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Abstract

Large pre-trained generative models are known to occasionally output undesirable
samples, which undermines their trustworthiness. The common way to mitigate
this is to re-train them differently from scratch using different data or different
regularization — which uses a lot of computational resources and does not always
fully address the problem. In this work, we take a different, more compute-friendly
approach and investigate how to post-edit a model after training so that it “redacts”,
or refrains from outputting certain kinds of samples. We show that redaction is
different from data deletion, and data deletion may not always lead to redaction.
We then consider Generative Adversarial Networks (GANs), and provide three
different algorithms for data redaction that differ on how the samples to be redacted
are described. Extensive evaluations on real-world image datasets show that our
algorithms out-perform data deletion baselines, and are capable of redacting data
while retaining high generation quality at a fraction of the cost of full re-training.

1 Introduction

Generative Adversarial Networks (GANs) are large neural generative models that learn a complicated
probability distribution from data and then generate samples from it. These models have been
immensely successful in many large scale tasks from multiple domains, such as images [Zhu et al.,
2020, Karras et al., 2020, 2021], point clouds [Zhang et al., 2021], video [Tulyakov et al., 2018], text
[de Masson d’ Autume et al., 2019], and speech [Kong et al., 2020].

However, it is also well-known that many deep generative models frequently output undesirable
samples, which makes them less reliable and trustworthy. Image models generate blurred samples
[Kaneko and Harada, 2021] or checkerboard artifacts [Odena et al., 2016, Zhang et al., 2019,
Wang et al., 2020, Schwarz et al., 2021], speech models produce unnatural sound [Donahue et al.,
2018, Thiem et al., 2020], and language models emit offensive text [Abid et al., 2021, Perez et al.,
2022]. Thus, an important question is how to mitigate these artifacts, which would improve the
trustworthiness of these models.

One way to mitigate undesirable samples is to re-design the entire training pipeline including data
augmentation, model architecture and loss functions, and then re-train the entire model from scratch
[Isola et al., 2017, Aitken et al., 2017, Kaneko and Harada, 2021] — a strategy that has been used in
prior work. This approach is very compute-intensive as modern GANs can be extremely expensive
to train. In addition, other problems may become apparent after training, and resolving them may
require multiple re-trainings. To address this challenge, we consider post-editing, which means
modifying a pre-trained model in a certain way rather than training it differently from scratch. This is
a much more computationally efficient process that has shown empirical success in many supervised
learning tasks [Frankle and Carbin, 2018, Zhou et al., 2021, Taha et al., 2021], but has not been
studied much for unsupervised learning. In particular, we propose a post-editing framework to redact
undesirable samples that might be generated by a GAN, which we call data redaction.
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A second plausible solution for mitigating undesirable samples is to use a classifier to filter them out
after generation. This approach, however, has several drawbacks. Classifiers can take a significant
amount of space and time after deployment. Additionally, if the generative model is handed to a
third party, then the model trainer has no control over whether the filter will ultimately be used. Data
redaction via post-editing, on the other hand, offers a cleaner solution which does not suffer from
these limitations.

A third plausible solution is data deletion or machine unlearning — post-edit the model to approximate
a re-trained model that is obtained by re-training from scratch after removing the undesirable samples
from the training data. However, this does not always work — as we show in Section E.3, deletion does
not necessarily lead to redaction in constrained models. Additionally, the undesirable samples may
simply be artifacts of the neural generative model and may not exist in the training data; examples
include unnatural sounds emitted by speech models and blurred images from image models. Data
redaction, in contrast, can address all these challenges.

There are two major technical challenges that we need to resolve in order to do effective data redaction.
The first is how to describe the samples to be redacted. This is important as data redaction algorithms
need to be tailored to specific descriptions. The second challenge is that we need to carefully balance
data redaction with retaining good generation quality, which means the latent space and the networks
must be carefully manipulated.

In this work, we propose a systematic framework for redacting data from pre-trained generative
models (see Section 2). We model data redaction as learning the data distribution restricted to the
complement of a redaction set . We then formalize three ways of describing redaction sets, namely
data-based (where a pre-specified set is given), validity-based (where there is a validity checker), and
classifier-based (where there is a differentiable classifier).

Then, we introduce three data redaction algorithms, one for each description (see Section 3). Prior
works have looked at avoiding negative samples in the re-training setting with different descriptions
and purposes [Sinha et al., 2020, Asokan and Seelamantula, 2020]. They introduce fake distributions
to penalize the generation of negative samples. We extend this idea to data redaction by defining the
fake distribution as a mixture of the generative distribution and a redaction distribution supported
on . We prove the optimal generator can recover the target distribution when label smoothing
[Salimans et al., 2016, Szegedy et al., 2016, Warde-Farley and Goodfellow, 2016] is used.

Based on our theory, we introduce the data-based redaction algorithm (Alg. 1). We then combine
this algorithm with an improper active learning algorithm by Hanneke et al. [2018] and introduce the
validity-based redaction algorithm (Alg. 2). Finally, we propose to use a guide function to guide the
discriminator via a classifier, and introduce the classifier-based redaction algorithm (Alg. 3).

Finally, we empirically evaluate these redaction algorithms via experiments on real-world image
datasets (see Section 4). We show that these algorithms can redact quickly while keeping high
generation quality. We then investigate applications of data redaction, and use our algorithms to
remove different biases that may not exist in the training set but are learned by the pre-trained model.
This demonstrates that data redaction can be used to reduce biases and improve generation quality,
and hence improve the trustworthiness of generative models.

In summary, our contributions are as follows:

* We formalize the problem of post-editing generative models to prevent them from outputting
undesirable samples as “data redaction” and establish its differences with data deletion.

* We propose three data augmentation-based algorithms for redacting data from pre-trained
GAN:Ss as a function of how the inputs to be redacted are described.

* We theoretically prove that data redaction can be achieved by the proposed algorithms.

* We extensively evaluate our algorithms on real world image datasets. We show these
algorithms can redact data quickly while retaining high generation quality. Moreover, we
find data redaction performs better than data deletion in a de-biasing experiment.

2 A Formal Framework for Data Redaction

Let pgata be the data distribution on RY and X Pdata be i.i.d. samples. Let A be the learning
algorithm of generative modelling and M = A(X) be the pre-trained model on X, which learns



Pdata- In this paper, we consider A to be a GAN learning algorithm [Goodfellow et al., 2014a], and
M contains two networks, D (discriminator) and G (generator), which are jointly trained to optimize

mGi‘n mgx Ex paata 109 D(X) + Ex pg log(l  D(X)); )

where pg = G#N (0; 1) is defined as the distribution of G(Z) where Z N (0; I).

2.1 Data Redaction Framework

Let the redaction set RY be the set of samples we would like the model to redact. Formally, the
goal is to develop a redaction algorithm D such that M? = D(M; ) learns the data distribution
restricted to the complement = Rin | ie. Pdataj - Examples of include inconsistent, blurred,

unrealistic, or banned samples that are possibly generated by the model.

The redaction set , in addition to the pre-trained model, is considered as an input to the redaction
algorithm. We consider three kinds of , namely data-based, validity-based, and classifier-based.

2.2 Redaction Set Descriptions

We propose three different descriptions for the redaction set . First, the data-based  is a pre-
defined set of samples in RY, such as a transformation applied on all training samples [Sinha et al.,
2020]. Second, the validity-based is defined as all invalid samples according to a validity function
v:RY ¥ 0 19, where 0 means invalid and 1 means valid. This is similar to the setting in Hanneke
et al. [2018]. Finally, let f : RY ¥ [0; 1] be a soft classifier that outputs the probability that a sample
belongs to a certain binary class, and 2 (0; 1) be a threshold. Then, the classifier-based is defined
as Fx : f(X) < g. For example, f can be an offensive text classifier in language generation tasks
[Pitsilis et al., 2018].

2.3 Data Deletion versus Data Redaction

Motivated by privacy laws such as the GDPR and the CCPA, there has been a recent body of work on
data deletion or machine unlearning [Cao and Yang, 2015, Guo et al., 2019, Schelter, 2020, Neel
et al., 2021, Sekhari et al., 2021, Izzo et al., 2021, Ullah et al., 2021]. In data deletion, we are given a
subset set X" X of the training set to be deleted from an already-trained model, and the goal is to
approximate the re-trained model A(X n X"). While there are some superficial similarities — in that
the goal is to post-edit models in order to “remove” a few data points, there are two key differences.

The first is that data redaction requires the model to assign zero likelihood to the redaction set  in
order to avoid generating samples from this region; this is not the case in data deletion — in fact, we
present an example below which shows that data deletion of a set X’ may not cause a generative
model to redact X°.

Specifically, in Fig. 1, the entire data distribution Pgata = N (0; 1) (blue line) is the standard Gaussian
distribution on R. We set the redaction set = ( A; 1:5] [[1:5; 1), so the blue samples fall
in  and orange samples outside. The learning algorithm A is the maximum likelihood Gaussian
learner that fits the mean and variance of the data. With n = 80 samples, the learnt density A(X) is
shown in green. If the blue samples were deleted, and the model re-fitted, the newly learnt density
A(X n X" would be the red line. Notice that this red line has considerable density on the blue points
— and so these points are not redacted. In contrast, the correct redaction solution that redacts the
samples in  would be the orange density. Thus deletion does not necessarily lead to redaction.

The second difference is that the redaction set may have a zero intersection with the training data,
but may appear in the generated data due to artifacts of the model. Examples include unnatural
sounds emitted by speech models, and blurred images from image models. Data redaction, in contrast
to data deletion, can address this challenge.

3 Methods

In this section, we describe algorithms for each kind of redaction set described in Section 2. We also
provide theory on the optimality of the generator and the discriminator. Finally, we generalize the
algorithms to situations where we would like the model to redact the union of multiple redaction sets.



Figure 1: An example showing difference between data redaction and data deletion. Thedzdtal of
deletionis to approximate the re-trained model (red density), while the goddtaf redactionis to
approximate the restricted density (orange density).

3.1 Data-based Redaction Set

The data-based redaction sets a pre-de ned set of samples we would like the model to redact. One
example is a transformation functibfegAugapplied to all training samples, whekegAugnakes
realistic images unrealistic or inconsistent [Sinha et al., 2020]. Another example can be visually nice
samples outside data manifold when the training set is small [Asokan and Seelamantula, 2020].

In our framework, the redaction setcan be any set of carefully designed or selected samples
depending on the purpose of redacting them — which includes but does not limit to improving the
generation quality of the model. For example, we expect the model to improve on fairness, bias,
ethics or privacy when is properly constructed with unfair, biased, unethical, or atypical samples.

To redact , we regard both generated samples ard be fake samples, and all training samples
that are notin to be real samples [Sinha et al., 2020, Asokan and Seelamantula, 2020]. het

a distribution such thaupp (p ) = . Then, the fake data distributigai.e is a mixture of the
generative distributiopg and the redaction distributigm :
Prake = pe +(1 ) P (2

where 2 (0; 1) is a hyperparameter. We also apply label smoothing [Salimans et al., 2016, Szegedy
et al., 2016, Warde-Farley and Goodfellow, 2016] techniques to the minimax loss function in order
to improve robustness of the discriminator. Let 2 (%; 1] be the positive target (such 89) and
2 [0; %) be the negative target (such@4). Then, the loss function is
L(G:D)= Ex pguj [ +10gD(x)+(1  +)log(1 D(x))] 3)
+ Ex pae [ 10gD(x) +(1 )log(1  D(x)):

Theorem 1. The optimal solution toaning maxp L(G; D) is

+Pdata) + (Pc+(@ )p).

D : : _ - .
Pdataj + P +(1 )p P Pdata ] (4)

We provide the proof and theoretical extension to the more geheB#N [Nowozin et al., 2016]
setting in Appendix B. In the data-based setting, welet U() , the uniform distribution on .
We assume has positive, nite Lebesgue measureRfi so thatU() is well-de ned. The proposed
method is summarized in Alg. 1.

Our objective function is connected to Sinha et al. [2020] and Asokan and Seelamantula [2020] in the
sense thgp is an instance of the negative distribution described in their frameworks. However, there
are several signi cant differences between our method and theirs: (1) we start from a pre-trained
model, (2) we aim to learpgataj rather tharpgata and therefore do not require\ supp (Pgata )

to be the empty set, and (3) we use the common label smoothing techniques and provide theory for
this setting. These differences are also true in the following sections.

3.2 Validity-based Redaction Set

Letv : RY 1 f 0;1gbe a validity function that indicates whether a sample is valid. Then, validity-
based redaction setis the set of all invalid sampldx : v(x) = 0g. For exampleM is a code



Algorithm 1 Redaction Algorithm for Data-based Redaction Set

Inputs: Pre-trained mode¥l = ( Gop; Dy), train setX , redaction set .
Initialize G = Gg, D = Dyg.

De ne the fake data distributiopake according to (2) witlp = U() .
Train G; D to optimize (3):ming maxp L(G; D).

return M °=(G;D).

Algorithm 2 Redaction Algorithm for Validity-based Redaction Set

Inputs: Pre-trained mode¥l = ( Gg; Dy), train setX , validity functionv.
Initialize %= fx2 X :v(x)=0g,M o= M.
fori=0; ;R 1do ‘
Initialize G = G;, D = D;. DrawT samplesX é'e)n from G;.
Queryv and add invalid samples to% © Of x 2 X{h:v(x)=0g.
De ne the fake data distributioprake according to (2) witp = U( 9.
LetM j+1 = (Gj+1;Dj+1) optimize (3):ming maxp L(G; D).
end for
return M %= (Gr;DR)

Algorithm 3 Redaction Algorithm for Classi er-based Redaction Set

Inputs: Pre-trained mode¥l = ( Ggp; Dy), train setX , differentiable classi eff.

Initialize G = Gy, D = Dy.

De ne the fake data distributiopsae according to (2) wittp = U(fx 2 X :f(x) < @).
Train G; D to optimize(3): ming maxp L (G; guide (D; f)), whereguide ( ; ) is de ned in(6).
return M °=(G;D).

generation model, andis a compiler that indicates whether the code is free of syntax errors [Hanneke
et al., 2018]. Different from the data-based setting, the validity-basethy have in nite Lebesgue
measure, such as a halfspace, and consequégjly may not be well-de ned.

To redact , we letp in (2)to be a mixture opgataj andpgj . This corresponds to a simpli ed

version of the improper active learning algorithm introduced by Hanneke et al. [2018] with our Alg.

1 as their optimization oracle. The idea is to apply Alg. 1Rorounds. After each round, we query

the validity of T newly generated samples and use invalid samples to form a data-based redaction set
% In contrast to the data-based approach, this active algorithm focuses on invalid samples that are

more likely to be generated, and therefore ef ciently penalizes generation of invalid samples. The

proposed method is summarized in Alg. 2.

The total number of queries to the validity functieris jXj+ T  R. In casev is expensive to

run, we would like to achieve better data redaction within a limited number of queries. From the
data-driven point of view, we hope to collect as many invalid samples as possible. This is done by
settingR =1 andT maximized if we assume less invalid samples are generated after each iteration.
However, this may not be the case in practice. We hypothesis some samples are easier to redact while
others harder. By setting > 1, we expect an increasing fraction of invalid generated samples to be
hard to redact after each iteration. Focusing on these hard samples can potentially help the generator
redact them. Since it is hard to directly analyze neural networks, we leave the rigorous study to future
work. In Appendix C, we study a much simpli ed dynamical system corresponding to Alg. 2, where

we show the invalidity (the mass p§ on ) converges to zero, and provide optinfahndR values.

3.3 Classi er-based Redaction Set

We would like the model to redact samples with certain (potentially undesirable) property. Let
f :RY1 [0;1] be a soft binary classi er on the property (0 means having the property and 1 means
not having it), and 2 (0; 1) be a threshold. The classi er-based redaction setthen de ned as

fx :f(x) < g. Forexample, the property can being offensivén language generationpntaining

no speeclin speech synthesis, wisual inconsistencin image generation. We consideto be a
trained machine learning model that is fully accessible and differentiable.



To redact , we letp be a mixture ofgaraj andpgj , similar to the validity-based approach. We
usef to guide the discriminator and make it able to easily detect samples frdret guide (D; f) be

a guided discriminator that assigns small values tehenf (x) < orD(x) issmall (i.e.X  Prake),
and large values t® whenf(x) > andD(x) is large (i.e.X  Pgataj ). Instead of optimizing
L(G; D) in (3), we optimizeL (G; guide (D; f)). This will effectively updates by preventing it
from generating samples in. According toTheorem 1, the optimal discriminator is the solution to

+Pdata] + (Pc+(1 )p).

uide (D ;f)= . 5
g ( ) Pdata] + pG+(1 )p ( )
Therefore, the design of tlguide function must make (5) feasible. In this paper, we let
. ) _ D(x) if f(x) .
guide (D; )(x) = +(D(X)  )f(x) otherwise - ©)

The feasibility of(5) is discussed in Appendix D. The proposed method is summarized in Alg. 3. The
classi er-based generalizes the validity-based First, any validity-based can be represented

by a classi er-based ifweletf = vand = % Next, we note there is a trivial way to deal
with classi er-based via the validity-based approach — by settingx) = 1 ff(x) < g. However,
potentially useful information such as values and gradientsamé lost, and we will evaluate this
effect in experiments. In addition, the classi er-based approach does not maintain the potentially
large set of invalid generated samples, as this step is automatically donegimdieefunction.

3.4 Generalization to Multiple Redaction Sets

S
Letf kgE:1 be disjoint sets ifRY, and we would like the model to redact Ezl k. In the

data-based setting, we Ipt = U() = U( E:1 k). In the validity-based setting, eack is
associated with a validity function, . We let the overall validity function to be(x) = min \ vi(X).
In the classi er-based setting, each is associated with a classi dg. Similar to the validity-based
setting, we let the overallto bef (x) = min i (x).

4 Experiments

In this section, we aim to answer the following questions.

» How well can the algorithms in Section 3 redact samples in practice?
» Can these algorithms be used to de-bias pre-trained models?
» Can these algorithms be used to understand training data?

We examine these questions by focusing on several real-world image datasets, including MNIST
(28 28)[LeCunetal., 2010], CIFAR32 32) [Krizhevsky et al., 2009], Celeb’6d 64) [Liu

etal., 2015]and STL-106 96) [Coates et al., 2011] datasets. We demonstrate main experiments
in Appendix E, and provide more detailed results afterwards. Speci cally, in Appendix E.2 and F, we
investigate how well these algorithms can redact samples with a speci ¢ label. In Appendix E.3 and
G, we investigate how well these algorithms can de-bias pre-trained models and improve generation
quality. In Appendix E.4 and H, we use these algorithms to understand training data through the lens
of data redaction.

5 Conclusion

In this paper, we propose a systematic framework for redacting data from pre-trained generative
models. We provide three different algorithms for GANs that differ on how the samples to be redacted
are described. We provide theoretical results that data redaction can be achieved. We then empirically
investigate data redaction on real-world image datasets, and show that our algorithms are capable of
redacting data while retaining high generation quality at a fraction of the cost of full re-training. One
limitation or our paper is that the proposed framework only applies to unconditional generative models.
It is an important future direction to de ne data redaction and propose algorithms for conditional
generative models, which are more widely used in downstream deep learning applications.
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A Related Work

Although deep generative models have been highly successful at many domains, it has long been
known that they often emit undesirable samples and samples with different types of artifacts that
make them untrustworthy. Examples include blurred image samples [Kaneko and Harada, 2021],
fairness issues [Tan et al., 2020, Karakas et al., 2022], and checkerboard artifacts [Odena et al., 2016,
Zhang et al., 2019, Wang et al., 2020, Schwarz et al., 2021] in image generation, offensive text
in language models [Abid et al., 2021, Perez et al., 2022], and unnatural sound in speech models
[Donahue et al., 2018, Thiem et al., 2020].

Some prior works have used post-editing to remove artifacts and improve GANs. Examples include
improving fairness [Tan et al., 2020, Karakas et al., 2022], rule rewriting [Bau et al., 2020], discovering
interpretability [Harkonen et al., 2020], and ne-tuning [Mo et al., 2020, Li et al., 2020, Zhao et al.,
2020]. The purpose, use cases, and editing methods of these papers are different from our paper,
where we focus on data redaction.

While our problem de nition and formalization is novel, the technical solutions that we propose are
related to three prior works that use these techniques in different contexts. These are NDA [Sinha
et al., 2020], Rumi-GAN [Asokan and Seelamantula, 2020], and Hanneke et al. [2018]. The rst
two papers look at how to avoid generating negative samples while training a generative model from
scratch. This is done by de ning new fake distributions to penalize the generation of these samples.
However, their purposes are different from us: NDA is used to characterize the boundary of the
support of the generative distribution more precisely, and Rumi-GAN is used to handle unbalanced
data. We extend their idea and theory to data redaction in Sectfori@nneke et al. [2018] propose

an active learning approach to avoid generating invalid samples, also while training a generative
model from scratch. Their work however is entirely theoretical and apply to discrete distributions. In
our paper, the validity-based redaction algorithm (Alg. 2) is based on a simpli ed version of their
algorithm. We also use their de nition a@fivalidity as an evaluation method.

Our work is also related to data deletion or machine unlearning [Cao and Yang, 2015, Guo et al.,
2019, Schelter, 2020, Neel et al., 2021, Sekhari et al., 2021, 1zzo et al., 2021, Ullah et al., 2021].
However, there are two important differences between data deletion and data redaction. First, data
deletion aims to approximate the re-trained model when some training samples are removed — mostly
due to privacy reasons — while in data redaction we penalize the model from knowing samples that
should be redacted. Another difference is that in data redaction, the redactioms®st have a

zero intersection with training data. These two differences are discussed in Section 2.3 in detail. In
addition, most data deletion techniques are for supervised learning or clustering, and is much less
studied for generative models.

There is also a related line of work on catastrophic forgetting in supervised learning [Kirkpatrick
et al., 2017] and generative models [Thanh-Tung and Tran, 2020]. This concept is different from
data redaction in that we would like the generative model to redact certain data after training, while
catastrophic forgetting means knowledge learned in previous tasks is destroyed during continual
learning.

1The loss functions in NDA and Rumi-GAN are similar.
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B Proof of Theorem 1 and Extension tdf -GAN
Background of f -GAN [Nowozin et al., 2016]. Let be a convex, lower-semicontinuous function
such that (1) = 0. Inf -GAN, the following -divergence is minimized:
P(x)
D (PkQ)= X — dx:
(PkQ) s Q(x) o)

According to the variational characterization eflivergence [Nguyen et al., 2010],
D (PkQ)= sup [Ex pT(X) Ex o (T

where the optimal is obtained byl = © & .
The objective function (3) corresponds to anf -GAN. Let = + +.We canrewritd3) as
L(G;D)=  Ex plogD(X)+(2 ) Ex qlog(l D(x));

where

. 1 . 1
P=—"Pdaa] + —Prake; Q= 27+pdataj +

2 Prake

Let
C= log +(2 )log(2 ) 2log2
(u=(u)log(u) (u +2)log( u +2)+(2  )log2 ) C:
Then, (1)=0,and u) = ﬁ > 0so is convex. Its convex conjugate function is
(t) := sup (ut wy= (2 )Jlog 1 e" +C:
u

LetT(x)= logD(x). Then,
mDaxL(G;D):sup [Ex pT(X) Ex @ (T(x)]+ C=D (PkQ)+ C:
T

Optimal D. We have

01y — u .
(u) = Iogﬁ.
Therefore, the optimal discriminator is
P
— 0
logD o
or .
- P _ +Pdaa] +  Prake
P +(2 )Q Pdata] + Prake

Finally, the optimal discriminator in (4) is obtained by inserting (2) into the above equation.

Optimal G. For conciseness, we let

P1 = pdataj ;P2=pc;P3=1p ;

L oo @ ).
11— — 22— —— 33— —
S S ¢ S IR C SN ¢ S
2 ' 2 ' 2
Then, we have
x3 x3
P= iPi;Q= iPi
i=1 i=1
We also have
1. 2 3
1 2 3



Becausesupp (P1) \ supp (P3) is the empty set, we have

log )

z 5@ ! P 3 _P.!
D (PkQ) = i Pj Pl dx
X2RY o iz1 iPi
P1+ 2P
= Pr+ oPp) — 22 dx
a (1P1+ 2P2) Pt P
2P2+ 3P3
+ P+ 3P dx
o ( 2P2+ 3P3) Pyt Ps
Let Y4
Pde:
X2
We have Z b b
+
P+ P 2P2* 3P3 4 - + 3
. ( 2P2+ 3P3) P, + 3Ps (2 3) 5
Let
_ 21t 2),
2( 1+ 2)
According to Jensen's inequality,
z P+ P
1r1 22
P+ P ———= dx
Xg(ll 2P2) PLt P,
P1+ 2P 1P1+ 2P
= + (1 L dx
( 1 2( )) ng 1+ 2(1 ) 1P+ 2P
P1+ 2P
+ 51 122 gx
(1t o ) e 1t .0 )
+ 21 )
= + 1 1—
(it 20 ) 2
+
= + 1 1 2
(it o0 )
Therefore, we have
+ (1+ 2) 1+ 2
D (Pk + L2 =4 = 2
(PkQ) ( 1+ 2) Tt 3 S 2 5 T, T,
Now, we show the term is non-negative. We write
, 2 2(1+ 2) 1t 2 2 8 (1+ 2) 1t 2
3 1t 2 1t 2 2 3 1t 2 1t 2
=, 2 2 1 & 1 s
3 3 1 3 1 3
It suf ces to prove the function (u) = (u)=u satis es
3 1 s
3 1 3
We use the Mathematica software [Inc.] to compute the difference:
3 1 3 2 2 ) ¢ )
— = —Ilo + lo + log 4
S 1, 97 9—7 > (log
*1 1 (oga log )
2 T g g
2 ) + ) ( +1) (+HE )
lo + lo
9" y+1 . L% Hyv1 .
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The minimum value of the above difference for 2 [0; 3], + 2 [0;%],and 2 [0;1]is obtained

ata = ;= % where the difference equals zero. This makes us able to conclude
1t 2 3
D (PkQ) (1+ 2) + 3 —
1t 2 3
Finally, we letP, = P;. In this case,
I !
z 3@ : P s p :
D (PkQ)= i Pi P—I?)_l dx
X2RY =g iz iPi
P1+ 2P
= Pi+ ,Py) 22
e (1P1 2P2) Pt P, X
P
+ 3P3 83 dx
x2 3Ps
=( 1+ 2) 1t 2o, 3
1t 2 3

Therefore, the optimal generatoris = Pgataj -

Extension tof -GAN. We can extend the objectiy8) to any type of -GAN. Let be a convex,
lower-semicontinuous function such thgtl) = 0. Let

. . 1
P = ;pdatal + —Prake; Q= 27+pdatal + Zipfake:
We jointly optimize

ng}ianax L(G;D)= Ex pD(X) Ex o (D(x)):

Then, the optimal discriminator @ = © % f = 1—2 , then the optimal generator
iSPG = Pdata] -
Remark 1. When =0 and . =1 (i.e. there is no label smoothing), Theorem 1 in Sinha et al.

[2020] implies the above optimal generator. Our theorem also extends their theorem to the label
smoothing setting.
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C Theoretical Analysis of a Simpli ed Dynamical System on Invalidity

In this section, we provide theoretical analysis to a simpli ed, ideal dynamical system that corresponds
to Alg. 2 and Section 3.2. In this dynamical system, we assume there are only two types of invalid
samples: those easy to redact, and those hard to redact. We assume after each iteration, the generator
will generate a less but positive fraction of invalid samples. Formally, l@tsy; nara 9 be a split of
, Where sy IS the set of invalid samples that are easy to redact, aad is the set of invalid
samples that are hard to redact. We let
z
Measy = P (x)dx;
Z easy
Mhard = Pa (x)dX;
hard
measy

Mratio = ——————:
Measy + Mhpard

Then,measy is the fraction of invalid generated samples that are easy to redaatandis the
fraction of invalid generated samples that are hard to redagtsy + Mnarg is the fraction of invalid
generated samples over all generated ones, which wanealidity . We use superscript to represent
each iteration. We consider the following dynamical system:

mlegjéy = mleasy eaSY(mlratio ;T);
1 _ i i . .

mlh;rd - mlhard hard (mlratio vT)'
In other words, the improvement afeasy andmpaq (in terms of multiplication factor) is only
affected bym i andT. We make this assumption because in practice, the number of invalid
samples to optimize the loss function is always xed. As for boundary conditions, we assume
measy >m hard We assume for 2f easy; nard9,0< (m;T) 1, where equality holds only in
these situations:

(m;0)=1; easy(O;T) =1, had(L;T)=1
We also assume a larg€rleads to smaller, but this effect degrades asincreases:

@()@T(m T)<O0; @@'F (m;T) > 0:
To distinguish between samples that are easy or hard to redact, we assume
1 1
m @@T easy(M; T) < 1 m @@T hard (M; T) < O

We can now draw some conclusions below.

Asill mvalldlty converges to 0. Because easy(T) < 1and pa (T) < 1whenT > 0, we

havem‘e"lSy Measy andm'h;}d mt..q - According to the monotone convergence theorem, there

existsmg,s, Oandmy,,  Osuch that

T i — 1 .
Ilm measy measyv ill!Lm Mpard = Mparg -
ml
We now provemg,s, = Mj,q = 0. If otherwise, there exist®y,,;, = AL e such that

easy

ml. . We then have

i
m ratio *

|
ratio *

1 — 1 . .
m easy m easy easy ( My atio » T ) ’

— 1 . .
mhard - mhard hard (mratio ’T)-
If m}easy > 0, thenml,, > 0, and easy(Miyo ; T) < 1, contradiction. Similarly, ifmf,4 > O,

thenmratlo < 1,and harg (ML, ; T) < 1, contradiction. Therefore, we conclude bmlgasy and
M}.q Converge to 0. This indicates the invalidity converges to zero.
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Simplifying the dynamical system. To further simplify the problem, we make a strong assumption
that is linearinm. Then, we must have

easy(m;T) =1 easy(T) m;
hard (M; T) =1 hard (T) (1 m);

where 2 [0;1]; (0)=0; °> 0; ®< Ofor 2f easy; haa 9 We also haved,, > P4 and
therefore casy > hard -

Optimal T and R from bounds. We have

easy(T)(miea§y)2 +  hard (T)(mihard )2:

i i
measy + mhard

i+1 i+l — i i
measy + Mharg = measy *+ Mparg

Because easy(T) hard (T), we have

easy(T) hard (T)
easy(T) *+  hard (T)

This leads to

easy(T)(mieasy)Z + hard (T)(mihard )2

i i
measy + mhard

(mleasy+ mlhard )

easy (T)( mleasy+ mlhard ) :

i+1 i+1
Measy + m|h+ard easy(T) hard (T) .

1 T) =M ;
easy( ) mleasy + mlhard easy(T) +  hard (T)
and therefore
R
R meRasy + mﬁard easy(T) hard (T)
1 eay(T)” — 05— T T
measy + mhard easy( )+ hard ( )

Assume the number of queriés, R, is xed. Then, the optimall from the lower bound is

1
Tlow =arg me ? IOg(l easy(T)):
By setting the derivative to be zero, we hayg, is the solution to
T Say(T =1 ecasy(T)I0GL  easy(T)):
Similarly, the optimall’ from the upper bound is

easy(T) hard (T)
easy(T) *+  hard (T)

By setting the derivative to be zero, we ha\ig,, is the solution to

gasy(T) hard (T)2 + i(w)ard (T) eaSy(T)2 = 1 easy(T) hard (T)

T

1
upp = arg mTln fIog 1

easy(T) hard (T)

T log 1

( easy(T) *+  hard (T))2 - easy(T) +  hard (T) easy(T) *+  hard (T)
D Feasibility of Discriminator in the Classi er-based Setting

The solution to (5) and (6) is:

+ Pdata ] + ( Pc +(1 )p ) 1
D (X) = Pdata ] *+ P c+(1 )p If f(X) ;
if f(x) <

which satis esD 2 [0; 1]. Therefore, (5) is feasible with thgaiide function de ned in (6).
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E Experiments (Main)

In this section, we aim to answer the following questions.

» How well can the algorithms in Section 3 redact samples in practice?
» Can these algorithms be used to de-bias pre-trained models?
« Can these algorithms be used to understand training data?

We examine these questions by focusing on several real-world image datasets, including MNIST
(28 28) [LeCunetal., 2010], CIFAR32 32) [Krizhevsky et al., 2009], Celeb’6d 64) [Liu

etal., 2015] and STL-1086 96) [Coates et al., 2011] datasets. We demonstrate main experiments
in Appendix 4, and provide more detailed results afterwards. Speci cally, in Appendix E.2 and F, we
investigate how well these algorithms can redact samples with a speci ¢ label. In Appendix E.3 and
G, we investigate how well these algorithms can de-bias pre-trained models and improve generation
quality. In Appendix E.4 and H, we use these algorithms to understand training data through the lens
of data redaction.

The pre-trained model for each dataset is a DCGAN [Radford et al., 2015] trained for 200 epochs (see
details in Appendix E.1). We use one NVIDIA 3080 GPU to train these models and run experiments.

Evaluation Metrics: invalidity and generation quality. Tl invalidity is de ned as the mass of the
generation distribution on the redaction setinv (pg) = ,, Pps(x)dx. In practice, we measure
invalidity by generating 50K samples and computing the fraction of these samples that fall into

The generation quality is measured in Inception SctB@ [Salimans et al., 2016] and Frechet
Inception DistanceRID) [Heusel et al., 2017]. Highd6 or lowerFID indicates better quality. We
computelS for grey-scale images arkD for RGB images. When measuring quality, we compute

IS or FID between 50K generated samples ahtl . Therefore, this score is not comparable with

the score w.r.t. the pre-trained model if the redaction set includes samples in the training set, such as
samples with a speci c label in Appendix E.2. Detailed setup is in Appendix E.1.

E.1 Experimental Setup

Pre-training. We use DCGAN [Radford et al., 2015] with latent dimensiot©28 as the model. The
pre-trained model is trained with label smoothing (= 0:9; =0:1):

mnmax Ex x [ +logD(x)+(1  +)log(l D(x))]

+E:n o[ 10gD(G(2) +(1 )log(1  D(G(2))] :

We use Adam optimizer with learning rate2 10 4; ; =0:5; , = 0:999to optimize both the
generator and the discriminator. The networks are trained for 200 epochs with a batch size of 64. For
each iteration over one mini-batch, we kep be the number of times to update the discriminator,
andK ¢ the number of times to update the generator. Wekuse= 1 andK ¢ =5 to train.

Data redaction. The setup is similar to the pre-training except for two differences. The number of
epochs is much smaller: 8 for MNIST, 30 for CIFAR, and 40 for STL-10. WKlgt= 1 for MNIST
and CIFAR anK g =5 for STL-10.

Evaluation. To measure invalidity, we generate 50K samples, and compute the fraction of these
samples that are not valid (e.g., classi ed as the label to be redacted, or with pre-de ned biases). It is
the lower the better. The invalidity for redacting labels is measured based on label classi ers. We use
pre-trained classi ers on these dataséts.

The other evaluation metric is generation quality. The inception g¢8e[Salimans et al., 2016] is
computed based on logit distributions from the above pre-trained classi ers. It is the higher the better.
The Frechet Inception DistancelD) [Heusel et al., 2017] is computed based on an open-sourced
PyTorch implementatior? It is the lower the better.

When computing these quality metrics, we generate 50K samples, and compare to the set of valid
training samplesfx 2 X : x 2 g. Therefore, wherX \  is not the empty set (such as

2https://github.com/aaron-xichen/pytorch-playground (MIT license)
3https://github.com/mseitzer/pytorch-fid (Apache-2.0 license)
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redacting labels in Appendix E.2), the quality measure of the model after data redaction is not directly
comparable to the pre-trained model, but these scores among different redaction algorithms are
comparable and give intuition to the generation quality. WKeh is the empty set (such as
de-biasing in Appendix E.3), the quality measures of the pre-trained model and the model after data
redaction are directly comparable.

E.2 Redacting Labels

Table 1: Invalidity and generation quality of different redaction algorithms on redacting label zero
within different datasets. Mean and standard errors are reported for ve random seeds. Note
that quality measure after data redaction is not directly comparable with the pre-trained model.
The invalidity drops in magnitude after data redaction. Different redaction algorithms are highly
comparable to each other.

Dataset Evaluation Pre-trained Data-based Validity-based Classier-based
MNIST Inv(#( 10° | 1.1 10 80 22 64 08 5:2 37
(8 epochs) IS(") 7:82 7:20 0:08 7:19 0:04 716 0:04
CIFAR-10 [ Inv(#( 10 3) | 1.3 107 75 11 76 1.0 116 1.0
(30 epochs) FID(#) 36:2 348 1.5 348 14 33:2 06
STL-10 nv(#( 10 ) | 6:2 107 88 45 77 1:3 11:6 36
(40 epochs) FID(#) 79:1 778 22 77:0 2:3 772 15
(@) MNIST (b) CIFAR-10 (c) STL-10

Figure 2: Invalidity during data redaction when redacting label zero. Mean and standard errors are
plotted for ve random seeds. Standard errors may be too small to spot. Invalidity drops quickly at
the beginning of data redaction, and different algorithms are highly comparable to each other.

Question. How well can the algorithms in Section 3 redact samples in practice?

Methodology. We investigate how well the proposed algorithms can redact samples with a speci c
labely. In the data-based setting (Alg. 1), we express thissasfx 2 X : label (x) = yg. In

the validity-based setting (Alg. 2), we express this by setti(pg) = 1 f arg max; logit (x); 6 yg,
wherelogit is the output of the softmax layer of a pre-trained label classi er [Chen, 2020]. In the
classi er-based setting (Alg. 3), we skx) =1  logit (x)y.

In Table 1, we compare invalidity and generation quality among different algorithms and datasets
when we redact label 0. We plot invalidity during data redaction in Fig. 2. We also compare invalidity
after one epoch of data redaction in Appendix F.1.1. Mean and standard errors for 5 random runs are
reported. Results for different hyper-parameters and redacting other labels are in Appendix F.

Results.We nd all the algorithms in Section 3 work quite well with a much fewer number of epochs
used for training the pre-trained model (which is 200). These algorithms are generally comparable.
Therefore, we conclude that the simplest data-based algorithm is good enough to redact samples
when those training samples to be redackd () can characterize the redaction sej (vell.

We also nd invalidity rapidly drops after only one epoch of data redaction, indicating these algorithms
are very ef cient in penalizing invalidity. While different algorithms perform better on different
datasets, they are highly comparable with each other. The reason why the classi er-based algorithm
performs the best on MNIST is possibly that the label classi er on MNIST is almost perfect so its
gradient information is accurate.

Visualization. We sample latenta N (0;1) and choose those corresponding to invalid samples, i.e.
Go(z) 2 whereGy is the pre-trained generator. We select visually g8gdz) for demonstration.
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We visualizeG(z) during data redaction in Fig. 3, and more visualizations are in Appendix F.3. This
demonstrates how the latent space is manipulated: the label to be redacted is gradually pushed to
other labels, and there is high-level visual similarity between the @) and the originalsy(z).

Table 2: Study on the effect df in Alg. 2 when the total number of queries is xeR. refers to the
number of epochs of data redaction. A lafigenay lead to worse invalidity.

T MNIST CIFAR-10 STL-10

R Inv(#® IS(") | R Inv (#) FID# | R Inv(#  FID(#)
400 | 20 0.0 10 * 710 |75 045 10 2 351 | 100 L0 103 751
1000/ 8 06 104 7:19 |30 076 102 348 | 40 08 10 ® 770
2000 4 28 104 711 |15 100 102 31:9 | 20 10 10°% 75:1

Figure 3: Visualization of the data redaction process of invalid samples when redacting label zero.
The rst column is generated by the pre-trained generator, and-tineolumn is generated after

k (i 1) epochs of data redaction. Left: MNIST wikh= 1. Right: top is CIFAR-10 and bottom

is STL-10, both withkk = 4 and label zero beingirplanes . We can see samples associated with
invalid labels are gradually pushed to other labels, but a high-level visual similarity is kept.

Effects of other hyper-parameters.In Table 2, we compare differeft (#¥queries after each epoch)

in the validity-based redaction algorithm (Alg. 2). We x the total number of queries by setting
T #epochs to be a constant. Results indicate that a Tangewy lead to worse invalidity, and there is
trade-off between invalidity and quality when settingo be small or moderate.

In Appendix F.1.3, we compare different(hyperparameter i{2)) in the classi er-based redaction
algorithm (Alg. 3). We nd there exists a clear trade-off between invalidity and quality when
alternating : a larger tends to produce better quality, and a smalléends to have better invalidity.

Redacting multiple sets.We then investigate how well the proposed algorithms can generalize to
multiple redaction sets with methods in Section 3.4. We focus on the CelebA dataset [Liu et al.,
2015], which has 40 labeled attributes. We use proposed algorithms to redact a combination of these
attributes: ; = fBlack_hair and Blurry g, » = fBrown_hair and Wear_eyeglassesg,

and = 1[ 2. These attributes are randomly selected from those easy to capture. See detailed
setup in Appendix F.4. Results after 1 or 5 epochs are reported in Table 3. Consistent with results on
redacting just one label, all algorithms can reduce invalidity and retain generation quality and are
comparable, while the classi er-based algorithm achieves the best invalidity after one epoch.

Table 3: Invalidity and generation quality of different redaction algorithms on redacting a combination
of attributes within CelebA. There is a signi cant drop of invalidity, indicating that different redaction
algorithms can all generalize to multiple redaction sets.

Evaluation| Pre-trained] Epochs Data-based Data-based (sequentially) Validity-based Classi er-base
Inv (#) 1:66 10°3 1 90 107 - 76 107 70 10 7
Inv(# |1:66 10 3 5 38 10 ¢ 6.0 10 4 6:8 10 4 6:8 10 4
FID(#) 36:4 5 29:3 286 299 27:9
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E.3 Model De-biasing

There can be different artifacts in GAN generated samples, and these could harm the overall generation
quality. These artifacts may not exist in training samples, but are caused by inductive biases of the
model, and become obvious after training. We can post-edit a pre-trained model to remove these
artifacts, which we calinodel de-biasingln this section, we investigate how well Alg. 2 and Alg. 3

apply to this task. We assume training samples are not biased so Alg. 1 does not apply to de-biasing.

To use these algorithms for de-biasing, we assume the target artifact or bias can be automatically
detected by a classi ef or a validity functionv. Speci cally, we survey two kinds of biases:
boundary artifacts and label biases.

Boundary artifacts. A GAN trained on MNIST might generate samples that have numerous white
pixels on the boundary (see Appendix G.1). We call this phenomendiotiiedary artifact We use

the validitysbased algorithm (Alg. 2) to de-bias boundary artifacts. The validity function is de ned as
V(X)=1f (i )2boundary pixels Xii < bd, Where boundary pixels are those within a certain margin

to the boundary, and thresholglsatis es no training image is invalid.

Results are reported in Table 4. It is clear that the invalidity reduces in order after data redaction,
indicating boundary artifacts are largely removed. Consistent with Table 2, a small or moderate
leads to better results. We visualize samples before and after de-biasing in Appendix G.1.

Table 4: Invalidity after de-biasing boundary artifacts of generated MNIST samples. We run the
validity-based redaction algorithm (Alg. 2) for 4 epochs. The invalidity drops signi cantly, and a
small or moderaté& leads to slightly lower (better) invalidity.

Pre-trained T =5K T =10K T = 20K T = 40K T = 80K
Margin=1 [3:1 10° 60 10°> 80 10°> 20 10% 20 10% 70 107
Margin=2 |1:1 10°® 16 104 40 10° 60 10° 32 104 28 10*

Table 5: Invalidity and Inception scores after de-biasing label biases of generated samples from
MNIST. We run the classi er-based redaction algorithm (Alg. 3) for 8 epochs with 0:8,

and compare to the data deletion baseline with 200 epochs of full re-training. The arrow means
improvement from the pre-trained model to after data redaction. There is a clear improvement of
generation quality, indicating the proposed algorithm can help GANs generate better samples. In
contrast, data deletion does not help improve invalidity or quality.

Redaction (8 epochs) Data deletion baseline (200 epochs)
Inv (#) IS(") Inv (#) IS(")

03819 10“! 260 10 % 782! 810|819 10 %! 114 103 782! 775
05| 207 102! 1:70 102 7:82! 7:.92 | 207 102! 217 102 7:82! T:79
07|13 101! 122 10' 782! 795|135 101'! 1.32 10! 7:82! 7:82

Table 6: Invalidity and FID scores after de-biasing label biases of generated samples from CIFAR-10.
We run the classi er-based redaction algorithm (Alg. 3) for 30 epochs with0:9. The arrow

means improvement from the pre-trained model to after data redaction. There is a clear improvement
of generation quality, indicating the proposed algorithm can help GANs generate better samples.
Note that there igo invalid sample in the training set, so the data deletion baseline is identical to the
pre-trained model.

Inv (#) FID(#)

05| 228 10 21 167 10 2 362! 266
07| 172 1011 149 10! 362! 268
03| 579 104! 220 104 362! 271

Label biases.Neural networks may generate visually smooth but semantically ambiguous samples
[Kirichenko et al., 2020], e.g. samples that look like multiple objects (see Appendix G.2). We call
this phenomenon thiabel bias We use the classi er-based algorithm (Alg. 3) to de-bias label
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