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ABSTRACT

A primary aim of research in quantum computing is the realization of quantum
advantage within deep neural networks. However, it is hindered by known chal-
lenges in constructing deep architectures and the prohibitive overhead of quan-
tum data I/O. We introduce a framework to overcome these barriers, designed to
achieve an asymptotic speedup over the large input dimension of modern DNNs.
This framework is based on the belief that a deep learning model can achieve sim-
ilar performance when ”rough” copies of the data are allowed, which is called
the good-enough principle in this paper. Our framework enables the design of
multi-layer Quantum ResNet and Transformer models by strategically breaking
down the task into subroutines and assigning them to be executed by quantum
linear algebra (QLA) or quantum arithmetic modules (QAM). This modularity
is enabled by a novel data transfer protocol, Discrete Chebyshev Decomposition
(DCD). Numerical validation reveals a pivotal insight: the measurement cost re-
quired to maintain a target accuracy scales sublinearly with the input dimension,
verifying the good-enough principle. This sublinear scaling is key to preserving
the quantum advantage, ensuring that I/O overhead does not nullify the compu-
tational gains. A rigorous resource analysis further corroborates the superiority
of our models in both efficiency and flexibility. Our research provides strong
evidence that quantum neural networks can be more scalable than classical coun-
terparts on a fault-tolerant quantum computer.

1 INTRODUCTION

The current era of artificial intelligence is defined by the triumph of deep neural networks (DNNs).
Large-scale models, particularly the Transformer architecture Vaswani et al. (2017), have revolu-
tionized countless fields by leveraging immense depth to learn complex data representations. This
success, however, is a double-edged sword. The computational demands of these models create
a formidable bottleneck, especially for operations whose complexity scales polynomially with the
primary input dimension, such as the O(N2) attention mechanism in Transformers with sequence
length N . In parallel, quantum computing offers a new paradigm promising significant speedups
for such tasks Nielsen & Chuang (2010); Preskill (2018). This has catalyzed research into Quantum
Deep Neural Networks (QDNNs) Beer et al. (2020); Liu et al. (2024); Li et al. (2020b); Kereni-
dis et al. (2020); Ye et al. (2025), aiming to harness quantum mechanics to transcend the scaling
limitations of classical deep learning.

However, the pursuit of practical QDNNs has splintered into two main directions, each with funda-
mental limitations. Variational Quantum Circuits (VQCs) Cerezo et al. (2021); Wen et al. (2024);
Evans et al. (2024) are compatible with near-term hardware but generally lack provable speedups
and are plagued by trainability issues like barren plateaus McClean et al. (2018); Wang et al. (2021);
Anschuetz & Kiani (2022); Bittel & Kliesch (2021). Conversely, approaches based on Quantum
Linear Algebra (QLA) subroutines Kerenidis & Prakash (2016); Childs et al. (2017); Liu et al.
(2021); Krovi (2023); Liao & Ferrie (2024) promise demonstrable polynomial speedups. Yet, these
QLA-based methods confront a critical challenge in constructing genuinely deep architectures, the
quantum no-clone theory. Attempts have been made to circumvent this problem by leveraging iter-
ative communication between classical and quantum systems Kerenidis et al. (2020). The quantum
data I/O bottleneck, which theoretically bounds the overhead of faithfully reconstructing a quantum
state, has largely confined these proposals to feasible constructs.
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Figure 1. An overview of our hybrid quantum-classical framework for building deep quantum neural
networks. (a)/(b) Typical examples of quantum linear algebra (QLA) and quantum arithmetic mod-
ule (QAM) circuits and their symbolic representations. (c) The symbolic representation of existing
quantum networks based on nested QLA operations, which suffer from multiplicative complexity
scaling. (d) Our QLA-QAM Hybrid Network, which utilizes the additive circuit depth of QAMs to
realize a practical quantum speedup.

In this paper, we address these fundamental limitations by proposing a novel quantum deep neu-
ral network framework. One core insight is to achieve practical quantum advantage by selectively
accelerating only the computationally intensive parts of a DNN that bottleneck with respect to the
large input dimension (N ) Vaswani et al. (2017); Dao et al. (2022), while efficiently handling opera-
tions on the smaller, fixed feature dimension (d) with more flexible quantum routines. This targeted
acceleration strategy leads to a hybrid quantum-classical, layer-by-layer execution model, whose
design principles are illustrated in Figure 1. Our framework systematically decomposes DNN layers
into three module types: Quantum Linear Algebra Modules (QLAs, green blocks) for operations
that scale with the large dimension N , and Quantum Arithmetic Modules (QAMs, blue blocks) for
efficient processing along the feature dimension d. The entire deep, modular architecture is made
feasible by a “good-enough” information transfer principle: a deep network can achieve high perfor-
mance without perfect, high-fidelity reconstruction of its intermediate states. This “good-enough”
principle, inspired by the robustness of classical networks to quantization and pruning Han et al.
(2015), posits that preserving salient features is more critical than exact state replication. Inspired
by this observation, a novel protocol we term Discrete Chebyshev Decomposition (DCD) is pro-
posed to improve the notorious quantum data I/O bottleneck between layers.

As depicted in Figure 1a-b, QLAs and QAMs exhibit fundamentally different scaling properties.
A critical distinction lies in their composition: composing multiple QLA operations, as in existing
proposals (Figure 1c), leads to a multiplicative accumulation of circuit complexity and error, of-
ten rendering theoretical speedups impractical for deep architectures. In sharp contrast, the circuit
depth of our QAMs accumulates only additively. This linear scaling is crucial for constructing deep
networks, enabling efficient element-wise non-linearities and parallel dot products.

This architectural choice directly addresses the viability of quantum speedup in deep networks. A
fully QLA-based network (Figure 1c) struggles due to the compounding complexity of nested QLA
subroutines. Our QLA-QAM hybrid model (Figure 1d), however, leverages the additive depth of
QAMs to create a feasible pathway to acceleration, with the overall speedup ultimately depending
on a manageable sampling cost. These modules can be flexibly assembled to form sophisticated
architectures like a Quantum ResNet or a Quantum Transformer, demonstrating the framework’s
versatility. The DCD protocol then acts as the crucial bridge, enabling robust inter-layer communi-
cation without prohibitive overheads.

This work presents the first concrete theoretical and empirical validation of this targeted acceleration
strategy as a viable pathway toward large-scale QDNNs. Our key contributions are summarized as
follows:
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A Hybrid Quantum Acceleration Framework for Deep Networks: We propose a novel frame-
work that systematically decomposes deep neural network operations. It strategically allocates large-
dimension computations to QLA and small-dimension, parallel tensor operations to efficient QAMs.
This design enables the construction of multi-layer Quantum ResNet and Transformer models with
a provable end-to-end speedup.

Demonstrating and Exploring I/O Overhead for QDNNs: We fully take the scaling of measure-
ment cost for quantum deep learning models into consideration. Specifically, we investigate how
the measurement cost, required to maintain target accuracy, scales with the input dimension. We
also introduce the Discrete Chebyshev Decomposition (DCD) protocol, a novel and efficient ”good-
enough” data transfer mechanism for mitigating quantum I/O bottleneck, which demonstrates re-
duced dependence on system size.

Resource Analysis and Practical Advantage: Through detailed theoretical and numerical resource
analysis, we quantitatively demonstrate that our hybrid approach significantly outperforms state-of-
the-art fully quantum-based proposals. We further conduct a comprehensive assessment of the DCD
protocol to identify the conditions under which it offers distinct advantages precisely and to quantify
the extent of those benefits.

1.1 RELATED WORKS

Quantum Neural Networks Research on quantum neural networks has made significant
progress Zhao & Wang (2021); Valdez & Melin (2023); Peral-Garcı́a et al. (2024). Levine et al.
(2019) has established theoretical connections between deep learning architectures and quantum
entanglement. VQCs are one major direction for quantum neural networks Mitarai et al. (2018);
Cong et al. (2019); Cerezo et al. (2021). They are compatible with near-term hardware but face
severe trainability issues, such as barren plateausMcClean et al. (2018); Anschuetz & Kiani (2022).
However, fault-tolerant algorithms based on quantum linear algebra (QLA) can offer provable
speedups Kerenidis et al. (2020); Guo et al. (2024), while both data I/O and the scaling of net-
work depth constitute significant hurdles. Beyond these categories, alternative learning paradigms
have also been explored Amin et al. (2018); Pan et al. (2023); Ye et al. (2025).

Measurement Techniques The quantum-classical I/O has been mitigated by classical preprocess-
ing in Stein et al. (2022); Kwak et al. (2023). Novel measurement techniques have been proposed,
such as shadow tomography Aaronson (2018); Huang et al. (2020), which have applications in neu-
ral networks, as seen in Abbas et al. (2023).

Quantum algorithms Quantum Arithmetic algorithms, such as quantum adders and multipliers,
have been optimized over the past decades Draper (2000); Gidney (2018; 2019). Varieties of quan-
tum Linear Algebra (QLA) algorithms have been proposed, including Harrow et al. (2009); Childs
et al. (2017); Gilyén et al. (2019), and applied in machine learning tasks Lloyd et al. (2014); Kereni-
dis & Prakash (2016).

2 QUANTUM MODULES

2.1 QUANTUM LINEAR ALGEBRA (QLA)

Quantum Linear Algebra is a type of quantum algorithm that has wide applications in the field of
data analysis, including notable algorithms such as quantum component analysis Lloyd et al. (2014),
quantum linear system solvers Harrow et al. (2009); Wossnig et al. (2018), and quantum differential
equation system solvers Berry et al. (2017); Xue et al. (2021); Liu et al. (2021).

In QLA, a matrix A is usually encoded into a quantum state by amplitude encoding Nakaji et al.
(2022); Gonzalez-Conde et al. (2024):

|A⟩ = 1√∑
i,j A

2
ij

∑
i,j

Aij |i⟩ |j⟩ , (1)
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or into quantum operations by block-encoding, for some constant α Wan et al. (2021):

(I ⊗ ⟨0|)UA(I ⊗ |0⟩) =
A

α
←→ UA =

(
A/α ·
· ·

)
. (2)

The matrix multiplication AB is simple in QLA by UA |B⟩. The quantum singular value transfor-
mation even allows for a polynomial transformation Up(A) with polylogarithmic usage of UA Gilyén
et al. (2019). Solving problems usually requires a composite of such operations. Due to the non-
clone theorem in quantum mechanics, the quantum circuit behaves as a nested structure for succes-
sive transformation, as depicted in Figure 1a, of which the overhead will accumulate multiplicatively.

2.2 QUANTUM ARITHMETIC MODULES (QAMS)

Quantum Arithmetic Modules (QAMs) are the cornerstone for implementing operations on the
smaller, fixed feature dimension (d) within our framework. The primary strength of QAMs lies
in their ability to perform complex arithmetic operations in parallel. Given the input |a⟩ , |b⟩, the
function of a typical quantum adder can be written as Draper (2000); Ruiz-Perez & Garcia-Escartin
(2017); Li et al. (2020a; 2021)

UAdd |a⟩ |b⟩ |0⟩ = |a⟩ |b⟩ |a+ b⟩ . (3)

The linearity and quantum superposition allow the parallel implementation:

UAdd

∑
i

αi |i⟩ |ai⟩ |bi⟩ |0⟩ =
∑
i

αi |i⟩ |ai⟩ |bi⟩ |ai + bi⟩ . (4)

By combining quantum Adders and Multipliers, complex operations such as tensor products or
contractions can be realized in parallel. Consider the operation Rikjl =

∑
µ SiµjTkµl for tensors

S ∈ Rcs×d×p and T ∈ Rct×d×q . The process, whose circuit structure is abstractly represented in
Figure 1b, typically involves:

State Preparation: Input tensors S and T are loaded into quantum registers using controlled state
preparation oracles, e.g., O(c)

S |i, j⟩ |0⟩ = |i, j⟩
⊗

µ |Siµj⟩.

Parallel Computation: A series of quantum multiplier and adder circuits compute the products
SiµjTkµl for all µ in parallel and sum them into an accumulator register, resulting in the state
|i, j, k, l⟩ |Rikjl⟩.
Uncomputation: To release ancillary qubits for reuse and maintain circuit reversibility, the inverse
of the computation steps is applied to the input registers, returning them to their initial state |0⟩, as
visually suggested in Figure 1b.

This arithmetic-based approach allows for the efficient execution of structured linear algebra and
element-wise non-linearities, providing the necessary computational primitives for deep learning
layers while maintaining an additive, manageable growth in circuit complexity.

3 A FRAMEWORK FOR DEEP QUANTUM NETWORKS

3.1 INTRA-LAYER COMPUTATION: QLAS AND QAMS

Our framework’s design is tailored for the common regime where a large input dimension N domi-
nates a smaller feature dimension d (e.g., sequence length vs. embedding dimension in Transform-
ers). Our strategy is to achieve quantum speedup specifically with respect to N . This dictates a
modular separation of labor within each layer between two distinct types of quantum modules.

Figure 2 visually contrasts these two approaches.

Quantum Linear Algebra Modules (QLAs) are reserved for operations that are computa-
tionally dense and scale with the large dimension N , as shown in Figure 2a. They op-
erate on amplitude-encoded data and utilize block-encoding algorithms to tackle the pri-
mary bottlenecks, such as the N × N matrix multiplications in Transformer attention.
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Table 1: Complexity Comparison of Information Extraction Protocols for a state in Cd.

Protocol Complexity Classical Post-processing Goal

Full QST O(d2) O(d3) Full density matrix reconstruction
Shadow Tomographya O(K log(M)/δ2) O(M · poly(log d)) Estimate M few-body observables
DCD Protocol (Our work) O(r/δ) O(r · d) Extract r global feature coefficients

aFor estimating M observables with Pauli weight at most K to precision δ.

Figure 2. Mapping dense and sparse operations to cor-
responding quantum modules. (a) The dense lattice di-
agram of matrix multiplication is implemented with a
QLA module. (b) The sparse, element-wise nature of
the ReLU function is implemented with a QAM.

Quantum Arithmetic Modules (QAMs)
handle computations that are sparse,
element-wise, or structured along the
smaller dimension d. As illustrated for the
ReLU activation in Figure 2b, QAMs op-
erate on digitally encoded numbers. They
are essential for applying non-linearities
(e.g., ReLU) and performing structured
linear algebra where operations can be
parallelized over the N items (e.g., apply-
ing a d× d weight matrix to N vectors).

The synergy between QLAs and QAMs is
the key to handling modern deep learn-
ing models: QLAs provide the speedup
for large-scale, dense linear algebra, while
QAMs efficiently implement the neces-
sary non-linear activations and feature-
space transformations. This combination allows for a faithful and accelerated quantum implemen-
tation of entire network layers.

3.2 INTER-LAYER COMMUNICATION: THE DISCRETE CHEBYSHEV DECOMPOSITION
PROTOCOL

The critical link in our architecture—and the concrete embodiment of our “good-enough” princi-
ple—is the protocol for information conversion between classical and quantum computer. To by-
pass the infeasible cost of tomography, we introduce the Discrete Chebyshev Decomposition (DCD)
protocol, designed to extract a compressed classical representation of a quantum state.

Our choice of the Chebyshev basis is mathematically motivated. For any function on a finite in-
terval, a truncated Chebyshev series provides the best polynomial approximation in the l∞ norm
(minimax approximation) Ahmed et al. (2006); Trefethen (2019). Chebyshev basis also has natural
applications in QLA algorithms Martyn et al. (2021). We view the amplitudes of a quantum state
|ψ⟩ as evaluations of an underlying function. By projecting |ψ⟩ onto the first r Chebyshev basis
vectors, we find the optimal low-degree polynomial approximation of this function, capturing its
most significant, low-frequency features with a minimal number of coefficients.

The DCD protocol assumes that the information in a layer’s output state |ψ⟩ is highly com-
pressible. Any such state can be formally expanded in the discrete Chebyshev basis {|Tj⟩} as
|ψ⟩ =

∑d−1
j=0 cj |Tj⟩, where cj = ⟨Tj |ψ⟩. Our core hypothesis is that an approximation using only

the first r ≪ d coefficients is sufficient for the next layer. The protocol is detailed in Algorithm 1.

Theorem 3.1. (Discrete Chebyshev Decomposition) Given access to a state preparation unitary for
|ψ⟩ with cost Cψ , the DCD protocol can estimate the first r Chebyshev coefficients to precision δ
with total query complexity Õ(r · Cψ/δ). The subsequent state re-preparation for the next layer
requires O(r) digital encoding input and a QAM with complexity Õ(r · poly(log d)).

The efficiency of the DCD protocol is its main advantage. As summarized in Table 1, DCD offers
a clear advantage over the intractable scaling of QST. While shadow tomography is effective for
estimating local observables, DCD is purpose-built to extract a global, spectral representation of
the state. Its query complexity scales only with the desired number of features, r, and precision, δ.
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Algorithm 1: Discrete Chebyshev Decomposition (DCD) Protocol

Input: Output state of layer k, |ψ(k)
out ⟩; truncation rank r; target precision δ.

Output: Classical coefficient vector cclassical = [c0, c1, . . . , cr−1]
T .

/* Coefficient Estimation */
1 for j ← 0 to r − 1 do
2 Efficiently prepare the basis state |Tj⟩ using its known recurrence relation;
3 Construct a circuit to project |ψ(k)

out ⟩ onto |Tj⟩;
4 Use Quantum Amplitude Estimation (QAE) to estimate the coefficient cj = ⟨Tj |ψ(k)

out ⟩ to
precision δ;

5 Store the estimated real value cj classically;
6 end
/* State Re-preparation */

7 Load the classical vector cclassical into quantum digital encoding;
8 Use a QAM to compute the amplitudes of the approximate vector ψ̃i =

∑r−1
j=0 cjTji for each

computational basis state |i⟩;
9 Prepare the input state for layer k + 1, |ψ(k+1)

in ⟩ =
∑
i ψ̃i |i⟩, using a standard state preparation

routine.

Since our work demonstrates that r can be significantly smaller than d, DCD transforms data transfer
from an insurmountable bottleneck into a manageable subroutine, making an end-to-end quantum
speedup for deep learning finally achievable.

3.3 QUANTUM MODEL INSTANCES: QRESNET & QTRANSFORMER

QRAM

3 3 QConv

QBatchNorm

QReLU

3 3 QConv

QBatchNorm

QRAM

+

1
1 Q

C
onv

Quantum ResNet

Figure 3. The quan-
tum realization of
ResNet.

To demonstrate the versatility of our framework, we now instantiate it
by constructing a quantum Residual Network (qResNet) and a quantum
Transformer (qTransformer). These examples showcase how our modu-
lar approach maps classical computational patterns onto the most suitable
quantum primitives, guided by the principle of targeting speedups relative
to the primary input dimension (e.g., sequence length N or image size
H × W ). The concrete quantum implementations of them can be found
in Appendix B.2 and B.3, together with the proof of corresponding theo-
rems.

Quantum ResNet (qResNet) Our Quantum ResNet (qResNet) adapts the
architecture of a classical ResNet-18 He et al. (2016), as depicted in Fig-
ure 3. We focus on the regime where the image’s spatial dimensions (H,W )
are significantly larger than the channel dimension (C). The core computa-
tional tasks are Convolution, Activation, and Residual Connections, which
are implemented using the QAM A key design choice is the use of our Data
Transfer Module (DTM) after each QAM-based layer. This prevents the
composition of multiple sparse operators from creating a dense, computationally complex transfor-
mation, thereby preserving the efficiency of the QAM throughout the network’s depth. The com-
plexity is summarized in Theorem 3.2.
Theorem 3.2. (Quantum ResNet Block) Given a ResNet Block, whose input tensor and kernel have
shapes of (B,C,H,W ) and (C,C,K,K) respectively, a quantum implementation of the ResNet
Block has the quantum overhead of Õ(CK2 × S(B,C,H,W )), where S(B,C,H,W ) is the sam-
pling overhead of a quantum state with shape of (B,C,H,W ). The number of queries to the input
data and kernel is twice for each implementation.

Quantum Transformer (qTransformer) For vision tasks, we implement an encoder-only
Quantum Transformer, focusing on the common N ≫ d regime, where N is the se-
quence length and d is the embedding dimension. This assumption dictates the alloca-
tion of tasks to create a highly efficient quantum analog, where the Feed-Forward Net-
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work and Residuals are implemented solely by QAM. Multi-Head Self-Attention(MHSA)
has a hybrid implementation of QLA and QAM. This modular design is shown in Fig-
ure 4, where the blue, green, or orange blocks represent QAM, QLA, or DTM, respectively.

Multi-Head
Self-Attention

+

Feed Forward

+

QRAM MatMul

Softmax

MatMul

Concat

(a) Quantum Transformer

(b) Quantum Attention Mechanism

Figure 4. The quantum realization of
ResNet. The red, blue, and green blocks rep-
resent DTM, QAM, and QLA, respectively

The complexity of a quantum Encoder Block is
given in Theorem 3.3

Theorem 3.3. (Quantum Encoder Block) For an in-
put tensor with shape of (B,N, d), where N is the
number of tokens and d is the token length, the
Quantum overhead of the Quantum Encoder Block
is Õ(d2×S(B,N, d)). The number of queries to the
input data X is 6 for each implementation.

The flowchart of the MHSA module (Figure 4b)
showcases this strategic division of labor. This delib-
erate allocation of computational tasks—reserving
the QLA for the trueN -dimensional bottlenecks and
using the QAM for structured, d-dimensional arith-
metic—is the key to achieving a significant asymp-
totic speedup with respect to the input sequence
length.

4 EXPERIMENTS

This section presents numerical experiments designed to validate the efficacy and advantages of
our proposed quantum-classical hybrid framework. We begin by demonstrating the superior effi-
ciency and favorable scaling properties of our Discrete Chebyshev Decomposition (DCD) protocol
when contrasted with a standard l∞-norm tomography baseline Kerenidis et al. (2020). Subse-
quently, we delve into a detailed resource analysis of Quantum ResNet (qResNet) and Quantum
Transformer (qTransformer) architectures, aiming to quantitatively establish the practical benefits of
our integrated approach on well-established image classification benchmarks. In our experiments,
the datasets we mainly use are CUB-200-2011 Wah et al. (2011), where the input dimension N
represents the sequence length for Transformers and the spatial pixel count H ×W for ResNet.

In our experiments, the quantum models are simulated on classical hardware. During the training
phase, we implement a hybrid procedure: the forward pass simulates the quantum inference process,
explicitly incorporating the sampling noise introduced by different measurement protocols to ensure
the model adapts to the approximation errors. Parameter optimization (backward pass), however,
is computed via standard classical backpropagation. The reported performance metrics are then
evaluated using this quantum-simulated inference on the test set.

4.1 EMPIRICAL VALIDATION OF DCD EFFICIENCY AND SCALING

0.0 0.1 0.2 0.3 0.4
Infidelity

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

l  tomography
DCD Method, order=10
DCD Method, order=20
DCD Method, order=30

Figure 6. The relationship between
classification accuracy and the infidelity
of quantum state re-preparation.

Figure 5 provides empirical validation of our DCD proto-
col’s performance against the l∞ method for both qRes-
Net (top row, a-c) and qTransformer (bottom row, d-f).
For each data transfer method, our initial step involves
identifying the minimum hyperparameter configuration
(specifically, sampling precision for l∞ and rank r for
DCD) necessary to achieve at least 95% of the classical
model’s peak performance (Figure 5a, b, d, e). Follow-
ing this, we illustrate the total quantum overhead Q asso-
ciated with these optimized settings as a function of the
input dimension N (Figure 5c, f).

For qResNet, while both data transfer methods success-
fully attain the predefined target accuracy, their associated
resource costs exhibit a significant divergence. As clearly
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(b) qResNet DCD method (c) qResNet overhead comparison(a) qResNet  l∞ method

(e) qTransformer DCD method (f) qTransformer overhead comparison(d) qTransformer  l∞ method
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Figure 5. (a)/(d) Classification accuracy of the l∞ tomography method for quantum ResNet-18 and
Transformer across varying input dimensions N . The blue dashed line indicates the 95% perfor-
mance threshold relative to the classical model, highlighted by the orange line. (b)/(e) Classification
accuracy of the DCD method for both models. (c)/(f) Relationship between computed quantum re-
sources and corresponding input dimensions N for both methods, with a linear baseline plotted for
comparison.

depicted in Figure 5c, the quantum overhead for the l∞ method scales approximately linearly with
the input dimension N . The DCD overhead remains low, demonstrating its superior scaling proper-
ties for qResNet.

This inherent advantage of DCD becomes even more pronounced when applied to the qTransformer
architecture. The DCD rank analysis, presented in Figure 5e, reveals a distinct ”elbow” effect,
characterized by a sharp initial increase in accuracy followed by a clear plateau. This observa-
tion strongly suggests that DCD is highly effective at identifying and leveraging a compact, yet
information-rich, subspace within the qTransformer’s learned representations. This intrinsic effi-
ciency directly translates into a dramatic reduction in quantum overhead, with DCD’s computa-
tional cost scaling sublinearly with N (Figure 5f). This empirically observed sublinear scaling of
measurement cost stands as a central and pivotal result of our study, providing compelling evidence
that our DCD protocol significantly enhances the scalability of quantum deep learning by effectively
mitigating the notorious I/O bottleneck.

4.2 ANALYSIS OF QUANTUM PROPERTIES AND HYBRIDIZATION

To gain deeper insights into how intrinsic quantum properties and architectural choices influence
the performance of our quantum deep learning models, particularly qResNet and qTransformer, we
conducted two key analyses.

First, we thoroughly investigated the impact of quantum state re-preparation infidelity on model
performance across different Data Transfer Method (DTM) protocols. As illustrated in Figure 6,
the DCD method consistently achieves comparable classification accuracy even with significantly
lower state infidelity compared to the l∞ method. This compelling observation robustly validates
the ’good-enough’ principle in the context of quantum deep learning. It suggests that a degree of
redundancy inherently exists in the data transmission pathways of deep neural networks, opening
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up substantial potential for quantum models to demonstrate performance advantages even under
imperfect state preparation, by efficiently capturing the most salient features.

Second, we explored the performance evolution of our quantum Transformer model under varying
degrees of quantum influence. This was achieved by gradually increasing the ”quantumness” of
the model, specifically by progressively replacing classical layers with their quantum counterparts.
Figure 7 strikingly demonstrates that this ”semi-quantum” or hybrid model effectively preserves a
substantial portion of its performance, particularly during the initial stages of ”quantization.” This
robustness is especially evident when employing the DCD method for data transfer, highlighting its
resilience to partial quantum integration and its potential for practical, near-term hybrid implemen-
tations. This analysis underscores the flexibility and potential for incremental adoption of quantum
components within classical architectures.

4.3 COMPREHENSIVE NUMERICAL RESOURCE ANALYSIS

0 2 4 6 8 10 12
Number of Quantum Layer

60

70

80

90
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)

l  tomography
DCD Method

Figure 7. The relationship between
model performance and the number of
quantum layers within the hybrid Trans-
former architecture.

To further quantitatively substantiate the advantages of
our proposed framework, we present a detailed and con-
crete resource analysis. Table 2a provides a direct com-
parison between our quantum-classical hybrid frame-
work and a prior, fully Quantum Linear Algebra (QLA)-
based model Kerenidis et al. (2020), as well as an intra-
framework comparison between the l∞ tomography and
our DCD protocol. For clarity, we highlight in bold the
outcomes that signify the most efficient resource utiliza-
tion while maintaining equivalent or even marginally su-
perior performance. The results demonstrate that our hy-
brid model achieves notably superior performance at a
significantly reduced computational cost compared to the
fully QLA-based model, thereby strongly confirming the
inherent efficiency and architectural advantages of our de-
sign.

Furthermore, within Table 2, we conduct a thorough anal-
ysis of the critical trade-off between the two distinct data
transfer methods employed within our framework. We compare the classification accuracy and the
associated quantum resource cost for both qResNet and qTransformer when utilizing either the l∞-
tomography or our proposed DCD protocol. The empirical findings robustly indicate that for most
of the given range of desired performance, the DCD protocol consistently offers a substantial and
compelling resource advantage. While l∞-tomography might achieve a marginally higher peak ac-
curacy, it invariably incurs this at a disproportionately greater quantum cost. This stark contrast
emphatically underscores DCD’s superior performance-to-cost ratio, making it an exceptionally at-
tractive choice, especially in scenarios where quantum resources are inherently constrained. It also
suggests that while DCD offers significant gains, these returns may diminish as one pushes towards
the absolute theoretical performance limits of the model. Collectively, these comprehensive results
provide direct and robust numerical evidence for the practical efficiency, scalability, and overall
efficacy of our integrated quantum-classical hybrid framework.

5 DISCUSSION

We presented a hybrid quantum-classical framework tackling the scalability challenges in quantum
deep learning. Central to this design is the Discrete Chebyshev Decomposition (DCD) protocol,
which alleviates the quantum I/O bottleneck and enables favorable scaling in resource overhead
while maintaining improved fidelity. Resource analysis indicates that under efficient I/O mitiga-
tion, quantum advantage in deep neural networks is within reach, paving the way for more capable
architectures.

This framework benefits from the compressibility of intermediate states, in line with spectral bias
in classical deep learning Rahaman et al. (2019). However, its effectiveness may diminish in do-
mains dominated by high-entropy or high-frequency features, requiring larger truncation ranks and
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Table 2: Comparison of DCD and l∞ Tomography for quantum ResNet and Transformer.

(a) Quantum ResNet

Model Rank

Sampling Precision

0.002 0.004 0.010 0.020 0.040

Accuracy ↑
(%)

Overhead ↓
(×109)

Accuracy ↑
(%)

Overhead ↓
(×109)

Accuracy ↑
(%)

Overhead ↓
(×109)

Accuracy ↑
(%)

Overhead ↓
(×109)

Accuracy ↑
(%)

Overhead ↓
(×109)

DCD
10 56.44 20.44 56.80 10.23 56.23 4.10 55.68 2.06 49.78 1.03
20 70.33 81.76 70.54 40.91 69.30 16.39 67.85 8.22 55.35 4.14
30 74.16 183.95 74.49 92.04 73.32 36.87 70.47 18.50 57.21 9.31

l∞ Tomo. – 75.27 989.56 73.47 247.39 58.65 39.58 22.76 9.90 2.24 2.47

M
Accuracy ↑

(%)
Overhead ↓

(×1015)
Accuracy ↑

(%)
Overhead ↓

(×1015)
Accuracy ↑

(%)
Overhead ↓

(×1015)
Accuracy ↑

(%)
Overhead ↓

(×1015)
Accuracy ↑

(%)
Overhead ↓

(×1015)

QLA Model 103 69.23 2.87 66.53 0.72 52.64 0.15 20.19 0.03 1.74 0.01
105 74.77 287.24 73.44 71.81 59.39 11.49 22.99 2.87 1.47 0.72

(b) Quantum Transformer

Model Rank

Sampling Precision

0.0002 0.0004 0.0010 0.0020 0.0040

Accuracy ↑
(%)

Overhead ↓
(×1011)

Accuracy ↑
(%)

Overhead ↓
(×1011)

Accuracy ↑
(%)

Overhead ↓
(×1011)

Accuracy ↑
(%)

Overhead ↓
(×1011)

Accuracy ↑
(%)

Overhead ↓
(×1011)

DCD
40 59.23 5.25 58.34 2.54 52.35 0.95 44.60 0.46 31.12 0.22
60 81.76 7.88 81.91 3.81 80.32 1.42 76.01 0.69 57.51 0.33

150 86.81 19.69 86.78 9.53 86.50 3.56 84.86 1.72 78.05 0.83

0.0050 0.0100 0.0150 0.0200 0.0250

l∞ Tomo – 88.38 45.82 84.38 11.45 60.03 5.09 34.36 2.86 19.92 1.83

resulting in reduced asymptotic speedups. Quantum-inspired classical baselines remain valuable for
benchmarking, though their precision scaling is less favorable for deep architectures compared to
our complexity Tang (2019); Arrazola et al. (2019); Tang (2021); Chia et al. (2022).

Future work will focus on: identifying optimal I/O protocols beyond DCD, rigorously characteriz-
ing the applicability boundaries of the low-rank assumption, and exploring model design strategies
that jointly achieve quantum acceleration and maintain—or surpass—classical performance while
meeting re-preparation fidelity requirements.
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A PRELIMINARIES

To construct our framework for deep quantum networks, we leverage advanced algorithms from
quantum linear algebra and quantum arithmetic, applying them to emulate classical architectures
like ResNet and the Transformer. This section aims to review these fundamental building blocks.

A.1 QUANTUM SUBROUTINES FOR LINEAR ALGEBRA

Quantum Linear Algebra (QLA) promises significant speedups for classically intractable tasks,
forming the computational core of many quantum machine learning proposals. While early al-
gorithms like HHL demonstrated the potential for exponential advantage, modern QLA has largely
converged around more versatile and robust techniques.

A central concept in modern QLA is block-encoding, a method for embedding a non-unitary matrix
A into a larger unitary matrix UA. Specifically, an (α, a, δ)-block-encoding of A is a unitary UA
such that

(⟨0|⊗a ⊗ I)UA(|0⟩⊗a ⊗ I) = A/α, (5)

where α ≥ ∥A∥ is a normalization factor, a is the number of ancillary qubits, and the approximation
is up to an error δ. This technique transforms the problem of applying a matrix into the problem
of implementing a unitary circuit, making it amenable to quantum computation. Many efficient
block-encoding methods exist for structured matrices, such as sparse or low-rank matrices.

Once a matrix is block-encoded, its properties can be manipulated. For instance, the Quantum Sin-
gular Value Transformation (QSVT) Gilyén et al. (2019) provides a unified framework for applying
polynomial functions of a matrix’s singular values to a quantum state. While QSVT is a powerful
and general tool, many QLA tasks, including those in our work, can be realized using a more funda-
mental subroutine: Quantum Amplitude Estimation (QAE) Brassard et al. (2002). QAE allows for
the estimation of the amplitude of a specific basis state in a quantum superposition. For example, if a
quantum state |ψ⟩ is prepared such that the probability of measuring a target state |0⟩ is p = |⟨0|ψ⟩|2,
QAE can estimate p with an error δ using O(1/δ) queries to the state preparation circuit, achieving
a quadratic speedup over classical sampling. This subroutine is crucial for extracting information
from a quantum system, such as computing the inner product between two states or the expected
value of an observable.

A.2 QUANTUM ARITHMETIC FOR SPARSE AND ELEMENT-WISE OPERATIONS

While QLA excels at large-scale, dense matrix operations, DNNs also rely heavily on element-wise
operations, such as adding biases, applying activation functions, and executing sparse transforma-
tions. These tasks necessitate Quantum Arithmetic (QA), which performs computations directly on
the numerical values encoded in quantum registers, typically using a fixed-point binary representa-
tion.

QA circuits for fundamental operations like addition and multiplication have been well-
established Vedral et al. (1996); Draper (2000), with resource costs (e.g., gate count and circuit
depth) scaling polynomially with the precision (number of bits) of the encoded numbers. Further-
more, by adapting logic from classical circuits, quantum computers can efficiently perform general-
purpose arithmetic operations.

Corollary A.1. Given a function f(x) : R → R that can be efficiently estimated classically,
there exists a quantum algorithm to implement quantum arithmetic |x⟩|0⟩ → |x⟩|f̃(x)⟩, where
|f̃(x) − f(x)| ≤ δ and δ represents the computing accuracy. The gate complexity of the algorithm
is O(polylog(1/δ)).
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Proof. As discussed in Nielsen & Chuang (2010), quantum computing can efficiently simulate clas-
sical logic circuits using reversible gates. Therefore, any function efficiently computable classically
is also efficiently computable on a quantum computer.

To exemplify the implementation of tensor operations, we assume the typical data X ∈ Ra×s is
digitally encoded by a quantum circuit O(c)

X , whose output is the direct product of quantum bit
strings of each component:

O
(c)
X |i⟩ |0⟩ = |i⟩

⊗
j

|Xij⟩ . (6)

A matrix-vector multiplication can be realized directly between X and v ∈ Rs with this encoding
and quantum arithmetic. Using quantum adders and multipliers, we can achieve step by step:

|i⟩ |0⟩ |0⟩ |0⟩ Data Loading−−−−−−−→ |i⟩
⊗
j

|Xij⟩
⊗
k

|vk⟩ |0⟩

Element wise multiplication−−−−−−−−−−−−−−→ |i⟩ (
⊗
j

|Xij⟩ |vj⟩) |0⟩

Quantum adder−−−−−−−−→ |i⟩
(⊗
j ̸=0

|Xij⟩ |vj⟩
)
|Xi0, v0⟩ |0 +Xi0v0⟩

Step-by-step addition−−−−−−−−−−−→ |i⟩
(⊗
j ̸=1

|Xij⟩ |vj⟩
)
|Xi1, v1⟩ |0 +Xi0v0 +Xi1v1⟩

s steps−−−→ |i⟩
(⊗

j

|Xij⟩ |vj⟩
)
|
∑
k

Xikvk⟩ .

(7)

The overall gate count, regardless of the data loading subprocedure, is then O(s), which is indepen-
dent of a. Analysis of other sparse operations is similar. While this method is slower than the highly
parallelized approach of QLA for dense matrices, its complexity scales with the number of involved
elements, making it an efficient choice for sparse problems. Furthermore, QA is the primary tool
for implementing non-linear activation functions, typically by computing a piecewise polynomial
approximation of the target function (e.g., ReLU), which involves a sequence of arithmetic compar-
isons and calculations similar to classical implementations.

A.3 CLASSICAL ARCHITECTURES OF INTEREST

Our work focuses on developing quantum counterparts for two of the most influential DNN archi-
tectures.

The Transformer Vaswani et al. (2017) has become the de facto standard for sequence model-
ing tasks. Its core innovation is the self-attention mechanism, defined as Attention(Q,K, V ) =

softmax(QK
T

√
dk

)V . The primary computational bottleneck is the matrix multiplication QKT , which
scales as O(N2) with the sequence length N , making it a prime target for quantum acceleration via
QLA.

The Residual Network (ResNet) He et al. (2016) introduced the concept of residual connections,
y = F(x) + x, where F(x) is a block of layers. This “shortcut” structure effectively mitigates the
vanishing gradient problem, enabling the training of networks with hundreds or even thousands of
layers. Quantum analogues of ResNet provide an ideal testbed for assessing the ability of a quantum
framework to handle truly deep architectures.

A.4 QUANTUM RANDOM ACCESS MEMORY AND RESOURCE TRADE-OFFS

The practical implementation of the quantum input model relies on Quantum Random Access Mem-
ory (QRAM) to load classical data vectors into quantum states. Specifically, for a classical dataset
B = {bj}N−1

j=0 , the QRAM operation performs the mapping:
N−1∑
j=0

αj |j⟩|0⟩
QRAM−−−−→

N−1∑
j=0

αj |j⟩|bj⟩, (8)
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where |j⟩ is the address register and |bj⟩ is the data register.

A detailed resource analysis by Clader et al. (2022) highlights that the cost of QRAM is not negligi-
ble and presents distinct trade-offs between circuit depth (runtime) and gate count (hardware size).
They analyze two primary architectures: the Bucket-Brigade (BB) model, which is optimized for
noise resilience, and the Select-Swap (SS) model, which offers tunable resource scaling.

We focus on the Select-Swap (SS) model as it allows for a flexible exchange between T-depth and
T-count via a parameter λ ∈ {0, . . . , logN}. For a dataset of size N = 2n:

• Minimal T-Count Configuration (λ ≈ 0): This configuration minimizes the total number
of physical resources. It achieves a T-gate count of O(N) and uses O(N) ancilla qubits.
However, the circuit depth scales linearly asO(N), which may mitigate quantum speedups
in time-critical applications.

• Minimal T-Depth Configuration (λ ≈ n): To preserve the exponential or polynomial
speedup of quantum algorithms, one typically prioritizes circuit depth. In this regime, the
SS model achieves a T-depth of O(polylog(N)) (specifically O(n)). The trade-off is a
significant increase in spatial overhead, requiring O(N2) T-count and ancilla qubits.

In our resource estimation, we assume the availability of QRAM optimized for T-depth (the second
configuration) to ensure the overall algorithmic time complexity remains logarithmic with respect to
the input dimension N . While this implies a hardware cost scaling polynomially with N , the query
depth remains O(polylog(N)), consistent with the requirements for maintaining the asymptotic
quantum advantage claimed in our framework.

B IMPLEMENTATION DETAILS

B.1 DCD PROTOCOL

The implementation of DCD protocol to measure a quantum state is based upon the Quantum Dis-
crete Chebyshev Transformation (QDCT), the function of which can be written as

UDCT |i⟩ = |Ti⟩ =
∑
j

Ti(xj)|j⟩. (9)

QDCT can be realized with elementary gates and the Quantum Fourier Transformation circuits as
shown in Klappenecker & Rotteler (2001), with quantum overhead scaling logarithmic with the
system size. The DCD protocol is to obtain the coefficients of each Chebyshev basis by quantum
amplitude estimation, the complexity of which comes up naturally now:

proof of Theorem 3.1. The coefficients estimation stage includes 3 parts: state preparation, QDCT,
and amplitude estimation. The complexity of state preparation and QDCT is O(polylog d × Cψ).
The amplitude estimation will multiply the complexity by a factor O( 1δ ). There are r coefficients
required to be estimated. Therefore, the overall complexity is O(r ·Cψ/δ). The coefficients loading
and state computation compose the state re-preparation stage. The cost of them is linear with r,
which gives the claimed re-preparation overhead.

B.2 RESIDUAL LAYER

To construct deep quantum neural networks, we introduce a quantum analogue of the classical resid-
ual block, inspired by ResNet architectures. This block enables the training of deeper models by
using shortcut connections to mitigate vanishing gradient problems. A single block operates on a
quantum state encoding a feature map and is composed of a main path and a shortcut path. The data
flow within the block is managed by a Data Transfer Module (DTM), which handles state prepara-
tion from classical data via QRAM and measurement for intermediate classical processing.

A typical quantum residual block executes the following sequence:

1.Main Path: The input state |ψin⟩, encoding the feature map X , is processed sequentially by a
quantum convolutional layer (UqConv), a quantum batch normalization layer (UqBN), and a quantum
ReLU activation (UQReLU). This sequence may be repeated, as in standard ResNet blocks.
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2.Shortcut Path: The original input state |ψin⟩ is preserved.

3.Addition & Final Activation: The output state from the main path, |ψmain⟩, is added to the
shortcut state |ψin⟩ using a quantum arithmetic adder from the QAM. A final ReLU activation,
UQReLU, is applied to the resulting state to produce the block’s output state, |ψout⟩.

Quantum Convolutional Layer (qConv). The qConv layer performs convolution using the Quan-
tum Arithmetic Module (QAM). Its goal is to transform an input feature map state |ψX⟩ into an
output state |ψY ⟩ where Y is the convolution of X with a classically-defined kernel K satisfying

Yijc = (bias)c +
∑

c′,∆i,∆j

Kc,c′,∆i,∆j ·Xi+∆i,j+∆j,c′ . (10)

The operation can be described as follows: for each output pixel position (i, j, c), the QAM applies
a unitary UqConv that computes the dot product arithmetically:

UqConv : |i, j, c⟩ |0⟩ → |i, j, c⟩ |Yijc⟩ . (11)

This computation leverages the quantum adders and multipliers within the QAM to perform the
operation in superposition across all output positions. The complexity comes as follows:

Lemma B.1 (Convolutional Layer). Given the shape of the input tensorX be (B,C,H,W ) together
with the kernel shape (C,C,K,K), the gate count of UqConv is O(CK2), while the gate depth is
O(log(CK)).

Proof. In the proof, we disregard the number of bits for the data, as its generalization to more bits of
floating-point numbers is straightforward. First, we use the quantum input model for classical data
loading with data replication to prepare

|i, j, c⟩|0⊗c+2k⟩ → |i, j, c⟩
⊗

∆i,∆j,c′

|Xi+∆i,j+∆j,c′⟩, (12)

where c = ⌈log2 C⌉, k = ⌈log2K⌉.The data replication process only increases the word size for
data loading, which contributes polylogarithmically to the complexity. The data loading is similar
for

|c⟩ |0⟩ → |c⟩
⊗

∆i,∆j,c′

|K∆i,∆j,c,c′⟩. (13)

Set UqConv to be the inner product circuit on the last two registers, and the complexity is then
O(CK2), as discussed in Section A.2. We achieve the claimed operation and the claimed com-
plexity. The gate depth can be further optimized to O(log(CK)) by applying quantum adders and
multipliers simultaneously.

Quantum Batch Normalization Layer (qBatchNorm). The qBatchNorm layer, crucial for sta-
bilizing training, is implemented in a hybrid quantum-classical manner. Due to the difficulty of
computing global statistics (mean and variance) on a quantum state directly, we first perform a mea-
surement on the state produced by the qConv layer. This DTM operation yields a classical snapshot
of the feature map data. From this classical data, we compute the batch mean µ and variance σ2.
These classical parameters are then used to configure a quantum arithmetic circuit UqBN within the
QAM. This circuit applies the normalization transformation element-wise in superposition:

UqBN : |y⟩ → |γ y − µ√
σ2 + δ

+ β⟩ , (14)

where γ and β are learnable classical parameters, and |y⟩ is a register digitally encoding a single
feature value. The complexity of the statistics estimation, which corresponds to the batch size B′, is
O(B′CK2). The normalization, involving only single-qubit operations, costs O(1).

Quantum ReLU. The subsequent Quantum ReLU (UQReLU) is similarly implemented as an arith-
metic comparison circuit within the QAM, applying |y⟩ → |max(0, y)⟩.
Combining the discussion above naturally gives the overall complexity of qResNet.
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Proof of Theorem 3.2. The convolution operation is the main bottleneck, which costs Õ(CK2) by
Lemma B.1. Considering the sampling overhead, the overall gate complexity is then Õ(CK2 ×
S(B,C,H,W )). Furthermore, the input models are respectively queried forX andK twice in each
implementation, since one is required for uncomputing.

Algorithm 2: Quantum Residual Block
Require: Input quantum state |ψX⟩; Classical kernel K; Parameters γ, β.
Ensure : Output quantum state |ψout⟩.
/* Main Path */

1 |ψconv⟩ ← UqConv(K) |ψX⟩;
/* Hybrid Batch Normalization Step */

2 Xconv ← Measure(|ψconv⟩);
3 µ, σ2 ← ComputeBatchStats(Xconv);
4 |ψBN⟩ ← UqBN(µ, σ

2, γ, β) |ψconv⟩;
5 |ψmain⟩ ← UQReLU |ψBN⟩;
/* Shortcut and Addition */

6 |ψshortcut⟩ ← |ψX⟩;
7 |ψsum⟩ ← QuantumAdd(|ψmain⟩ , |ψshortcut⟩);
/* Final Activation */

8 |ψout⟩ ← UQReLU |ψsum⟩;
9 return |ψout⟩;

B.3 QUANTUM TRANSFORMER

This section details the quantum implementation of the Transformer architecture, which, like the
quantum ResNet, is constructed from modular components. It leverages the Quantum Arithmetic
Module (QAM) and the Quantum Linear Algebra Module (QLA). Without loss of generality, our
analysis concentrates on a single batch and one-bit data. We assume that the input tensor of each
building blockX(in) ∈ RN×d is quantum digitally encoded by the operatorOX , which is a quantum
digital encoding of the input tensor X(in):

OX |i⟩ |0⊗d⟩ = |i⟩
⊗
j

|X(in)
i,j ⟩ . (15)

where N is the sequence length and d is the embedding dimension. For long-context tasks where
N ≫ d, the key to efficiency lies in how these modules handle the different dimensions: the large
dimension N is parallelized over using index registers, while the smaller dimension d is processed
arithmetically.

B.3.1 QUANTUM MULTI-HEAD SELF-ATTENTION MECHANISM

At the core of the quantum encoder, the self-attention mechanism is a hybrid of QAM-based arith-
metic for local operations and QLA-based matrix multiplication for the final aggregation. The paral-
lelism over the sequence lengthN is achieved by encoding the token indices into dedicated quantum
registers, allowing the QAM to operate on all elements in superposition.

Q, K, V Projection and Score Calculation. The initial step projects the input state |X(in)⟩ into
Query (Q), Key (K), and Value (V ) representations. This is N independent multiplications on the
d-dimensional vectors. This is performed by the QAM, conditioned on an index register |i⟩ spanning
the N tokens. Considering the h heads, the output quantum circuit OQ (similarly for K,V ) should
be

OQ |iN , ih⟩ |0⟩ = |iN , ih⟩
⊗

0≤j<dk

|Qih,iN ,j⟩ , (16)
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where iN , ih, j are respectively the sequence, head, and dimension indices. Given the query weight
matrix encoded by OW,q:

OW,q |ih⟩ |0⟩ = |ih⟩
⊗

0≤j<dk,
0≤k≤d

|(WQ)j+ihh,k⟩ ≡ |ih⟩ |WQ,ih⟩ , (17)

where dk = d/h, OQ can be realized as follows:
|iN , ih⟩ |0⟩ |0⟩ |0⊗dk⟩

Data Loading−−−−−−−→ |iN , ih⟩
⊗

0≤j<d

|X(in)
iN ,j
⟩

⊗
0≤k<dk,
0≤l≤d

|(WQ)kl⟩ |0⊗dk⟩

Element wise multiplication−−−−−−−−−−−−−−→ |iN , ih⟩ |X(in)
iN
⟩ |WQ,ih⟩

⊗
0≤α<dk,
0≤β≤d

|(WQ)α+ihh,βX
(in)
iN ,β
⟩ |0⊗dk⟩

s steps addition−−−−−−−−→ |iN , ih⟩ |X(in)
iN
⟩ |WQ,ih⟩ |W ◦X⟩

⊗
0≤α<dk

|
∑

0≤β<d

(WQ)α+ihh,βX
(in)
iN ,β
⟩

Rewriting & Uncomputing−−−−−−−−−−−−−→ |iN , ih⟩
⊗

0≤α<dk

|QiN ,α+ihh⟩ ≡ |iN , ih⟩ |Qih,iN ⟩ ,

(18)

where |W ◦X⟩ are simplified notations of the states generated in the second step. The derivation is
almost the same for K,V .

The subsequent calculation of the attention scores, S = QKT /
√
dk, which results in an N × N

matrix, follows a similar procedure. To compute allN2 scores in parallel, we use two index registers,
|i⟩ and |j⟩. An arithmetic circuit within the QAM then executes the dot product conditioned on these
indices. The transformation on the quantum state can be abstractly represented as:

Udot-prod : |i, j, ih⟩ |Qi,ih⟩ |Kj,ih⟩ |0⟩ → |i, j⟩ |Qi,ih⟩ |Kj,ih⟩ |Sij,ih⟩ . (19)
Here, the state |i, j⟩ acts as a control, specifying which dot product to compute, while the operation
itself happens on the data registers. The states |Qi⟩ and |Kj⟩ represent the necessary data for the
computation, which come from the previous discussion. This explicitly shows how the large N ×N
dimensional workload is handled through quantum parallelism rather than matrix size.

The cost of the preparation of K,Q is simply twice the single cost, which is O(dkd) = O(d2),
equal to the total number of components involved. The circuit of the attention scores computation
implements the inner product of dimension dk, whose complexity is O(dk). They constitutes the
overall O(d2) complexity.

Softmax A full quantum implementation of the softmax function is notoriously difficult. We there-
fore adopt a hybrid quantum-classical approach. The state encoding the unnormalized score matrix
S (as constructed in Eq. 19) is measured using the DTM. The N ×N matrix of scores is then post-
processed classically to compute the final attention matrix A = softmax(S). After uncomputing,
we have built the arithmetic circuit UA,arith:

UA,arith |i, j, ih⟩ |0⟩ = |i, j, ih⟩ |Ai,j,ih⟩ . (20)

Weighted Sum The next step is the product AV . Here, A is a large, dense N ×N matrix. Given
our assumption that N ≫ d, this large matrix multiplication is precisely the task for which the QLA
is designed. The classical matrix A is used to construct its block-encoding unitary, UA, where we
have

⟨0|UA |0⟩ =
1

N

∑
ih

|ih⟩ ⟨ih| ⊗Aih . (21)

Here Aih = softmax(QihK
T
ih
/
√
dk). This UA is built by the basic dense block-encoding Gilyén

et al. (2019) based on the arithmetic circuit UA,arith:

(H ⊗ I ⊗ I)(SWAP⊗ I)U†
A,arithUdacUA,arith(H ⊗ I ⊗ I), (22)

where Udac is the quantum circuit transforming bit strings into amplitude as introduced in Mitarai
et al. (2019). The QLA then efficiently applies this unitary to the quantum state encoding the V
matrix, which comes similarly from the arithmetic circuit and Udac. The gate complexity comes
mainly from several queries to UA,arith, and therefore remains invariant.
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Multi-Head Parallelism. After the weighted sum step, we obtain the quantum circuit realizing

Uws |ih, i⟩ |0⟩ = |ih, i⟩
1

N

∑
j

(AihVih)ij . (23)

Note that when the input state is

|⃗1⟩ 1√
dk

∑
ih

|ih⟩ , (24)

the multi-head mechanism is naturally realized, with the output being

Uws |⃗1⟩ |i⟩ |0⟩ =
1

N
√
dk
|i⟩

∑
ih,j

(AV )ih,ij . (25)

The final linear projection WO can be processed as an operator applying to the amplitude using
similar method as above.

B.3.2 QUANTUM FEED-FORWARD NETWORK (FFN)

Each Transformer block contains a position-wise Feed-Forward Network (FFN), applied indepen-
dently to each of theN token positions. This sub-layer is implemented entirely using the QAM. The
mechanism is identical to that in the attention layer: the FFN’s arithmetic circuits (two linear maps
and a QReLU) are conditioned on an index register |i⟩ that spans all N token positions, thus pro-
cessing all tokens in parallel. A complete quantum Transformer block is then formed by enclosing
both the multi-head attention and FFN modules within residual connections and layer normalization,
which are also implemented as QAM-based arithmetic operations conditioned on the token index.

Proof of Theorem 3.3. An encoder layer contains two residual connection layers, an MHSA layer,
and an FFN layer. The MHSA layer is the resource bottleneck. For the MHSA layer, the arithmetic
part scales as Õ(d2). The overall gate complexity is then Õ(d2 × S(B,N, d)) after considering the
sampling overhead. It requires 6 queries to X , where UA,arith and its conjugate costs 2, and the
vector encoding of V costs 2.

Algorithm 3: Quantum Transformer Block
Require: Input quantum state |ψX⟩ encoding the sequence X; Classical parameters θAttn, θFFN

for all layers.
Ensure : Output quantum state |ψout⟩ after one Transformer block.

1 |ψattn⟩ ← QuantumMultiHeadAttention(|ψX⟩ , θAttn);
/* Multi-Head Attention Sub-layer */
/* Hybrid approach: QAM for projections/scores, QLA for AV

product. */
2 |ψadd1⟩ ← QuantumAdd(|ψX⟩ , |ψattn⟩);
/* Residual connection: Position-wise Add via QAM. */

3 |ψnorm1⟩ ← ULayerNorm(|ψadd1⟩);
4 |ψffn⟩ ← UFFN(|ψnorm1⟩ , θFFN);
/* Feed-Forward Sub-layer */

5 |ψadd2⟩ ← QuantumAdd(|ψnorm1⟩ , |ψffn⟩);
/* Residual connection: Position-wise Add via QAM. */

6 |ψout⟩ ← ULayerNorm(|ψadd2⟩);
7 return |ψout⟩;

C QUANTUM-ACCELERATED BACKPROPAGATION

Training deep neural networks relies on backpropagation, which systematically computes the gra-
dient of the loss function with respect to the model’s weights. We propose a quantum-accelerated
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approach for this process, where the core matrix operations of the chain rule are mapped to our QAM
and QLA modules. The overall process remains hybrid: gradients are typically stored and updated
classically, but their computationally expensive calculation is offloaded to the quantum processor.

To illustrate the principle, we consider the backward pass through a single linear layer, defined by
the forward pass Y = WX . Here, W is a d×dweight matrix and X is a d×N matrix representing
N data points. Given the gradient from the subsequent layer, ∂L/∂Y (a d × N matrix), we must
compute two quantities: the gradient to be propagated backward, ∂L/∂X , and the gradient for
updating the weights, ∂L/∂W .

Gradient Calculation for Weights (∂L/∂W ): Handled by QLA. The gradient with respect to
the input is given by the chain rule:

∂L

∂X
= W T ∂L

∂Y
. (26)

This is a (d × d) × (d × N) matrix multiplication. Critically, this operation can be viewed as
applying the small (d× d) matrix W T to each of the N columns of the incoming gradient ∂L/∂Y .
This is a “position-wise” operation, perfectly suited for the QAM. By conditioning on an index
register |j⟩ spanning theN columns, the QAM can perform allN matrix-vector products in parallel,
arithmetically processing the d-dimensional vectors in superposition.

Gradient Calculation for Weights (∂L/∂W ): Handled by QLA. The gradient with respect to
the weights is an outer product:

∂L

∂W
=
∂L

∂Y
XT . (27)

This is a (d × N) × (N × d) matrix multiplication, resulting in a d × d gradient matrix. Each
element (∂L/∂W )ij is the inner product of the i-th row of ∂L/∂Y and the j-th row of X . Both are
vectors of length N . Given our assumption that N ≫ d, these are high-dimensional inner products.
This task is ideal for the QLA’s inner product estimation capability Xiong et al. (2024). Instead
of performing a full matrix multiplication, the QLA can be configured to efficiently estimate the
d2 required inner products between the corresponding N -dimensional quantum states, yielding the
elements of the weight gradient.

This strategic division of labor is fundamental to our training approach. The QAM handles the
backward flow of gradients through the network’s data path by parallelizing over the sequence/batch
dimension N . The QLA, in turn, handles the most intensive gradient calculations for weights,
which involve contractions over this large N dimension. This transforms the most demanding parts
of backpropagation into potentially tractable quantum computations, paving the way for end-to-end
quantum-accelerated training.
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