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Abstract

Large pre-trained generative models are known to occasionally output undesirable
samples, which undermines their trustworthiness. The common way to mitigate
this is to re-train them differently from scratch using different data or different
regularization – which uses a lot of computational resources and does not always
fully address the problem. In this work, we take a different, more compute-friendly
approach and investigate how to post-edit a model after training so that it “redacts”,
or refrains from outputting certain kinds of samples. We show that redaction is
different from data deletion, and data deletion may not always lead to redaction.
We then consider Generative Adversarial Networks (GANs), and provide three
different algorithms for data redaction that differ on how the samples to be redacted
are described. Extensive evaluations on real-world image datasets show that our
algorithms out-perform data deletion baselines, and are capable of redacting data
while retaining high generation quality at a fraction of the cost of full re-training.

1 Introduction

Generative Adversarial Networks (GANs) are large neural generative models that learn a complicated
probability distribution from data and then generate samples from it. These models have been
immensely successful in many large scale tasks from multiple domains, such as images [Zhu et al.,
2020, Karras et al., 2020, 2021], point clouds [Zhang et al., 2021], video [Tulyakov et al., 2018], text
[de Masson d’Autume et al., 2019], and speech [Kong et al., 2020].

However, it is also well-known that many deep generative models frequently output undesirable
samples, which makes them less reliable and trustworthy. Image models generate blurred samples
[Kaneko and Harada, 2021] or checkerboard artifacts [Odena et al., 2016, Zhang et al., 2019,
Wang et al., 2020, Schwarz et al., 2021], speech models produce unnatural sound [Donahue et al.,
2018, Thiem et al., 2020], and language models emit offensive text [Abid et al., 2021, Perez et al.,
2022]. Thus, an important question is how to mitigate these artifacts, which would improve the
trustworthiness of these models.

One way to mitigate undesirable samples is to re-design the entire training pipeline including data
augmentation, model architecture and loss functions, and then re-train the entire model from scratch
[Isola et al., 2017, Aitken et al., 2017, Kaneko and Harada, 2021] – a strategy that has been used in
prior work. This approach is very compute-intensive as modern GANs can be extremely expensive
to train. In addition, other problems may become apparent after training, and resolving them may
require multiple re-trainings. To address this challenge, we consider post-editing, which means
modifying a pre-trained model in a certain way rather than training it differently from scratch. This is
a much more computationally efficient process that has shown empirical success in many supervised
learning tasks [Frankle and Carbin, 2018, Zhou et al., 2021, Taha et al., 2021], but has not been
studied much for unsupervised learning. In particular, we propose a post-editing framework to redact
undesirable samples that might be generated by a GAN, which we call data redaction.
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A second plausible solution for mitigating undesirable samples is to use a classifier to filter them out
after generation. This approach, however, has several drawbacks. Classifiers can take a significant
amount of space and time after deployment. Additionally, if the generative model is handed to a
third party, then the model trainer has no control over whether the filter will ultimately be used. Data
redaction via post-editing, on the other hand, offers a cleaner solution which does not suffer from
these limitations.

A third plausible solution is data deletion or machine unlearning – post-edit the model to approximate
a re-trained model that is obtained by re-training from scratch after removing the undesirable samples
from the training data. However, this does not always work – as we show in Section E.3, deletion does
not necessarily lead to redaction in constrained models. Additionally, the undesirable samples may
simply be artifacts of the neural generative model and may not exist in the training data; examples
include unnatural sounds emitted by speech models and blurred images from image models. Data
redaction, in contrast, can address all these challenges.

There are two major technical challenges that we need to resolve in order to do effective data redaction.
The first is how to describe the samples to be redacted. This is important as data redaction algorithms
need to be tailored to specific descriptions. The second challenge is that we need to carefully balance
data redaction with retaining good generation quality, which means the latent space and the networks
must be carefully manipulated.

In this work, we propose a systematic framework for redacting data from pre-trained generative
models (see Section 2). We model data redaction as learning the data distribution restricted to the
complement of a redaction set 
. We then formalize three ways of describing redaction sets, namely
data-based (where a pre-specified set is given), validity-based (where there is a validity checker), and
classifier-based (where there is a differentiable classifier).

Then, we introduce three data redaction algorithms, one for each description (see Section 3). Prior
works have looked at avoiding negative samples in the re-training setting with different descriptions
and purposes [Sinha et al., 2020, Asokan and Seelamantula, 2020]. They introduce fake distributions
to penalize the generation of negative samples. We extend this idea to data redaction by defining the
fake distribution as a mixture of the generative distribution and a redaction distribution supported
on 
. We prove the optimal generator can recover the target distribution when label smoothing
[Salimans et al., 2016, Szegedy et al., 2016, Warde-Farley and Goodfellow, 2016] is used.

Based on our theory, we introduce the data-based redaction algorithm (Alg. 1). We then combine
this algorithm with an improper active learning algorithm by Hanneke et al. [2018] and introduce the
validity-based redaction algorithm (Alg. 2). Finally, we propose to use a guide function to guide the
discriminator via a classifier, and introduce the classifier-based redaction algorithm (Alg. 3).

Finally, we empirically evaluate these redaction algorithms via experiments on real-world image
datasets (see Section 4). We show that these algorithms can redact quickly while keeping high
generation quality. We then investigate applications of data redaction, and use our algorithms to
remove different biases that may not exist in the training set but are learned by the pre-trained model.
This demonstrates that data redaction can be used to reduce biases and improve generation quality,
and hence improve the trustworthiness of generative models.

In summary, our contributions are as follows:

• We formalize the problem of post-editing generative models to prevent them from outputting
undesirable samples as “data redaction” and establish its differences with data deletion.

• We propose three data augmentation-based algorithms for redacting data from pre-trained
GANs as a function of how the inputs to be redacted are described.

• We theoretically prove that data redaction can be achieved by the proposed algorithms.
• We extensively evaluate our algorithms on real world image datasets. We show these

algorithms can redact data quickly while retaining high generation quality. Moreover, we
find data redaction performs better than data deletion in a de-biasing experiment.

2 A Formal Framework for Data Redaction

Let pdata be the data distribution on Rd and X � pdata be i.i.d. samples. Let A be the learning
algorithm of generative modelling andM = A(X) be the pre-trained model on X , which learns
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pdata. In this paper, we consider A to be a GAN learning algorithm [Goodfellow et al., 2014a], and
M contains two networks, D (discriminator) and G (generator), which are jointly trained to optimize

min
G

max
D

Ex�pdata
logD(x) + Ex�pG log(1�D(x)); (1)

where pG = G#N (0; I) is defined as the distribution of G(Z) where Z � N (0; I).

2.1 Data Redaction Framework

Let the redaction set 
 � Rd be the set of samples we would like the model to redact. Formally, the
goal is to develop a redaction algorithm D such thatM0 = D(M;
) learns the data distribution
restricted to the complement �
 = Rd n 
, i.e. pdataj�
. Examples of 
 include inconsistent, blurred,
unrealistic, or banned samples that are possibly generated by the model.

The redaction set 
, in addition to the pre-trained model, is considered as an input to the redaction
algorithm. We consider three kinds of 
, namely data-based, validity-based, and classifier-based.

2.2 Redaction Set Descriptions

We propose three different descriptions for the redaction set 
. First, the data-based 
 is a pre-
defined set of samples in Rd, such as a transformation applied on all training samples [Sinha et al.,
2020]. Second, the validity-based 
 is defined as all invalid samples according to a validity function
v : Rd ! f0; 1g, where 0 means invalid and 1 means valid. This is similar to the setting in Hanneke
et al. [2018]. Finally, let f : Rd ! [0; 1] be a soft classifier that outputs the probability that a sample
belongs to a certain binary class, and � 2 (0; 1) be a threshold. Then, the classifier-based 
 is defined
as fx : f(x) < �g. For example, f can be an offensive text classifier in language generation tasks
[Pitsilis et al., 2018].

2.3 Data Deletion versus Data Redaction

Motivated by privacy laws such as the GDPR and the CCPA, there has been a recent body of work on
data deletion or machine unlearning [Cao and Yang, 2015, Guo et al., 2019, Schelter, 2020, Neel
et al., 2021, Sekhari et al., 2021, Izzo et al., 2021, Ullah et al., 2021]. In data deletion, we are given a
subset set X 0 � X of the training set to be deleted from an already-trained model, and the goal is to
approximate the re-trained model A(X nX 0). While there are some superficial similarities – in that
the goal is to post-edit models in order to “remove” a few data points, there are two key differences.

The first is that data redaction requires the model to assign zero likelihood to the redaction set 
 in
order to avoid generating samples from this region; this is not the case in data deletion – in fact, we
present an example below which shows that data deletion of a set X 0 may not cause a generative
model to redact X 0.

Specifically, in Fig. 1, the entire data distribution pdata = N (0; 1) (blue line) is the standard Gaussian
distribution on R. We set the redaction set 
 = (�1;�1:5] [ [1:5;1), so the blue samples fall
in 
 and orange samples outside. The learning algorithm A is the maximum likelihood Gaussian
learner that fits the mean and variance of the data. With n = 80 samples, the learnt density A(X) is
shown in green. If the blue samples were deleted, and the model re-fitted, the newly learnt density
A(X nX 0) would be the red line. Notice that this red line has considerable density on the blue points
– and so these points are not redacted. In contrast, the correct redaction solution that redacts the
samples in 
 would be the orange density. Thus deletion does not necessarily lead to redaction.

The second difference is that the redaction set 
 may have a zero intersection with the training data,
but may appear in the generated data due to artifacts of the model. Examples include unnatural
sounds emitted by speech models, and blurred images from image models. Data redaction, in contrast
to data deletion, can address this challenge.

3 Methods

In this section, we describe algorithms for each kind of redaction set described in Section 2. We also
provide theory on the optimality of the generator and the discriminator. Finally, we generalize the
algorithms to situations where we would like the model to redact the union of multiple redaction sets.
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Figure 1: An example showing difference between data redaction and data deletion. The goal ofdata
deletion is to approximate the re-trained model (red density), while the goal ofdata redaction is to
approximate the restricted density (orange density).

3.1 Data-based Redaction Set

The data-based redaction set
 is a pre-de�ned set of samples we would like the model to redact. One
example is a transformation functionNegAugapplied to all training samples, whereNegAugmakes
realistic images unrealistic or inconsistent [Sinha et al., 2020]. Another example can be visually nice
samples outside data manifold when the training set is small [Asokan and Seelamantula, 2020].

In our framework, the redaction set
 can be any set of carefully designed or selected samples
depending on the purpose of redacting them – which includes but does not limit to improving the
generation quality of the model. For example, we expect the model to improve on fairness, bias,
ethics or privacy when
 is properly constructed with unfair, biased, unethical, or atypical samples.

To redact
 , we regard both generated samples and
 to be fake samples, and all training samples
that are not in
 to be real samples [Sinha et al., 2020, Asokan and Seelamantula, 2020]. Letp
 be
a distribution such thatsupp (p
 ) = 
 . Then, the fake data distributionpfake is a mixture of the
generative distributionpG and the redaction distributionp
 :

pfake = � � pG + (1 � � ) � p
 ; (2)

where� 2 (0; 1) is a hyperparameter. We also apply label smoothing [Salimans et al., 2016, Szegedy
et al., 2016, Warde-Farley and Goodfellow, 2016] techniques to the minimax loss function in order
to improve robustness of the discriminator. Let� + 2 ( 1

2 ; 1] be the positive target (such as0:9) and
� � 2 [0; 1

2 ) be the negative target (such as0:1). Then, the loss function is

L (G; D ) = Ex � pdata j �

[� + logD(x) + (1 � � + ) log(1 � D (x))]

+ Ex � pfake [� � logD(x) + (1 � � � ) log(1 � D (x))] : (3)

Theorem 1. The optimal solution tominG maxD L(G; D ) is

D � =
� + pdata j �
 + � � (�p G + (1 � � )p
 )

pdata j �
 + �p G + (1 � � )p

; pG � = pdata j �
 : (4)

We provide the proof and theoretical extension to the more generalf -GAN [Nowozin et al., 2016]
setting in Appendix B. In the data-based setting, we letp
 = U(
) , the uniform distribution on
 .
We assume
 has positive, �nite Lebesgue measure inRd so thatU(
) is well-de�ned. The proposed
method is summarized in Alg. 1.

Our objective function is connected to Sinha et al. [2020] and Asokan and Seelamantula [2020] in the
sense thatp
 is an instance of the negative distribution described in their frameworks. However, there
are several signi�cant differences between our method and theirs: (1) we start from a pre-trained
model, (2) we aim to learnpdata j �
 rather thanpdata and therefore do not require
 \ supp (pdata )
to be the empty set, and (3) we use the common label smoothing techniques and provide theory for
this setting. These differences are also true in the following sections.

3.2 Validity-based Redaction Set

Let v : Rd ! f 0; 1g be a validity function that indicates whether a sample is valid. Then, validity-
based redaction set
 is the set of all invalid samplesf x : v (x) = 0 g. For example,M is a code
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Algorithm 1 Redaction Algorithm for Data-based Redaction Set

Inputs: Pre-trained modelM = ( G0; D0), train setX , redaction set
 .
Initialize G = G0, D = D0.
De�ne the fake data distributionpfake according to (2) withp
 = U(
) .
TrainG; D to optimize (3):minG maxD L(G; D ).
return M 0 = ( G; D ).

Algorithm 2 Redaction Algorithm for Validity-based Redaction Set

Inputs: Pre-trained modelM = ( G0; D0), train setX , validity functionv .
Initialize 
 0 = f x 2 X : v (x) = 0 g, M 0 = M .
for i = 0 ; � � � ; R � 1 do

Initialize G = Gi , D = D i . DrawT samplesX ( i )
gen from Gi .

Queryv and add invalid samples to
 0: 
 0  
 0 [ f x 2 X ( i )
gen : v (x) = 0 g.

De�ne the fake data distributionpfake according to (2) withp
 = U(
 0).
Let M i +1 = ( Gi +1 ; D i +1 ) optimize (3):minG maxD L(G; D ).

end for
return M 0 = ( GR ; DR )

Algorithm 3 Redaction Algorithm for Classi�er-based Redaction Set

Inputs: Pre-trained modelM = ( G0; D0), train setX , differentiable classi�erf .
Initialize G = G0, D = D0.
De�ne the fake data distributionpfake according to (2) withp
 = U(f x 2 X : f (x) < � g).
TrainG; D to optimize(3): minG maxD L(G; guide (D; f )) , whereguide (�; �) is de�ned in(6).
return M 0 = ( G; D ).

generation model, andv is a compiler that indicates whether the code is free of syntax errors [Hanneke
et al., 2018]. Different from the data-based setting, the validity-based
 may have in�nite Lebesgue
measure, such as a halfspace, and consequentlyU(
) may not be well-de�ned.

To redact
 , we letp
 in (2) to be a mixture ofpdata j 
 andpG j 
 . This corresponds to a simpli�ed
version of the improper active learning algorithm introduced by Hanneke et al. [2018] with our Alg.
1 as their optimization oracle. The idea is to apply Alg. 1 forR rounds. After each round, we query
the validity ofT newly generated samples and use invalid samples to form a data-based redaction set

 0. In contrast to the data-based approach, this active algorithm focuses on invalid samples that are
more likely to be generated, and therefore ef�ciently penalizes generation of invalid samples. The
proposed method is summarized in Alg. 2.

The total number of queries to the validity functionv is jX j + T � R. In casev is expensive to
run, we would like to achieve better data redaction within a limited number of queries. From the
data-driven point of view, we hope to collect as many invalid samples as possible. This is done by
settingR = 1 andT maximized if we assume less invalid samples are generated after each iteration.
However, this may not be the case in practice. We hypothesis some samples are easier to redact while
others harder. By settingR > 1, we expect an increasing fraction of invalid generated samples to be
hard to redact after each iteration. Focusing on these hard samples can potentially help the generator
redact them. Since it is hard to directly analyze neural networks, we leave the rigorous study to future
work. In Appendix C, we study a much simpli�ed dynamical system corresponding to Alg. 2, where
we show the invalidity (the mass ofpG on 
 ) converges to zero, and provide optimalT andR values.

3.3 Classi�er-based Redaction Set

We would like the model to redact samples with certain (potentially undesirable) property. Let
f : Rd ! [0; 1] be a soft binary classi�er on the property (0 means having the property and 1 means
not having it), and� 2 (0; 1) be a threshold. The classi�er-based redaction set
 is then de�ned as
f x : f (x) < � g. For example, the property can bebeing offensivein language generation,containing
no speechin speech synthesis, orvisual inconsistencyin image generation. We considerf to be a
trained machine learning model that is fully accessible and differentiable.
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To redact
 , we letp
 be a mixture ofpdata j 
 andpG j 
 , similar to the validity-based approach. We
usef to guide the discriminator and make it able to easily detect samples from
 . Let guide (D; f ) be
a guided discriminator that assigns small values tox whenf (x) < � or D (x) is small (i.e.x � pfake ),
and large values tox whenf (x) > � andD(x) is large (i.e.x � pdata j �
 ). Instead of optimizing
L(G; D ) in (3), we optimizeL(G; guide (D; f )) . This will effectively updateG by preventing it
from generating samples in
 . According toTheorem 1, the optimal discriminator is the solution to

guide (D � ; f ) =
� + pdata j �
 + � � (�p G + (1 � � )p
 )

pdata j �
 + �p G + (1 � � )p

: (5)

Therefore, the design of theguide function must make (5) feasible. In this paper, we let

guide (D; f )(x) =
�

D (x) if f (x) � �
� � + ( D(x) � � � )f (x) otherwise : (6)

The feasibility of(5) is discussed in Appendix D. The proposed method is summarized in Alg. 3. The
classi�er-based
 generalizes the validity-based
 . First, any validity-based
 can be represented
by a classi�er-based
 if we let f = v and� = 1

2 . Next, we note there is a trivial way to deal
with classi�er-based
 via the validity-based approach – by settingv(x) = 1 f f (x) < � g. However,
potentially useful information such as values and gradients off are lost, and we will evaluate this
effect in experiments. In addition, the classi�er-based approach does not maintain the potentially
large set of invalid generated samples, as this step is automatically done in theguide function.

3.4 Generalization to Multiple Redaction Sets

Let f 
 k gK
k=1 be disjoint sets inRd, and we would like the model to redact
 =

S K
k=1 
 k . In the

data-based setting, we letp
 = U(
) = U(
S K

k=1 
 k ). In the validity-based setting, each
 k is
associated with a validity functionv k . We let the overall validity function to bev(x) = min k v k (x).
In the classi�er-based setting, each
 k is associated with a classi�erfk . Similar to the validity-based
setting, we let the overallf to bef (x) = min k fk (x).

4 Experiments

In this section, we aim to answer the following questions.

• How well can the algorithms in Section 3 redact samples in practice?

• Can these algorithms be used to de-bias pre-trained models?

• Can these algorithms be used to understand training data?

We examine these questions by focusing on several real-world image datasets, including MNIST
(28� 28) [LeCun et al., 2010], CIFAR (32� 32) [Krizhevsky et al., 2009], CelebA (64� 64) [Liu
et al., 2015] and STL-10 (96� 96) [Coates et al., 2011] datasets. We demonstrate main experiments
in Appendix E, and provide more detailed results afterwards. Speci�cally, in Appendix E.2 and F, we
investigate how well these algorithms can redact samples with a speci�c label. In Appendix E.3 and
G, we investigate how well these algorithms can de-bias pre-trained models and improve generation
quality. In Appendix E.4 and H, we use these algorithms to understand training data through the lens
of data redaction.

5 Conclusion

In this paper, we propose a systematic framework for redacting data from pre-trained generative
models. We provide three different algorithms for GANs that differ on how the samples to be redacted
are described. We provide theoretical results that data redaction can be achieved. We then empirically
investigate data redaction on real-world image datasets, and show that our algorithms are capable of
redacting data while retaining high generation quality at a fraction of the cost of full re-training. One
limitation or our paper is that the proposed framework only applies to unconditional generative models.
It is an important future direction to de�ne data redaction and propose algorithms for conditional
generative models, which are more widely used in downstream deep learning applications.
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A Related Work

Although deep generative models have been highly successful at many domains, it has long been
known that they often emit undesirable samples and samples with different types of artifacts that
make them untrustworthy. Examples include blurred image samples [Kaneko and Harada, 2021],
fairness issues [Tan et al., 2020, Karakas et al., 2022], and checkerboard artifacts [Odena et al., 2016,
Zhang et al., 2019, Wang et al., 2020, Schwarz et al., 2021] in image generation, offensive text
in language models [Abid et al., 2021, Perez et al., 2022], and unnatural sound in speech models
[Donahue et al., 2018, Thiem et al., 2020].

Some prior works have used post-editing to remove artifacts and improve GANs. Examples include
improving fairness [Tan et al., 2020, Karakas et al., 2022], rule rewriting [Bau et al., 2020], discovering
interpretability [Härkönen et al., 2020], and �ne-tuning [Mo et al., 2020, Li et al., 2020, Zhao et al.,
2020]. The purpose, use cases, and editing methods of these papers are different from our paper,
where we focus on data redaction.

While our problem de�nition and formalization is novel, the technical solutions that we propose are
related to three prior works that use these techniques in different contexts. These are NDA [Sinha
et al., 2020], Rumi-GAN [Asokan and Seelamantula, 2020], and Hanneke et al. [2018]. The �rst
two papers look at how to avoid generating negative samples while training a generative model from
scratch. This is done by de�ning new fake distributions to penalize the generation of these samples.
However, their purposes are different from us: NDA is used to characterize the boundary of the
support of the generative distribution more precisely, and Rumi-GAN is used to handle unbalanced
data. We extend their idea and theory to data redaction in Section 3.1 Hanneke et al. [2018] propose
an active learning approach to avoid generating invalid samples, also while training a generative
model from scratch. Their work however is entirely theoretical and apply to discrete distributions. In
our paper, the validity-based redaction algorithm (Alg. 2) is based on a simpli�ed version of their
algorithm. We also use their de�nition ofinvalidity as an evaluation method.

Our work is also related to data deletion or machine unlearning [Cao and Yang, 2015, Guo et al.,
2019, Schelter, 2020, Neel et al., 2021, Sekhari et al., 2021, Izzo et al., 2021, Ullah et al., 2021].
However, there are two important differences between data deletion and data redaction. First, data
deletion aims to approximate the re-trained model when some training samples are removed – mostly
due to privacy reasons – while in data redaction we penalize the model from knowing samples that
should be redacted. Another difference is that in data redaction, the redaction set
 may have a
zero intersection with training data. These two differences are discussed in Section 2.3 in detail. In
addition, most data deletion techniques are for supervised learning or clustering, and is much less
studied for generative models.

There is also a related line of work on catastrophic forgetting in supervised learning [Kirkpatrick
et al., 2017] and generative models [Thanh-Tung and Tran, 2020]. This concept is different from
data redaction in that we would like the generative model to redact certain data after training, while
catastrophic forgetting means knowledge learned in previous tasks is destroyed during continual
learning.

1The loss functions in NDA and Rumi-GAN are similar.
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B Proof of Theorem 1 and Extension tof -GAN

Background of f -GAN [Nowozin et al., 2016]. Let � be a convex, lower-semicontinuous function
such that� (1) = 0 . In f -GAN, the following� -divergence is minimized:

D � (PkQ) =
Z

x 2 Rd
Q(x)�

�
P(x)
Q(x)

�
dx:

According to the variational characterization of� -divergence [Nguyen et al., 2010],

D � (PkQ) = sup
T

[Ex � P T(x) � Ex � Q � � (T(x))] ;

where the optimalT is obtained byT = � 0
�

P
Q

�
.

The objective function (3) corresponds to anf -GAN. Let � = � � + � + . We can rewrite(3) as

L(G; D ) = � � Ex � P logD(x) + (2 � � ) � Ex � Q log(1 � D (x)) ;

where
P =

� +

�
pdata j �
 +

� �

�
pfake ; Q =

1 � � +

2 � �
pdata j �
 +

1 � � �

2 � �
pfake :

Let
C = � log � + (2 � � ) log(2 � � ) � 2 log 2;

� (u) = ( �u ) log(�u ) � (�u � � + 2) log( �u � � + 2) + (2 � � ) log(2 � � ) � C:

Then,� (1) = 0 , and� 00(u) = � (2 � � )
u ( �u � � +2) > 0 so� is convex. Its convex conjugate function� � is

� � (t) := sup
u

(ut � � (u)) = � (2 � � ) log
�

1 � e
t
�

�
+ C:

Let T(x) = � logD(x). Then,

max
D

L(G; D ) = sup
T

[Ex � P T(x) � Ex � Q � � (T(x))] + C = D � (PkQ) + C:

Optimal D . We have
� 0(u) = � log

�u
�u � � + 2

:

Therefore, the optimal discriminator is

� logD = � 0
�

P
Q

�
;

or

D =
�P

�P + (2 � � )Q
=

� + pdata j �
 + � � pfake

pdata j �
 + pfake
:

Finally, the optimal discriminator in (4) is obtained by inserting (2) into the above equation.

Optimal G. For conciseness, we let

P1 = pdata j �
 ; P2 = pG ; P3 = p
 ;

� 1 =
� +

�
; � 2 =

� � �
�

; � 3 =
� � (1 � � )

�
;

 1 =
1 � � +

2 � �
;  2 =

(1 � � � )�
2 � �

;  3 =
(1 � � � )(1 � � )

2 � �
:

Then, we have

P =
3X

i =1

� i Pi ; Q =
3X

i =1

 i Pi :

We also have
� 1

 1
>

� 2

 2
=

� 3

 3
:
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Becausesupp (P1) \ supp (P3) is the empty set, we have

D � (PkQ) =
Z

x 2 Rd

 
3X

i =1

 i Pi

!

�

 P 3
i =1 � i Pi

P 3
i =1  i Pi

!

dx

=
Z

x=2 

( 1P1 +  2P2)�

�
� 1P1 + � 2P2

 1P1 +  2P2

�
dx

+
Z

x 2 

( 2P2 +  3P3)�

�
� 2P2 + � 3P3

 2P2 +  3P3

�
dx

Let Z

x 2 

P2dx = �:

We have Z

x 2 

( 2P2 +  3P3)�

�
� 2P2 + � 3P3

 2P2 +  3P3

�
dx = (  2� +  3) �

�
� 3

 3

�
:

Let

� =
� 2( 1 +  2)
 2(� 1 + � 2)

:

According to Jensen's inequality,
Z

x=2 

( 1P1 +  2P2)�

�
� 1P1 + � 2P2

 1P1 +  2P2

�
dx

= (  1 +  2(1 � �� ))
Z

x=2 


�
 1P1 +  2P2

 1 +  2(1 � �� )

�
�

�
� 1P1 + � 2P2

 1P1 +  2P2

�
dx

� ( 1 +  2(1 � �� )) �
� Z

x=2 


� 1P1 + � 2P2

 1 +  2(1 � �� )
dx

�

= (  1 +  2(1 � �� )) �
�

� 1 + � 2(1 � � )
 1 +  2(1 � �� )

�

= (  1 +  2(1 � �� )) �
�

� 1 + � 2

 1 +  2

�
:

Therefore, we have

D � (PkQ) � ( 1 +  2)�
�

� 1 + � 2

 1 +  2

�
+  3�

�
� 3

 3

�
+

�
 2�

�
� 3

 3

�
�

� 2( 1 +  2)
� 1 + � 2

�
�

� 1 + � 2

 1 +  2

��
�:

Now, we show the� term is non-negative. We write

 2�
�

� 3

 3

�
�

� 2( 1 +  2)
� 1 + � 2

�
�

� 1 + � 2

 1 +  2

�
= � 2

�
 2

� 2
�

�
� 3

 3

�
�

( 1 +  2)
� 1 + � 2

�
�

� 1 + � 2

 1 +  2

��

= � 2

�
 3

� 3
�

�
� 3

 3

�
�

1 �  3

1 � � 3
�

�
1 � � 3

1 �  3

��
:

It suf�ces to prove the function (u) = � (u)=u satis�es

 
�

� 3

 3

�
�  

�
1 � � 3

1 �  3

�
:

We use the Mathematica software [Inc.] to compute the difference:

 
�

� 3

 3

�
�  

�
1 � � 3

1 �  3

�
= �

�
� �

log
2 � �

1 � � �
+ �� � log

� � (2 � � )
1 � � �

+
� (1 � � � )

2 � �
(log 4 � � log � )

�
�

2 � �

�
� + 1

�� � + � +
� 1

�
(log 4 � � log � )

� � log
(2 � � )( �� � + � + )
� (1 � � � ) + 1 � � +

+
� (� + 1)

�� � + � +
log

(� + 1)(2 � � )
� (1 � � � ) + 1 � � +

:
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The minimum value of the above difference for� � 2 [0; 1
2 ], � + 2 [0; 1

2 ], and� 2 [0; 1] is obtained
at � � = � + = 1

2 , where the difference equals zero. This makes us able to conclude

D � (PkQ) � ( 1 +  2)�
�

� 1 + � 2

 1 +  2

�
+  3�

�
� 3

 3

�
:

Finally, we letP2 = P1. In this case,

D � (PkQ) =
Z

x 2 Rd

 
3X

i =1

 i Pi

!

�

 P 3
i =1 � i Pi

P 3
i =1  i Pi

!

dx

=
Z

x=2 

( 1P1 +  2P2)�

�
� 1P1 + � 2P2

 1P1 +  2P2

�
dx

+
Z

x 2 

 3P3�

�
� 3P3

 3P3

�
dx

= (  1 +  2)�
�

� 1 + � 2

 1 +  2

�
+  3�

�
� 3

 3

�
:

Therefore, the optimal generator ispG = pdata j �
 .

Extension tof -GAN. We can extend the objective(3) to any type off -GAN. Let � be a convex,
lower-semicontinuous function such that� (1) = 0 . Let

P =
� +

�
pdata j �
 +

� �

�
pfake ; Q =

1 � � +

2 � �
pdata j �
 +

1 � � �

2 � �
pfake :

We jointly optimize

min
G

max
D

L(G; D ) = Ex � P D(x) � Ex � Q � � (D (x)) :

Then, the optimal discriminator isD = � 0
�

P
Q

�
. If  

�
� 3
 3

�
�  

�
1� � 3
1�  3

�
, then the optimal generator

is pG = pdata j �
 .

Remark 1. When� � = 0 and� + = 1 (i.e. there is no label smoothing), Theorem 1 in Sinha et al.
[2020] implies the above optimal generator. Our theorem also extends their theorem to the label
smoothing setting.
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C Theoretical Analysis of a Simpli�ed Dynamical System on Invalidity

In this section, we provide theoretical analysis to a simpli�ed, ideal dynamical system that corresponds
to Alg. 2 and Section 3.2. In this dynamical system, we assume there are only two types of invalid
samples: those easy to redact, and those hard to redact. We assume after each iteration, the generator
will generate a less but positive fraction of invalid samples. Formally, letf 
 easy; 
 hard g be a split of

 , where
 easy is the set of invalid samples that are easy to redact, and
 hard is the set of invalid
samples that are hard to redact. We let

measy =
Z


 easy

pG (x)dx;

mhard =
Z


 hard

pG (x)dx;

mratio =
measy

measy + mhard
:

Then,measy is the fraction of invalid generated samples that are easy to redact, andmhard is the
fraction of invalid generated samples that are hard to redact.measy + mhard is the fraction of invalid
generated samples over all generated ones, which we callinvalidity . We use superscript to represent
each iteration. We consider the following dynamical system:

mi +1
easy = mi

easy � � easy(mi
ratio ; T);

mi +1
hard = mi

hard � � hard (mi
ratio ; T):

In other words, the improvement ofmeasy andmhard (in terms of multiplication factor) is only
affected bymratio andT. We make this assumption because in practice, the number of invalid
samples to optimize the loss function is always �xed. As for boundary conditions, we assume
m0

easy > m 0
hard . We assume for� 2 f � easy; � hard g, 0 < � (m; T ) � 1, where equality holds only in

these situations:
� (m; 0) = 1 ; � easy(0; T) = 1 ; � hard (1; T) = 1 :

We also assume a largerT leads to smaller� , but this effect degrades asT increases:

@
@T

� (m; T ) < 0;
@2

@T2
� (m; T ) > 0:

To distinguish between samples that are easy or hard to redact, we assume

1
m

�
@

@T
� easy(m; T ) <

1
1 � m

�
@

@T
� hard (m; T ) < 0:

We can now draw some conclusions below.

As i ! 1 , invalidity converges to 0. Because� easy(T) < 1 and� hard (T) < 1 whenT > 0, we
havemi +1

easy � mi
easy andmi +1

hard � mi
hard . According to the monotone convergence theorem, there

existsm1
easy � 0 andm1

hard � 0 such that

lim
i !1

mi
easy = m1

easy; lim
i !1

mi
hard = m1

hard :

We now provem1
easy = m1

hard = 0 . If otherwise, there existsm1
ratio =

m 1
easy

m 1
easy + m 1

hard
such that

mi
ratio ! m1

ratio . We then have

m1
easy = m1

easy � � easy(m1
ratio ; T);

m1
hard = m1

hard � � hard (m1
ratio ; T):

If m1
easy > 0, thenm1

ratio > 0, and� easy(m1
ratio ; T) < 1, contradiction. Similarly, ifm1

hard > 0,
thenm1

ratio < 1, and� hard (m1
ratio ; T) < 1, contradiction. Therefore, we conclude bothmi

easy and
mi

hard converge to 0. This indicates the invalidity converges to zero.
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Simplifying the dynamical system. To further simplify the problem, we make a strong assumption
that� is linear inm. Then, we must have

� easy(m; T ) = 1 � � easy(T) � m;
� hard (m; T ) = 1 � � hard (T) � (1 � m);

where� 2 [0; 1]; � (0) = 0 ; � 0 > 0; � 00< 0 for � 2 f � easy; � hard g. We also have� 0
easy > � 0

hard and
therefore� easy > � hard .

Optimal T and R from bounds. We have

mi +1
easy + mi +1

hard = mi
easy + mi

hard �
� easy(T)(mi

easy)2 + � hard (T)(mi
hard )2

mi
easy + mi

hard
:

Because� easy(T) � � hard (T), we have

� easy(T)� hard (T)
� easy(T) + � hard (T)

(mi
easy+ mi

hard ) �
� easy(T)(mi

easy)2 + � hard (T)(mi
hard )2

mi
easy + mi

hard
� � easy(T)(mi

easy+ mi
hard ):

This leads to

1 � � easy(T) �
mi +1

easy + mi +1
hard

mi
easy + mi

hard
� 1 �

� easy(T)� hard (T)
� easy(T) + � hard (T)

;

and therefore

(1 � � easy(T))R �
mR

easy + mR
hard

m0
easy + m0

hard
�

�
1 �

� easy(T)� hard (T)
� easy(T) + � hard (T)

� R

:

Assume the number of queries,T � R, is �xed. Then, the optimalT from the lower bound is

T �
low = arg min

T

1
T

log(1 � � easy(T)) :

By setting the derivative to be zero, we haveT �
low is the solution to

� T � 0
easy(T) = (1 � � easy(T)) log(1 � � easy(T)) :

Similarly, the optimalT from the upper bound is

T �
upp = arg min

T

1
T

log
�

1 �
� easy(T)� hard (T)

� easy(T) + � hard (T)

�
:

By setting the derivative to be zero, we haveT �
upp is the solution to

� T �
� 0

easy(T)� hard (T)2 + � 0
hard (T)� easy(T)2

(� easy(T) + � hard (T))2 =
�

1 �
� easy(T)� hard (T)

� easy(T) + � hard (T)

�
log

�
1 �

� easy(T)� hard (T)
� easy(T) + � hard (T)

�
:

D Feasibility of Discriminator in the Classi�er-based Setting

The solution to (5) and (6) is:

D � (x) =
� � + pdata j �
 + � � ( �p G +(1 � � )p
 )

pdata j �
 + �p G +(1 � � )p

if f (x) � �

� � if f (x) < �
;

which satis�esD � 2 [0; 1]. Therefore, (5) is feasible with theguide function de�ned in (6).
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E Experiments (Main)

In this section, we aim to answer the following questions.

• How well can the algorithms in Section 3 redact samples in practice?

• Can these algorithms be used to de-bias pre-trained models?

• Can these algorithms be used to understand training data?

We examine these questions by focusing on several real-world image datasets, including MNIST
(28� 28) [LeCun et al., 2010], CIFAR (32� 32) [Krizhevsky et al., 2009], CelebA (64� 64) [Liu
et al., 2015] and STL-10 (96� 96) [Coates et al., 2011] datasets. We demonstrate main experiments
in Appendix 4, and provide more detailed results afterwards. Speci�cally, in Appendix E.2 and F, we
investigate how well these algorithms can redact samples with a speci�c label. In Appendix E.3 and
G, we investigate how well these algorithms can de-bias pre-trained models and improve generation
quality. In Appendix E.4 and H, we use these algorithms to understand training data through the lens
of data redaction.

The pre-trained model for each dataset is a DCGAN [Radford et al., 2015] trained for 200 epochs (see
details in Appendix E.1). We use one NVIDIA 3080 GPU to train these models and run experiments.

Evaluation Metrics: invalidity and generation quality. The invalidity is de�ned as the mass of the
generation distribution on the redaction set
 : Inv (pG ) =

R
x 2 
 pG (x)dx. In practice, we measure

invalidity by generating 50K samples and computing the fraction of these samples that fall into
 .

The generation quality is measured in Inception Score (IS) [Salimans et al., 2016] and Frechet
Inception Distance (FID) [Heusel et al., 2017]. HigherIS or lowerFID indicates better quality. We
computeIS for grey-scale images andFID for RGB images. When measuring quality, we compute
IS or FID between 50K generated samples andX \ �
 . Therefore, this score is not comparable with
the score w.r.t. the pre-trained model if the redaction set includes samples in the training set, such as
samples with a speci�c label in Appendix E.2. Detailed setup is in Appendix E.1.

E.1 Experimental Setup

Pre-training. We use DCGAN [Radford et al., 2015] with latent dimension= 128 as the model. The
pre-trained model is trained with label smoothing (� + = 0 :9; � � = 0 :1):

min
G

max
D

Ex � X [� + logD(x) + (1 � � + ) log(1 � D (x))]

+ Ez�N (0 ;I ) [� � logD(G(z)) + (1 � � � ) log(1 � D (G(z)))] :

We use Adam optimizer with learning rate= 2 � 10� 4; � 1 = 0 :5; � 2 = 0 :999to optimize both the
generator and the discriminator. The networks are trained for 200 epochs with a batch size of 64. For
each iteration over one mini-batch, we letK D be the number of times to update the discriminator,
andK G the number of times to update the generator. We useK D = 1 andK G = 5 to train.

Data redaction. The setup is similar to the pre-training except for two differences. The number of
epochs is much smaller: 8 for MNIST, 30 for CIFAR, and 40 for STL-10. We letK G = 1 for MNIST
and CIFAR andK G = 5 for STL-10.

Evaluation. To measure invalidity, we generate 50K samples, and compute the fraction of these
samples that are not valid (e.g., classi�ed as the label to be redacted, or with pre-de�ned biases). It is
the lower the better. The invalidity for redacting labels is measured based on label classi�ers. We use
pre-trained classi�ers on these datasets.2

The other evaluation metric is generation quality. The inception score(IS) [Salimans et al., 2016] is
computed based on logit distributions from the above pre-trained classi�ers. It is the higher the better.
The Frechet Inception Distance (FID) [Heusel et al., 2017] is computed based on an open-sourced
PyTorch implementation.3 It is the lower the better.

When computing these quality metrics, we generate 50K samples, and compare to the set of valid
training samples:f x 2 X : x =2 
 g. Therefore, whenX \ 
 is not the empty set (such as

2https://github.com/aaron-xichen/pytorch-playground (MIT license)
3https://github.com/mseitzer/pytorch-fid (Apache-2.0 license)
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redacting labels in Appendix E.2), the quality measure of the model after data redaction is not directly
comparable to the pre-trained model, but these scores among different redaction algorithms are
comparable and give intuition to the generation quality. WhenX \ 
 is the empty set (such as
de-biasing in Appendix E.3), the quality measures of the pre-trained model and the model after data
redaction are directly comparable.

E.2 Redacting Labels

Table 1: Invalidity and generation quality of different redaction algorithms on redacting label zero
within different datasets. Mean and standard errors are reported for �ve random seeds. Note
that quality measure after data redaction is not directly comparable with the pre-trained model.
The invalidity drops in magnitude after data redaction. Different redaction algorithms are highly
comparable to each other.

Dataset Evaluation Pre-trained Data-based Validity-based Classi�er-based
MNIST Inv (#)( � 10� 5) 1:1 � 104 8:0 � 2:2 6:4 � 0:8 5:2 � 3:7

(8 epochs) IS(" ) 7:82 7:20 � 0:08 7:19� 0:04 7:16� 0:04
CIFAR-10 Inv (#)( � 10� 3) 1:3 � 102 7:5 � 1:1 7:6 � 1:0 11:6 � 1:0
(30 epochs) FID(#) 36:2 34:8 � 1:5 34:8 � 1:4 33:2 � 0:6

STL-10 Inv (#)( � 10� 4) 6:2 � 102 8:8 � 4:5 7:7 � 1:3 11:6 � 3:6
(40 epochs) FID(#) 79:1 77:8 � 2:2 77:0 � 2:3 77:2 � 1:5

(a) MNIST (b) CIFAR-10 (c) STL-10

Figure 2: Invalidity during data redaction when redacting label zero. Mean and standard errors are
plotted for �ve random seeds. Standard errors may be too small to spot. Invalidity drops quickly at
the beginning of data redaction, and different algorithms are highly comparable to each other.

Question.How well can the algorithms in Section 3 redact samples in practice?

Methodology. We investigate how well the proposed algorithms can redact samples with a speci�c
labely. In the data-based setting (Alg. 1), we express this as
 = f x 2 X : label (x) = yg. In
the validity-based setting (Alg. 2), we express this by settingv(x) = 1 f arg maxi logit (x) i 6= yg,
wherelogit is the output of the softmax layer of a pre-trained label classi�er [Chen, 2020]. In the
classi�er-based setting (Alg. 3), we setf (x) = 1 � logit (x)y .

In Table 1, we compare invalidity and generation quality among different algorithms and datasets
when we redact label 0. We plot invalidity during data redaction in Fig. 2. We also compare invalidity
after one epoch of data redaction in Appendix F.1.1. Mean and standard errors for 5 random runs are
reported. Results for different hyper-parameters and redacting other labels are in Appendix F.

Results.We �nd all the algorithms in Section 3 work quite well with a much fewer number of epochs
used for training the pre-trained model (which is 200). These algorithms are generally comparable.
Therefore, we conclude that the simplest data-based algorithm is good enough to redact samples
when those training samples to be redacted (X \ 
 ) can characterize the redaction set (
 ) well.

We also �nd invalidity rapidly drops after only one epoch of data redaction, indicating these algorithms
are very ef�cient in penalizing invalidity. While different algorithms perform better on different
datasets, they are highly comparable with each other. The reason why the classi�er-based algorithm
performs the best on MNIST is possibly that the label classi�er on MNIST is almost perfect so its
gradient information is accurate.

Visualization. We sample latentsz � N (0; I ) and choose those corresponding to invalid samples, i.e.
G0(z) 2 
 whereG0 is the pre-trained generator. We select visually goodG0(z) for demonstration.
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We visualizeG(z) during data redaction in Fig. 3, and more visualizations are in Appendix F.3. This
demonstrates how the latent space is manipulated: the label to be redacted is gradually pushed to
other labels, and there is high-level visual similarity between the �nalG(z) and the originalG0(z).

Table 2: Study on the effect ofT in Alg. 2 when the total number of queries is �xed.R refers to the
number of epochs of data redaction. A largeT may lead to worse invalidity.

T MNIST CIFAR-10 STL-10
R Inv (#) IS(" ) R Inv (#) FID(#) R Inv (#) FID(#)

400 20 0:0 � 10� 4 7:10 75 0:45 � 10� 2 35:1 100 1:0 � 10� 3 75:1
1000 8 0:6 � 10� 4 7:19 30 0:76� 10� 2 34:8 40 0:8 � 10� 3 77:0
2000 4 2:8 � 10� 4 7:11 15 1:00� 10� 2 31:9 20 1:0 � 10� 3 75:1

Figure 3: Visualization of the data redaction process of invalid samples when redacting label zero.
The �rst column is generated by the pre-trained generator, and thei -th column is generated after
k � (i � 1) epochs of data redaction. Left: MNIST withk = 1 . Right: top is CIFAR-10 and bottom
is STL-10, both withk = 4 and label zero beingairplanes . We can see samples associated with
invalid labels are gradually pushed to other labels, but a high-level visual similarity is kept.

Effects of other hyper-parameters.In Table 2, we compare differentT (#queries after each epoch)
in the validity-based redaction algorithm (Alg. 2). We �x the total number of queries by setting
T� #epochs to be a constant. Results indicate that a largeT may lead to worse invalidity, and there is
trade-off between invalidity and quality when settingT to be small or moderate.

In Appendix F.1.3, we compare different� (hyperparameter in(2)) in the classi�er-based redaction
algorithm (Alg. 3). We �nd there exists a clear trade-off between invalidity and quality when
alternating� : a larger� tends to produce better quality, and a smaller� tends to have better invalidity.

Redacting multiple sets.We then investigate how well the proposed algorithms can generalize to
multiple redaction sets with methods in Section 3.4. We focus on the CelebA dataset [Liu et al.,
2015], which has 40 labeled attributes. We use proposed algorithms to redact a combination of these
attributes:
 1 = f Black_hair and Blurry g, 
 2 = f Brown_hair and Wear_eyeglassesg,
and
 = 
 1 [ 
 2. These attributes are randomly selected from those easy to capture. See detailed
setup in Appendix F.4. Results after 1 or 5 epochs are reported in Table 3. Consistent with results on
redacting just one label, all algorithms can reduce invalidity and retain generation quality and are
comparable, while the classi�er-based algorithm achieves the best invalidity after one epoch.

Table 3: Invalidity and generation quality of different redaction algorithms on redacting a combination
of attributes within CelebA. There is a signi�cant drop of invalidity, indicating that different redaction
algorithms can all generalize to multiple redaction sets.

Evaluation Pre-trained Epochs Data-based Data-based (sequentially) Validity-based Classi�er-based
Inv (#) 1:66� 10� 3 1 9:0 � 10� 4 - 7:6 � 10� 4 7:0 � 10� 4

Inv (#) 1:66� 10� 3 5 3:8 � 10� 4 6:0 � 10� 4 6:8 � 10� 4 6:8 � 10� 4

FID(#) 36:4 5 29:3 28:6 29:9 27:9
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E.3 Model De-biasing

There can be different artifacts in GAN generated samples, and these could harm the overall generation
quality. These artifacts may not exist in training samples, but are caused by inductive biases of the
model, and become obvious after training. We can post-edit a pre-trained model to remove these
artifacts, which we callmodel de-biasing. In this section, we investigate how well Alg. 2 and Alg. 3
apply to this task. We assume training samples are not biased so Alg. 1 does not apply to de-biasing.

To use these algorithms for de-biasing, we assume the target artifact or bias can be automatically
detected by a classi�erf or a validity functionv . Speci�cally, we survey two kinds of biases:
boundary artifacts and label biases.

Boundary artifacts. A GAN trained on MNIST might generate samples that have numerous white
pixels on the boundary (see Appendix G.1). We call this phenomenon theboundary artifact. We use
the validity-based algorithm (Alg. 2) to de-bias boundary artifacts. The validity function is de�ned as
v(x) = 1 f

P
( i;j )2 boundary pixels x ij < � bg, where boundary pixels are those within a certain margin

to the boundary, and threshold� b satis�es no training image is invalid.

Results are reported in Table 4. It is clear that the invalidity reduces in order after data redaction,
indicating boundary artifacts are largely removed. Consistent with Table 2, a small or moderateT
leads to better results. We visualize samples before and after de-biasing in Appendix G.1.

Table 4: Invalidity after de-biasing boundary artifacts of generated MNIST samples. We run the
validity-based redaction algorithm (Alg. 2) for 4 epochs. The invalidity drops signi�cantly, and a
small or moderateT leads to slightly lower (better) invalidity.

Pre-trained T = 5K T = 10K T = 20K T = 40K T = 80K
Margin= 1 3:1 � 10� 3 6:0 � 10� 5 8:0 � 10� 5 2:0 � 10� 4 2:0 � 10� 4 7:0 � 10� 4

Margin= 2 1:1 � 10� 3 1:6 � 10� 4 4:0 � 10� 5 6:0 � 10� 5 3:2 � 10� 4 2:8 � 10� 4

Table 5: Invalidity and Inception scores after de-biasing label biases of generated samples from
MNIST. We run the classi�er-based redaction algorithm (Alg. 3) for 8 epochs with� = 0 :8,
and compare to the data deletion baseline with 200 epochs of full re-training. The arrow means
improvement from the pre-trained model to after data redaction. There is a clear improvement of
generation quality, indicating the proposed algorithm can help GANs generate better samples. In
contrast, data deletion does not help improve invalidity or quality.

� Redaction (8 epochs) Data deletion baseline (200 epochs)
Inv (#) IS(" ) Inv (#) IS(" )

0:3 8:19� 10� 4 ! 2:60� 10� 4 7:82 ! 8:10 8:19� 10� 4 ! 1:14� 10� 3 7:82 ! 7:75
0:5 2:07� 10� 2 ! 1:70� 10� 2 7:82 ! 7:92 2:07� 10� 2 ! 2:17� 10� 2 7:82 ! 7:79
0:7 1:35� 10� 1 ! 1:22� 10� 1 7:82 ! 7:95 1:35� 10� 1 ! 1:32� 10� 1 7:82 ! 7:82

Table 6: Invalidity and FID scores after de-biasing label biases of generated samples from CIFAR-10.
We run the classi�er-based redaction algorithm (Alg. 3) for 30 epochs with� = 0 :9. The arrow
means improvement from the pre-trained model to after data redaction. There is a clear improvement
of generation quality, indicating the proposed algorithm can help GANs generate better samples.
Note that there isno invalid sample in the training set, so the data deletion baseline is identical to the
pre-trained model.

� Inv (#) FID(#)
0:5 2:28� 10� 2 ! 1:67� 10� 2 36:2 ! 26:6
0:7 1:72� 10� 1 ! 1:49� 10� 1 36:2 ! 26:8
0:3 5:79� 10� 4 ! 2:20� 10� 4 36:2 ! 27:1

Label biases.Neural networks may generate visually smooth but semantically ambiguous samples
[Kirichenko et al., 2020], e.g. samples that look like multiple objects (see Appendix G.2). We call
this phenomenon thelabel bias. We use the classi�er-based algorithm (Alg. 3) to de-bias label
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