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Figure 1. We extract the self-description of the forensic microstructures in each image and use them to accurately perform a variety of
challenging tasks, including: zero-shot detection, open-set source attribution, and unsupervised clustering of image sources.

Abstract

The emergence of advanced AI-based tools to generate
realistic images poses significant challenges for forensic de-
tection and source attribution, especially as new genera-
tive techniques appear rapidly. Traditional methods often
fail to generalize to unseen generators due to reliance on
features specific to known sources during training. To ad-
dress this problem, we propose a novel approach that ex-
plicitly models forensic microstructures—subtle, pixel-level
patterns unique to the image creation process. Using only
real images in a self-supervised manner, we learn a set of di-
verse predictive filters to extract residuals that capture dif-
ferent aspects of these microstructures. By jointly modeling
these residuals across multiple scales, we obtain a com-
pact model whose parameters constitute a unique foren-
sic self-description for each image. This self-description
enables us to perform zero-shot detection of synthetic im-
ages, open-set source attribution of images, and clustering
based on source without prior knowledge. Extensive exper-
iments demonstrate that our method achieves superior ac-
curacy and adaptability compared to competing techniques,
advancing the state of the art in synthetic media forensics.

1. Introduction
The rapid improvement in AI-generated image quality has
made synthetic images increasingly difficult to distinguish
from real ones [26, 68]. While traditional detection methods
can be trained to identify these images, they struggle to gen-
eralize to content produced by new or unseen generators. As

new generative models emerge at a rapid pace, there is an
urgent need for detection methods that can reliably identify
images from novel sources without prior exposure [40, 55].

Conventional approaches to synthetic image detection
and source attribution typically rely on learning embed-
dings that are discriminative between real and synthetic im-
ages, or between real and a number of specific synthetic
sources [14, 29, 46, 65, 70]. While these methods are ef-
fective for sources similar to those in training, they often
fail to adapt to new generative models [19, 54]. This occurs
because their objective functions tend to make them learn
features that are only useful to discriminate between known
sources in the training data. Consequently, these methods
often overlook features that would be critical for identify-
ing images from new, unseen generators.

To address this problem, we propose an alternative ap-
proach (as illustrated in Fig. 1 and detailed in Fig. 3) that is
both more effective and general for detecting synthetic im-
ages and attributing them to their source. Instead of learning
a discriminative embedding space, we focus on explicitly
modeling the forensic microstructures embedded in images.
It is well-established that both cameras and synthetic im-
age generators imprint unique forensic traces in the form of
statistical microstructures—subtle, pixel-level relationships
that can serve as identifying features [45, 47, 73, 74]. To
isolate these microstructures from the image content, rely-
ing on only real images, we employ a self-supervised pro-
cess that learns a set of diverse predictive filters to approx-
imate the scene content. By applying these filters, we ob-
tain multiple distinct residuals, each captures a different as-
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Figure 2. Visualization of real (top row) and synthetic (bottom row) images in the datasets used in this paper.

pect of the forensic microstructures. We then jointly model
these residuals across multiple scales using a compact para-
metric model, whose parameters constitute a unique foren-
sic self-description for each image. This self-description
effectively encapsulates the intrinsic forensic properties of
an image, allowing us to perform several challenging tasks:
(1) zero-shot detection of synthetic images, (2) attribute im-
ages to their source generators in an open-set manner, and
(3) cluster images based on their sources without any prior
knowledge of the generators involved.

Through extensive experiments and ablation studies, we
demonstrate that our method achieves high accuracy in
zero-shot detection, open-set source attribution, and clus-
tering, consistently outperforming competing techniques in
robustness and adaptability.

Our main contributions are summarized as follows:
1. We introduce forensic self-descriptions as a way to cap-

ture intrinsic properties of the forensic microstructures
in an image. We then use these descriptions to accu-
rately perform several critical tasks related to detecting
and attributing the source of synthetic images.

2. We demonstrate that these forensic self-descriptions en-
able accurate zero-shot detection of synthetic images
without ever seeing them.

3. We show that forensic self-descriptions are also well-
suited to perform open-set attribution and clustering, al-
lowing precise source identification and organization of
images from unknown generators.

4. We provide comprehensive experimental validation,
highlighting the robustness and generalizability of our
approach across a broad set of real and synthetic sources.

2. Background and Related Work

The rise of realistic AI-generated images has posed sig-
nificant challenges for detection and source attribution,
prompting the development of supervised, open-set, and
zero-shot approaches.

Forensic Microstructures. It is well-established that dif-
ferent design choices in a generator’s neural architecture in-
duce specific statistical microstructures into AI generated
images [19, 68, 73]. Leveraging this, researchers initially

built handcrafted filters or explicit mathematical models
to extract these microstructures for detecting synthetic im-
ages [7, 18, 20, 43, 51]. However, recent approaches often
leverage CNNs to learn these models from data, enabling
more generalized detection systems.

Supervised Methods. Supervised methods to detect syn-
thetic images [5, 13, 47, 65, 70, 72] often train their models
on binary labeled datasets. While these methods perform
well on data sources similar to those in the training set, prior
work has shown that they struggle with images from unseen
generative models [19, 54]. This is because their learned
features are specific to the training data, and may not cap-
ture the unique artifacts of new generators [40, 55].

Open-Set Source Attribution. To address the limitations
of supervised methods, researchers have recently explored
adapting open-set recognition techniques developed from
other computer vision areas [10, 16, 39, 52, 76] to synthetic
image source attribution. Notable works are POSE [71],
Fang et al. [28], and Abady et al [1]. While these methods
have better generalization than supervised ones, they still
heavily rely on feature representations learned from known
sources, which may not generalize well to unseen ones.

Zero-Shot Detection. Recent work has developed ap-
proaches to detect synthetic images without requiring ex-
posure to specific generative models. These methods typi-
cally rely on non-forensic features that differ between real
and synthetic images. For instance, some methods [22, 59]
use autoencoders (i.e., diffusion model, image compres-
sion network) for reconstruction error analysis, while oth-
ers [54, 63] leverage CLIP embeddings to detect inconsis-
tencies in general visual features. Few others [66, 67] use a
limited set of forensic features for generalized detection.

While promising, as we show later, these zero-shot
methods often yield inconsistent performance, which varies
depending on the real-vs-synthetic dataset pairs used for
benchmarking. This variability arises because non-forensic
features may be influenced by the specific content charac-
teristics of the datasets. Furthermore, there is no guarantee
that these features will remain effective as generative tech-
nologies continue to improve and evolve.



Figure 3. Our method can detect and attribute synthetic images without prior knowledge of the source. We do this by extracting residuals
containing forensic microstructures from a single image and jointly modeling them across scales as a forensic self-description.

Unsupervised Clustering. Research to accomplish this
task for synthetic images has been largely under-explored.
Girish et al. [31] proposed a way to discover new GAN gen-
erators by over-clustering embeddings from a simple CNN.
Yang et al. [71] proposed a new open-set method that can be
leveraged to perform clustering. Overall, without any super-
vision, accurately clustering images based on their source
remains very challenging.

3. Proposed Method
In this paper, we propose a novel approach for detecting and
attributing synthetic images without any exposure to them.
As illustrated in Fig. 3, we first learn a set of diverse pre-
dictive filters using only real images to approximate scene
content. We then apply these filters and extract residuals
containing forensic microstructures from a single image.
Finally, we jointly model these residuals across multiple
scales with a parametric model to derive a unique foren-
sic self-description for each image. This self-description
captures intrinsic forensic properties, enabling precise dis-
tinction of image sources. More details are presented below.

3.1. Forensic Microstructures Extraction

Prior research has shown that the process used to form an
image leaves behind unique forensic microstructures [47].
This holds true for both cameras and AI image genera-
tors [45, 73]. While a common strategy to identify synthetic
images is to utilize the differences in these microstruc-
tures [66, 67], they are not directly observable. However,
we can estimate them using the procedure below.

We begin by modeling an image I as the sum of two in-
dependent components: the scene content S and the foren-
sic microstructures Ψ, such that:

I(x, y) = S(x, y) + Ψ(x, y), (1)

where (x, y) are the 2D pixel coordinates.
Using this model, we can estimate Ψ by approximating

S and subtracting Ŝ from I . This subtraction results in a
residual which contains forensic microstructures and esti-

mation noise ϵ. In practice, however, it is challenging to
perfectly approximate the scene content, which means the
estimate of the microstructures will be imperfect.

To address this problem, we use a series of K dis-
tinct scene predictions to produce a set of unique residuals
{rk}Kk=1, such that:

rk(x, y) = I(x, y)− Ŝk(x, y) = Ψk(x, y) + ϵk(x, y). (2)

Since each residual captures a different aspect of the mi-
crostructures, the collection of these residuals fully de-
scribes the microstructures present.

To produce scene content estimates, we use a series of K
learnable linear predictive filters w = {wk}Kk=1 that predict
the value of each pixel based on its surrounding neighbor-
hood, such that:

Ŝk(x, y) =
∑

(i,j)∈M

wk(i, j) · I(x+ i, y + j), (3)

where M is the set of offsets in the M ×M neighborhood
around (x, y) excluding (0, 0). We implement these filters
by constraining a convolutional layer such that the center
kernel weight is always set to 0 and the sum of all kernel
weights is 1 to preserve the energy of the output prediction.

To learn w, we minimize the total energy across all resid-
uals, which results in the following loss term LE :

LE(w) =

K∑
k=1

∑
x,y

(
I(x, y)− Ŝk(x, y)

)2

. (4)

However, this loss term alone may produce filters that are
redundant. To prevent this, we introduce a novel spectral
diversity regularization term that encourages the filters to
be as linearly independent as possible, maximizing the di-
versity of information captured.

To do this, we first construct a matrix W ∈ RK×(M2)

by reorienting the weights of each filter into a vector:

W =


vec(w1)

⊤

vec(w2)
⊤

...
vec(wK)⊤

 (5)
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Figure 4. Visualization of the average power spectrum of different filters in the forensic self-descriptions obtained from various sources.

We then perform the singular value decomposition on W to
obtain the set of singular values {σi}. Finally, the spectral
diversity regularization term is defined as:

Ldiversity(w) = −
min(K,M2)∑

i=1

log(σi + α), (6)

where α is a small constant to prevent numerical instabil-
ity. This term penalizes filter configurations where singular
values are small, which would indicate greater degrees of
linear dependence among filters. By minimizing Ldiversity,
we encourage the filters to be as diverse as possible.

We combine the two terms to obtain the overall objective
for learning the predictive filters:

w∗ = argmin
w

[LE(w) + λLdiversity(w)] , (7)

where λ is a hyperparameter that balances the two terms.
We note that w is learned from a training set consisting of
only real images.

3.2. Forensic Self-Description

After w is learned, we use it to extract a set of residuals
{rk}Kk=1 for a single image, irrespective of whether the im-
age is real or synthetic. To capture structures present in
these residuals, we build a parametric model of these resid-
uals and use its parameters to describe the forensic mi-
crostructures. We refer to these parameters as the forensic
self-description of an image.

To do this, we model the k-th residual rk(x, y) on the
basis of residual values in a B × B neighborhood around
(x, y), similar to an autoregressive model. Additionally, to
capture structures present across different scales, we define
the residual at scale l as:

r
(l)
k = Downsample

(
rk, 2

l−1
)
, (8)

where Downsample(X,Y ) reduces the spatial resolution of
the input X by a factor of Y .

Then, the model of the residuals at scale l is defined as:

r̂
(l)
k =

∑
(m,n)∈B

ϕk(m,n) · r(l)k (x+m, y + n), (9)

where ϕk are the parameters of a linear convolutional filter
that models rk at scale l, and B is the set of offsets in the
B ×B neighborhood excluding (0, 0).

Although we model each residual r(l)k separately with its
own filter ϕk, we optimize all filters {ϕk} jointly across all
residuals and scales. This joint optimization ensures that
the filters collectively capture the interdependent forensic
microstructures present in the image.

Hence, the collection of all filters in the model Φ =
{ϕ1, ϕ2, . . . , ϕK} corresponds to an image’s forensic self-
description.

To learn Φ jointly across all scales, we first define the
total model error at a location (x, y) as:

ε(x, y) =

K∑
k=1

L∑
l=1

r
(l)
k (x, y)− r̂

(l)
k (x, y). (10)

Then, we optimize the parameters Φ by minimizing the total
model error power across all locations in the image:

Φ∗ = argmin
Φ

∑
x

∑
y

|ε(x, y)|2 . (11)

The final parameter set Φ constitutes the forensic self-
description of the image.

4. Applications of Forensic Self-Description
Forensic self-descriptions can be used to perform a num-
ber of critical tasks related to synthetic image detection and
source attribution, such as: zero-shot detection, open-set
source attribution, and unsupervised clustering.

4.1. Zero-Shot Synthetic Image Detection

Zero-shot detection refers to the task of determining
whether an image is real or AI-generated without prior ex-
posure to images from the generator in question. Super-



Table 1. Zero-shot synthetic image detection performance, mea-
sured in average AUC over all pairs of a real dataset vs each syn-
thetic generator source.

Method COCO17 IN-1k IN-22k MIDB Average

CNNDet [70] 0.756 0.714 0.733 0.683 0.722

PatchFor [14] 0.833 0.823 0.845 0.790 0.823

UFD [54] 0.903 0.862 0.815 0.612 0.798

LGrad [66] 0.819 0.770 0.866 0.824 0.820

DE-FAKE [63] 0.765 0.749 0.617 0.791 0.731

Aeroblade [59] 0.728 0.741 0.582 0.646 0.674

ZED [22] 0.751 0.676 0.716 0.747 0.723

NPR [67] 0.945 0.900 0.900 0.957 0.926

Ours 0.968 0.962 0.941 0.971 0.960

vised detectors struggle in this task as they typically learn
representations optimized to discriminate between known
sources during training.

We can perform zero-shot detection using forensic self-
descriptions because they capture all aspects of the forensic
microstructures in an image, not just features discrimina-
tive among known sources. By modeling the distribution of
forensic self-descriptions from real images, we can flag im-
ages whose self-descriptions deviate from this distribution.
This ability is qualitatively demonstrated in Fig. 4, which
shows the power spectra of forensic self-description filters
learned from images of different sources. The figure reveals
substantial differences between the self-descriptions of real
images and those of AI-generated images.

We perform zero-shot detection by first using a Gaussian
Mixture Model (GMM) [49] to model the distribution of the
self-descriptions obtained from a set of real images. Detec-
tion is performed by computing the likelihood that an image
is real, defined as: p(Φ|Real) =

∑
ℓ πℓN (µℓ,Σℓ), where

Φ is the self-description of the image, and πℓ, µℓ, Σℓ are
the GMM’s parameters. If p(Φ|Real) ≥ τreal, the image is
classified as real; otherwise, it is flagged as synthetic.

4.2. Open-Set Synthetic Image Source Attribution

Open-set source attribution refers to the task of identify-
ing the source of an image amongst a set of known source
generators, or determining if the image originates from an
unknown source.

We can leverage forensic self-descriptions to perform
this task as images from common sources share similar
forensic microstructures, while those from different sources
do not [19]. To accomplish this, we can model the distri-
bution of forensic self-descriptions from each source sepa-
rately. Then, we can attribute an image by assigning it to
the most likely source. If this likelihood is sufficiently low,
we designate the source to be unknown.

We perform open-set source attribution by first collect-
ing a set of images from known sources. Then, for im-
ages from source S, we model the distribution of their
corresponding self-descriptions using a GMM as follows:
p(Φ|S) =

∑
ℓ πℓN (µℓ,Σℓ). This will result in one GMM

Table 2. Worst case zero-shot detection performance across all
pairs of a real dataset vs each synthetic generator source. Metrics
are reported in AUC.

Method COCO17 IN-1k IN-22k MIDB

CNNDet [70] 0.477 (DALLE 3) 0.424 (DALLE 3) 0.439 (DALLE3) 0.373 (DALLE 3)

PatchFor [14] 0.547 (SD 2.1) 0.543 (SD 2.1) 0.565 (SD2.1) 0.536 (SD 2.1)

UFD [54] 0.680 (DALLE 3) 0.607 (DALLE 3) 0.527 (DALLE 3) 0.244 (MJ v6)

LGrad [66] 0.617 (SD 2.1) 0.625 (Firefly) 0.776 (Firefly) 0.606 (SD 2.1)

DE-FAKE [63] 0.534 (BigGAN) 0.487 (BigGAN) 0.383 (BigGAN) 0.563 (BigGAN)

Aeroblade [59] 0.425 (BigGAN) 0.458 (BigGAN) 0.336 (BigGAN) 0.360 (BigGAN)

ZED [22] 0.462 (ProGAN) 0.402 (ProGAN) 0.375 (ProGAN) 0.331 (ProGAN)

NPR [67] 0.396 (Firefly) 0.239 (Firefly) 0.295 (Firefly) 0.449 (Firefly)

Ours 0.892 (SD 1.5) 0.903 (GigaGAN) 0.714 (GLIDE) 0.896 (MJ v6)

for each known source. After training the GMMs, we can
then use them to attribute the source of an image by comput-
ing the likelihood of its embedding under each GMM. The
generator source with the highest likelihood is considered
to be the candidate source of the image:

S∗ = argmax
S

p(Φ|S). (12)

If p(Φ|S∗) < τreject, the image’s source is unknown, other-
wise, the candidate source is accepted.

4.3. Unsupervised Clustering of Image Sources

In many practical scenarios, we need to identify common
sources in an unlabeled image dataset by applying a clus-
tering algorithm on to the features extracted for each image.
In these cases, we can also use the forensic self-descriptions
of images as their features.

Particularly, in this paper, we show that we can suc-
cessfully apply K-means [4] to the set of forensic self-
descriptions produced from individual images to group
them based on their description’s similarity. The number of
clusters can be set based on the expected number of sources
or via the elbow method [12] or silhouette analysis [64].

5. Experiments and Results

5.1. Implementation Details

Extracting Forensic Residuals. Following Sec. 3.1, we
trained a scene content approximator with K = 8 learnable
linear predictive filters of neighborhood size M = 11× 11
on gray-scaled real images. We used the AdamW opti-
mizer [44] (learning rate 0.001) for 10 epochs. A balance
factor of λ = 1.0 optimized the two loss terms.

Extracting Forensic Self-Descriptions. For each image,
we modeled the K = 8 forensic residuals with 8 corre-
sponding predictive filters of neighborhood size B = 11 ×
11, across L = 3 scales (obtained via bilinear downsam-
pling). The filters are optimized over multi-scale residuals
using the AdamW optimizer with a learning rate of 0.1, de-
caying by half on plateau, for up to 10,000 iterations.



Table 3. Open-set source attribution performance comparisons
with various techniques.

Category Method Accuracy AU-CRR AU-OSCR

Transferable
Embeddings

CLIP [57] 0.570 0.543 0.304

ResNet-50 [32] 0.538 0.605 0.372

Supervised
DCTCNN [29] 0.855 0.452 0.406

RepMix [13] 0.982 0.746 0.741

Metric-
learning

FSM [48] 0.422 0.565 0.207

EXIFNet [75] 0.186 0.412 0.064

Open-set

Abady et al. [1] 0.828 0.640 0.555

POSE [71] 0.913 0.629 0.608

Fang et al. [28] 0.988 0.856 0.852

Ours 0.964 0.933 0.913

5.2. Datasets

To conduct our experiments, we pooled together a large
composite dataset of real and synthetic images from vari-
ous publicly available sources. Real images are drawn from:
(1) COCO2017 [41], (2) ImageNet-1k [24], (3), ImageNet-
22k [61], and (4) MISL Image Database (MIDB) [8, 9].
Synthetic images come from: (1) OSSIA dataset [28], (2)
DMID dataset [19], and (3) Synthbuster dataset [6]. Over-
all, our set of synthetic images includes 24 generators
across diverse architectures. Some notable ones are: Pro-
GAN [34], StyleGAN [1 to 3] [35–37], GigaGAN [33],
EG3D [15], GLIDE [53], Stable Diffusion (SD) [1.3 to
3.0] [27, 56, 60], DALLE [M, 2, 3] [11, 23, 58], Midjourney
(MJ) [5, 6] [50], and Adobe Firefly [2]. Data composition
details are available in the supplemental materials.

5.3. Zero-Shot Detection Evaluation

Setup. To assess zero-shot detection performance, we di-
vided the composite dataset, described in Sec. 5.2, into a
training set of real images and a test set of both real and
synthetic images. We measured performance across 96 real-
synthetic dataset pairs and report the average result over all
real-vs-synthetic dataset pairs per real source. A detailed
breakdown of the results by generator is provided in the
supplemental materials.
Metrics. We report the average AUC (Area Under the ROC
curve) for direct comparison with prior works.
Competing Methods. We compared our method to 2 tra-
ditional approaches: CNNDet [70], PatchFor [14], and 6
state-of-the-art zero-shot methods: LGrad [66], UFD [54],
DE-FAKE [63], Aeroblade [59], ZED [22], and NPR [67].
Results. This experiment’s results are provided in Tab. 1
and 2. These results show that our method achieves the
highest zero-shot detection performance, with an overall av-
erage AUC of 0.960 across all datasets. In contrast, super-
vised methods like CNNDet and PatchFor obtain lower per-
formance because the features they learned during training
do not transfer well to new generators.

While zero-shot methods such as ZED, DE-FAKE, and

Table 4. Clustering performance comparisons with various tech-
niques. Here, the ground-truth number of sources is N = 8.

Method
# Clusters = N # Clusters = 2N # Clusters = 4N

Avg.
Acc. Purity NMI Avg.

Acc. Purity NMI Avg.
Acc. Purity NMI

CLIP [57] 0.68 0.68 0.60 0.72 0.72 0.59 0.73 0.74 0.52

ResNet-50 [32] 0.50 0.51 0.38 0.56 0.59 0.40 0.60 0.59 0.37

FSM [48] 0.16 0.16 0.01 0.18 0.18 0.02 0.20 0.20 0.03

EXIFNet [75] 0.21 0.22 0.06 0.24 0.26 0.08 0.32 0.28 0.09

Abady et al. [1] 0.45 0.40 0.30 0.46 0.46 0.30 0.51 0.48 0.28

POSE [71] 0.57 0.49 0.36 0.56 0.50 0.32 0.49 0.52 0.32

CNNDet [70] 0.47 0.36 0.28 0.49 0.38 0.27 0.52 0.42 0.26

NPR [67] 0.46 0.39 0.34 0.57 0.48 0.33 0.63 0.51 0.32

DE-FAKE [63] 0.32 0.25 0.16 0.24 0.25 0.14 0.22 0.25 0.12

UFD [54] 0.78 0.71 0.68 0.67 0.69 0.55 0.71 0.72 0.50

Ours 0.78 0.77 0.69 0.80 0.81 0.65 0.83 0.85 0.61

NPR show strong performance on some generators, they
struggle on others. Tab. 2 shows the worst-case per-
formance of each method across all real-versus-synthetic
dataset pairs. The table reveals that ZED consistently strug-
gled with detecting ProGAN, DE-FAKE with BigGAN,
and NPR with Firefly. In contrast, by using forensic self-
descriptions, we achieve consistently strong performance,
with an overall worst-case AUC of 0.89 or greater, sub-
stantially higher the other methods. The only exception is
IN22k, where we are slightly behind LGrad. These results
show that forensic self-descriptions offer reliable detection
capability across a wide range of real and synthetic sources.

5.4. Open-Set Source Attribution Evaluation

Setup. To evaluate open-set source attribution performance,
we selected 9 sources (1 real and 8 synthetic) from our
pooled dataset (described in Sec. 5.2), dividing them into
five known (ImageNet-1k, StyleGAN, StyleGAN3, SD 1.4,
ProGAN) and four unknown sources (StyleGAN2, SD 3,
DALLE 3, Firefly). Supervised and open-set methods were
trained on known sources and tested on both known and un-
known sources.

Metrics. Following other open-set works [17, 25, 28, 52,
71], we show (1) the average accuracy across all known
sources, and (2) the Area Under the Correct Rejection Rate
curve (AU-CRR) [28, 71], and (3) the Area Under the Open
Set Classification Rate curve (AU-OSCR) [25, 71].

Competing Methods. We compared our method against
three state-of-the-art methods designed for this task: Abady
et al. [1], Fang et al. [28], POSE [71]; two supervised
methods: DCTCNN [29], and RepMix [13]; two metric-
learning methods designed for image forensics: FSM [48],
EXIFNet [75]; and two methods which produce generic vi-
sual embeddings: CLIP [57], and a ResNet-50 [32] trained
on ImageNet1k. For methods which only produce a generic
embedding, we apply the same open-set procedure pro-
posed in Sec. 4.2 to their produced embeddings.



Figure 5. 2D t-SNE plot showing the distribution of the self-
descriptions among real and synthetic sources.

Results. Tab. 3 shows the results of this experiment. These
results show that leveraging forensic self-descriptions leads
to the highest AU-CRR (0.933) and AU-OSCR (0.913). We
also obtained near-best known source accuracy (0.964), be-
hind Fang et al.’s 0.988 and RepMix’s 0.982. These results
indicate that forensic self-descriptions enable both accurate
attribution of images to their sources and reliable detection
of images from unknown sources. This is also qualitatively
demonstrated in Fig. 4, where we can see that the forensic
self-descriptions of each source differ from one another.

Both supervised methods like RepMix and dedicated
open-set methods like POSE, Abady et al., and Fang et
al. achieve moderate to strong known source accuracies
but fall short in AU-CRR and AU-OSCR compared to our
method. This is because they rely on embedding spaces
learned from known generators to generalize to new and un-
known generators, which is challenging in practice. In con-
trast, forensic self-descriptions capture all aspects of foren-
sic microstructures, not just those useful for discriminating
between known sources during training. This enables us to
perform accurate open-set attribution of image sources.

5.5. Unsupervised Clustering Evaluation

Setup. To evaluate clustering, we used 8 sources repre-
senting distinct generation techniques from our composite
dataset described in Sec. 5.2 (Real: ImageNet-1k; Syn-
thetic: ProGAN, StyleGAN3, GLIDE, SD 1.5, DALLE 3,
MJ v6, Firefly). Our method, applied in an unsupervised
manner, does not have training data. For other methods that
require synthetic images in their training data, we retrained
them on other sources not seen during testing.

Metrics. We present clustering accuracy, purity, and Nor-
malized Mutual Information (NMI), measured across inte-
ger multiples of the true number of sources (N, 2N, and 4N)
to benchmark performance under different scenarios.

Competing Methods. We evaluated our method against
four methods in the zero-shot experiment: NPR [67],
UFD [54], DE-FAKE [63] & CNNDet [70], four metric-
learning-based methods: FSM [48], EXIFNet [75], Abady
et al. [1] & POSE [71], as well as general vision embed-
dings: CLIP [57], and ResNet-50 [32] trained on Ima-
geNet1k. For each method, we extracted embeddings from
either the specified embedder network or the penultimate
layer and applied K-means clustering using Euclidean dis-
tance or the method’s provided distance metric.

Results. We present the results in Tab. 4, which show that
clustering based on forensic self-descriptions achieves the
highest performance across all metrics and cluster sizes.
This is because these descriptions effectively capture foren-
sic microstructures, causing images from the same source
to cluster naturally. This behavior is further illustrated in
Fig. 5, where the t-SNE plot [69] reveals clear separation
between real and synthetic images, with each synthetic gen-
erator forming a tight, well-defined cluster.

Notably, when the number of clusters equals the number
of sources, UFD performs competitively and CLIP shows
moderate clustering ability. This is not surprising, as UFD
was designed for enhanced source-separability and CLIP
was demonstrated in recent works to have promising de-
tection capabilities [3, 21, 54].

In more realistic scenarios where the number of sources
is unknown, clustering is often performed with an overesti-
mated number of clusters followed by merging. Under these
conditions, our method continues to improve with larger
cluster counts, whereas others show modest gains (Abady
et al., CLIP) or performance declines (UFD, POSE). This
trend highlights the suitability of forensic self-descriptions
for accurate, unsupervised source clustering.

6. Ablation Study

We conducted an ablation study to understand the impact
of different design choices on the performance of forensic
self-descriptions. To do this, we measured the performance
of the zero-shot detection task in terms of average AUC
over a subset of real-vs-synthetic dataset pairs (ImageNet-
1k versus ProGAN, SDXL, DALLE 3, MJ v6, and Firefly).
We also calculated the relative error reduction (RER) in de-
tection AUC of our method compared to alternative design
choices. The results are provided in Tab. 5.

Residual Extraction Method. We examined the detection
performance impact of various design choices in the foren-
sic residual extraction process. Results in Tab. 5 show that
our method of learning a set of diverse linear predictive fil-
ters from a corpus of real images is essential for optimal
performance. Nonetheless, we observe that even with a
simple high-pass filter to extract residuals, our forensic self-
descriptions still achieve strong performance.



Table 5. Zero-shot detection performance of our proposed foren-
sic self-description and its alternative design choices.

Component
Method AUC RER%

Proposed 0.986 –

Residual
Extraction

5×5 high-pass filter [30, 38] 0.913 83.38

3×3 high-pass filter [30, 38] 0.955 67.70

Neighbor Pixel Relations [67] 0.952 70.22

No spectral diversity 0.969 53.34

Obtaining
Self-Descriptions

No multi-scale 0.956 67.51

1 learnable filter 0.951 70.47

4 learnable filters 0.931 79.08

7×7 neighborhood 0.961 63.28

5×5 neighborhood 0.897 85.98

Utilizing
Self-Descriptions

One-Class SVM [62] 0.968 55.00

Isolation Forest [42] 0.968 55.00

Obtaining Self-Descriptions. We explored different de-
sign choices and their impact on obtaining forensic self-
descriptions. Tab. 5’s results show that using multiple fil-
ters to capture underlying structures in the forensic residuals
is essential for optimal performance. Additionally, we ob-
serve that the self-description extracted from multi-scaled
residuals yielded significant performance gains. Overall,
these findings highlight that the combination of multi-scale
modeling, an adequate number of learnable filters, and an
appropriate neighborhood size is vital for obtaining effec-
tive forensic self-descriptions.

Utilizing Self-Descriptions. We analyzed several out-
of-distribution detection methods using forensic self-
descriptions. This is important because different ap-
proaches offer unique trade-offs between space-time com-
plexity, practicality, and performance. The results in Tab. 5
show that forensic self-descriptions are versatile and can
also be used with a One-Class SVM or an Isolation Forest
with minimal performance loss.

7. Discussion

Qualitative Analysis. To qualitatively analyze the charac-
teristics of the microstructures captured by forensic self-
descriptions, we visualize the average power spectrum
of each filter, computed from 100 images across various
sources. The resulting power spectra are presented in Fig. 4

As shown in Fig. 4, the power spectra of all filters in
the self-descriptions of real images are significantly distinct
from those of synthetic images. Among synthetic sources,
each generator exhibits at least one unique spectral charac-
teristic that differ from others. For instance, StyleGAN3
and SD 1.5 have similar spectral responses in filter 1-3
but differ in filter 4. This property of the forensic self-
descriptions is confirmed by our experimental results above
and further illustrated in the t-SNE plot in Fig. 5. In this
plot, we observe the same property: real images cluster
distinctly apart from synthetic images, with each synthetic
source forming tight, easily distinguishable clusters.

Table 6. Average Zero-Shot AUC of our method over different
JPEG quality factors.

JPEG Quality None 100 90 80 70 60 50 Avg.

Our method 0.986 0.968 0.963 0.960 0.979 0.972 0.979 0.972

JPEG Robustness. To assess the robustness of forensic
self-descriptions to compression at various JPEG quality
factors, we evaluated our method’s zero-shot detection per-
formance by measuring the average AUC across quality fac-
tors ranging from 50 to 100. This was done on the same
subset of real-vs-synthetic dataset pairs used in Sec. 6.

As shown in Tab. 6, our method consistently achieves
high AUC scores across all JPEG quality factors with an
overall average AUC of 0.972. Even at a low quality fac-
tor of 60, our method maintains an AUC of 0.972, show-
ing minimal degradation in detection performance. These
results show that forensic microstructures of real and syn-
thetic images still remain distinct and detectable even af-
ter compression. This demonstrates that forensic self-
descriptions are highly robust and suitable for practical use.

Limitations and Future Work. One possible limitation of
forensic self-descriptions is their reliance on accurate and
diverse forensic residuals, which in turn depend on training
the scene content predictors with a high-quality, diverse set
of real images. Future work could explore adaptive filter
learning to accommodate new data distributions or develop
domain-specific filters for targeted forensic tasks. Extend-
ing the approach to handle more complex scenarios, such as
post-processed or social media–shared images, could fur-
ther improve its robustness in real-world settings.

8. Conclusion
We introduced forensic self-descriptions as a robust ap-
proach for zero-shot detection, open-set attribution, and un-
supervised clustering of synthetic images. By using a self-
supervised process to extract residuals containing forensic
microstructures, our approach constructs a compact, rep-
resentative model, that accurately distinguishes real from
synthetic images, identifies unknown sources, and clusters
images by origin without any supervision. Experimental
results confirm forensic self-descriptions resilience to com-
pression artifacts and adaptability across diverse generative
models, establishing them as a powerful tool for combating
the proliferation of AI-generated fake images.
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