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ABSTRACT

A prevailing view in Reinforcement Learning with Verifiable Rewards (RLVR)
interprets recent progress through the lens of an exploration-exploitation trade-
off, a perspective largely shaped by token-level metrics. We re-examine this
perspective, proposing that this perceived trade-off may not be a fundamental
constraint but rather an artifact of the measurement level. To investigate this,
we shift the analysis to the semantically rich hidden-state space, adopting Effec-
tive Rank (ER) to quantify exploration and proposing its novel first- and second-
order derivatives, named ER Velocity and ER Acceleration, to capture exploita-
tion dynamics. Our analysis reveals that in the semantic space, exploration and
exploitation could be decoupled (Sec. 4). This finding reveals an opportunity
to enhance both capacities simultaneously. This insight motivates our method,
Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the prin-
ciple of synergistic exploration-exploitation enhancement by directly shaping the
RL advantage function. The key innovation is leveraging the theoretically sta-
ble ERA as a predictive meta-controller to create a synergistic, dual-channel in-
centive structure. Instead of forcing a trade-off, VERL prospectively amplifies
rewards for exploration to preempt overconfidence and reinforces exploitative
gains to consolidate reasoning. Experiments across diverse LLMs and reason-
ing benchmarks show consistent gains, including up to 21.4% absolute accuracy
improvement on the challenging Gaokao 2024 dataset. The code is available at
https://anonymous.4open.science/r/coding.

1 INTRODUCTION

(a) Previous Exploitation & Exploration (b) Our Exploitation & Exploration (c) Performance Comparison

Effective Rank (Exploration)Response Entropy (Exploration)
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Figure 1: Comparative analysis with the responses of DeepSeek-R1-Distill-Qwen-7B in simpleRL
test dataset (Zeng et al., 2025). (a) Traditional metrics for exploitation & exploration constrained by
negative coupling, leading to meandering progress for both capabilities. (b) Our metrics are mutually
independent. (c) Training regularization with our metrics demonstrates stronger performance in both
exploitation (small K) and exploration (large K).
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Recent advancements in Reinforcement Learning with Verifiable Rewards (RLVR) have signifi-
cantly improved the reasoning abilities of Large Language Models (LLMs). A dominant narrative
emerging from these recent works (Chen et al., 2025b; Yue et al., 2025; Deng et al., 2025a; Agarwal
et al., 2025) interprets this progress through the lens of balancing exploration (searching for diverse
reasoning paths) and exploitation (refining the most promising known strategies). However, this
paradigm is almost exclusively rooted in a token-level analysis in action space, where exploration is
captured by high-entropy token distributions and exploitation by high-confidence, low-entropy ones.
This has inevitably led to the widespread assumption of an inherent trade-off between the two, as
the token-level output distribution, which only reflects the model’s hesitation about the next-token
prediction, is seen as unable to be simultaneously uniform and sharp.
While convenient, this token-centric viewpoint introduces significant limitations. Equating explo-
ration with mere token-level entropy faces an intrinsic dilemma (Fu et al., 2025; Qiao et al., 2025;
Agarwal et al., 2025): excessively high entropy risks generating incoherent noise, while overly low
entropy stifles exploration it aims to encourage. Similarly, defining exploitation via hand-crafted
heuristic rewards (Chen et al., 2025a; Li et al., 2025a; Bensal et al., 2025) produces brittle models
with poor generalizability as they simply learn to chase surface-level proxies. More fundamentally,
these token-level proxies are misaligned with how reasoning actually happens (Wei et al., 2022; Yao
et al., 2023): solutions emerge over multi-token semantic chunks (concepts, subgoals), not isolated
tokens, and a single token cannot correspond to a meaningful greedy decision about a reasoning
strategy. More related works are discussed in Sec. D. While many works (Cheng et al., 2025a; Deng
et al., 2025b) are aware to consider both exploration and exploitation as in Fig. 1a, their continued
reliance on token-level metrics invariably traps them in a cycle of “balancing” the trade-off, instead
of doubting its existence. This raises a critical question: Is the exploration–exploitation trade-off
intrinsic to reasoning, or merely an artifact of token-level measurement?
To answer this, we move beyond token-level statistics and study exploration and exploitation di-
rectly in the semantically rich hidden-state space of response-level trajectories, where prior work has
shown that transformer representations encode meaningful linguistic and reasoning structure (Jing
et al., 2025; Sajjad et al., 2022; Valeriani et al., 2023; Matthews et al., 2024; Zhang et al., 2025).
At this level, we define exploration and exploitation : Effective Rank (ER) measures how broadly
a hidden-state trajectory spreads across semantic directions, corresponding to representation-level
exploration, while its temporal derivative, Effective Rank Velocity (ERV), measures how the same
trajectory refines semantic content along its path, corresponding to representation-level exploitation.
Concretely, we are the first to apply ER in an RL context and use it to quantify exploration by mea-
suring the semantic diversity of hidden-state representations: high ER indicates that the model is
activating diverse semantic directions and widening its search over possible solutions. To capture
exploitation more precisely, which we define as the efficiency with which a trajectory converges
toward a solution in representation space, we further introduce Effective Rank Acceleration (ERA),
the second-order temporal change of ER, which captures the trend of the velocity, indicating whether
reasoning is accelerating toward a solution or saturating in a stagnant regime. Equipped with these
semantic-trajectory tools, we uncover a striking result: in the semantic space, exploration and ex-
ploitation exhibit near-zero correlation (Fig. 1b, bottom). This contrast provides strong evidence that
the trade-off is not an inherent property of RLVR for reasoning but an artifact of biased token-level
measurements. It further reveals that these two capacities are not fundamentally antagonistic but
can, in fact, be decoupled and enhanced simultaneously (Fig. 1c).
Building on this core insight, we propose Velocity-Exploiting Rank-Learning (VERL), a method
that moves beyond the trade-off between the two capacities by directly shaping the RL advantage
function using ER and ERV. Instead of acting as a switch between the two capacities in lower
dimension, VERL functions as a tuner synergistically enhances both capacities in higer dimension.
Its key innovation is leveraging ERA as a meta-control variable, a choice justified by our theoretical
proof of its remarkable Op1q growth stability (Sec. 3). Specifically, VERL uses ERA as a dynamic
signal to enhance the training incentives; Specifically, VERL uses ERA to create a synergistic, dual-
channel incentive structure. Instead of switching between modes, it prospectively shapes the reward
to simultaneously encourage exploration (via ER) to preempt overconfidence, while also reinforcing
exploitative gains (via ERV) to consolidate the reasoning path. This unique stability makes ERA
a robust signal to guide training, allowing VERL to simultaneously encourage exploration from
productive-potential states while preventing overfitting to local optima. As a result, VERL delivers
significant performance gains across diverse models and tasks, achieving up to a 21.4% absolute
accuracy improvement on the challenging Gaokao 2024 benchmark.
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Contributions. (i) We are the first to probe the exploration-exploitation relationship in the semanti-
cally rich hidden-state space. By adopting “ER” to quantify exploration and proposing novel metrics
“ERV” and “ERA” for exploitation, we empirically demonstrate that these two capacities are decou-
pled, moving beyond the conventional token-level trade-off. (ii) We present VERL, a method that
leverages ERA to manage exploration and exploitation in a unified framework, enabling the simulta-
neous enhancement of both capabilities. (iii) Our extensive experiments demonstrate the efficiency,
generality, and versatility of VERL across different RL architectures.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION AND NOTATIONS

We adopt a reinforcement learning perspective on training LLMs for reasoning tasks. The LLM is
modeled as a policy πθp¨|xq, parameterized by θ, which generates a reasoning trajectory for a given
prompt x sampled from a distribution Px. The model’s output is a sequence of reasoning steps
y0:T “ py0, y1, . . . , yT q, constrained to a maximum length Lmax pi.e., T ă Lmaxq. The quality of
this trajectory is evaluated by a scalar reward function rpx, yq. The objective is to find the optimal
policy πϕ that maximizes the expected reward:

ϕ “ argmax
θ

Ex„PxEy„πθp¨|xq rrpx, yqs s.t. |y| ď Lmax. (1)

Conventionally, optimizing this objective at the token level is framed as a fundamental exploration-
exploitation trade-off. The policy must explore diverse and potentially novel reasoning pathways
to discover high-reward solutions. Concurrently, it must exploit known strategies by reinforcing
correct and reliable reasoning patterns that consistently yield high rewards.

2.2 REINFORCEMENT LEARNING BASELINE FRAMEWORKS

Proximal Policy Optimization (PPO) from Schulman et al. (2017) is a standard RL algorithm that
seeks to maximize a clipped surrogate objective function. This objective prevents excessively large
changes that would destabilize training, which is defined as:

LPPOpθq :“ Ex∼Px,y∼πθold
py|xq

$

&

%

|y|
ÿ

t“1

min rρtpθqAt, clippρtpθq, 1 ´ ϵlow, 1 ` ϵhighqAts

,

.

-

, (2)

where ρtpθq :“ πθpyt|x,yătq

πθold
pyt|x,yătq

is the probability ratio between the current and old policies, and At

is the estimated advantage, often calculated using Generalized Advantage Estimation (GAE) from
Schulman et al. (2015), with clipping (hyperparameter ϵ) to mitigate excessive deviation.
Group Relative Policy Optimization (GRPO) from Shao et al. (2024) computes a baseline directly
from the rewards of multiple trajectories. For a given prompt, it samples a group of G responses,
obtains their corresponding rewards tr1, ..., rGu, and normalizes these rewards to compute the ad-
vantage for each response:

Ai,t :“
ri ´ meanptrjuGj“1q

stdptrjuGj“1q
. (3)

GRPO would assign a single rule-based reward to the entire output sequence, and the resulting
group-relative advantage is uniformly propagated to all tokens, then updated as in Eq. 2.

2.3 CHARACTERIZING HIDDEN STATE REPRESENTATIONS

Response Hidden States. LLM would generate responses token by token in an autoregressive
manner. The token yt output at step t represents the current explicit state, while the corresponding
output in the intermediate layers is referred to as the hidden state zt. As the sequence of explicit
states forms the final response, simultaneously, the hidden states tztu

T
t“1, ordered by their output

sequence, collectively form the hidden states matrix Z P RTˆD, where T is the output length and
D is the feature dimension, representing the semantic trajectory. To align with the semantic space,
we focus on the hidden state of the final layer in this paper.
Dataset Hidden States. Following the definition in Skean et al. (2025), for a dataset containing N
prompts, after obtaining a single vector representation for the i-th response by averaging its token
hidden states z̄i “ 1

Ti

řTi

t“1 zi,t, we stack these N mean embeddings in the dataset hidden states

3
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matrix Z̄ P RNˆD, to represent the overall semantic distribution of the entire dataset.

3 A HIDDEN-STATE PERSPECTIVE ON REPRESENTATIONAL DYNAMICS

3.1 STATIC METRIC: EFFECTIVE RANK (ER)

According to Roy & Vetterli (2007), the Effective Rank (ER), which is denoted by erankpZq for a
response, is computed based on the normalized singular values of its non-padding hidden states Z.
Let σj be the j-th singular value of Z, and pj “

σj
ř

k σk
be the normalized singular values. The ER is

then given by:

ER :“ erankpZq “ exp

«

´
ÿ

j

pj logppjq

ff

. (4)

To quantify a model’s reasoning breadth, we treat exploration as a measurable semantic property.
Our primary metric for this is ER, which measures the effective dimensionality of the hidden-state
space a model occupies during a response. A high ER signals that the model is leveraging a rich and
diverse set of internal features, which is a direct signature of exploratory behavior. A low ER, in
contrast, points to a collapsed, simpler representation, indicating the model is not exploring widely.
By capturing this dispersion of embeddings, ER provides a more nuanced view of exploration than
conventional rank, which merely counts dimensions without considering their diversity.

Theorem 3.1. Suppose we have a matrix of embeddings Z P RTˆD. Then the ER of Z is a lower
bound of conventional rank of Z:

1 ď erankpZq ď rankpZq ď mintT,Du. (5)

Remark 3.2. Conventional rank offers a discrete count of available dimensions but fails to capture
the geometric complexity essential for true exploration. In contrast, ER provides a nuanced, contin-
uous measure of “effective dimensionality”. In reasoning, this distinction is critical: conventional
rank may count many potential paths, but ER reveals how uniformly the model is actually explor-
ing them. A high ER reflects a more uniform distribution, signaling a broader and more effective
exploration of the solution space.

3.2 DYNAMIC METRICS: EFFECTIVE RANK VELOCITY (ERV) AND ACCELERATION (ERA)

In this section, we develop temporal higher-order metrics, termed ERV and ERA, to characterize
the dynamics of a policy’s information gain together. Corresponding to the first and second-order
temporal differences of a representational metric, these tools measure how the quality of hidden
states evolves, revealing whether the reasoning process is expanding, stabilizing, or saturating.

Definition 3.3. (First-Order Temporal Difference: ERV) To quantify the rate of change for a
given metric M , such as the ER or the conventional rank of the hidden states matrix, we define the
first-order temporal difference, denoted ∆

p1q

M . This metric captures the “velocity” of information
gain by measuring how the metric’s value at a given step deviates from its historical average. Let
mt be the value of metric M computed on the token sub-sequence from the start to position t.
For a sequence of length T and a difference stride s, let the set of evaluation time steps be T “

ts, 2s, . . . ,Ksu, where K “ tpT ´ 1q{su. The overall first-order difference is defined as:

∆
p1q

M :“
1

K ´ 1

K
ÿ

j“2

δj¨s, where δj¨s :“ mj¨s ´
1

j ´ 1

j´1
ÿ

k“1

mk¨s. (6)

Equivalently, writing the consecutive-step increments as ∆mr¨s :“ mr¨s ´mpr´1q¨s, a simple alge-
braic rearrangement yields

δj¨s “
1

j ´ 1

j
ÿ

r“2

pr ´ 1q∆mr¨s, j ě 2, (7)

showing that each δj¨s is in fact a time-weighted average of local consecutive differences, with larger
weights assigned to more recent steps. Our primary metric for exploitation is ERV, which is designed
to capture the rate of information gain. It is the average of instantaneous differences (δj¨s), where

4
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each difference contrasts the complexity of the current token chunk with the cumulative average of
all preceding ones. This formulation directly operationalizes our definition of exploitation: a large
ERV demonstrates that the model is successfully enriching its representation at a rate that outpaces
its historical trend, signifying a deepening and productive line of inquiry. Conversely, a small ERV
signals that exploitation of the current path is becoming less effective.

Definition 3.4. (Second-Order Temporal Difference: ERA) To measure the rate of change of the
velocity, we define the second-order temporal difference ∆

p2q

M , which represents the “acceleration”
of the metric’s evolution. It reveals whether the process of representation formation is speeding up
or stabilizing. It is computed as the average change between consecutive instantaneous differences:

∆
p2q

M :“
1

K ´ 2

K
ÿ

j“3

rδj¨s ´ δpj´1q¨ss. (8)

A positive ∆
p2q

M signifies an accelerating growth rate, indicating that the diversification of the rep-
resentation is speeding up. A negative value suggests this growth is decelerating, implying that the
representation’s quality is approaching stability or saturation.

3.3 SCALING PROPERTIES OF REPRESENTATIONAL DYNAMICS

In the preceding sections (Sec. 3.1 and 3.2), we introduced metrics for analyzing the hidden states of
individual responses. We now analyze the scaling properties of these dynamics at two distinct levels
of granularity: across an entire dataset as a function of its size (N ), and within a single reasoning
trajectory as a function of its length (T ). The following proposition provides a unified theoretical
model for both scenarios.

Proposition 3.5. Assume a hidden-state matrix is composed of k approximately orthogonal row
vectors. The Effective Rank (ER) and its first-order difference (ERV) scale linearly with k, such that
ER “ Opkq and ∆

p1q

ER “ Opkq. The second-order difference (ERA) is independent of k, with a
scaling order of ∆p2q

ER “ Op1q.

Remark 3.6. This proposition offers a dual interpretation of how our metrics scale under ideal con-
ditions: At the dataset level, k represents the number of questions N . The proposition implies
that as a dataset grows with semantically distinct responses (approaching orthogonality), its over-
all representational diversity (ER) should increase proportionally. The constant acceleration (ERA)
suggests a stable, predictable growth pattern for the dataset’s semantic volume. At the response
level, k represents the sequence length T . The proposition suggests that for an ideal reasoning
process where each step contributes novel information (making token embeddings approach orthog-
onality), the trajectory’s semantic complexity (ER) and information-gain velocity (ERV) should also
grow linearly with its length. In this context, a constant ERA becomes a signature of a robust and
non-saturating reasoning process.

4 DECOUPLING EXPLORATION AND EXPLOITATION IN REASONING

In this section, we first investigate the changing trends of the hidden states matrix rank (both ER
and conventional rank) during regular RL training. Specifically, we utilized the Qwen (Hui et al.,
2024) and Llama (Dubey et al., 2024) models for our experiments, employing GRPO (Shao et al.,
2024) reinforcement learning paradigm. The training dataset followed the configuration in Zeng
et al. (2025), which comprises 8k hard-level 3 to 5 mathematical problems from MATH datasets,
each accompanied by a verifiable reference answer.

4.1 ANALYSIS OF RESPONSE-LEVEL METRICS

During each training step, we quantitatively analyzed the representational dynamics of hidden states
within that batch as depicted in Fig. 2, and provided more and diverse details in App. H.1.
Semantic space of hidden states move beyond the exploration-exploitation trade-off towards
stable enhancements. While RL consistently improves performance, it interacts differently with
distinct base models, evidenced in the divergent trends of the ER (first column in Fig. 2), which
measures the total information within a response. For instance, the Qwen model exhibits an in-
creasing ER, suggesting more exploratory reasoning, whereas the one of Llama model decreases,

5
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Figure 2: Response-level metrics during GRPO post-training, smoothed with a 10-step rolling win-
dow. Metrics are shown for the Overall batch, as well as for subsets of Correct and Incorrect samples.
The rightmost column displays the average Critic Score (reward) and Response Length per batch.
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Figure 3: Visualization of dataset-level metrics during GRPO post-training. The figure compares
Traditional metrics with our proposed metrics. Also shown are the Validation Score and sample
Correctness, both averaged over the validation dataset.

indicating more concise, exploitative reasoning. Despite these differences in exploratory behavior,
the ERV (second column) demonstrates a consistent upward scaling trend for all models, which sug-
gests while the models’ intrinsic exploratory tendencies differ, RL fine-tuning universally enhances
their exploitation capabilities by consistently accelerating the rate of information gain.
ERA distinguishes correct reasoning. For both the zero-order metric (ER) and the first-order met-
ric (ERV), incorrect reasoning paths consistently score higher than correct ones. This suggests that
excessive exploration (high ER) with new excessive information (high ERV) will potentially derail
the reasoning process and lead to incorrect answers. Conversely, for the second-order metric (ERA),
correct reasoning trajectories consistently exhibit higher values, which implies the acceleration of
information gain—the ability to increasingly speed up the representational evolution—is the key to
guide the policy towards a correct solution, distinguishing robust reasoning from flawed exploration.

4.2 ANALYSIS OF DATASET-LEVEL METRICS

Following the framework established in Sec. 2, we extend our analysis from the response level to
the entire validation dataset. By computing the dataset hidden states matrix Z, we examine its zero-,
first-, and second-order rank dynamics to understand how the policy’s overall representational space
evolves. The trends are visualized in Fig. 3. While key experiments are shown here, we refer the
reader to App. H.2 for a more diverse range of studies.
Policy optimization correlates with expanding dataset-level diversity. Across the training pro-
cess, we observe a strong positive correlation between performance metrics (accuracy and critic
score on the validation set) and the dynamics of dataset-level ER. As the model improves, the zero-
order erankpZq and its first- and second-order differences consistently scale up. This indicates that
as the policy is updated, it develops a more diverse and complex repertoire of reasoning strategies for
the same set of problems. The increasing ERV and ERA suggest the model becomes progressively
more efficient at navigating and expanding this richer semantic space to discover correct solutions.
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Figure 4: Overview of VERL. Exploration is quantified by computing the ER of the rolling-done
hidden states via SVD, while exploitation is captured through EMA-smoothed first-order difference
(ERV) on per-step rolling hidden state and extended to second-order difference (ERA). Finally,
exploration and exploitation are adaptively integrated to derive the auxiliary advantage.

ER reveals refinement beyond the limits of conventional rank. During late-stage training, a
plateauing conventional rank suggests the model has settled on a fixed number of linearly indepen-
dent reasoning “directions”. Yet, a simultaneously rising ER points to a more subtle optimization.
This trend reveals that the model is improving the quality of its existing solution space by making
the “magnitudes” of these directions more uniform. In essence, instead of finding new pathways,
the model learns to utilize its established ones more equitably, reducing representational redundancy
and fostering a more sophisticated and distributed reasoning capability.

5 VELOCITY-EXPLOITING RANK-LEARNING (VERL)

Building upon the insights from Sec. 3 and the empirical observations in Sec. 4, we find that conven-
tional RL objectives overlook the intrinsic hidden-state dynamics that more faithfully characterize
exploration and exploitation. This oversight may lead to inefficient training, where policies either
wander in unproductive exploration or collapse prematurely to suboptimal reasoning paths. To ad-
dress this, we propose a novel method named Velocity-Exploiting Rank-Learning (VERL), which
refines advantage by incorporating the nuanced dynamics of hidden states, enabling simultaneous
enhancement of exploration and exploitation capacities.

5.1 STABLE REPRESENTATION DEVIATION INDICATOR

Concretely, we first formalize the representational metrics, letting M “ tM0,M1,M2u denote the
set of metrics derived from the hidden states, where M0 is the 0-order ER, M1 :“ ∆

p1q

M is its first-
order temporal difference (ERV), and M2 :“ ∆

p2q

M is its second-order temporal difference (ERA).
To create a stable guidance signal, having already computed scalar values tm0,m1,m2u for each
trajectory, we normalize these values against their historical trends by maintaining an Exponential
Moving Average (EMA) µ̄k for each metric Mk. The relative deviation for each metric is:

dk :“
mk ´ µ̄k

|µ̄k| ` ϵ
, k P t0, 1, 2u, (9)

where ϵ is a small constant for numerical stability. This deviation dk quantifies how the current
trajectory’s representational structure diverges from the policy’s recent average behavior.

5.2 BEYOND TRADE-OFF FOR EFFICIENT TRAINING VIA ERA

Our analysis in Sec. 3.1 and 3.2 reveals that ER (M0) and ERV (M1) are effective proxies for
exploration and exploitation, respectively. Crucially, these two metrics are also almost independent
of each other, as shown in Fig. 1c bottom. This decoupling is key, as it allows us to combine them
into a single objective to enhance both capabilities simultaneously. M1 measures the confidence
of the current step as analysis above, so the subtraction of M1, namely ERA (M2), would predict
the evolution of confidence in subsequent steps. Meanwhile, theoretical analysis (Prop. 3.5) and
empirical observations (Fig. 3) indicate that M2 remains approximately constant across trajectories.
Thus, M2 can serve as a meta-level signal to guide training.

7
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An increasing ERV indicates that the model is acquiring progressively more informative evidence,
reflecting its growing confidence. However, our preliminary experiments reveal that trajectories
exhibiting excessively high confidence often achieve high in-domain performance (as evidenced
by the results on the MATH dataset in Tab. 3, where performance suffers without ERA’s dynamic
unification or when using a simple 50/50 sum “β = 0.5’.) while compromising out-of-domain gen-
eralization (across most datasets), suggesting severe overfitting. This implies that overconfident
trajectories reduce the opportunity to learn from less confident yet potentially informative samples.
To mitigate this, we employ M2 as the predictive signal to combine exploration and exploitation,
strategically encouraging exploring lower-confidence samples when trajectories exhibit excessively
high future confidence, thereby enhancing training efficiency and robustness.
Specifically, we define two orthogonal unit vectors of the weights first, an exploration-focused vector
wexplore “ r1, 0s, which targets M0, and an exploitation-focused one wexploit “ r0, 1s of M1. The
dynamic weight wdyn is interpolated by the relative deviation of the second-order metric d2:

wdyn :“ β ¨ wexplore ` p1 ´ βq ¨ wexploit, where β :“ sigmoidpd2q. (10)

The interpolation coefficient β is adaptively determined by the second-order metric d2 through a
sigmoid mapping. A high M2 pd2 " 0q means overconfidence in the future, risking overfitting
to in-domain patterns; thus, VERL increases β to favor the exploration profile M0. In contrast,
when M2 is low pd2 ď 0q, namely limited confidence and reasoning saturation, VERL decreases
β to emphasize the exploitation profile M1. As M2 typically fluctuates around zero, VERL jointly
enhances exploration and exploitation. The final auxiliary advantage Φ is defined as:

Φ :“ wdyn,0 ¨ tanhpd0q ` wdyn,1 ¨ tanhpd1q, (11)

where wdyn,0 and wdyn,1 are the first and second entries of the dynamic weight vector wdyn, respec-
tively. The tanh function bounds the magnitude of Φ while preserving its sign, thereby stabilizing
training. This formulation rewards trajectories that exceed the historical average and penalizes those
that fall short, guiding the policy with adaptive reasoning dynamics while mitigating risks of stag-
nation and overconfidence.

5.3 ADVANTAGE SHAPING VIA REPRESENTATIONAL DYNAMICS

We refine the policy learning signal by shaping the advantage through a representational auxiliary
term. Let Ap0q denote the original advantage from GRPO or PPO with GAE, and let Φi be the
sequence-level auxiliary signal defined in Sec. 5.2. The shaped objective replaces the original ad-
vantage with a refined estimate Ât, defined directly within the surrogate loss:

Lshapedpθq “ Ex„Px, y„πθold

»

–

|y|
ÿ

t“1

min
´

ρtpθq Ât, clippρtpθq, 1 ´ ϵ, 1 ` ϵq Ât

¯

fi

fl ,

where Ât “ A
p0q

t ` min

˜

maxp0,Φiq,
|A

p0q

t |

κ

¸

, ρtpθq “
πθpyt | x, yătq

πθoldpyt | x, yătq
.

(12)

This formulation adds a strictly positive, clipped bonus to trajectories exhibiting desirable represen-
tational dynamics, while preserving the sign and stability of the original advantage. The mechanism
applies consistently across advantage structures: for GRPO the shaping is applied once per trajec-
tory, and for PPO+GAE it applies to every token within the trajectory.

6 EXPERIMENTS

6.1 EXPERIMENT SETTINGS

(i) Dataset. The same datasets as in Sec. 4 are used. (ii) Reward. Our rule-based reward function
assesses mathematical correctness and \boxed{} formatting. Correct answers receive a +1.0 re-
ward if formatted, and +0.5 if not. Incorrect answers are penalized with -0.5 if formatted and -1.0
otherwise. (iii) Training. Based on verl (Sheng et al., 2025) and vLLM (Kwon et al., 2023) frame-
work, we set batch size as 48, generating 4 rollouts per prompt for GRPO and 1 rollout for PPO, and
set the maximum length Lmax to 1536. More details of the experiments are provided in App. G.

8
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Table 1: Performance comparison of models on mathematical reasoning benchmarks (Pass@1).
“+ GRPO” and “+ PPO” denote RL fine-tuning by GRPO and PPO framework respectively. “w/
VERL.” indicates incorporating our VERL with original RL type. ∆ represents the performance
contrast between original RL method and its VERL variant. See App. H.3 for full details.

Model AIME24 AIME25 AMC23 AMC24 ASDiv Carp En CMATH Gaokao
2024 I

Gaokao
2024 Mix

Gaokao
MathCloze GSM8K MAWPS Olympiad

Bench SVAMP TabMWP Avg.

Llama-3.2-3B-Instruct 0.0 0.0 25.0 11.1 74.6 26.5 10.2 14.3 14.3 6.8 66.6 86.9 12.7 74.1 41.4 31.0
+ GRPO 3.3 0.0 27.5 8.9 88.8 45.0 28.3 21.4 20.9 23.7 80.7 96.0 16.7 87.7 71.7 41.4
+ GRPO w/ VERL. 13.3 6.7 25.0 11.1 89.3 45.4 46.2 14.3 22.0 22.9 81.7 96.0 17.6 87.8 72.3 43.4
∆GRPO +10.0 +6.7 -2.5 +2.2 +0.5 +0.4 +17.9 -7.1 +1.1 -0.8 +1.0 +0.0 +0.9 +0.1 +0.6 +2.0
+ PPO 10.0 3.3 22.5 13.3 87.9 46.4 21.2 7.1 16.5 20.3 81.4 95.5 17.8 86.8 71.0 40.1
+ PPO w/ VERL. 10.0 3.3 25.0 11.1 88.7 46.0 30.7 14.3 19.8 27.1 82.9 95.7 17.3 85.8 71.3 41.9
∆PPO +0.0 +0.0 +2.5 -2.2 +0.8 -0.4 +9.5 +7.2 +3.3 +6.8 +1.5 +0.2 -0.5 -1.0 +0.3 +1.9

Qwen2.5-7B 6.7 0.0 45.0 15.6 91.4 55.8 86.7 42.9 33.0 49.2 85.8 95.4 25.8 88.5 82.8 53.6
+ GRPO 10.0 6.7 55.0 26.7 94.8 60.2 91.7 14.3 34.1 64.4 90.2 97.6 36.1 92.8 91.3 57.7
+ GRPO w/ VERL. 13.3 10.0 50.0 28.9 95.0 60.8 90.7 35.7 35.2 69.5 89.2 97.7 35.4 92.9 91.9 59.8
∆GRPO +3.3 +3.3 -5.0 +2.2 +0.2 +0.6 -1.0 +21.4 +1.1 +5.1 -1.0 +0.1 -0.7 +0.1 +0.6 +2.1
+ PPO 6.7 3.3 50.0 33.3 94.9 59.6 89.8 28.6 31.9 63.6 89.1 97.3 36.1 92.8 90.8 57.9
+ PPO w/ VERL. 10.0 6.7 52.5 33.3 94.8 60.0 90.3 28.6 34.1 66.9 90.2 97.8 36.1 92.5 90.6 59.0
∆PPO +3.3 +3.3 +2.5 +0.0 -0.1 +0.4 +0.5 +0.0 +2.2 +3.3 +1.1 +0.5 +0.0 -0.3 -0.2 +1.1

Table 2: Performance comparison of instruction-tuned models under diverse decoding settings
(Pass@k). For full details, please refer to App. H.4.

Model MATH500 (Pass@16) AMC23 (Pass@128) AMC24 (Pass@128) AIME24 (Pass@256) AIME25 (Pass@256) Avg.
Llama-3.2-3B-Instruct 79.8 93.5 51.5 40.0 30.0 58.96
+ GRPO 80.2 95.4 60.6 40.0 30.0 61.24
+ GRPO w/ VERL. 80.6 95.7 59.0 50.0 36.7 64.40
∆GRPO +0.4 +0.3 ´1.6 +10.0 +6.7 +3.16
+ PPO 82.2 94.5 57.0 46.7 36.7 63.42
+ PPO w/ VERL. 82.4 94.7 57.8 46.7 40.0 64.32
∆PPO +0.2 +0.2 +0.8 +0.0 +3.3 +0.90

Qwen2.5-7B 90.6 98.4 73.7 60.0 60.0 76.54
+ GRPO 90.8 97.8 78.3 56.7 50.0 74.72
+ GRPO w/ VERL. 91.4 98.3 79.0 63.3 60.0 78.40
∆GRPO +0.6 +0.5 +0.7 +6.6 +10.0 +3.68
+ PPO 91.2 98.6 74.3 53.3 56.7 74.82
+ PPO w/ VERL. 91.4 98.0 74.4 56.7 66.7 77.44
∆PPO +0.2 ´0.6 +0.1 +3.4 +10.0 +2.62

6.2 MAIN RESULTS

VERL Generalizes across Multiple Benchmarks of Varying Difficulty. As summarized in Tab. 1
(Full details in App. H.3), VERL leads to consistent performance gains across benchmarks of dif-
ferent difficulty levels, ranging from elementary school problems (e.g., ASDiv) to Olympiad-level
challenges (e.g., OlympiadBench). The improvements are particularly pronounced on benchmarks
that demand multi-step reasoning rather than simple arithmetic. VERL achieves up to 21.4% and
10.0% absolute accuracy improvements on Gaokao 2024 I and AIME24 (in Tab. 1), respectively.
VERL Generalizes across RL Algorithms and Base Models. VERL is a plug-and-play method
that can be integrated with different RL algorithms to enhance their performance. As shown in
Tab. 1, applying VERL to GRPO and PPO improves the average results on 15 benchmarks for both
the Llama and Qwen series, demonstrating its strong generalization ability.
Gains in Both Exploration and Exploitation. As shown in Tab. 2 (Full details in App. H.4), VERL
yields larger improvements on Pass@k (a measure of exploration) than on Pass@1 (a measure of
exploitation), particularly on more challenging benchmarks. Since Pass@1 reflects exploitation and
Pass@k reflects exploration, the combined results of Tab. 1 and Tab. 2 demonstrate that VERL
effectively enhances both abilities. For a detailed case study, see Sec. I.
Performance Degradation on Some Datasets As shown in Tab. 1, the minor drop on CMATH
(-1.0) with Qwen occurs at a high-performance saturation level ( 91%), likely reflecting statistical
variance rather than capability degradation. Meanwhile, the drop on Gaokao (-7.1) with Llama is at-
tributable to the optimization dynamics specific to GRPO, as VERL achieves a substantial +7.2 gain
on the exact same benchmark under the PPO setting (Row 6). Crucially, these isolated fluctuations
are outweighed by the consistent improvements in Average accuracy across all models (e.g., +2.0%
for Llama) and the significant breakthroughs on challenging OOD reasoning tasks (e.g., AIME24
+10.0%). This confirms that VERL’s benefits in promoting robust reasoning significantly exceed the
cost of minor local variance.

6.3 ABLATION ANALYSES

We conduct ablation studies on the key hyperparameters or components of VERL: the effectiveness
of ERA, the stride length (s) for temporal dynamics, the advantage clipping factor (κ), and the
composition of the auxiliary shaping signal.
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Table 3: Pass@1 performance with variant β. “Adapted β” denotes β :“ sigmoidpd2q. In this paper,
all results in the table are reported in percentage (%), with Bold indicating the best performance.

Training
Strategy

Score
Avg

In Domain Out of Domain Hard Problems

MATH MATH500 Avg Gaokao CN Middle
School CMATH Avg AIME24 AIME25 AMC23 AMC24 Avg

GRPO 0.36 51.4 46.2 48.80 23.7 28.7 28.3 26.90 3.3 0.0 27.5 8.9 9.93
GRPO+VERL (β “ 0.5) 0.38 51.2 47.2 49.20 21.2 36.6 38.7 32.17 10.0 0.0 27.5 8.9 11.60
GRPO+VERL (Adapted β) 0.38 50.9 51.2 51.05 22.9 38.6 46.2 35.90 13.3 6.7 20.0 11.1 12.78
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(c) Different shaping signals.

Figure 5: Comparison of various hyperparameters with Llama-3.2-3B-Instruct. It shows that the
model performs best with a stride of 40 in (a) and with κ “ 2 in (b). We adopt these settings for
all subsequent experiments. Moreover, (c) indicates that using only one signal, either exploration or
exploitation, leads to suboptimal performance, demonstrating the effectiveness of our method.

Analysis of the Effectiveness of ERA. As shown in Tab. 3 , the comparison between GRPO with-
out/with β “ 0.5 shows that incorporating hiddenstate-level rewards provides consistent gains over
the token-level baseline, demonstrating the advantage of leveraging richer internal representations
during optimization. The gap between the fixed β and the Adapted β variant indicates that dynamic
adjustment of ERA provides a more reliable estimate of when to emphasize exploration versus ex-
ploitation.
Analysis of Stride psq. The stride s determines the granularity for calculating temporal difference
metrics. As depicted in Fig. 5 (a), VERL’s performance improvement is robust across various stride
values, indicating the underlying signal is not overly sensitive to sampling frequency. We find that
s “ 40 yields optimal validation rewards, striking an effective balance between capturing significant
temporal shifts and avoiding noise from minor token-level fluctuations.
Analysis of Advantage Clip pκq. The advantage clipping factor κ stabilizes training by ensuring
our auxiliary term acts as a refinement rather than a dominant signal. It constrains the shaping bonus
to a fraction of the original advantage, preventing it from overpowering the primary task reward.
The results in Fig. 5 (b) show that VERL consistently enhances performance for all tested values of
κ underscoring its stability. Optimal performance is achieved at κ “ 2, which provides a sufficiently
strong and well-proportioned signal to guide the policy without destabilizing the learning process.
Analysis of Shaping Signals pΦq. As shown in Fig. 5 (c), compared to the full formulation in Eq. 11,
using only the exploration-related term prevents the model from exploiting high-reward trajectories,
leading to earlier bottlenecks and inferior final performance. In contrast, using only the exploitation-
related term yields higher initial returns but quickly plateaus due to insufficient exploration. When
combining both terms, the model achieves more stable training and superior final performance.

7 CONCLUSION

We challenge the conventional exploration-exploitation capacities trade-off in LLM reasoning
blamed on token-level analysis and shift focus to their decoupled relation in hidden-state representa-
tions (measured as semantic diversity and information gain velocity, respectively). We introduce ER,
ERV and ERA to quantify the dynamics of semantic complexity, with ERA as a stable indicator dis-
tinguishing correct from flawed reasoning. We further propose Velocity-Exploiting Rank-Learning
(VERL) method, which uses ERA as a meta-controller to adaptively shape the advantage func-
tion, moving beyond the trade-off for simultaneous enhancement. Extensive experiments validate
VERL’s superior out-of-domain generalization and performance on complex reasoning tasks.
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is focused on the fundamental analysis of internal representations in Large Language Models and
the development of a novel reinforcement learning algorithm. This work does not involve human
subjects, and we did not collect any new datasets containing personally identifiable or sensitive in-
formation. The experiments were conducted using publicly available and widely-used mathematical
reasoning benchmarks (such as MATH and GSM8K), which are standard in the field and do not
raise immediate privacy or data bias concerns in the context of this study. While we acknowledge
that any advancement in LLM reasoning capabilities could be applied in various ways, our work is
foundational and aimed at improving the robustness and efficiency of AI systems. We do not foresee
any direct negative societal impacts stemming from this research.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have provided comprehensive details throughout
the paper and its appendices. The core methodology of our proposed Velocity-Exploiting Rank-
Learning (VERL) is described in Sec. 5, with a concrete implementation outlined in Algorithm 1.
All experimental settings, including the base models used (Llama and Qwen series), datasets, reward
function design, and key hyperparameters for both GRPO and PPO training, are detailed in Sec. 6.1
and further expanded upon in App. G. The theoretical foundations for our proposed metrics (ER,
ERV, and ERA) are established in Sec. 3, with complete mathematical proofs for our claims provided
in App. H. As stated in the abstract, the source code to replicate our experiments will be made
publicly available upon publication of this work.
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A NOTATIONS

Symbol Description
π Large language model policy
Ai,t Group-relative advantage for the t-th token in the i-th response in group
Ap0q Original advantage estimation
Â Reshaped advantage value
zt Hidden state corresponding to the t-th step of the output token
z̄i Single vector representation for the i-th response by averaging its token hidden states
Zc Mean-centered hidden state matrix
Z1:n Dataset-level hidden states matrix formed by the first n prompts
Z Response-level hidden states matrix
∆

piq
M The i-order temporal difference for metric M

M Set of metrics derived from the hidden states
Mi Ti-order temporal difference of ER, exactly the different metrics
mt Value of metric M computed on the token sub-sequence from the start to position t

ϵhigh{low Hyperparameter for the upper/lower bound used for clipping
ϵ Small constant for numerical stability
rj Reward of the j-th response
wexplore{exploit{dyn Exploration-focused profile/Exploitation-focused profile/Dynamic-weighted profile
wdyn,i The i-th scalar of wdynamic

rankp¨q{erankp¨q Conventional rank/Effective rank function
SVDp¨q a function to calculate the singular values
δ

piq
n Instantaneous i-Order Difference for step n

s The stride for effective rank velocity calculation
yt The t-th step (token) of the model’s response
yi:j Sequence of reasoning steps from i to j

µ̄k Exponential Moving Average for metric Mk

λjp¨q The j-th eigenvalues of the given matrix
β Interpolation coefficient for VERL training
G Size of sampled group in GRPO
θ Large language model policy’s parameter
ϕ The parameter corresponding to the optimal policy
Φ Auxiliary advantage
t Time step
T Output length
Lmax The maximum length of model’s output
x Prompt
S Sample times per prompt
Px Distribution of prompts
ρt Probability ratio between the current and old policies for t-step of the output
pj The j-th normalized singular values
LPPOp¨q The optimization objective for PPO applied to policy
D Feature dimension of hidden states
N The size of the dataset
σj The j-th singular value of matrix
p Singular value distribution
T Set of time steps
dk Deviation for metric Mk

κ Advantage clipping factor
∆ Performance difference between the baseline RL method and its VERL variant
Hp¨q Shannon entropy function
qi The i-th row of the dataset matrix
K Gram matrix of dataset matrix
Ut Uncentered Gram matrix
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B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models for text polishing.

C ALGORITHM

Algorithm 1 VERL: Training

1: Input: D “ txiuNi“1, prompt xi, policy model πθ, hidden-state dimension D, sample times per
prompt S.

2: Parameters: EMA factor γ, relative deviation stabilizing factor ϵ ! 1, RL fine-tuning stabiliz-
ing factor κ.

3: Initialize: Randomly initialize policy parameters πθ, historical averages of metrics µ̄ER “

µ̄ERV “ µ̄ERA “ 0, exploration capacity profilewexplore “ r1, 0s, exploitation capacity profile
wexploit “ r0, 1s.

4: Output: A well-trained policy model πθ.
5: repeat
6: for xi P D do: // Pick a sample from dataset
7: for 1 to S do: // Rolling S times for one sample
8: yi0 Ð xi, Zi

0 Ð H, t Ð 1
9: repeat // Generation process

10: yit, z
i
t „ πθp¨|yit´1q

11: yit Ð
“

yit´1; y
i
t

‰

// Concatenate token sequence
12: Zi

t Ð rZi
t´1; z

i
ts P RtˆD

13: σi
t Ð SVDpZi

tq

14: j Ð |σi
t|

15: pij,t Ð σi
j,t{

ř

j σ
i
j,t

16: erankit Ð exp
´

´
ř

j p
i
j,t log p

i
j,t

¯

17: If t ą 1 then: δERV,t Ð erankit ´ 1
t´1

řt´1
k“1 eranki

k

18: If t ą 2 then: δERA,t Ð δERV,t ´ δERV,t´1

19: t Ð t ` 1
20: until rolling done the sentence; // t ´ 1 is the final timestep while rolling done
21: Ai

origin Ð base RL evaluating on yit´1

22: mi
ER Ð eranki

t´1 // Calculating ER metric
23: mi

ERV Ð 1
t´2

řt´1
t“2 δ

t
ERV // Calculating ERV metric

24: mi
ERA Ð 1

t´3

řt´1
t“3 δ

t
ERA // Calculating ERA metric

25: µ̄k Ð γµ̄k ` p1 ´ γqmi
k, k P tER,ERV,ERAu

26: dik Ð
mi

k´µ̄k

|µ̄k|`ϵ , k P tER,ERV,ERAu

27: βi Ð sigmoidpdiERAq

28: wi
dyn Ð βiwexplore ` p1 ´ βiqwexploit

29: wi
dyn,ER Ð the first scalar value of wi

dyn

30: wi
dyn,ERV Ð the second scalar value of wi

dyn

31: Φi Ð wi
dyn,ER tanhpdER

iq ` wi
dyn,ERV tanhpdERV

iq

32: Âi Ð Ai
origin ` min

´

maxp0,Φiq,
|Ai

origin|

κ

¯

33: end for
34: end for
35: Update θ via base RL objective with Âi

36: until θ converges;
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D RELATED WORK

D.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

To unlock the full reasoning potential of Large Language Models (LLMs), Reinforcement Learning
with Verifiable Rewards (RLVR) has become a prominent training paradigm. This approach was
notably employed by DeepSeek-R1-Zero (Guo et al., 2025) and , which executes complex reasoning
processes through actions such as reflection and validation. Following the success of DeepSeek-R1,
a significant body of research has investigated the efficacy of RLVR on popular open-source LLMs,
including Qwen (Yang et al., 2024), Mistral (Jiang et al., 2024), and LLaMA (Dubey et al., 2024).
This has fostered an optimistic view that RLVR can not only enhance existing model capabilities
but also enable the acquisition of novel reasoning knowledge, facilitating a path toward continuous
self-improvement (Zeng et al., 2025; Yu et al., 2025). RLVR training has been shown to grant LLMs
controllable output length for efficient inference (Yan et al., 2025; Cheng et al., 2025b), deepen their
reasoning pathways (Bensal et al., 2025), mitigate their weaknesses (Liang et al., 2025a;b), enable
the use of external tools (Rainone et al., 2025; Jin et al., 2025), and even facilitate unsupervised
reasoning (Zuo et al., 2025). However, Some studies (Yue et al., 2025) argue that while RLVR
significantly improves the confidence and reliability of model reasoning, it may inadvertently con-
strain the model’s exploratory capacity. The core of this issue lies in RLVR’s optimization objective:
maximizing expected rewards. This objective function inherently biases the policy gradient toward
reinforcing known trajectories that lead to high rewards (i.e., “exploitation”), while suppressing the
exploration of unknown paths that may offer potentially higher returns but also carry greater risk
(i.e., “exploration”). Consequently, the outputs of RLVR-optimized models often remain confined
within the sampling distribution of the base model, suggesting the paradigm excels at refining ex-
isting knowledge rather than generating new knowledge. This trade-off between exploration and
exploitation constitutes a central challenge in the contemporary RLVR landscape.

D.2 EXPLORATION AND EXPLOITATION IN RLVR OF LLM

Recent perspectives (Wang et al., 2025; Cui et al., 2025) on the exploration-exploitation dilemma
have predominantly been shaped by analyses at the token level, focusing on the prediction dis-
tribution over the vocabulary. From this viewpoint, higher entropy in the token-level predic-
tion—indicating a more uniform distribution over the next token—is interpreted as a sign of greater
exploratory behavior, as it suggests a capacity for more diverse responses. This has led to the
adoption of techniques (Deng et al., 2025a; Cheng et al., 2025a) such as entropy regularization to
explicitly encourage the policy to explore novel reasoning paths. Conversely, lower entropy in the
token-level prediction is taken to signify higher model confidence in its reasoning chain, thus rep-
resenting strong exploitation. Subsequent work (Fu et al., 2025) has also utilized metrics derived
from the top-k probabilities of the token prediction to quantify confidence. For instance, some ap-
proaches (Damani et al., 2025; Qiao et al., 2025) leverage the model’s internal ”confidence” signals
to dynamically evaluate and filter the quality of reasoning steps, while others have employed high
confidence as a feedback signal to enable unsupervised reinforcement learning (Li et al., 2025b).
Ultimately, however, these confidence-based metrics are not fundamentally different from entropy.
This token-level standard of measurement introduces an endogenous contradiction: classifying be-
havior as either exploratory or exploitative requires the introduction of a prior assumptions, a prac-
tice that is disadvantageous for LLM research.
In this paper, we depart from this paradigm. We shift the analysis from the token level to the se-
mantic space at the response level. This approach allows us to decouple the intertwined elements
of exploration and exploitation, aiming to achieve a simultaneous enhancement of both during rein-
forcement learning.

D.3 REPRESENTATION DYNAMICS IN DEEP REINFORCEMENT LEARNING

Beyond RLVR for language models, there is a line of classical deep RL work that explicitly studies
how neural representations evolve during training and how this affects exploration and sample effi-
ciency. State representation learning (SRL) for control aims to construct low-dimensional, action-
dependent embeddings that preserve task-relevant dynamics while discarding nuisance variation.
This work Lesort et al. (2018) provide a comprehensive overview of SRL methods for robotics and
control, emphasizing how compact latent states can improve both data efficiency and stability of
downstream RL algorithms. More recently, several works have directly analyzed the feature dynam-
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ics of deep RL agents. The work Kumar et al. (2020) identify an “implicit under-parameterization”
phenomenon in value-based deep RL: repeated bootstrapping updates lead to a collapse in the ef-
fective rank of value-network features, which in turn correlates with degraded performance in both
online and offline settings. The work Lyle et al. (2022) further study capacity loss, showing that
networks trained on non-stationary targets can lose their ability to fit new value functions over time,
and proposing Initial Feature Regularization (InFeR) to stabilize the feature subspace and improve
performance on sparse-reward Atari tasks. Complementary to these analyses, Wang et al. (2022) sys-
tematically measure multiple representational properties (e.g., dynamics-awareness, orthogonality)
across thousands of agent–task combinations, and relate them to transfer performance, highlighting
that not all good control policies arise from equally useful representation geometries.

E DETAILS OF THEOREMS

E.1 PROOF OF THEOREM 3.1

Suppose we have a matrix of embeddings Z P RTˆD. Then the effective rank of Z is a lower bound
of rankpZq:

1 ď erankpZq ď rankpZq ď mintT,Du (13)

Proof. Let the singular value distribution of the matrix Z be p “ pp1, p2, . . . , pmintT,Duq. The
Shannon entropy of this distribution Hppq is bounded. Its minimum is 0, which occurs when only
one element of p is 1 and all others are 0. Its maximum is log k, where k is the number of non-zero
singular values, and this occurs when the distribution is uniform (pj “ 1{k for all non-zero values).
The lower bound is established from the minimum entropy value:

erankpZq “ exppHppqq ě expp0q “ 1 (14)

Equality holds if and only if the singular value distribution is p1, 0, . . . , 0q, meaning Z has only one
non-zero singular value. For the upper bound, let k “ rankpZq be the number of non-zero singular
values of Z. The entropy of the distribution p is calculated only over these k values and is maximized
when they are uniform. Therefore

Hppq ď log k (15)

Applying the exponential function to this inequality gives:

erankpZq “ exppHppqq ď expplog kq “ k “ rankpZq (16)

This establishes that the effective rank is upper-bounded by the conventional rank. The final inequal-
ity, rankpZq ď mintT,Du, is a standard property of matrix rank. Equality for erankpZq “ rankpZq

holds if and only if the non-zero singular values are all equal, corresponding to a uniform singular
value distribution over its support.

E.2 PROOF OF PROPOSITION 3.5

The zero-order metric and first-order difference of the effective rank scales linearly with the number
of responses, ∆p0q

M “ OpNq,∆
p1q

M “ OpNq. The second-order difference of the effective rank is
constant and does not depend on N , yielding a scaling order of ∆p2q

M “ Op1q.
Proof. Without loss of generality, we take the effective rank for example. We adopt the provided
definition of effective rank for a representation matrix Z with singular values tσiu:

erankpZq “ exp

˜

´
ÿ

j

pj logppjq

¸

, where pj “
σj

ř

k σk
(17)

Our analysis focuses on the dataset matrix Z P RNˆD, whose rows tqiu
N
i“1 are the mean token

embeddings of N responses. The singular values σipZq of Z are the square roots of the eigenvalues

of the Gram matrix K “ ZZ
J
; i.e., σjpZq “

b

λjpKq. Given that the rows of Z are nearly
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orthogonal, the Gram matrix K is strongly diagonal-dominant. Its eigenvalues can be approximated
by its diagonal entries:

λjpKq « Kjj “ }qj}2 “
1

T
for j “ 1, . . . , N (18)

The matrix has N significant eigenvalues, each approximately equal to 1{T . The singular values of
Z are the square roots of the eigenvalues of K:

σjpZq “

b

λjpKq «

c

1

T
“

1
?
T

for j “ 1, . . . , N (19)

To calculate the effective rank, we first normalize these singular values to form a probability distri-
bution tpju. The sum of singular values is:

N
ÿ

k“1

σkpZq «

N
ÿ

k“1

1
?
T

“
N

?
T

(20)

The individual probabilities are therefore:

pj “
σj

ř

k σk
«

1{
?
T

N{
?
T

“
1

N
(21)

The distribution p “ tp1, p2, . . . , pNu is a uniform distribution over N states. The Shannon entropy
of this distribution is maximal:

Hppq “ ´

N
ÿ

j“1

pj logppjq “ ´

N
ÿ

j“1

1

N
log

ˆ

1

N

˙

“ ´N

ˆ

´ logpNq

N

˙

“ logpNq (22)

The effective rank is the exponential of this entropy: erankpZq “ exppHppqq “ expplogpNqq “ N .
In the maximal prompt entropy regime, the effective rank of the dataset matrix scales as OpNq.
We adapt them to our context by defining the metric’s value at “time” n as the Effective Rank com-
puted on the dataset matrix formed by the first n prompts, denoted Z1:n. Let mn “ erankpZ1:nq.
From our previous analysis, we established a crucial result that forms the basis of this derivation:
for maximal cases, the effective rank of a dataset with n prompts scales linearly with n.

mn “ erankpZ1:nq « n (23)

We will use this linear approximation to derive the scaling orders of the difference metrics, assuming
a stride of s “ 1 for simplicity. The first-order difference quantifies the average “velocity” of change
in the metric relative to its historical mean. Instantaneous First-Order Difference pδ

p1q
n q is the value

at step n minus the average of all preceding values.

δp1q
n “ mn ´

˜

1

n ´ 1

n´1
ÿ

k“1

mk

¸

(24)

Substituting our approximation mk « k:

δp1q
n « n ´

˜

1

n ´ 1

n´1
ÿ

k“1

k

¸

(25)

δp1q
n « n ´

ˆ

1

n ´ 1
¨

pn ´ 1qn

2

˙

“ n ´
n

2
“

n

2
(26)

The instantaneous difference grows linearly with n. Overall First-Order Difference ∆
p1q

erank: This is
the average of the instantaneous differences over the entire dataset of size N .
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∆
p1q

erank “
1

N ´ 1

N
ÿ

n“2

δp1q
n «

1

N ´ 1

N
ÿ

n“2

n

2
(27)

∆
p1q

erank «
1

2pN ´ 1q

˜˜

N
ÿ

n“1

n

¸

´ 1

¸

“
1

2pN ´ 1q

ˆ

NpN ` 1q

2
´ 1

˙

(28)

For large N , the expression is dominated by the highest power of N :

∆
p1q

erank „
N2{4

N
“

N

4
(29)

The first-order difference of the effective rank scales linearly with the number of prompts, ∆p1q

erank “

OpNq. As for second-order difference, we compute the change in Instantaneous Differences be-
tween consecutive values of δp1q

n .

δp1q
n ´ δ

p1q

n´1 «
n

2
´

n ´ 1

2
“

1

2
(30)

This change is a constant, indicating a linear increase in the first-order difference. Overall Second-
Order Difference ∆

p2q

erank:

∆
p2q

erank “
1

N ´ 2

N
ÿ

n“3

´

dp1q
n ´ d

p1q

n´1

¯

«
1

N ´ 2

N
ÿ

n“3

1

2
(31)

∆
p2q

erank «
1

N ´ 2
¨ pN ´ 2q ¨

1

2
“

1

2
(32)

The second-order difference of the effective rank is constant and does not depend on N , yielding a
scaling order of ∆p2q

erank “ Op1q.

F ADDITIONAL THEORETICAL SUPPORT FOR EXPLORATION AND
EXPLOITATION METRICS

In this section we formalize the relationship between our proposed hidden-state metrics (Effective
Rank and Effective Rank Velocity) and the classical notions of exploration and exploitation in re-
inforcement learning. We first show that the old token-level metrics (average log probability and
response entropy) are algebraically coupled, whereas our new hidden-state metrics are not. We then
provide a representation-level justification for interpreting Effective Rank as a measure of semantic
exploration, and Effective Rank Velocity as a measure of representation-level exploitation that is
strongly correlated with greedy value improvement under the PPO-style architecture used in RLVR.
Throughout, we consider a conditional language model pθpy | xq and a Transformer backbone that
produces hidden states zt P RD at each time step t for a given prompt x and generated response
y1:T .

F.1 PREVIOUS VS. OUR EXPLORATION–EXPLOITATION METRICS

In this subsection, we formalize the difference between the previous token-level metrics used in prior
RLHF/RLVR work and the our hidden-state metrics proposed in this paper. For a given prompt x
and generated response y1:T , let πθp¨ | x, yătq denote the model’s token-level policy distribution at
step t, i.e. the softmax over the vocabulary induced by the logits at that position.

Previous metrics (token-level action space, log-probability, and entropy). We define the aver-
age log probability of an response and the response entropy as

AvgLogProbpx, y1:T q :“
1

T

T
ÿ

t“1

log πθ

`

yt | x, yăt

˘

, (33)

RespEntpx, y1:T q :“
1

T

T
ÿ

t“1

Hpπθp¨ | x, yătqq , Hppq :“ ´
ÿ

v

ppvq log ppvq. (34)
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Thus RespEnt is the token-level entropy averaged over the response: at each step we compute the
Shannon entropy of the vocabulary distribution and then average over time. At the response level
sematic space, we consider x drawn from a prompt distribution ppxq and, for the purpose of analysis,
responses y1:T drawn on-policy from the model pθp¨ | xq:

Lavg-logpθq :“ Ex„ppxq Ey1:T „pθp¨|xq

”

AvgLogProbpx, y1:T q

ı

, (35)

Hresppθq :“ Ex„ppxq Ey1:T „pθp¨|xq

”

RespEntpx, y1:T q

ı

. (36)

Proposition F.1 (Token-level exploitation and exploration are tightly coupled). Under on-policy
sampling y1:T „ pθp¨ | xq, the corpus-level average log probability Lavg-logpθq and response entropy
Hresppθq satisfy

Lavg-logpθq “ ´Hresppθq. (37)
In particular, under the same sampling distribution, any change of the model that increases token-
level exploitation in action space as measured by Lavg-log necessarily decreases Hresp by the same
amount (and vice versa).

Proof. Fix a prompt x and a time step t. Conditioned on x and the history yăt, the next token yt
is drawn from πθp¨ | x, yătq. Taking the expectation of log πθpyt | x, yătq under this distribution
yields:

Eyt„πθp¨|x,yătq

“

log πθpyt | x, yătq
‰

“
ÿ

v

πθpv | x, yătq log πθpv | x, yătq “ ´Hpπθp¨ | x, yătqq .

(38)
Now consider a full response y1:T „ pθp¨ | xq. By the law of iterated expectations,

Ey1:T „pθp¨|xq

“

log πθpyt | x, yătq
‰

“ Eyăt„pθp¨|xq

”

Eyt„πθp¨|x,yătq

“

log πθpyt | x, yătq
‰

ı

(39)

“ ´Eyăt„pθp¨|xq

”

Hpπθp¨ | x, yătqq

ı

, (40)

where we used equation 38 in the last step. Averaging over t “ 1, . . . , T and dividing by T gives

Ey1:T „pθp¨|xq

”

AvgLogProbpx, y1:T q

ı

“ Ey1:T „pθp¨|xq

” 1

T

T
ÿ

t“1

log πθpyt | x, yătq

ı

(41)

“ ´Ey1:T „pθp¨|xq

” 1

T

T
ÿ

t“1

Hpπθp¨ | x, yătqq

ı

(42)

“ ´Ey1:T „pθp¨|xq

”

RespEntpx, y1:T q

ı

. (43)

Finally, taking expectation over prompts x „ ppxq on both sides of equation 43 yields

Lavg-logpθq “ ´Hresppθq, (44)

which is exactly Eq. equation 37. This shows that under on-policy sampling, the two token-level
metrics are related by a fixed negative sign and thus cannot be decoupled in the action space.

Our metrics (hidden-state Effective Rank and velocity). The next proposition shows that these
two hidden-state metrics in Sec. 3.1 and 3.3 are structurally decoupled at the level of trajectories:
knowing the final Effective Rank alone does not determine ERV, and conversely.
Proposition F.2 (Hidden-state metrics are structurally decoupled). Fix K ě 3 evaluation steps.
Consider the map that associates to each Effective Rank trajectory m “ pm1, . . . ,mKq P RK its
final value

ERfinalpmq :“ mK (45)
and its Effective Rank velocity

ERVpmq :“
1

K ´ 1

K
ÿ

j“2

´

mj ´
1

j ´ 1

j´1
ÿ

k“1

mk

¯

. (46)

Then:
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1. There is no function f : R Ñ R such that ERVpmq “ fpERfinalpmqq for all trajectories
m P RK .

2. There is no function g : R Ñ R such that ERfinalpmq “ gpERVpmqq for all trajectories
m P RK .

Equivalently, ERfinal and ERV are not functionally dependent: they capture genuinely different
aspects of the Effective Rank sequence.

Proof. We view ERfinal and ERV as real-valued functions on RK . The proof is purely algebraic and
does not rely on any monotonicity of mj .
Step 1: ERV is a non-trivial linear functional. Introduce the shorthand

∆mj :“ mj ´ mj´1, j ě 2. (47)

A direct calculation shows that each increment δj can be written as

δj “
1

j ´ 1

j
ÿ

r“2

pr ´ 1q∆mr, j ě 2, (48)

so that ERV is a linear functional of m:

ERVpmq “

K
ÿ

j“1

αjmj , (49)

for some fixed coefficients α1, . . . , αK that depend only on K (and s) and satisfy
řK

j“1 αj “ 0 and
αj ‰ 0 for at least two indices j (e.g. α1 ‰ 0 and αK ‰ 0). In particular, ERV is not proportional
to the projection onto any single coordinate mj .
Step 2: No functional dependence of ERV on the final ER. Suppose, for contradiction, that there
exists a function f : R Ñ R such that

ERVpmq “ fpERfinalpmqq “ fpmKq for all m P RK . (50)

Fix any constant c P R. Consider the affine subspace

Ac :“ tm P RK : mK “ cu. (51)

On this subspace, ERfinalpmq ” c is constant, so by assumption ERVpmq ” fpcq must also be
constant. However, ERV is a non-trivial linear functional that depends on at least one coordinate
mj with j ă K. Therefore, restricted to Ac, the map m ÞÑ ERVpmq varies with those coordinates
and cannot be constant. This yields a contradiction. Hence no such f exists.
Step 3: No functional dependence of final ER on ERV. The argument is symmetric. Suppose there
exists g : R Ñ R such that

mK “ ERfinalpmq “ gpERVpmqq for all m P RK . (52)

Fix any constant c P R and consider the affine subspace

Bc :“ tm P RK : ERVpmq “ cu. (53)

Since ERV is a non-trivial linear functional, Bc is an affine hyperplane of codimension 1, and mK

can vary freely among its points. Yet the assumed relation mK “ gpERVpmqq “ gpcq would force
mK to be constant on Bc, which is impossible. Thus no such g exists.
Combining the two steps, we conclude that ERfinal and ERV are not functionally dependent on each
other.

Summary. Proposition F.1 shows that the classical token-level metrics—average log probability
and response entropy—are algebraically coupled under on-policy sampling and cannot be varied
independently. In contrast, Proposition F.2 demonstrates that the proposed hidden-state metrics—
terminal Effective Rank and Effective Rank velocity—are structurally decoupled: they are distinct
functionals of the Effective Rank trajectory and capture complementary aspects of exploration (se-
mantic diversity level) and exploitation (semantic diversity gain speed).
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F.2 EFFECTIVE RANK AS SEMANTIC EXPLORATION

We now formalize the interpretation of Effective Rank as a measure of semantic diversity and un-
certainty in the hidden-state space, and hence as a representation-level proxy for exploration in
LLM reasoning. We assume that the hidden states are semantic representations in the sense that
downstream semantic properties can be approximately recovered as linear functionals of the hidden
vectors. This is standard in representation learning and probing work on large language models.

Assumption F.3 (Semantic linear decodability). There exists a collection of K semantic features
sp1q, . . . , spKq (e.g., semantic roles, entity identities, factual attributes, intermediate reasoning states)
such that for each time step t and feature index k we have

s
pkq

t « wJ
k ht, wk P RD. (54)

That is, semantic features are approximately linearly decodable from hidden states.

Assumption F.4 (Bounded energy and finite support). For a given trajectory Z1:T , there exists an
orthonormal basis of semantic directions te1, . . . , eDu such that each hidden state admits a decom-
position

ht “

D
ÿ

i“1

at,i ei, (55)

with
řT

t“1 a
2
t,i ă 8 for all i, and only finitely many coordinates at,i carry task-relevant semantic

variation.

Proposition F.5 (Effective Rank as semantic diversity and uncertainty). Let Z1:T be a hidden-state
trajectory satisfying Assumptions F.3–F.4. Let Z1:T “ UΣRJ be its SVD, and ERpZ1:T q its Effec-
tive Rank. Then:

1. If the trajectory uses exactly k orthogonal semantic directions with equal energy and no
others, i.e. the singular values satisfy σ1 “ ¨ ¨ ¨ “ σk ą 0 and σk`1 “ ¨ ¨ ¨ “ σr “ 0, then
ERpZ1:T q “ k.

2. More generally, if the singular value spectrum of Z1:T becomes more spread out over more
directions in the sense of majorization (i.e. the normalized singular value vector becomes
more uniform over a larger support), then ERpZ1:T q increases.

Consequently, ERpZ1:T q is a basis-invariant, strictly increasing measure of the number of in-
dependent semantic directions that are effectively used by the hidden states, and thus a natural
representation-level proxy for semantic exploration and uncertainty.

Proof. We proceed in two parts.

(1) Equal-energy k-dimensional semantic subspace. Suppose Z1:T uses exactly k orthogonal
semantic directions with equal energy. Then, up to permutation, the non-zero singular values satisfy

σ1 “ ¨ ¨ ¨ “ σk “ c ą 0, σk`1 “ ¨ ¨ ¨ “ σr “ 0. (56)

The normalized singular values are thus

qi “

"

1{k, i “ 1, . . . , k,

0, i ą k,
(57)

and the entropy of q is

Hpqq “ ´

k
ÿ

i“1

1

k
log

1

k
“ log k. (58)

Therefore
ERpZ1:T q “ exppHpqqq “ expplog kq “ k. (59)

This shows that, in the idealized case of exactly k equi-energic semantic directions, Effective Rank
matches the true semantic dimensionality k.
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(2) Monotonicity under majorization. Consider two hidden-state trajectories Z and Z̃ with nor-
malized singular value spectra q and q̃, respectively. Suppose that q is majorized by q̃ (denoted
q ă q̃), meaning intuitively that q̃ is “more spread out” and therefore more uniform across a larger
support.
It is a standard result in information theory that the Shannon entropy Hp¨q is Schur-concave: if
q ă q̃, then Hpqq ď Hpq̃q with strict inequality whenever q ‰ q̃. Therefore

ERpZq “ exppHpqqq ď exppHpq̃qq “ ERpZ̃q, (60)

with strict inequality when the majorization is strict. In words, whenever the singular value spectrum
becomes more spread out across more directions, the Effective Rank strictly increases.
Combining the two parts, we see that Effective Rank equals the number of equi-energic semantic
directions in the idealized case and increases whenever the representation distributes energy over
more orthogonal directions. Since, by Assumption F.3, semantic features are linearly decodable
along such directions, ERpZ1:T q provides a basis-invariant measure of how many independent se-
mantic dimensions are explored by the hidden states and how evenly they are used. This justifies its
interpretation as a representation-level exploration and uncertainty metric.

F.3 EFFECTIVE RANK VELOCITY AS SEMANTIC EXPLOITATION

Building on Sec. 3.1, where Effective Rank (ER) is shown to measure the number and uniform use
of semantic directions in the hidden-state space, we now give a representation-only justification for
interpreting Effective Rank Velocity (ERV) as semantic exploitation.
Throughout this subsection we fix a single trajectory Z1:T and a stride s. Let the evaluation positions
be tj “ js for j “ 1, . . . ,K with K “ tpT ´ 1q{su, and write

mj :“ ER
`

Z1:tj

˘

, j “ 1, . . . ,K. (61)

Thus, tmjuKj“1 is the ER trajectory of the growing prefixes of the same response.

ERV as a recency-weighted sum of ER increments. For convenience we recall the notation of
Def. 3.3 with M “ ER. Define the local ER increments

∆mr :“ mr ´ mr´1, r ě 2. (62)

Def. 3.3 introduces the “instantaneous difference”

δj :“ mj ´
1

j ´ 1

j´1
ÿ

k“1

mk, j ě 2, (63)

and the first-order temporal difference (ERV) as

∆
p1q

ER :“
1

K ´ 1

K
ÿ

j“2

δj . (64)

The following lemma makes explicit that ERV is a recency-weighted average of the consecutive ER
increments.
Lemma F.6 (Recency-weighted velocity of ER). For any sequence pmjqKj“1, the instantaneous
differences admit the representation

δj “
1

j ´ 1

j
ÿ

r“2

pr ´ 1q∆mr, j ě 2, (65)

and hence ERV can be written as

∆
p1q

ER “

K
ÿ

r“2

wr ∆mr, wr :“
r ´ 1

K ´ 1

K
ÿ

j“r

1

j ´ 1
ą 0. (66)

In particular, ERV is a positive linear combination of the local ER increments ∆mr, assigning larger
weights to more recent steps.
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Proof. Eq. 65 is exactly in Def. 3.3 with M “ ER, obtained by expressing δj in terms of the
increments ∆mr via telescoping. Plugging Eq. 65 into the definition of ∆p1q

ER and exchanging the
order of summation yields

∆
p1q

ER “
1

K ´ 1

K
ÿ

j“2

1

j ´ 1

j
ÿ

r“2

pr ´ 1q∆mr “

K
ÿ

r“2

«

r ´ 1

K ´ 1

K
ÿ

j“r

1

j ´ 1

ff

∆mr, (67)

which gives Eq. 66 with wr as stated. Since r ´ 1 ą 0 and the harmonic tail
řK

j“rpj ´ 1q´1 is
positive, we have wr ą 0 for all r.

Semantic exploitation as positive ER drift in a fixed semantic subspace. App. F.1 states that, up
to an orthonormal change of basis, the hidden states can be written as ht “

ř

i at,iei with bounded
energy along each semantic direction ei, and that ER is a strictly increasing, basis-invariant measure
of how many semantic directions are effectively used and how evenly energy is distributed among
them. In particular, if the set of active directions (support of the singular value spectrum) is kept fixed
and the spectrum becomes more uniform (in the sense of majorization), then ER strictly increases.
Motivated by this, we isolate an idealized semantic exploitation regime in which the trajectory has
already selected a semantic subspace and is refining it.
Definition F.7 (Semantic exploitation regime). Let pmjqKj“1 be the ER trajectory of a response, and
let qpjq denote the normalized singular value vector of Z1:tj . We say that steps j “ 2, . . . ,K form
a semantic exploitation regime with rate µ ą 0 if:

1. (Fixed semantic support) The support of qpjq is independent of j, i.e., the set of active
semantic directions is fixed.

2. (Uniformization within the support) For every j ě 2, qpjq is more uniform than qpj´1q on
this fixed support, in the sense of majorization, so that by Prop. F.5 we have mj ´mj´1 “

∆mj ě µ for some µ ą 0.

Intuitively, condition (i) says that the model has committed to a particular semantic subspace (a line
of reasoning), and condition (ii) says that it keeps redistributing energy within this subspace to make
use of all its semantic directions more evenly. This is precisely the notion of “refining a promising
strategy” in representation space.

ERV lower-bounds the semantic exploitation rate. Under Def. F.7, ER experiences a persistent
positive drift along the trajectory. The next proposition shows that ERV is a quantitative lower bound
on this drift, and thus a natural measure of semantic exploitation strength.
Proposition F.8 (ERV as a lower bound on semantic exploitation rate). Assume the hidden states
satisfy Assumptions F.3 and F.4 and that steps j “ 2, . . . ,K form a semantic exploitation regime
with rate µ ą 0 in the sense of Def. F.7, so that ∆mj ě µ for all j ě 2. Then

∆
p1q

ER ě
µK

4
. (68)

In particular, ERV is strictly positive and grows linearly with the length K of the exploitation seg-
ment.

Proof. By Eq. 65 and the assumption ∆mr ě µ we obtain, for each j ě 2,

δj “
1

j ´ 1

j
ÿ

r“2

pr ´ 1q∆mr ě
1

j ´ 1

j
ÿ

r“2

pr ´ 1qµ “
µ

j ´ 1

j
ÿ

r“2

pr ´ 1q “
µj

2
. (69)

Averaging over j then yields

∆
p1q

ER “
1

K ´ 1

K
ÿ

j“2

δj ě
1

K ´ 1

K
ÿ

j“2

µj

2
“

µ

2pK ´ 1q

K
ÿ

j“2

j. (70)

For K ě 2 we haven
řK

j“2 j ě
KpK´1q

2 , so

∆
p1q

ER ě
µ

2pK ´ 1q
¨
KpK ´ 1q

2
“

µK

4
, (71)

which proves Eq. 68.
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Thus, in an idealized regime where the model has already discovered a useful semantic subspace
and is consistently enriching it, ERV provides a strictly positive, linearly growing lower bound on
the rate at which semantic complexity within that subspace is being exploited.

G IMPLEMENTATION DETAILS

G.1 TRAINING AND EVALUATION DETAILS

We typically use the same set of hyperparameters to train and evaluate all models in the SimpleRL-
Zoo series (Zeng et al., 2025) in the default main experiment setting.

Training. We conduct all experiments with 4 A800-PCIE-80GB GPUs. For GRPO and PPO, we
use a prompt batch size of 48 with a maximum rollout length of 1536 tokens. Training is performed
using a mini-batch size of 24. For GRPO, we generate 4 rollouts per prompt. For PPO, we use
DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025) as the value model and generate 1 rollout per
prompt. The default sampling temperature is set to 1.0, and the clip ratio is 0.2. For all actor models
ranging from 3B to 8B parameters, we use a learning rate of 1e-6 and a KL loss coefficient of 1e-4.
For critic models in PPO, we use a learning rate of 1e-5. For our training datasets, we follow the
same setup as in Zeng et al. (2025), where the data is filtered from GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021) configured with different difficulty levels for models of varying
capabilities. We tested using the checkpoint model trained up to 120 steps.

Evaluation. We build our evaluation script based on that of Zeng et al. (2025), using a temper-
ature of 0.6 and a maximum generation length of 2048 tokens. To ensure consistency, we adopt
the same prompt template used during training. For most benchmarks, we report Pass@1 results.
However, for benchmarks like AIME 2024, which contains fewer problems, we report both Pass@1
and average accuracy (Pass@256), computed over 256 generated samples per problem.

Base Models. To demonstrate the universality of our insights and methods, we conduct zero
RL training experiments on Llama-3.2 (3B), Llama-3.1 (8B) (Dubey et al., 2024), Mistral-v0.3-
7B (Jiang et al., 2024), and Qwen-2.5 (1.5B, 3B, 7B) (Hui et al., 2024). For value model in PPO,
we use DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025) for all experiments.

Benchmark. We evaluate on a diverse suite of mathematical reasoning benchmarks. These include
standard benchmarks such as GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), AS-
Div (Miao et al., 2020), Carp (English Version) (Zhang et al., 2023), MAWPS (Koncel-Kedziorski
et al., 2016), SVAMP (Patel et al., 2021), TabMWP (Lu et al., 2023), and OlympiadBench (He
et al., 2024); Chinese mathematics collections like CMATH (Wei et al., 2023) and Gaokao 2024;
and benchmarks from mathematics competitions, including the 2024/2025 AIME and the 2023/2024
AMC.

G.2 EFFICIENT INCREMENTAL COMPUTATION OF HIGHER-ORDER METRICS

A naive computation of the temporal difference metrics would be computationally prohibitive. Our
method’s feasibility hinges on an efficient, incremental algorithm that computes the required metrics
without redundant operations on the growing hidden state matrix Z P RTˆD.
The effective rank is derived from the singular values of the mean-centered hidden state matrix Zc.
These are equivalent to the square roots of the eigenvalues of the centered Gram matrix G “ ZcZ

J
c .

Instead of recomputing Gt from scratch at each time step t, our algorithm incrementally updates
two sufficient statistics: the uncentered Gram matrix Ut “ Z1:tZ

J
1:t and the sum of hidden state

vectors st “
řt

i“1 zi.. When extending the analysis window, the new uncentered Gram matrix Ut is
constructed from the prior matrix Ut´s and the new chunk of hidden states ∆Zt “ Zt´s`1:t. This
update follows a recursive block matrix structure:

Ut “

ˆ

Ut´s Z1:t´sp∆Ztq
J

p∆ZtqZ
J
1:t´s p∆Ztqp∆Ztq

J

˙

(72)

From the efficiently updated Ut and st, we can directly construct the centered Gram matrix Gt.
Letting µt “ st{t be the mean vector and 1t be a column vector of ones, Gt can be expressed as:

Gt “ Ut ´ pZ1:tµtq1
J
t ´ 1tpZ1:tµtq

J ` pµJ
t µtq ¨ p1t1

J
t q (73)
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Figure 6: Time overhead of the main computation of RL Training.

This allows for the calculation of Gt without re-accessing the full history of hidden states. The
eigenvalues tλju of Gt are then used to derive the effective rank. First, the singular values of the
centered matrix are obtained, σj “

a

λj . These are normalized to form a probability distribu-
tion, pj “ σj{

ř

k σk. The effective rank is then the exponential of the Shannon entropy of this

distribution:erankpZc,tq “ exp
´

´
ř

j pj log pj

¯

. This pipeline efficiently yields a sequence of ef-
fective rank values, mj¨s “ erankpZc,j¨sq, at each stride s. From this sequence, we compute the
instantaneous first-order difference, δ, which compares the current value to the running average of
all preceding values. This is defined recursively as:δj¨s “ mj¨s ´ 1

j´1

řj´1
k“1 mk¨s.

The computational advantage of this incremental approach is substantial. While the total cost for
the series of eigenvalue decompositions OpT 4{sq, is common to both methods, the cost of matrix
construction differs significantly. The naive method’s recalculation totals OpDT 3{sq, whereas our
incremental update method reduces this to OpDT 2q. This reduction of the polynomial dependency
on sequence length T from cubic to quadratic is critical, as this term is multiplied by the large
hidden dimension D, making it the dominant factor in practical performance and rendering the dense
calculation of temporal dynamics feasible. In the worst-case regime where the sequence length T
exceeds the hidden dimension D, and both D and the stride s can be treated as constants. The
naı̈ve approach that reconstructs matrices independently at each stride has a matrix-construction cost
scaling as OpT 2q, VERL’s incremental Gram/covariance updates scale as OpT q. So asymptotically,
our implementation has a strictly better dependency on T than a naı̈ve SVD-based design.

G.3 TIME OVERHEAD OF VERL TRAINING

We conducted post-training with Zero RL on several base models. The Fig. 6 illustrates the time
associated with each computational stage. The ’metrics calculation’ component, which represents
the cost of computing metrics for hidden states, accounts for an insignificant portion of the total
processing time. This demonstrates that our method does not introduce substantial time overhead.
To further stress-test the worst-case scenario, we deliberately compute ER, ERV, and ERA on the
CPU rather than the GPU, and still observe that the additional time overhead remains negligible.

H MORE EXPERIMENTS

H.1 ANALYSIS OF RESPONSE-LEVEL HIDDEN STATES

As shown in Figs. 7 and 8, our analysis of response-level hidden states across additional LLMs
confirms that the insights presented in Sec. 4.1 hold true for various base models and RL paradigms.
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Figure 7: Visualization of response-level metrics for GRPO post-training. ’Overall’ (blue) represents
the metric across the entire data batch, while ’Correct’ (green) and ’Incorrect’ (red) show the metrics
specifically for correctly and incorrectly classified samples, respectively. Data is smoothed using a
rolling window of 10 steps to highlight underlying trends.

H.2 ANALYSIS OF DATASET-LEVEL HIDDEN STATES

As shown in Figs. 9 and 10, our analysis of dataset-level hidden states across additional LLMs
confirms that the insights presented in Sec. 4.2 hold for various base models and RL paradigms.
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Figure 8: Visualization of response-level metrics for PPO post-training. ’Overall’ (blue) represents
the metric across the entire data batch, while ’Correct’ (green) and ’Incorrect’ (red) show the metrics
specifically for correctly and incorrectly classified samples, respectively. Data is smoothed using a
rolling window of 10 steps to highlight underlying trends.
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Figure 9: Visualization of dataset-level metrics for GRPO post-training
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Figure 10: Visualization of dataset-level metrics for PPO post-training
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H.3 DETAILED ANALYSIS OF PASS@1 PERFORMANCE

As shown in Tab. 4, Pass@1 measures the model’s ability to generate a correct answer in a single
attempt, which directly reflects its exploitation ability. We fine-tune the base model by integrating
our VERL-based Advantage method into two reinforcement learning paradigms, GRPO and PPO.

Table 4: Performance comparison of instruction-tuned models on mathematical reasoning bench-
marks (Pass@1). “+ GRPO” and “+ PPO” denote reinforcement learning fine-tuning from the base
model using GRPO and PPO, respectively. “w/ VERL.” indicates the application of our VERL-based
advantage to the corresponding RL algorithm. ∆ represents the performance difference between the
baseline RL method and its VERL-advanced variant. All results are reported in percentage (%).

Model AIME24 AIME25 AMC23 AMC24 ASDiv Carp En CMATH Gaokao
2024 I

Gaokao
2024 Mix

Gaokao
MathCloze GSM8K MAWPS Olympiad

Bench SVAMP TabMWP Avg.

Llama-3.2-3B-Instruct 0.0 0.0 25.0 11.1 74.6 26.5 10.2 14.3 14.3 6.8 66.6 86.9 12.7 74.1 41.4 31.0
+ GRPO 3.3 0.0 27.5 8.9 88.8 45.0 28.3 21.4 20.9 23.7 80.7 96.0 16.7 87.7 71.7 41.4
+ GRPO w/ VERL. 13.3 6.7 25.0 11.1 89.3 45.4 46.2 14.3 22.0 22.9 81.7 96.0 17.6 87.8 72.3 43.4
∆GRPO +10.0 +6.7 -2.5 +2.2 +0.5 +0.4 +17.9 -7.1 +1.1 -0.8 +1.0 +0.0 +0.9 +0.1 +0.6 +2.0
+ PPO 10.0 3.3 22.5 13.3 87.9 46.4 21.2 7.1 16.5 20.3 81.4 95.5 17.8 86.8 71.0 40.1
+ PPO w/ VERL. 10.0 3.3 25.0 11.1 88.7 46.0 30.7 14.3 19.8 27.1 82.9 95.7 17.3 85.8 71.3 41.9
∆PPO +0.0 +0.0 +2.5 -2.2 +0.8 -0.4 +9.5 +7.2 +3.3 +6.8 +1.5 +0.2 -0.5 -1.0 +0.3 +1.9

Llama-3.1-8B-Instruct 0.0 3.3 17.5 8.9 48.0 34.1 18.5 0.0 15.4 16.9 47.4 43.5 10.4 48.5 34.3 23.1
+ GRPO 6.7 0.0 22.5 15.6 90.3 42.4 60.7 7.1 14.3 32.2 88.4 96.4 19.7 88.5 82.7 44.5
+ GRPO w/ VERL. 10.0 3.3 32.5 15.6 90.7 45.0 72.7 14.3 14.3 30.5 88.6 96.9 21.3 88.4 83.1 47.2
∆GRPO +3.3 +3.3 +10.0 +0.0 +0.4 +2.6 +12.0 +7.2 +0.0 -1.7 +0.2 +0.5 +1.6 -0.1 +0.4 +2.7
+ PPO 6.7 0.0 30.0 17.8 89.8 42.0 60.0 0.0 14.3 25.4 86.4 95.7 18.2 88.6 82.3 43.8
+ PPO w/ VERL. 10.0 0.0 35.0 13.3 90.7 42.6 62.0 14.3 22.0 28.8 87.3 96.6 19.1 88.1 83.0 46.2
∆PPO +3.3 +0.0 +5.0 -4.5 +0.9 +0.6 +2.0 +14.3 +7.7 +3.4 +0.9 +0.9 +0.9 -0.5 +0.7 +2.4

Qwen2.5-3B 6.7 0.0 20.0 24.4 90.7 54.7 76.7 0.0 22.0 41.5 80.7 95.1 23.0 84.3 71.3 46.1
+ GRPO 3.3 0.0 40.0 22.2 92.6 56.0 82.7 7.1 27.5 42.4 82.8 96.6 23.6 89.0 81.4 49.8
+ GRPO w/ VERL. 6.7 0.0 30.0 17.8 92.6 56.9 84.8 21.4 33.0 49.2 82.2 96.4 24.4 88.5 81.0 51.0
∆GRPO +3.4 +0.0 -10.0 -4.4 +0.0 +0.9 +2.1 +14.3 +5.5 +6.8 -0.6 -0.2 +0.8 -0.5 -0.4 +1.2
+ PPO 3.3 0.0 32.5 15.6 92.8 56.5 83.2 0.0 28.6 50.0 81.7 96.6 24.4 86.0 80.8 48.8
+ PPO w/ VERL. 6.7 0.0 32.5 17.8 92.6 57.0 84.3 21.4 29.7 47.5 81.8 96.5 24.6 88.3 81.4 50.8
∆PPO +3.4 +0.0 +0.0 +2.2 -0.2 +0.5 +1.1 +21.4 +1.1 -2.5 +0.1 -0.1 +0.2 +2.3 +0.6 +2.0

Qwen2.5-7B 6.7 0.0 45.0 15.6 91.4 55.8 86.7 42.9 33.0 49.2 85.8 95.4 25.8 88.5 82.8 53.6
+ GRPO 10.0 6.7 55.0 26.7 94.8 60.2 91.7 14.3 34.1 64.4 90.2 97.6 36.1 92.8 91.3 57.7
+ GRPO w/ VERL. 13.3 10.0 50.0 28.9 95.0 60.8 90.7 35.7 35.2 69.5 89.2 97.7 35.4 92.9 91.9 59.8
∆GRPO +3.3 +3.3 -5.0 +2.2 +0.2 +0.6 -1.0 +21.4 +1.1 +5.1 -1.0 +0.1 -0.7 +0.1 +0.6 +2.1
+ PPO 6.7 3.3 50.0 33.3 94.9 59.6 89.8 28.6 31.9 63.6 89.1 97.3 36.1 92.8 90.8 57.9
+ PPO w/ VERL. 10.0 6.7 52.5 33.3 94.8 60.0 90.3 28.6 34.1 66.9 90.2 97.8 36.1 92.5 90.6 59.0
∆PPO +3.3 +3.3 +2.5 +0.0 -0.1 +0.4 +0.5 +0.0 +2.2 +3.3 +1.1 +0.5 +0.0 -0.3 -0.2 +1.1

Mathstral-7B-v0.1 0.0 0.0 12.5 8.9 87.1 51.1 74.2 28.6 33.0 31.4 81.6 93.8 17.9 87.7 54.7 44.2
+ GRPO 0.0 0.0 47.5 17.8 92.9 55.9 81.3 35.7 44.0 49.2 88.1 97.6 25.6 93.0 81.5 54.0
+ GRPO w/ VERL. 6.7 0.0 45.0 20.0 93.3 55.5 81.5 50.0 40.7 46.6 89.5 97.2 29.3 90.7 83.5 55.3
∆GRPO +6.7 +0.0 -2.5 +2.2 +0.4 -0.4 +0.2 +14.3 -3.3 -2.6 +1.4 -0.4 +3.7 -2.3 +2.0 +1.3
+ PPO 6.7 3.3 32.5 20.0 90.9 51.8 78.3 42.9 37.4 49.2 87.0 96.0 28.4 89.9 70.7 52.3
+ PPO w/ VERL. 10.0 0.0 27.5 22.2 93.0 53.8 78.2 42.9 51.6 48.3 87.4 96.7 26.1 89.6 84.1 54.1
∆PPO +3.3 -3.3 -5.0 +2.2 +2.1 +2.0 -0.1 +0.0 +14.2 -0.9 +0.4 +0.7 -2.3 -0.3 +13.4 +1.8

Mistral-7B-v0.3 0.0 0.0 10.0 0.0 40.5 12.4 21.8 14.3 13.2 3.4 24.0 50.8 1.6 39.1 30.6 17.4
+ GRPO 0.0 0.0 2.5 4.4 58.2 11.1 42.3 0.0 15.4 5.1 52.4 79.2 3.0 47.6 37.7 23.9
+ GRPO w/ VERL. 0.0 0.0 7.5 2.2 59.1 15.0 43.0 0.0 6.6 4.2 40.3 69.5 2.8 57.5 53.0 24.0
∆GRPO +0.0 +0.0 +5.0 -2.2 +0.9 +3.9 +0.7 +0.0 -8.8 -0.9 -12.1 -9.7 -0.2 +9.9 +15.3 +0.1
+ PPO 0.0 0.0 0.0 0.0 8.9 6.6 7.7 7.1 11.0 2.5 3.3 8.6 2.1 6.9 12.0 5.1
+ PPO w/ VERL. 0.0 0.0 2.5 0.0 44.7 10.6 35.7 7.1 16.5 5.1 28.8 70.7 2.4 57.5 35.1 21.1
∆PPO +0.0 +0.0 +2.5 +0.0 +35.8 +4.0 +28.0 +0.0 +5.5 +2.6 +25.5 +62.1 +0.3 +50.6 +23.1 +16.0

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

H.4 DETAILED ANALYSIS OF PASS@k PERFORMANCE

As shown in Tab. 5, which provides a comprehensive analysis of the models’ performance on the
Pass@k metric, which is a direct measure of the model’s exploration ability. As a supplement
to the main paper’s discussion, it presents the detailed performance of our VERL-based models
across a variety of mathematical reasoning benchmarks. These results demonstrate that our method
consistently leads to significant improvements, confirming its effectiveness in enhancing the models’
exploration capabilities.

Table 5: Performance comparison of instruction-tuned models under diverse decoding settings
(Pass@k). All results are reported in percentage (%).

Model MATH500
(Pass@16)

AMC23
(Pass@128)

AMC24
(Pass@128)

AIME24
(Pass@256)

AIME25
(Pass@256) Avg.

Llama-3.2-3B-Instruct 79.8 93.5 51.5 40.0 30.0 58.96
+ GRPO 80.2 95.4 60.6 40.0 30.0 61.24
+ GRPO w/ VERL. 80.6 95.7 59.0 50.0 36.7 64.40
∆GRPO +0.4 +0.3 ´1.6 +10.0 +6.7 +3.16
+ PPO 82.2 94.5 57.0 46.7 36.7 63.42
+ PPO w/ VERL. 82.4 94.7 57.8 46.7 40.0 64.32
∆PPO +0.2 +0.2 +0.8 +0.0 +3.3 +0.90

Llama-3.1-8B-Instruct 79.8 94.6 57.4 46.7 36.7 63.04
+ GRPO 83.4 94.9 56.9 53.3 36.7 65.04
+ GRPO w/ VERL. 83.4 95.1 63.1 50.0 36.7 65.66
∆GRPO +0.0 +0.2 +6.2 ´3.3 +0.0 +0.62
+ PPO 79.2 92.4 59.0 46.7 36.7 62.80
+ PPO w/ VERL. 82.4 91.9 60.0 53.3 36.7 64.86
∆PPO +3.2 ´0.5 +1.0 +6.6 +0.0 +2.06

Qwen2.5-3B 86.0 96.7 69.0 56.7 40.0 69.68
+ GRPO 86.6 92.2 68.5 46.7 40.0 66.80
+ GRPO w/ VERL. 87.6 95.9 67.8 53.3 43.3 69.58
∆GRPO +1.0 +3.7 ´0.7 +6.6 +3.3 +2.78
+ PPO 87.8 96.5 67.9 43.3 43.3 67.76
+ PPO w/ VERL. 88.2 96.8 67.3 53.3 43.3 69.78
∆PPO +0.4 +0.3 ´0.6 +10.0 +0.0 +2.02

Qwen2.5-7B 90.6 98.4 73.7 60.0 60.0 76.54
+ GRPO 90.8 97.8 78.3 56.7 50.0 74.72
+ GRPO w/ VERL. 91.4 98.3 79.0 63.3 60.0 78.40
∆GRPO +0.6 +0.5 +0.7 +6.6 +10.0 +3.68
+ PPO 91.2 98.6 74.3 53.3 56.7 74.82
+ PPO w/ VERL. 91.4 98.0 74.4 56.7 66.7 77.44
∆PPO +0.2 ´0.6 +0.1 +3.4 +10.0 +2.62

Mathstral-7B-v0.1 80.4 88.5 60.9 43.3 36.7 61.96
+ GRPO 84.8 87.3 69.2 36.7 40.0 63.60
+ GRPO w/ VERL. 87.0 97.0 76.9 50.0 50.0 72.18
∆GRPO +2.2 +9.7 +7.7 +13.3 +10.0 +8.58
+ PPO 82.4 91.7 70.7 53.3 40.0 67.62
+ PPO w/ VERL. 84.8 93.8 69.9 53.3 46.7 69.70
∆PPO +2.4 +2.1 ´0.8 +0.0 +6.7 +2.08

Mistral-7B-v0.3 36.0 73.5 39.6 20.0 16.7 37.16
+ GRPO 33.0 63.2 36.0 10.0 10.0 30.44
+ GRPO w/ VERL. 34.4 64.5 38.0 16.7 13.3 33.38
∆GRPO +1.4 +1.3 +2.0 +6.7 +3.3 +2.94
+ PPO 21.8 46.4 25.1 6.7 6.7 21.34
+ PPO w/ VERL. 19.2 46.5 30.1 3.3 13.3 22.48
∆PPO ´2.6 +0.1 +5.0 ´3.4 +6.6 +1.14

H.5 ABLATION ON THE CHOICE OF HIDDEN LAYER

We focus on the final hidden layer because our exploration/exploitation metrics are defined in the
semantic space along the reasoning trajectory, and prior interpretability work (Jing et al., 2025;
Sajjad et al., 2022; Valeriani et al., 2023; Matthews et al., 2024; Servedio et al., 2025; Zhang et al.,
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Table 6: Comparison of GRPO + VERL using an intermediate layer (layer 14) versus the final layer,
evaluated by pass@1 on multiple math benchmarks. Using the last layer yields the strongest average
improvement.

Method aime24 aime25 amc23 amc24 asdiv carp en cmath gaokao24 I gaokao24 mix gaokao math cloze gsm8k mawps olympiadbench svamp tabmwp Avg.

Llama-3.2-3B-Instruct 0.0 0.0 25.0 11.1 74.6 26.5 10.2 14.3 14.3 6.8 66.6 86.9 12.7 74.1 41.4 30.97
GRPO 3.3 0.0 27.5 8.9 88.8 45.0 28.3 21.4 20.9 23.7 80.7 96.0 16.7 87.7 71.7 41.37
GRPO w/ VERL (layer = 14) 10.0 0.0 27.5 11.1 88.6 43.6 30.7 21.4 16.5 22.0 81.9 95.5 18.1 87.0 71.4 41.69
GRPO w/ VERL (layer = last) 13.3 6.7 25.0 11.1 89.3 45.4 46.2 14.3 22.0 22.9 81.7 96.0 17.6 87.8 72.3 43.44

Table 7: Comparison of GRPO + VERL using an intermediate layer (layer 14) versus the final layer,
evaluated by pass@k on several math benchmarks. Again, using the last layer yields the best average
improvement.

Method math500@16 amc23@128 amc24@128 aime24@256 aime25@256 Avg.

Llama-3.2-3B-Instruct 79.8 93.5 51.5 40.0 30.0 58.96
GRPO 80.2 95.4 60.6 40.0 30.0 61.24
GRPO w/ VERL (layer = 14) 81.0 92.9 57.0 40.0 36.7 61.52
GRPO w/ VERL (layer = last) 80.6 95.7 59.0 50.0 36.7 64.40

2025) suggests that the last layers are most aligned with semantic meaning and model predictions.
Empirically, using the final layer gives consistently better performance than using an intermediate
layer: for example, GRPO + VERL with the last layer improves the average pass@1 from 41.69%
(layer 14) to 43.44%, and the average pass@k from 61.52% (layer 14) to 64.40%. This subsection
provides the detailed analysis supporting our design choice to base VERL on the final layer.
Intermediate layers in large language models can encode rich features. However, our notion of
exploration and exploitation is explicitly defined in the semantic space of a reasoning trajectory.
Existing interpretability studies (Jing et al., 2025; Sajjad et al., 2022; Valeriani et al., 2023; Matthews
et al., 2024; Servedio et al., 2025; Zhang et al., 2025) indicate that hidden states in the last layers are
most tightly aligned with token-level semantics and the model’s predictive distribution, while mid-
layer representations tend to mix morphology, syntax, and other lower-level or task-specific signals.
For this reason, we consider the final layer more suitable for semantic diversity metrics such as ER
and ERV.

Intermediate-layer vs. final-layer VERL (pass@1). We implemented VERL on an intermediate
layer (layer 14) and on the last layer, keeping everything else fixed. The pass@1 results are reported
in Table 6. Both VERL variants improve over GRPO, but the last-layer version clearly gives the
strongest overall gains in average pass@1.

Intermediate-layer vs. final-layer VERL (pass@k). A similar pattern holds for pass@k, sum-
marized in Table 7. Using the last layer yields the best average improvement, especially on the more
challenging AIME-style benchmarks, further supporting the choice of the final hidden layer as the
basis for our semantic exploration and exploitation metrics.
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I CASE STUDY

For all case studies presented in this section, we employ Qwen2.5-7B as the base model. The
answers shown in the gray boxes are generated by Qwen2.5-7B trained with vanilla GRPO for 120
steps, while those in the purple boxes are produced by Qwen2.5-7B trained with GRPO augmented
with the auxiliary shaping term—our proposed method VERL—for 120 steps.

I.1 CASE STUDY FOR PASS@1 SETTING

Case Study I. For the case shown in Fig. 11, the model trained with vanilla GRPO incorrectly
judges ´1 ă ´13, whereas the model trained with GRPO augmented with the auxiliary shaping
term gives the correct answer. This example highlights the limitation of vanilla GRPO in exploita-
tion: it fails to consistently apply basic numerical commonsense—namely, that larger absolute val-
ues correspond to smaller magnitudes for negative numbers. By contrast, introducing the Auxiliary
Shaping Term strengthens exploitation capacity, enabling the model to make such comparisons more
reliably.

What is the smallest possible integer value of x if 12 ˜ px ` 1q is an integer?

Question

-13
Ground Truth

To find the smallest possible integer value of x such that 12
x`1 is an integer, we need to consider the factors of 12. The expression

12
x`1 will be an integer if x ` 1 is a divisor of 12. Let’s list the divisors of 12:
1. The divisors of 12 are: ˘1, ˘2, ˘3, ˘4, ˘6, ˘12.
2. We need to find the smallest x, so we start with the smallest positive divisor, which is 1:

x ` 1 “ 1 ùñ x “ 1 ´ 1 ùñ x “ 0

3. To confirm, we substitute x “ 0 back into the original expression:

12

0 ` 1
“

12

1
“ 12

Since 12 is an integer, x “ 0 is indeed a valid solution.
4. We should also consider the negative divisors to ensure we have the smallest possible integer value. The next smallest divisor is
-1:

x ` 1 “ ´1 ùñ x “ ´1 ´ 1 ùñ x “ ´2

5. Substituting x “ ´2 back into the original expression:

12

´2 ` 1
“

12

´1
“ ´12

Since -12 is an integer, x “ ´2 is also a valid solution, but it is not smaller than x “ 0.
Therefore, the smallest possible integer value of x is

0

Vanilla GRPO

To find the smallest possible integer value of x such that 12
x`1 is an integer, we need to determine the divisors of 12. The divisors

of 12 are ˘1, ˘2, ˘3, ˘4, ˘6, ˘12. For 12
x`1 to be an integer, x ` 1 must be one of these divisors. We want the smallest

possible x, so we should consider the smallest positive divisor, which is 1.
If x ` 1 “ 1, then x “ 0.
We should also consider the negative divisors to ensure we find the smallest possible integer value of x. The smallest negative di-
visor is ´12. If x ` 1 “ ´12, then x “ ´13.
Comparing x “ 0 and x “ ´13, the smallest possible integer value of x is ´13.
Therefore, the final answer is

´13

GRPO with Auxiliary Shaping Term

Figure 11: Case study: Vanilla GRPO fails to exploit numerical commonsense when comparing
negative values (-1 vs. -13), while our method gives the correct answer.
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Case Study II. For the case in Fig. 12, the crucial distinction lies in how the models interpret the
condition “No house faces two different streets.” The vanilla GRPO–trained model incorrectly infers
that each street contains only 10 houses, overlooking the structural implication of the condition. In
contrast, the model trained with GRPO augmented by the auxiliary shaping term exploits this com-
monsense constraint more effectively: it decomposes the problem step by step, correctly deduces
that each street has 20 houses, and thereby arrives at the correct total.

In my neighborhood, there are six streets. There are 10 houses on each side of each street. No house faces two different streets.
How many houses are in my neighborhood?

Question

120
Ground Truth

To determine the total number of houses in the neighborhood, we can follow these steps:
1. Identify the number of streets and houses per street: - There are 6 streets. - Each street has 10 houses on each side.
2. Calculate the number of houses on one street: Since there are 10 houses on each side of a street, and each house faces only
one street, the total number of houses on one street is 10 (since they are all on the same street).
3. Calculate the total number of houses in the neighborhood: There are 6 streets, and each street has 10 houses. Therefore, the
total number of houses is 6 ˆ 10 “ 60.
Putting the final answer within , we get:

60

Vanilla GRPO

To find the total number of houses in the neighborhood, let’s break down the problem step by step.
1. There are 6 streets in the neighborhood.
2. Each street has houses on both sides.
3. There are 10 houses on each side of every street.
4. No house faces two different streets, meaning each house is counted only once.
First, calculate the number of houses on one side of a single street:

10 houses/side

Since there are houses on both sides of each street, multiply by 2:

10 houses/side ˆ 2 sides/street “ 20 houses/street

Now, since there are 6 streets, multiply the number of houses per street by the number of streets:

20 houses/street ˆ 6 streets “ 120 houses

So, the total number of houses in the neighborhood is
120

GRPO with Auxiliary Shaping Term

Figure 12: Case study: Vanilla GRPO overlooks the constraint and infers 10 houses per street, while
our method exploits it correctly and infers 20.

Case Study III. As shown in Fig. 13, the task concerns solving a differential equation under the
constraint of finding a purely exponential solution rather than a general one. The model trained
with vanilla GRPO overlooks this constraint and defaults to the generic procedure for obtaining the
full solution. In contrast, the model trained with GRPO augmented by the auxiliary shaping term
respects the constraint and produces the correct purely exponential answer. This case illustrates
how the auxiliary shaping term enhances exploitation by enforcing adherence to problem-specific
constraints.

I.2 CASE STUDY FOR PASS@16 SETTING

Case Study I. As shown in Fig. 14, the question is a simple elementary-level math problem re-
quiring the integer solution x ě 1, x ‰ 2. While the vanilla GRPO model consistently outputs 3,
which is incorrect, the model trained with the auxiliary shaping term produces 1 in 5 out of 16 roll-
outs, the correct answer. This case highlights that the auxiliary shaping term enhances the model’s
exploration ability, enabling it to consider a wider range of possibly valid solutions.
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Find a purely exponential solution of d4x
dt4

´ x “ e´2t.

Question

e´2t

15

Ground Truth

To find a purely exponential solution of the differential equation ( d
4x

dt4
´ x “ e´2t), we will follow these steps:

1. Find the complementary solution by solving the homogeneous equation:

d4x

dt4
´ x “ 0

The characteristic equation is:
r
4

´ 1 “ 0

Solving for r, we get:
r
4

“ 1 ùñ r “ ˘1, ˘i

Therefore, the complementary solution is:

xcptq “ C1e
t

` C2e
´t

` C3 cosptq ` C4 sinptq

2. Find a particular solution using the method of undetermined coefficients:
Since the right-hand side of the non-homogeneous equation is e´2t, we assume a particular solution of the form:

xpptq “ Ae
´2t

Taking the fourth derivative of xpptq:

d4

dt4
pAe

´2t
q “ Ap´2q

4
e

´2t
“ 16Ae

´2t

Substituting xpptq and its fourth derivative into the original differential equation:

16Ae
´2t

´ Ae
´2t

“ e
´2t

Simplifying, we get:
p16A ´ Aqe

´2t
“ e

´2t
ùñ 15Ae

´2t
“ e

´2t

Therefore:

15A “ 1 ùñ A “
1

15

So, the particular solution is:

xpptq “
1

15
e

´2t

3. Combine the complementary and particular solutions:
The general solution to the differential equation is:

xptq “ xcptq ` xpptq “ C1e
t

` C2e
´t

` C3 cosptq ` C4 sinptq `
1

15
e

´2t

Thus, the final answer is:

C1e
t

` C2e
´t

` C3 cosptq ` C4 sinptq `
1

15
e

´2t

Vanilla GRPO

Figure 13: Case study: Vanilla GRPO ignores the constraint of a purely exponential solution, while
our method enforces it and yields the correct result.
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To find a purely exponential solution to the differential equation

d4x

dt4
´ x “ e

´2t

, we will follow these steps:
1. Find the complementary solution by solving the homogeneous equation:

d4x

dt4
´ x “ 0

The characteristic equation is:
r
4

´ 1 “ 0

Solving for r, we get:
r
4

“ 1 ùñ r “ ˘1, ˘i

Therefore, the complementary solution is:

xcptq “ C1e
t

` C2e
´t

` C3 cosptq ` C4 sinptq

2. Find a particular solution using the method of undetermined coefficients: Since the right-hand side of the non-
homogeneous equation is e´2t, we assume a particular solution of the form:

xpptq “ Ae
´2t

Taking the fourth derivative of xpptq:
d4xp

dt4
“ 16Ae

´2t

Substituting xpptq and its fourth derivative into the original differential equation:

16Ae
´2t

´ Ae
´2t

“ e
´2t

Simplifying, we get:
15Ae

´2t
“ e

´2t

Solving for A:

15A “ 1 ùñ A “
1

15

Therefore, the particular solution is:

xpptq “
1

15
e

´2t

3. Combine the complementary and particular solutions: The general solution to the differential equation is:

xptq “ xcptq ` xpptq “ C1e
t

` C2e
´t

` C3 cosptq ` C4 sinptq `
1

15
e

´2t

Thus, the purely exponential solution is:
1

15
e

´2t

GRPO with Auxiliary Shaping Term

Figure 13: Case study: Vanilla GRPO ignores the constraint of a purely exponential solution, while
our method enforces it and yields the correct result (continued).

Given fpxq “
?

x´1
x´2 , what is the smallest possible integer value for x such that fpxq has a real number value?

Question

1
Ground Truth

Figure 14: Case study demonstrating improved exploration: the auxiliary shaping term enables the
model to explore and reach the correct solution.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Vallina GRPO#1-#8

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The numerator is

?
x ´ 1.

For the square root to be
defined and result in a real
number, the expression
inside the square root must
be non-negative.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator is
x ´ 2. For the function to
be defined, the denomina-
tor must not be zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

To determine the small-
est possible integer value
for x such that fpxq “
?

x´1
x´2 has a real number

value, we need to ensure
that both the numerator
and the denominator sat-
isfy their respective condi-
tions for real numbers.
1. Numerator Condition:
The expression inside the
square root must be non-
negative.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator
must not be zero to avoid
division by zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these condi-
tions, we need x ě 1
and x ‰ 2. The smallest
integer that satisfies these
conditions is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

To determine the small-
est possible integer value
for x such that fpxq “
?

x´1
x´2 has a real number

value, we need to ensure
that both the numerator
and the denominator sat-
isfy certain conditions.
1. Numerator Condi-
tion: The expression in-
side the square root must
be non-negative because
the square root of a neg-
ative number is not a real
number.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator
must not be zero because
division by zero is unde-
fined.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these condi-
tions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.

(Details omitted as they
are not crucial for this
case study.)
1. Square Root Con-
dition: The expression
inside the square root,
x ´ 1, must be greater
than or equal to zero for
the square root to be a real
number.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator,
x ´ 2, must not be zero to
avoid division by zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. For the square root to
be defined, the expression
inside it must be greater
than or equal to zero:

x ´ 1 ě 0

Solving this inequality:

x ě 1

2. For the denominator to
be non-zero:

x ´ 2 ‰ 0

Solving this equation:

x ‰ 2

(Details omitted as they
are not crucial for this
case study.)
Therefore, the smallest
possible integer value for
x such that fpxq has a
real number value is:

3

(Details omitted as they
are not crucial for this
case study.)
1. For the square root to
be defined, the expression
inside it must be greater
than or equal to zero:

x ´ 1 ě 0

Solving this inequality:

x ě 1

2. For the function to be
defined, the denominator
must not be zero:

x ´ 2 ‰ 0

Solving this equation:

x ‰ 2

(Details omitted as they
are not crucial for this
case study.)
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. For the square root to
be defined, we need:

x ´ 1 ě 0

Solving this inequality:

x ě 1

2. For the denominator to
be non-zero, we need:

x ´ 2 ‰ 0

Solving this equation:

x ‰ 2

Combining these two con-
ditions, x must be greater
than or equal to 1 but not
equal to 2. The smallest
integer that satisfies this
condition is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. Square Root Con-
dition: The expression
inside the square root,
x ´ 1, must be greater
than or equal to zero for
the square root to be a real
number.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator,
x ´ 2, must not be zero to
avoid division by zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

Figure 14: Case study demonstrating improved exploration: the auxiliary shaping term enables the
model to explore and reach the correct solution (continued).
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Vanilla GRPO#9-#16

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The expression inside the
square root, x´1, must be
non-negative because the
square root of a negative
number is not a real num-
ber. Therefore, we need:

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator,
x ´ 2, must not be zero
because division by zero is
undefined. Therefore, we
need:

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is: 3

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The expression inside the
square root, x´1, must be
non-negative because the
square root of a negative
number is not a real num-
ber. Therefore, we need:

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator,
x ´ 2, must not be zero
because division by zero is
undefined. Therefore, we
need:

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. For the square root to
be defined, we need:

x ´ 1 ě 0

x ě 1

2. For the denominator to
be non-zero, we need:

x ´ 2 ‰ 0

x ‰ 2

Combining these two con-
ditions, we get:

x ě 1

x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The expression under the
square root, x´1, must be
non-negative because the
square root of a negative
number is not a real num-
ber. Therefore, we need:

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator,
x ´ 2, must not be zero
because division by zero is
undefined. Therefore, we
need:

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is: 3

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The numerator is

?
x ´ 1.

For the square root to be
defined and result in a real
number, the expression
inside the square root must
be non-negative.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator is
x ´ 2. For the function to
be defined, the denomina-
tor must not be zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we need x to be
greater than or equal to 1,
but not equal to 2. There-
fore, the smallest possible
integer value for x that
satisfies both conditions is
3.
3

(Details omitted as they
are not crucial for this
case study.)
1. Square Root Con-
dition: The expression
inside the square root,
x ´ 1, must be greater
than or equal to zero for
the square root to be a real
number.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator,
x ´ 2, must not be zero to
avoid division by zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

To determine the small-
est possible integer value
for x such that fpxq “
?

x´1
x´2 has a real number

value, we need to ensure
that both the numerator
and the denominator sat-
isfy their respective condi-
tions for real numbers.
1. Numerator Condition:
The expression inside the
square root must be non-
negative.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator
must not be zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these condi-
tions, we need x to be
greater than or equal to 1
but not equal to 2. There-
fore, the smallest possible
integer value for x that
satisfies both conditions is
3.
3

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The numerator is

?
x ´ 1.

For the square root to be
a real number, the expres-
sion inside the square root
must be non-negative.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator is
x ´ 2. For the function to
be defined, the denomina-
tor must not be zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

Figure 14: Case study demonstrating improved exploration: the auxiliary shaping term enables the
model to explore and reach the correct solution (continued).
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GRPO with Auxiliary Shaping Term#1-#8

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The numerator is

?
x ´ 1.

For the square root to be
defined and real, the ex-
pression inside the square
root must be non-negative.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator is
x ´ 2. For the function to
be defined, the denomina-
tor must not be zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these condi-
tions, we need x to be
greater than or equal to 1,
but not equal to 2. The
smallest integer that sat-
isfies these conditions is
x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. For the square root to
be defined in the real num-
bers, the expression inside
it must be greater than or
equal to zero:

x ´ 1 ě 0

Solving this inequality:

x ě 1

2. For the function to be
defined, the denominator
must not be zero:

x ´ 2 ‰ 0

Solving this equation:

x ‰ 2

(Details omitted as they
are not crucial for this
case study.)
Thus, the smallest possible
integer value for x such
that fpxq has a real num-

ber value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. The expression inside
the square root must be
non-negative. 2. The de-
nominator must not be
zero.
(Details omitted as they
are not crucial for this
case study.)
### Step 3: Combine the
conditions From Step 1,
we know x ě 1. From
Step 2, we know x ‰ 2.
Therefore, the smallest
integer value for x that
satisfies both conditions is
the smallest integer greater
than 1, which is 3.
### Final Answer The
smallest possible integer
value for x such that fpxq

has a real number value is
3 .

(Details omitted as they
are not crucial for this
case study.)
### Combining the Con-
ditions From Condition 1,
we have x ě 1. From
Condition 2, we have
x ‰ 2.
Combining these, the
smallest integer value for
x that satisfies both condi-
tions is x “ 3.
### Verification Let’s
verify that x “ 3
works: - For x “ 3,?
x ´ 1 “

?
3 ´ 1 “?

2, which is a real num-
ber. - The denominator
x ´ 2 “ 3 ´ 2 “ 1,
which is not zero.
Since both conditions are
satisfied, the smallest pos-
sible integer value for x is
indeed 3.
Thus, the final answer is:

3

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The expression under the
square root, x´1, must be
non-negative because the
square root of a negative
number is not a real num-
ber. Therefore, we need:

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator,
x ´ 2, must not be zero
because division by zero is
undefined. Therefore, we
need:

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 but not
x “ 2 is x “ 1.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 1 .

(Details omitted as they
are not crucial for this
case study.)
### Combining the Con-
ditions From Condition 1,
we know x ě 1. From
Condition 2, we know
x ‰ 2.
The smallest integer that
satisfies x ě 1 but not
x “ 2 is x “ 1.
(Details omitted as they
are not crucial for this
case study.)
Since fp1q is a real num-
ber, x “ 1 is indeed a
valid solution.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 1 .

(Details omitted as they
are not crucial for this
case study.)
1. For

?
x ´ 1 to be de-

fined, we need:

x ´ 1 ě 0 ùñ x ě 1

2. For the denominator
x ´ 2 to be non-zero, we
need:

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 1.
(Details omitted as they
are not crucial for this
case study.)
Since fp1q “ 0 is a real
number, our solution is
confirmed.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 1 .

(Details omitted as they
are not crucial for this
case study.)
1. For

?
x ´ 1 to be de-

fined in the real numbers,
we need:

x ´ 1 ě 0 ùñ x ě 1

2. For the denominator
x ´ 2 to not be zero, we
need:

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, x must be greater
than or equal to 1 but not
equal to 2. The smallest
integer that satisfies this
condition is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

Figure 14: Case study demonstrating improved exploration: the auxiliary shaping term enables the
model to explore and reach the correct solution (continued).
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GRPO with Auxiliary Shaping Term#9-#16

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The expression inside the
square root, x´1, must be
non-negative because the
square root of a negative
number is not a real num-
ber. Therefore, we need:

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator,
x ´ 2, must not be zero
because division by zero is
undefined. Therefore, we
need:

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 1.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 1 .

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The expression under the
square root must be non-
negative.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator
must not be zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The expression inside the
square root must be non-
negative.

x ´ 1 ě 0 ùñ x ě 1

This ensures that
?
x ´ 1

is a real number.
2. Denominator Condi-
tion: The denominator
must not be zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

This ensures that the func-
tion is defined.
Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. For the square root to
be defined, we need:

x ´ 1 ě 0

Solving this inequality:

x ě 1

2. For the denominator to
be non-zero, we need:

x ´ 2 ‰ 0

Solving this equation:

x ‰ 2

Combining these two con-
ditions, x must be greater
than or equal to 1 but not
equal to 2. The smallest
integer that satisfies this
condition is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. The expression inside
the square root must be
non-negative. 2. The de-
nominator must not be
zero.
Let’s address these condi-
tions one by one:
1. For the square root to
be defined, the expression
inside it must be greater
than or equal to zero:

x ´ 1 ě 0 ùñ x ě 1

2. For the denominator to
be non-zero:

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these condi-
tions, we need x to be
greater than or equal to 1
but not equal to 2. The
smallest integer that satis-
fies this is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condi-
tion: The expression in-
side the square root must
be non-negative because
the square root of a neg-
ative number is not a real
number.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator
must not be zero because
division by zero is unde-
fined.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these two con-
ditions, we get:

x ě 1 and x ‰ 2

The smallest integer that
satisfies x ě 1 and x ‰ 2
is x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

(Details omitted as they
are not crucial for this
case study.)
1. Numerator Condition:
The expression under the
square root, x ´ 1, must
be non-negative because
the square root of a neg-
ative number is not a real
number.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator,
x ´ 2, must not be zero
because division by zero is
undefined.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these condi-
tions, we need x ě 1
and x ‰ 2. The smallest
integer that satisfies these
conditions is x “ 1.
(Details omitted as they
are not crucial for this
case study.)
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 1 .

To determine the small-
est possible integer value
for x such that fpxq “
?

x´1
x´2 has a real number

value, we need to ensure
that both the numerator
and the denominator sat-
isfy their respective condi-
tions for real numbers.
1. Numerator Condition:
The expression inside the
square root must be non-
negative.

x ´ 1 ě 0 ùñ x ě 1

2. Denominator Condi-
tion: The denominator
must not be zero.

x ´ 2 ‰ 0 ùñ x ‰ 2

Combining these condi-
tions, we need x to be
greater than or equal to 1
but not equal to 2. The
smallest integer that sat-
isfies this condition is
x “ 3.
Therefore, the smallest
possible integer value for
x such that fpxq has a

real number value is 3 .

Figure 14: Case study demonstrating improved exploration: the auxiliary shaping term enables the
model to explore and reach the correct solution (continued).
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Case Study II. As shown in Fig. 15, this high-school level geometry problem illustrates the con-
trast between vanilla GRPO and GRPO with the auxiliary shaping term. The vanilla GRPO model
fails to produce the correct answer in any rollout. In contrast, the model trained with the auxiliary
shaping term succeeds in 5 out of 16 rollouts. Moreover, its reasoning traces display higher ex-
ploratory diversity: it applies the law of sines 9 times, the law of cosines 4 times, and other general
geometric properties 3 times. By comparison, the vanilla GRPO model relies more narrowly on
the law of sines (11 times), with only limited use of other strategies. This case highlights that the
auxiliary shaping term enhances the model’s exploration capacity, enabling it to leverage a broader
range of problem-solving strategies rather than over-committing to a single path.
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Abdul and Chiang are standing 48 feet apart in a field. Bharat is standing in the same field as far from Abdul as possible so that
the angle formed by his lines of sight to Abdul and Chiang measures 60˝. What is the square of the distance (in feet) between
Abdul and Bharat?

Question

3072
Ground Truth

Vanilla GRPO#1-#8

(Details omitted as they
are not crucial for this
case study.)
1. Identify the triangle
and its properties:
(Details omitted as they
are not crucial for this
case study.)
2. Use the Law of Sines:
(Details omitted as they
are not crucial for this
case study.)
3. Apply the Law of
Sines:
(Details omitted as they
are not crucial for this
case study.)
4. Find the square of the
distance:
(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 2304 .

To solve this problem,
we can use the Law of
Sines in trigonometry.
Let’s denote the distance
between Abdul and Bharat
as x and the distance be-
tween Chiang and Bharat
as y. We know that the
angle between Abdul
and Chiang as seen from
Bharat is 60°, and the dis-
tance between Abdul and
Chiang is 48 feet.
Given: - =ABC “ 60˝

- AB “ 48 feet - We
need to find x2

First, we apply the Law of
Sines in triangle ABC:
(Details omitted as they
are not crucial for this
case study.)
Thus, the square of the
distance between Abdul
and Bharat is 9216 .

To solve this problem, we
can use the Law of Sines
in trigonometry. Let’s
denote the distance be-
tween Abdul and Bharat as
AB, and the distance be-
tween Chiang and Bharat
as BC. Since Bharat is
as far from Abdul as pos-
sible to form a 60° angle,
triangle ABC is a right
triangle with the right an-
gle at Chiang. This means
=ACB “ 90˝ and
=BAC “ 60˝.
(Details omitted as they
are not crucial for this
case study.)
Thus, the square of the
distance between Abdul
and Bharat is 9216 .

First, we need to find the
distance AB using the
Law of Sines. In triangle
ABC:
(Details omitted as they
are not crucial for this
case study.)
Now, we need to find the
square of the distance
AB:
(Details omitted as they
are not crucial for this
case study.)
Thus, the square of the
distance between Abdul
and Bharat is 1728 .
To verify the accuracy
of this result, we can use
Python to perform the cal-
culations.
(Details omitted as they
are not crucial for this
case study.)

To solve this problem,
we can use the Law of
Sines and some geometric
properties. Let’s break it
down step by step.
1. Identify the triangle
and its properties:
(Details omitted as they
are not crucial for this
case study.)
2. Apply the Law of
Sines:
(Details omitted as they
are not crucial for this
case study.)
3. Calculate the dis-
tances:
(Details omitted as they
are not crucial for this
case study.)
4. Find the square of the
distance:
(Details omitted as they
are not crucial for this
case study.)
So, the square of the dis-
tance between Abdul and
Bharat is 768 .

(Details omitted as they
are not crucial for this
case study.)
1. Recognize that the tri-
angle ABC is a right tri-
angle with =BAC “

90˝ and =ABC “ 60˝.
Therefore, =ACB “

30˝.
(Details omitted as they
are not crucial for this
case study.)
3. Since AC “ 48 feet,
and in a 30-60-90 triangle,
the side opposite the 60°
angle is

?
3 times the side

opposite the 30° angle, we
can find AB:

AB “ 48
?
3

(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 6912

feet.

To solve this problem, we
need to use some geomet-
ric principles, specifically
involving the Law of Sines
and properties of triangles.
1. Identify the triangle
and the given informa-
tion:
(Details omitted as they
are not crucial for this
case study.)
2. Use the Law of Sines
to find the distance
BC (the distance from
Bharat to Chiang):
(Details omitted as they
are not crucial for this
case study.)
3. Find the distance AC
(the distance from Abdul
to Bharat):
(Details omitted as they
are not crucial for this
case study.)
Therefore, the square
of the distance between
Abdul and Bharat is
11520 .

(Details omitted as they
are not crucial for this
case study.)
1. Identify the triangle
and the given informa-
tion:
(Details omitted as they
are not crucial for this
case study.)
2. Use the Law of Sines:
(Details omitted as they
are not crucial for this
case study.)
3. Maximize AB:
(Details omitted as they
are not crucial for this
case study.)
4. Apply the
Pythagorean theorem:
(Details omitted as they
are not crucial for this
case study.)
Thus, the square of the
distance between Abdul
and Bharat is 9216 .

Figure 15: Case study: Geometry problem. GRPO with auxiliary shaping term not only achieves
higher accuracy but also explores more diverse reasoning strategies than vanilla GRPO.
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Vanilla GRPO#9-#16

To solve this problem,
we can use the Law of
Sines and some geometric
properties. Let’s break it
down step by step.
1. Identify the triangle
and the given informa-
tion:
(Details omitted as they
are not crucial for this
case study.)
2. Determine the largest
possible angle at A:
(Details omitted as they
are not crucial for this
case study.)
3. Use the Pythagorean
theorem:
(Details omitted as they
are not crucial for this
case study.)
4. Find the square of the
distance between Abdul
and Bharat:
(Details omitted as they
are not crucial for this
case study.)
So, the square of the dis-
tance between Abdul and
Bharat is 9216 .

To solve this problem, we
can use some geometric
properties and trigonom-
etry. Let’s break it down
step by step:
1. Identify the triangle
formed:
(Details omitted as they
are not crucial for this
case study.)
2. Use the Law of Sines:
(Details omitted as they
are not crucial for this
case study.)
3. Maximize the dis-
tance:
(Details omitted as they
are not crucial for this
case study.)
4. Square the distance:
(Details omitted as they
are not crucial for this
case study.)
Let’s calculate it:

48
2

“ 2304

So, the square of the dis-
tance between Abdul and
Bharat is 2304 .

To solve the problem, we
need to determine the dis-
tance between Abdul and
Bharat, given that the an-
gle between their lines of
sight to Chiang is 60° and
that Bharat is positioned
to be as far from Abdul as
possible.
(Details omitted as they
are not crucial for this
case study.)
Using the Law of Cosines
in triangle ABC:
(Details omitted as they
are not crucial for this
case study.)

BC
2

“ d
2

`2304´48d

(Details omitted as they
are not crucial for this
case study.)
The square of the distance
between Abdul and Bharat
is:

d
2

“ 96
2

“ 9216

Thus, the square of the
distance between Abdul
and Bharat is 9216 .

(Details omitted as they
are not crucial for this
case study.)
1. Identify the known
values:
(Details omitted as they
are not crucial for this
case study.)
2. Set up the triangle:
(Details omitted as they
are not crucial for this
case study.)
3. Apply the Law of
Sines:
(Details omitted as they
are not crucial for this
case study.)
4. Determine the angles:
(Details omitted as they
are not crucial for this
case study.)
5. Simplify the Law of
Sines equation:
(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 2304 .

To solve this problem,
we need to use some ge-
ometric properties and
trigonometry. Let’s break
it down step by step.
1. Understanding the
Problem:
(Details omitted as they
are not crucial for this
case study.)
2. Geometric Insight:
(Details omitted as they
are not crucial for this
case study.)
3. Using Trigonometry:
(Details omitted as they
are not crucial for this
case study.)
4. Calculating the Dis-
tance: - Let the distance
AB be x. Since =ABC
is 60° and we need to
maximize AB, we use the
Law of Cosines in triangle
ABC:
(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 432 .

(Details omitted as they
are not crucial for this
case study.)
1. Identify the given in-
formation:
(Details omitted as they
are not crucial for this
case study.)
2. Visualize the problem:
(Details omitted as they
are not crucial for this
case study.)
3. Use the Law of Sines:
(Details omitted as they
are not crucial for this
case study.)
4. Properties of an equi-
lateral triangle:
(Details omitted as they
are not crucial for this
case study.)
5. Calculate the square
of the distance:
(Details omitted as they
are not crucial for this
case study.)
Thus, the square of the
distance between Abdul
and Bharat is 2304 .
Providethefinalanswerwithin .

To solve this problem,
we need to use some ge-
ometric properties and
trigonometry. Let’s break
it down step by step.
1. Understand the Prob-
lem:
(Details omitted as they
are not crucial for this
case study.)
2. Visualize the Problem:
(Details omitted as they
are not crucial for this
case study.)
3. Use Geometric Prop-
erties:
(Details omitted as they
are not crucial for this
case study.)
4. Apply Trigonometry:
(Details omitted as they
are not crucial for this
case study.)
5. Calculate the Dis-
tance: - AB = 2 * AC
= 2 * 48 = 96 feet. - The
square of the distance AB
is 962.
6. Final Calculation: -
962 “ 9216.
So, the square of the dis-
tance between Abdul and
Bharat is 9216 .

To solve this problem,
we can use the Law of
Sines in trigonometry.
Let’s break it down step
by step:
1. Identify the given in-
formation:
(Details omitted as they
are not crucial for this
case study.)
2. Set up the triangle:
(Details omitted as they
are not crucial for this
case study.)
3. Use the Law of Sines:
(Details omitted as they
are not crucial for this
case study.)
4. Find the square of the
distance: The distance
between Abdul and Bharat
is 24 feet. The square of
this distance is:

24
2

“ 576

Therefore, the square of
the distance between Ab-
dul and Bharat is 576 .

Figure 15: Case study: Geometry problem. GRPO with auxiliary shaping term not only achieves
higher accuracy but also explores more diverse reasoning strategies than vanilla GRPO (continued).
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GRPO with Auxiliary Shaping Term#1-#8

(Details omitted as they
are not crucial for this
case study.)
Given that =ABC “

60˝ and AC “ 48 feet,
we can use the Law of
Sines to find AB:
(Details omitted as they
are not crucial for this
case study.)
The square of the distance
AB is:

p32
?
3q

2
“ 32

2
ˆ3 “ 1024ˆ3 “ 3072

Thus, the square of the
distance between Abdul
and Bharat is 3072 .

To solve this problem, we
can use the Law of Sines
in trigonometry.
(Details omitted as they
are not crucial for this
case study.)
Given that AC “ 48
feet, we can use the Law
of Sines to find AB:

AB

sinp60˝q
“

AC

sinp30˝q

(Details omitted as they
are not crucial for this
case study.)
Solving for AB:

AB “ 96ˆ

?
3

2
“ 48

?
3

(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 6912 .

(Details omitted as they
are not crucial for this
case study.)
1. Identify the given in-
formation:
(Details omitted as they
are not crucial for this
case study.)
2. Visualize the problem:
(Details omitted as they
are not crucial for this
case study.)
3. Determine the type
of triangle: - Since angle
ABC and angle ACB are
both 60°, triangle ABC is
an equilateral triangle. In
an equilateral triangle, all
sides are equal.
4. Calculate the side
length of the equilat-
eral triangle: - Since
AC = 48 feet and trian-
gle ABC is equilateral, AB
(the distance from Abdul
to Bharat) is also 48 feet.
(Details omitted as they
are not crucial for this
case study.)
So, the square of the dis-
tance between Abdul and
Bharat is 2304 .

To solve this problem, we
can use the Law of Sines
and some geometric prop-
erties. Let’s denote the
positions of Abdul, Chi-
ang, and Bharat as points
A, C, and B respectively.
The distance between A
and C is given as 48 feet.
The angle =ACB is 60°.
We need to find the square
of the distance AB, which
is the farthest distance
Bharat can be from Ab-
dul.
(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 6912 .

To solve this problem,
we need to use some ge-
ometric principles. Let’s
denote the positions of
Abdul, Chiang, and Bharat
as points A, C, and B re-
spectively. We are given
that the distance between
A and C (AC) is 48 feet,
and the angle ABC is 60°.
We need to find the dis-
tance between A and B
(AB), and then square it.
(Details omitted as they
are not crucial for this
case study.)
Step 3: Recognize that
if triangle ABC is equi-
lateral, then all sides are
equal. Therefore, AB =
BC = AC = 48 feet.
Step 4: Calculate the
square of the distance AB.
Since AB = 48 feet, we
square this value to get
AB².

AB
2

“ 48
2

“ 2304

So, the square of the dis-
tance between Abdul and
Bharat is 2304 .

To find the square of the
distance between Abdul
and Bharat, we can use the
Law of Sines in trigonom-
etry. Let’s denote the dis-
tance between Abdul and
Bharat as AB, and the
distance between Chiang
and Bharat as BC. Since
Bharat is as far from Ab-
dul as possible, triangle
ABC is a right triangle
with =ACB “ 90˝.
Given: - =ABC “ 60˝

- AC “ 48 feet
We want to find AB2.
First, we apply the Law of
Sines in triangle ABC:
(Details omitted as they
are not crucial for this
case study.)
Thus, the square of the
distance between Abdul
and Bharat is 3072 .

(Details omitted as they
are not crucial for this
case study.)
In a right triangle, if one
of the angles is 60°, the
triangle is a 30-60-90 tri-
angle. In a 30-60-90 tri-
angle, the sides are in the
ratio 1 :

?
3 : 2. Here,

AC is the hypotenuse, so
we can set up the relation-
ship as follows:

AC “ 2 ˆ AB

48 “ 2 ˆ AB

AB “
48

2
“ 24 feet

We need to find the square
of the distance AB:

AB
2

“ 24
2

“ 576

Thus, the square of the
distance between Abdul
and Bharat is 576 .

(Details omitted as they
are not crucial for this
case study.)
Using the properties of
a 30-60-90 triangle, we
know that the side oppo-
site the 60° angle is

?
3

times the side opposite the
30° angle. Let’s denote
the side opposite the 30°
angle (which is half the
distance between Abdul
and Chiang) as x. There-
fore, AB “ x

?
3 and

BC “ 2x.
(Details omitted as they
are not crucial for this
case study.)

AB
2

“ 2304p21´12
?
3q

Since we are asked to find
the square of the distance,
and we have already cal-
culated it, we can box the
final answer:

2304

Figure 15: Case study: Geometry problem. GRPO with auxiliary shaping term not only achieves
higher accuracy but also explores more diverse reasoning strategies than vanilla GRPO (continued).
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GRPO with Auxiliary Shaping Term#9-#16

To solve this problem, we
can use the Law of Sines
in trigonometry.
(Details omitted as they
are not crucial for this
case study.)
Using the Law of Sines:

AB

sinp120˝q
“

AC

sinp60˝q

(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 3072 .

To solve this problem, we
need to use some geomet-
ric properties and trigono-
metric relationships. Let’s
break it down step by step.
1. Identify the given in-
formation:
(Details omitted as they
are not crucial for this
case study.)
2. Visualize the problem:
(Details omitted as they
are not crucial for this
case study.)
3. Use the Law of
Cosines:
(Details omitted as they
are not crucial for this
case study.)
4. Apply the Law of
Cosines:
(Details omitted as they
are not crucial for this
case study.)
5. Find the square of the
distance: - The square
of the distance between
Abdul and Bharat is d2

“

2304.
Therefore, the square of
the distance between Ab-
dul and Bharat is 2304 .

To solve this problem,
we can use the Law of
Sines and some geometric
properties.
(Details omitted as they
are not crucial for this
case study.)
Given that the angle ABC
is 60° and AB is maxi-
mized, the triangle ABC
is a right triangle with an-
gle ACB being 90° (since
the angle at Bharat is 60°
and the sum of angles in
a triangle is 180°, the re-
maining angle at A must
be 30°, making AB the
hypotenuse of a 30-60-90
triangle).
(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 3072 .

To solve this problem,
we need to use some ge-
ometric principles. Let’s
denote the positions of
Abdul, Chiang, and Bharat
as points A, C, and B re-
spectively. The distance
between A and C is 48
feet, and we need to find
the distance AB when
the angle =ABC is 60°
and B is as far from A as
possible.
1. Identify the configura-
tion:
(Details omitted as they
are not crucial for this
case study.)
2. Use the Law of
Cosines:
(Details omitted as they
are not crucial for this
case study.)
3. Substitute into the
Law of Cosines:
(Details omitted as they
are not crucial for this
case study.)
So, the square of the dis-
tance between Abdul and
Bharat is 3840 square
feet.

To solve this problem, we
need to use some geomet-
ric principles, specifically
involving the Law of Sines
and properties of triangles.
Let’s break it down step
by step:
1. Identify the given in-
formation:
(Details omitted as they
are not crucial for this
case study.)
2. Visualize the problem:
(Details omitted as they
are not crucial for this
case study.)
3. Use the Law of Sines:
(Details omitted as they
are not crucial for this
case study.)
4. Determine the angles:
(Details omitted as they
are not crucial for this
case study.)
5. Calculate the distance
AB:
(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 3072 .

To find the square of the
distance between Abdul
and Bharat, let’s denote
the distance between Ab-
dul and Bharat as d, and
the distance between Chi-
ang and Bharat as d1.
Since the angle formed by
the lines of sight to Abdul
and Chiang is 60°, we can
use the Law of Cosines in
the triangle formed by Ab-
dul, Chiang, and Bharat.
The Law of Cosines states
that for any triangle with
sides a, b, and c, and the
angle θ opposite side c:

c
2

“ a
2

`b
2

´2ab cospθq

(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 2304 .

To solve this problem,
we’ll use some geometric
principles, particularly the
Law of Sines and prop-
erties of triangles. Let’s
break down the problem
step-by-step:
1. Identify the given in-
formation:
(Details omitted as they
are not crucial for this
case study.)
2. Visualize the problem:
(Details omitted as they
are not crucial for this
case study.)
3. Use the Law of Sines:
(Details omitted as they
are not crucial for this
case study.)
4. Apply the Law of
Sines:
(Details omitted as they
are not crucial for this
case study.)
5. Use trigonometry in
the right triangle:
(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 1728 .

To solve this problem,
we need to use some ge-
ometric properties and
trigonometry. Let’s de-
note the positions of Ab-
dul, Chiang, and Bharat
as points A, C, and B re-
spectively in the field. We
know that AC = 48 feet
and the angle =ACB =
60°. We want to find the
distance AB, which we’ll
denote as d, and then find
d2.
1. Identify the type of
triangle:
(Details omitted as they
are not crucial for this
case study.)
2. Apply the Law of
Cosines:
(Details omitted as they
are not crucial for this
case study.)
3. Maximize the distance
d:
(Details omitted as they
are not crucial for this
case study.)
Therefore, the square of
the distance between Ab-
dul and Bharat is 1728 .

Figure 15: Case study: Geometry problem. GRPO with auxiliary shaping term not only achieves
higher accuracy but also explores more diverse reasoning strategies than vanilla GRPO (continued).
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