text)
output tokens and apply global pooling, followed by L2 normalization. To classify, we feed class
names (for each dataset) through the text encoder with standard template prompts and pick the class
with maximum cosine similarity for each group embedding, followed by our upsampling operation
(Section 3.2). For details, see Appendix D.2.

Datasets. Following [44], we train our model for 20 epochs from scratch on the union of the
CC3M [45] and CC12M [46] datasets (20M semi-curated image-text pairs), and union including Red-
Caps12M dataset [47] (+12M additional pairs). Following [48], we evaluate trained models on Pascal
VOC [49], Pascal Context [50], COCO [51], COCO-Stuff [52], ADE20k [20] and Cityscapes [53].
These span diverse scenarios, ranging from urban street scenes (Cityscapes), general object categories
(COCO, Pascal VOC), and densely annotated fine-grained scenes (ADE20k, Pascal Context). We
discuss results in terms of standard mean intersection-over-union (mloU).

Discussion. As can be seen in Table 1, our SeNaTra outperforms specialized state-of-the-art methods
across most benchmarks, including models leveraging CLIP’s large-scale pre-training on 400M
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Figure 3: Segmentation emerges from ImageNet pre-training. We visualize group decompositions
across each backbone stage, along with their upsampled activations over the predicted class. We
observe that even in the absence of mask supervision, super-pixel-like structures emerge in earlier
layers, and are eventually grouped into semantically coherent regions in dense grouping layers.



Method Training data Postproc. | VOC  Ctx  Obj. Stuff City ADE | Avg.
CLIP-Pretrained Methods

ViL-Seg [54] CCI2M 373 189 18.1 - - - -
SegCLIP [55] CC3M+COCO - 526 247 265 - - - -
TCL [48] CC3M+CCI12M PAMR | 55.0 304 31.6 224 240 17.1 | 30.1
CoDe [56] CC3M+CC12M PAMR | 57.7 30.5 323 239 289 17.7 | 318
Models trained from scratch
GroupViT [9] CC3M+CCI12M+YFCC14M - 495 190 243 126 69 8.7 [20.2
ViewCo [57] CCI12M+YFCC14M - 524 23.0 235 - - - -
CoCu [58] CC3M+CC12M+YFCC14M - 514 23.6 227 152 221 123 | 246
PGSeg [59] CC12M+RedCaps12M - 532 238 287 - - - -
SimSeg [44] CC3M+CC12M CRF 574 262 29.7 - - - -
SeNaTra-B (Ours) CC3M+CCI12M - 61.3 302 32,6 21.1 300 164 | 319
SeNaTra-B (Ours) CC3M+CC12M+RedCaps12M - 614 312 332 232 321 174|331

Table 1: Zero-shot, text-supervised semantic segmentation. We compare our method to state-of-
the-art methods on six datasets, and report average mloU across datasets where applicable. We bolden
top-performers, and underline 2%, and indicate postprocessing techniques (CRF [60], PAMR [61]).

image-text pairs, 20x larger than our training set. We observe large improvements (4+) mloU over
all datasets w.r.z. methods not utilizing CLIP. We note that top-performing methods (TCL [48],
CoDe [56], and SimSeg [44]), rely on postprocessing techniques such as PAMR [61] and dense
CREFs [60], that increase their performance by 3 — 4 mloU , as reported in [48, 44]. In contrast, we
obtain strong results due to our network design, without applying any postprocessing. Our approach
also surpasses methods leveraging CLIP on most datasets, except ADE20k and COCO-stuff (150
and 133 classes, respectively), where we are second to CoDe. The increased semantic granularity of
these datasets benefits from extensive CLIP pre-training. Remarkably, by expanding our training data
with just 12M additional image-text pairs from RedCaps12M, we significantly narrowed this gap,
showcasing the potential for further scaling.

4.2 Training with Mask Supervision

Overview. We train SeNaTra with mask supervision on standard semantic [49] and panoptic
segmentation [21] datasets. Following common practice, we initialize weights from ImageNet
pre-training (Section 4.1.1). Appendix D.3 provides extended results and implementation details.

Segmentation paradigms. For each task, we evaluate (i) our minimal native masks model that
generates masks via backbone-level pixel assignments, and (ii) drop-in backbone replacement in
conjunction with a Mask2Former (M2F) [6] dedicated head (see Table 2[c]).

Native segmentation: We make per-pixel class predictions by feeding our backbone’s final group
token embeddings through a 2-layer (512 dim.) MLP. We then upsample these (at stride 32) to input
resolution using our learned pixel assignments (Section 3.2), and class predictions using cross-entropy
loss. For panoptic models, we use an additional 2-layer MLP targeting objects. We apply it over the
top-100 final group tokens with largest assignment values, representing object candidates. We follow
[6] and supervise instance mask and class predictions with a bipartite matching loss [31].

Ours+Mask2Former: Our network is versatile and can also be used as a drop-in replacement with
networks, such as the widely used M2F, that combine a pixel-decoder using multi-scale deformable
attention with a segmentation Transformer decoder. In our version, we replace standard upsampling
operations with the assignment matrices obtained through our learned assignments (Section 3.2).

Baselines. As backbone baselines, we report methods that follow a consolidated design with uniform
downsampling, including well-established SwinTransformer [1] and NAT [3], as well as recent bottom-
up grouping approaches [11, 12, 10]. We report these in conjunction with dedicated segmentation
networks, including: UperNet [40], commonly used for benchmarking vision architectures [1, 3, 25,
62, 63], and widely-used MaskFormer (MF) [13] and Mask2Former (M2F)[6]. We evaluate SeNaTra
as both a backbone and to generate native masks without dedicated segmentation heads.

4.2.1 Semantic Segmentation

Setting. We train models to classify pixels into 150 semantic classes on ADE20k dataset [20], and,
following common practice, report results on the validation set. We follow similar hyperparameter



Backbone Seg. Head ‘ mloU ‘ #Params FLOPs Backbone Seg. Head | PQ | #Params
Backbones w/ Uniform Downsampling Swin-T [1] MF 477 42M

Swin-T [1] UperNet | 44.5 60M 946G SeNaTra-T Native |49.2 | 32M

Swin-T [1] M2F 47.2 47™M - Swin-T [1] M2F 532 | 47M

NAT-T [3] UperNet | 47.1 58M 934G NAT-T" [3] M2F 543 | 46M

NAT-T™ [3] M2F 49.1 46M - ClusterFm.-T [10] [10] 54.7 -

Swin-BT [1] M2F 53.9 107M - SeNaTra-T M2F 55.0 | 47M

Swin-LT [1] M2F | 56.1 | 215M - Swin-BT [1] MF  |518| 102M
Backbones w/ Grouping-based Downsampling SeNaTra-B' Native | 52.6 | 96M

CAST-S [11] Segmenter | 43.1 | 26M — Swin-BT[1] M2F |56.4 [ 107M

TCEm.VI-S[12] SemFPN | 47.1 | 20M 370G SeNaTra-B M2F 571 | 112M

SeNaTra-T Native 49.7 30M 113G Swin-LT [1] M2F 57.8 | 216M

TCFm.V2-S [12] M2F 49.1 42M - SeNaTra-L! M2F 58.1 | 228M

ClusterFm.-T [10] [10] 49.1 - - . .

SeNaTra-T M2F 51.3 47M ) (b) Panoptic segmentation on COCO-val.

TCFm.V2-B [12]  SemFPN | 50.0 66M 332G Transformer Decoder

SeNaTra-B Native 51.3 95M 347G

TCFm.V2-B [12] M2F 53.8 80M -

SeNaTra-B M2F 54.6 112M -

SeNaTra-B' M2F 56.0 | 112M - -

SeNaTra-L' M2F 56.7 228M Native Segmentation

(c) Segmentation paradigms.
(a) Semantic segmentation on ADE20k-val.

Table 2: Downstream semantic and panoptic segmentation after fine-tuning. (a) mloU on
ADE20k. (b) PQ on COCO val2017. (c¢) Conceptual visualization of segmentation paradigms.
Models marked with T are pre-trained on ImageNet-22K. NAT-T* is our implementation.

configurations as baselines (details in Appendix D.3), except for a reduced number of iterations from
160k to 80k due to increased convergence speed with our model.

Discussion. In Table 2a we observe: (i) our native masks yield substantial improvements over both
standard and grouping-based backbones using well-established segmentation heads (UperNet [40],
Semantic FPN [64], Segmenter [65]), with remarkable compute and parameter-efficiency in our
smaller variants. SeNaTra-T achieves 49.7 mloU, +2.6 w.r.t. NAT w/ UperNet (47.1 mloU, NAT-T),
with only 12% of its FLOPs and 50% of its parameters. When (ii) using M2F head, our grouping-based
representations consistently improve performance across variants: +1 mloU w.rz. M2F + Swin, and
+2.7 mloU w.r.t. M2F + NAT. Overall, (iii) our backbone adds a modest 5-10% increase in parameters
and FLOPs over standard backbones. While combining it with M2F slightly increases computational
costs over NAT, this cost is effectively amortized in the native setup where the segmentation head is
removed, making the overall approach more parameter- and FLOP-efficient.

4.2.2 Panoptic Segmentation

Setting. We train and evaluate models on COCO-panoptic [21], which consists of 80 object (things)
and 53 background (stuff) classes, requiring models to predict semantic classes and instance IDs for
things. Our models are trained for 50 epochs, using M2F’s original hyperparameters for integrated
models. For our native results, we use the same hyperparameters as in semantic segmentation.

Discussion. We observe in Table 2b: (i) our tiny native results (49.2 PQ) outperform MaskFormer
w/Swin-T (47.7 PQ) by a sizeable margin, despite fewer parameters (32M v.s. 42M). This trend is
consistent across different model sizes, as with Table 2a. (ii) M2F + NAT-T backbone (54.3 PQ)
outperforms our barebone native masks, however, our SeNaTra-T + M2F (55 PQ) achieves top
performance, and further improves with a larger backbone (SeNaTra-L, 58.1 PQ). Overall, our native
results surpass consolidated baselines, and our backbone enhances state-of-the-art when paired with
dedicated segmentation heads.



S1 S2 S3 ADE20k ZS-VOC ADE20k ZS-VOC
Baseline | X X X 41.3 40.1 SeNaTra 49.7 57.3
SeNaTra | X X v 472 51.9 — Absolute pos. encoding 48.8 (-0.9) 56.7 (-0.6)
X Vv v 48.7 54.2 — GRU instead of skip 44.9 (-4.8) 55.0 (-2.3)
v v (local) 47.3 55.8 — nn.Embedding group init. 47.2 (-2.5) 54.1(-32)
v 7/ v 49.7 57.3 — Prev. three (Slot Attn. [15]) | 43.6 (-6.1) 52.3 (-5.0)
(a) Impact of grouping at each backbone stage. (b) Low-level design choices in our grouping layer.

Table 3: Architecture-level ablations. We report native masks mloU on ADE20k and Zero-Shot(ZS)
mloU on Pascal VOC. In (a), we evaluate the effect of replacing grouping layers with uniform
downsampling at each stage. In (b), we study low-level design decisions inside our grouping layer.

4.3 Ablation Studies

Grouping at different backbone stages. Table 3a compares our spatial grouping layer to uniform
downsampling with strided convolution (as in NAT [3], without grouping) over each backbone stage
(S1, S2, S3). The Baseline underperforms compared to our approach, in both supervised (41.3 mloU,
—8.4) and zero-shot (40.1 mloU, —17.2) settings. Instead of learned pixel assignments, this approach
relies on bilinear interpolation to predict high-resolution masks from coarse stride 32 feature maps.
Moreover, we observe that introducing grouping spatial layers across stages increases performance
monotonically. Local grouping in the last stage significantly decreases performance in both metrics.
Our design enables whole-image masks by leveraging efficient local grouping in early stages.

Grouping layer design. Table 3b compares our grouping layer design (Section 3.1) relative to slot
attention [15]. Replacing the GRU with skip connections yields an improvement of +4.8 mloU.
In practice, we observed that it addressed numerical instabilities during ImageNet pretraining and
reduced memory requirements. Similarly, sampling initial embeddings from a learned Gaussian
distribution, as in [15], also compromised stability. Using learnable embeddings for initialization, as
in [66], still drops performance by 2.5/3.2 mloU. Further using relative positional encodings yields
an additional 1 mloU. Altogether, these yield significant improvements of 6.1/5.0 mloU on ADE20k
and ZS-VOC, respectively, while enhancing training stability and memory footprint.

Segmgntation paradigms. In Tgble 4,.we ab- PixDec. TrDec. | mloU  PQ
late: (1) backbonq ghowe (ours Wl'th native seg- g o7 192
mentation capabilities vs. baseline [3]), and . -
.. . — w/o grouping 41.3 15.9
(i1) two key Mask2Former components: a pixel
. . SeNaTra v 49.7 48.8
decoder for multi-scale feature fusion, and a — wlo grouping v 74 173
Transformer decoder for producing mask embed-
di In the fi NAT SeNaTra — M2F v v 51.3 55.0
ings. In the first two rows, we compare — wlo grouping Y v 191 543

(w/o grouping) with ours, without any additional . .
components. Our baseline fails at this task (PQ Table 4: Segmentation paradigms. We ablate
15.9, row 2) and underperforms in semantic seg- adding a Pixel Decoder and Transforme.r Decoder
mentation (—8.4 mIoU). Adding a pixel decoder 0N ADE20k (mIoU) and COCO-Panoptic (PQ).
(MSDeformAttn from Mask2Former, rows 3&4)

minimally impacts our approach, but significantly improves NAT baseline (+6.4 mlIoU). Finally,
rows 5&6 show that a segmentation decoder is crucial for NAT to segment instances (54.3 mloU),
and benefits semantic segmentation (41.7 mloU). Dedicated decoder also benefits our approach in
terms of panoptic segmentation (55.0 PQ, +5.8 PQ), showing potential for improvement.

5 Conclusions

This work introduces a novel architecture particularly suited for segmentation tasks centered around
our proposed spatial grouping layer. Our design offers significant methodological advantages over
prior art, being fully differentiable with strong inductive bias and scalable to large input resolutions.
Through empirical results, we demonstrated the emergence of meaningful segments without explicit
mask supervision and a streamlined paradigm for downstream segmentation. Our work shows that
segmentation—a fundamental perception task—can be inherently encoded in a model’s internal
representations rather than delegated to specialized decoder modules, opening new directions in
segmentation-centric backbone architectures.
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Appendix

Overview. We structure the appendix as follows: in Appendix A and Appendix B, we provide a
general discussion and broader impact statement, respectively. In Appendix C we show visualizations
of our model’s learned hierarchical decompositions and final segmentation masks for image-text
supervision. In Appendix D we provide extensive implementation details and additional experi-
mental results. Lastly, in Appendix E we discuss low-level details on our spatial grouping layer’s
implementation and its runtime and compute considerations.

A Discussion

SeNaTra introduces a new family of backbone architectures enabling native segmentation through
spatial grouping layers. As demonstrated in our experiments, our approach outperforms strong
baselines and previous grouping-based works both in the purely native setting (including zero-shot),
as well as with additional segmentation heads. Despite its promising results, SeNaTra has limitations.
While our model scales approximately linearly with respect to input resolution (see Appendix E.2),
grouping layers introduce computational overhead compared to their de-facto counterpart, strided
convolutions, given the lightweight nature of the latter. This added complexity is largely amortized
when leveraging native segmentation capabilities but remains a limitation when integrating our
model with external heads. As explained in Appendix E.1, we provide an efficient CUDA-based
implementation, however, there remains room for improvements both in terms of low-level CUDA
optimizations and general module design. Another consideration is that while our native results
perform favorably in both semantic and panoptic segmentation, our model yields larger gains in
semantic segmentation. A plausible explanation lies in biases acquired during ImageNet pre-training.
During this stage, our model is not incentivized to separate different instances of the same class
in grouping layers, but rather to focus on overall semantics. Therefore, the adaptation needed for
a pre-trained model to transfer knowledge through grouping layers for semantic segmentation is
likely smaller than that required for panoptic segmentation, where instance separation is required.
Throughout our experiments, we focused on using off-the-shelf pre-training recipes to highlight
advantages induced solely by our architectural design. However, we believe there are multiple exciting
opportunities for future work to address this observation and design object-oriented pre-training
schemes, such as work focusing on visual grounding [67].

B Broader Impact Statement

Our work proposes a new vision backbone architecture with applications mainly in the field of
segmentation. Given the broad scope and potential applications of this task, and computer vision
systems overall, our model inherits both opportunities and challenges common to this field. Like any
general-purpose data-driven model, it may exhibit biases present in training data and could potentially
be adapted for concerning applications. However, some of our empirical results demonstrate improved
parameter and compute efficiency compared to existing solutions, as well as increased data efficiency.
These properties could enable positive impact in resource-constrained settings where access to large
datasets or computational resources is limited, such as applications in life sciences.

C Zero-Shot Qualitative Results

In Figure 4, we show both per-stage groups as well as final predicted semantic masks for SeNaTra-
B pretrained on image-text pairs, i.e., CC3M and CC12M datasets. The results are obtained on
validation images of the PASCAL VOC dataset [49]. As with class-supervised models, we observe
a hierarchy of boundary-preserving groups across stages. We notice that our model’s final groups
have a larger tendency towards oversegmenting objects and regions. This can be explained due to
the richer and denser semantic content present in text embeddings, which may benefit from a more
granular visual representation. Remarkably, by querying final tokens with text embeddings we obtain
high-quality semantic masks (column 5), suggesting that our model’s pixel partitions carry semantic
awareness.
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Figure 4: Qualitative zero-shot segmentation learned from image-text contrastive pre-training.
We visualize hierarchical final decompositions along with their predicted semantic masks, obtained
in a zero-shot setting on Pascal VOC validation images [49], and corresponding ground truth masks.
Note that these models did not receive any form of mask supervision during training, and were trained
with a standard contrastive objective on image-text pairs. Final masks are obtained without any form
of heuristic postprocessing.

D Additional Results and Implementation Details

Overview. In the following, we provide additional results, and implementation details for each of
the experimental setups described in the main paper. Note that our code and pre-trained models will
be made publicly available.

Model variants. As explained in Section 4.1, we present results with three different model variants,
each corresponding to an increased parameter count. In Table 5, we specify the configuration of each
variant, including (i) number of transformer encoder layers, i.e., blocks consisting of self-attention
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# layers dim  MLPratio | # params

SeNaTra-T | 3,4,18,5 512 3 29M
SeNaTra-B | 3,4,18,5 1024 2 94M
SeNaTra-L | 3,4,18,5 1536 2 211M

Table 5: Model variants. We summarize the model configuration of each of our backbone variants:
number of transformer encoder layers used at each stage (# layers), output token dimension (dim),
and MLP hidden dimension ratio in transformer encoder layers (MLP ratio).

followed by an MLP with residual connections, (ii) final embedding dimension, and (iii) MLP ratio,
i.e., hidden dimension of the aforementioned MLPs in transformer encoder layers. The overall
configuration used for each model variant is borrowed from [3], with the exception of large, which
was not presented in its original work. We choose the design of [3], due to its strong baseline
performance among existing networks in both classification and dense prediction.

Rotary Positional Encodings. In the original work of [3], the self-attention layers used at each
backbone stage were implemented with relative positional encodings [68]. Recently, Rotary Positional
encodings (RoPe) [69, 70] have gained popularity, due to their ability to encode pairwise positional
information in a principled way and without the need for explicit access to the self-attention matrix.
This can be largely beneficial in terms of runtime and memory consumption, as it allows the use of
fused implementations of self-attention [71, 72], resulting in significant runtime improvements. For
the sake of efficiency, we replace the relative position biases in self-attention layers originally used by
[3] with RoPe, and leverage the recently proposed fused kernels from [72]. Empirically, we observe a
negligible decrease of downstream classification and segmentation performance, and a significant
increase in speed. Particularly on newer hardware, e.g., A100s, this change results in an approx 30%
decrease in runtime, helping offset the overhead introduced by our spatial grouping layers.

D.1 ImageNet Classification

ImageNet-1k pre-training: imple- method image size | #params. FLOPs | top-1 acc.
mentation details. We train our mod- ImageNet-1k trained models

els from scratch for 300 epochs at res-  ViT-B/16 [24] 3842 86M 554G | 779
olution 224 x 224, following all train-  DeiT-S [73] 2242 22M 4.6G 79.8
ing hyperparameteres, including op- DeiT-B [73] 2242 86M  17.5G 81.8
timizer, learning rate scheduler, and  ClusterFormer-T [10] 2242 28M - 81.3
augmentation setting of [1]. How- Swin-T [1] 2242 29M 4.5G 81.3
ever, we disable MixUp augmenta- ConvNeXt-T [25] 2242 28M 4.5G 81.3
tion as it degrades our results. The TCFormerV2-S [25] 2242 26M 4.5G 82.4
drop is likely caused by the ambigu- NAT-T [3] 2242 28M 4.5G 83.3
ity that alpha composite images in- SeNaTra -T (Ours) 2242 29M  49G 83.1
troduce in our grouping layer. Un- Swin-B [1] 2242 88M 15.4G 83.5
like [3], we do not train for additional ~ ConvNeXt-B [25] 2242 89M 15.4G 83.8
cooldown epochs. Following [1, 3], NAT-B [3] 2242 90M  13.7G 84.3
we use stochastic depth for regulariza- SeNaTra -B (Ours) 2242 90M  14.9G 84.0
tion [74], with default survival prob- ImageNet-22k pre-trained models

abilities of 0.3 and 0.5 for our tiny "ViT-B/16 [24] 3842 86M  55.4G 84.0
and base variants, respectively. Train-  Swin-B [1] 3842 88M  47.0G 86.4
ings take approximately 36 hours on  ConyNeXt-B [2] 3842 89M 451G | 86.8
8 A100 GPUs. SeNaTra -B (Ours) 3842 94M 479G | 86.9
ImageNet-22K pre-training: imple- ViT-L/16 [24] 3842 307M  190.7G| 85.2
mentation details. Following ~ Swin-L [1] 3842 197M  103.9G|  87.3
[1, 251, we pre-train our larger model ~ ConvNeXt-L [2] 3842 198M 101.0G| 87.5
variants for 90 epochs on the larger- SeNaTra -L (Ours) 3842 21IM  107.3G| 873

scale ImageNet-22k dataset, which Table 6: Image classification on ImageNet-1k and -22k.
consists of approximately 16M im- We compare various standard and grouping-based backbones
ages labeled over 22k classes. In both trained from scratch on 1k and pre-trained on 22k.

this setup, we reduce stochastic depth

probabilities to 0.2, following [1]. We follow prior art [1, 25] and fine-tune these models for 30
additional epochs on the ImageNet-1k dataset at 384 x 384 resolution and report top-1 accuracy
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on ImageNet-1k-val. As in the previous setup, we follow the training recipe and parameters of [1],
both for pre-training and fine-tuning, with the exception of MixUp augmentation. Pre-training runs
are conducted on 16 A100 GPUs for approximately a week, and fine-tuning on ImageNet-1k takes
approximately 6 hours on 8 A100s.

Discussion. In Table 6, we provide quantitative results of our model against state-of-the-art methods
following a comparable supervised setup. As noted in the main text, our approach performs on par
with state-of-the-art, while enabling the emergence of strong pixel-level localization properties, as it
can be observed qualitatively in Figure 3.

D.2 Image-Text Pretraining

Pre-training: implementation details. As explained in the main paper, we adhere to the training
setup of [44]. We note, however, that [44] open-sourced its evaluation code, but did not provide
scripts nor instructions to train its model. Our attempts at reproducing their reported results lag 1 — 3
mloU behind the reported numbers. Following the hyperparameters specified in their original paper,
we train for 20 epochs with initial learning rate 3 x 10~* and a use a cosine decay scheduler leading
to a minimum learning rate of 3 x 10~°. We apply linear learning rate warmup during the first 3%
iterations, and train for a total of 20 epochs with a batch size of 4096 (approx. 68k iterations). As
with ImageNet models, we use stochastic depth for regularization [74], with survival probabilities set
to 0.2 and 0.3 for our tiny and base model, respectively. For our configuration using additional data
from RedCaps12M, we keep all hyperparameters identical, and train for 20 epochs on the union of
all datasets (CC3M, CC12M, and RedCaps12M), leading to a total of 126k iterations. Trainings are
conducted on 16 A100 GPUs, lasting approximately two days for default configurations, around four
days when using the RedCaps12M dataset.

Backbone-level comparison. As ex-  packbone  CRF | VOC  Context COCO-Obj. | Ave.
plained, we follow the experimental setup ¢ X 338 35 757 343
described [44] and replace its backbone / 64 . P 36.5
(ViT, [24]) with our proposed SeNaTra ' ' ’ ’

backbone. We highlight the impact of this _SeNaTra-T X | 573 273 27 38.1
change in Table 7. We note that SimSeg ~ ViT-B X |31 233 274 34.6
[44] produces coarse patch-class activa- 4 57.4 26.2 29.7 37.8
tions and relies on postprocessing with ~ SeNaTra-B X | 613 30.2 326 414

Conditional Random Fields [60] to obtain
pixel-precise masks. Our method does not
require such heuristic postprocessing and
instead utilizes our upsampling operations
(Section 3.2) to produce pixel-level output.
For base, our approach yields a 3.5 avg. mloU increase, which further increases to 6.7 mloU when
comparing postprocessing-free outputs.

Table 7: Backbone comparison for text-supervised
zero-shot segmentation. Our approach significantly
outperforms SimSeg [44] trained with a ViT backbone,
without relying on CRF post-processing.

Zero-shot Segmentation Inference. As explained in the main text, we quantitatively evaluate the
performance of our image-text pre-trained models on zero-shot semantic segmentation. Our inference
details are the following: given a dataset with C' target classes, we obtain C' corresponding text
embeddings by feeding template prompts as "An image of {CLASS }" through our text encoder (we
use the original templates of [44]). We then compute the dot-product similarity between each of
our N°" final projected image tokens and target class embedding. By repeating this process over
all C' text embeddings, we obtain an N°" x C unnormalized similarity map, which we upsample to
input resolution, i.e., patch-level, with the transition matrices described in Section 3.2. By applying
an argmax over classes, we obtain a final class prediction for each input patch. For datasets with
an additional background class (Pascal VOC [49], Pascal Context [50] and COCO-obj [51]), we
need to set a threshold for mask values. To do so, we use the original method of [44], consisting
of computing the image-level-text embedding similarity of the top-k classes in the dataset, and
computing the mean value with an additional standard deviation. For the remaining datasets, we
just apply a pixel-wise argmax over all classes. Lastly, we obtain a small performance boost by
computing overall class similarities as the average of image-level similarities (after pooling), and the
maximum spatial similarity over final tokens, i.e., max similarity over our final groups.
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D.3 Native Segmentation Models with Mask Supervision

Semantic Segmentation: implementation details. As explained in the main paper, our native
segmentation for semantic segmentation obtains masks by feeding final token embeddings through a
2—layer MLP, followed by upsampling the results to input resolution with our learned upsampler. Our
model is implemented with mmsegmentation. For simplicity, we follow the default configuration
of the original FCN [27], which further concatenates final token embeddings after feeding them
through the MLPs, akin to skip connections. We have not explored this design thoroughly and
better alternatives are likely possible. Further following the original configuration of [27], during
training we add an auxiliary loss at our penultimate stage, consisting of an additional MLP that’s
used analogously to the one one in our final layer. This auxiliary MLP is ignored at test-time. Models
are trained with the same training hyperparameters used by Swin Transformer used in conjunction
with UperNet, with the only difference being an increased weight decay of 0.05, and a shorter
schedule of 80k iterations, instead of the original 160k. Trainings are conducted on 8 A100 GPUs
for approximately 6 hours.

Panoptic Segmentation: implementation details. As explained in the main paper, we use two
main MLPs for panoptic segmentation targeting things and classes separately. The logic behind this
division is to avoid penalizing oversegmentation errors for background regions. Therefore we use the
MLP targetting stuff regions as in our semantic segmentation model and produce class predictions
over each input token individually. The MLP targetting things is only applied over the top 100 final
tokens with largest assignment values in the last stage, representing potential object candidates. This
MLP classifies tokens into either a things class label or no object. While it is possible to obtain
a mask for each object candidate by directly using its corresponding input-level assignment, we
find it beneficial to refine instance mask predictions by computing the dot-product between object
candidates’ final embeddings and our penultimate stage output embeddings, effectively recomputing
the assignment matrix in our last grouping layer. In addition, before computing the dot-product, we
linearly project final token embeddings and upsample them to the previous stage resolution, aiming
to provide global context to Stage 3 features before re-computing the assignment. This procedure
enables correcting common over-segmentation errors and introduces no significant overhead. We
supervise the resulting masks and class predictions with the same bipartite matching loss as [6].
Lastly, during training, we find it beneficial to apply both MLPs and their corresponding losses to the
intermediate outputs of our last stage (5 in total), akin to the intermediate losses used by [31, 13, 6].
At test-time, intermediate predictions are not used. Lastly, models are trained on 8 A100s following
the same configuration from our semantic models, but for a longer schedule of 50 epochs—as in
Mask2Former [6]-and taking around 2.5 days.

E Efficiency and Performance Considerations

E.1 Efficient Sparse Implementation

Naive implementation. In Algorithm 1, for clarity when describing our grouping layer, we depict a

naive implementation with sparsity constraints. Formally, M. € {0, —oo} V>N “" is defined as 0
for input-output edges that are enabled (see Figure 2), and —o0, i.e., a large negative constant, for the
rest. By being added to A in L4, right before applying softmax in L5, entries set to —oo effectively
become 0. In this setup, dense grouping naturally corresponds to M;,. containing zeros in all of its
entries. This formulation accomodates both local and dense grouping, but is not the one we utilitze in
practice.

Optimized implementation. The problem with the naive implementation described in Algorithm 1
is that given V' input tokens and N°* output, tokens, it requires storing a dense N x N° output
matrix, which becomes impractical for input sets with large cardinality as the ones we process in the
early layers of our backbone. To exploit sparsity and avoid computing non-zero entries in the cross-
attention matrix, we leverage the sliding window attention CUDA kernels introduced in the natten
[3] library. In Algorithm 2, we outline the high-level implementation of the sparse variant of the cross-
attention and re-normalization operations described in Algorithm 1 (L3-8, excluding the use of LN)
using PyTorch. Abusing notation, we denote ¢ = ¢(X°), k = k(X™), v = v(X™), corresponding to
linearly projected output and input token embeddings. The main idea of the the implementation is to
repurpose the natten primitives na2d_qgk, corresponding to query-key cross-attention multiplication,
and na2d_av, corresponding to computing a weighted sum of values from the query-key matrix.
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To do so, given our input feature ten-
sor X" with spatial dimensions H x W,
and an initial set of of output downsam-
pled tokens X°" with spatial dimensions
(H/2) x (W/2), we first Unfold X™ into

Algorithm 2 Efficient implementation of sparse Spatial
Grouping Layer cross-attention operation

Input: k,q,v,q_idx, B, T,¢€
1 Compute sparse cross-attention

2 x 2 patches, resulting in a 4 x (H/2) x
(W/2) tensor. Now by expanding, i.e.,
creating view with *multiple copies’, our

: attn < na2d_qgk(k,q, B, 3)
: // Softmax over “groups”
: attn < softmax(attn X 7,dim = —1) 4 ¢

target downsampled tokens X °" into 4 X
(H/2) x (W/2), and linearly projecting (1,3))
them as described, we obtain a tensor repre- . attn_q < attn_g/denom

sentation in which applying sliding window : attn_q < reshape(attn_q,attn.shape)
cross-attention yields our expected group- 10: // Aggregate updates

ing operation over local windows. In Algo- 11: updates < na2d_av(attn_q,v,3)

rithm 2, we further refer to gather opera- 12: updates < sum(updates,dim = 1)

tions based on q_idx (L6). At a high-level, 13! returnupdates, attn, attn_q

g_idx is an index tensor that enables rein-

dexing the cross-attention matrix produced in L2 to enable computing the weighted mean from groups
over inputs efficiently (corresponding to Algorithm 1, L6-8). The resulting sparse matrix attn_q
can then be used as needed in na2d_av. These same ideas enable us to efficiently upsample and
downsample feature maps with our resulting assignment matrices by leveraging the aforementioned
primitives.

1:

2

3

4

5: // Reindex, reshape, renormalize over inputs
6: attn_q < gather(attn.flatten(2,3),q_idx)
7: denom < sum(attn_g,dims =

8
9

While it is possible to further optimize these operations by defining fused kernels that merge the
computation of cross-attention, renormalization, and reindexing without storing intermediate tensors,
our proposed implementation already provides a large improvement over naive implementations, or
pure PyTorch-based operations based on Unfold, as we show in Table 9. Overall, while our current
implementation not fully optimal it enables the practical usage of our grouping layer within modern
backbones on large resolution feature maps without exploding memory requirements. As already
mentioned, we will release our code and models.

E.2 Runtime and Memory Analysis

Model | Seg. Head | FPS | Time (ms) | Mem. (GB) | mloU
NAT-B [3] UperNet [40] | 37.4 26.7 0.9 48.5
SeNaTra-B | Native 43.6 22.9 0.6 51.3

Table 8: End-to-end model performance and resource usage. We compare our native masks against
the NAT baseline (with a UPerNet [40] decoder) in terms of throughput, latency, GPU memory, and
final downstream mloU on ADE20k.

Setup. We evaluate the computational  p.cojution Impl. FPS Time (ms) Mem. (GB)
efficiency of our method on an NVIDIA 9562 None 739 137 04
A100 GPU with 40GB of VRAM using Naive | 49.7 201 0.6
batch size one and full FP32 precision CUDA | 51.0 19.6 0.4
for our base model variant across multi- 5122 None 378 173 0.4
ple input resolutions in Table 8, and at Naive | 17.9 558 39
standard 512 x 512 for our Table 9. CUDA | 447 224 05
Discussion. In Table 8 we compare 7687 None | 36.7 272 0.5
three implementation approaches: con- Naive 6.8 146.8 14.8
ventional uniform downsampling (None, CUDA | 29.0 34.5 0.6
equivalent to our NAT [3] baseline), 10242 None 23.3 43.0 0.7
a naive, pure PyTorch implementa- Naive - - OOM
tion of our grouping layer (Naive), CUDA | 18.2 54.9 0.7

and our CUDA-optimized implementa- Taple 9: Backbone-level throughput and resource us-
tion, leveraging natten (CUDA). Our age, We report FPS, per-image latency, and peak GPU
CUDA-optimized spatial grouping en- memory for different input resolutions and grouping im-

ables practical deployment at high res-  plementations. “OOM” indicates out-of-memory.
olutions—where the naive implementa-

tion becomes prohibitively slow beyond
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512 x 512 and runs out of memory on a 40GB GPU at 1024 x 1024 resolution. Critically, our local
grouping design ensures that both memory consumption and runtime scale approx. linearly with input
resolution, making our approach practical for real-world applications. While our method introduces a
latency overhead ranging approx. 20 — 40% compared to uniform downsampling baselines when
used solely as a feature extractor (Table 9), the overall cost of our grouping layers is amortized when
considering end-to-end segmentation performance, as shown in Table 8: our native segmentation
capability eliminates the need for heavy decoder heads, ultimately reducing overall latency while
simultaneously improving segmentation quality (mIoU). Moreover, the relative overhead of grouping
layers is reduced at higher resolutions, due to the scalability of our approach, and the relatively
smaller compute being dedicated to downsampling vs. the rest of the backbone. In future work,
additional optimizations over our implementation and design could further bridge this gap.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Through extensive experiments, and qualitative examples, further extended in
the appendix, we thoroughly validate all claims regarding our proposed architecture.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a discussion section in Appendix A where we explicitly address
limitations of our approach. We further discuss limitations whenever appropriate in our
main experimental section (Section 4) e.g. dedicated heads still bringing performance
improvements over native results.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
Justification: This work does not provide new theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: For each experimental configuration, we aimed to provide as many details as
possible to enable the reproducibility of our approach in Appendix D, including detailed
training hyperparameters, model configurations, and inference logic. Moreover, we provide
pseudo-code of our efficient implementation in Appendix E. Upon acceptance, we will
release all code and pre-trained models.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: All the datasets used by this paper are publicly available, but we are not
releasing code at the time of submission. We are, however, committed to releasing code and
trained models upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide extended descriptions of all configurations used for the results
presented in our main experimental section (Section 4) in Appendix D. These include
detailed training hyperparameters, model configurations, and datasets used, as well as
references to previous work with open-source code [1] from which we borrow experimental
setups.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer:

Justification: Following prior work, we do not report error bars. Most of our experiments
are in large-scale segmentation datasets, in which error bars are not commonly used in the
literature. Moreover, we empirically observe little to no noise in our experimental results,
and little variance among train runs, hence error bars would offer limited value to our
experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix D, we detail the hardware used in each experimental setup,
together with the approximate compute time required.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read the code of ethics and believe our work adheres to it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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10.

11.

12.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We include an explicit broader impacts section in Appendix B.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Segmentation tasks, which this paper focuses on, do not pose risks that can
typically be addressed with safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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14.

15.

Justification: All datasets used in this work are public and we cite their original publications.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .
Justification: This work is unrelated to LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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