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Abstract

Rotary Positional Embeddings (RoPE) have demonstrated exceptional performance
as a positional encoding method, consistently outperforming their baselines. While
recent work has sought to extend RoPE to higher-dimensional inputs, many such
extensions are non-commutative, thereby forfeiting RoPE’s shift-equivariance prop-
erty. Spherical RoPE is one such non-commutative variant, motivated by the idea
of rotating embedding vectors on spheres rather than circles. However, spherical
rotations are inherently non-commutative, making the choice of rotation sequence
ambiguous. In this work, we explore a quaternion-based approach—Quaternion
Rotary Embeddings (QuatRo)—in place of Euler angles, leveraging quaternions’
ability to represent 3D rotations to parameterize the axes of rotation. We show
Mixed RoPE and Spherical RoPE to be special cases of QuatRo.

Further, we propose a generalization of QuatRo to Clifford Algebraic Rotary
Embeddings (CARE) using geometric algebra. Viewing quaternions as the even
subalgebra of C(3,0,0), we extend the notion of rotary embeddings from quater-
nions to Clifford rotors acting on multivectors. This formulation enables two key
generalizations: (1) extending rotary embeddings to arbitrary dimensions, and
(2) encoding positional information in multivectors of multiple grades, not just
vectors. We present preliminary experiments comparing spherical, quaternion, and
Clifford-based rotary embeddings.

1 Introduction

Rotary positional embeddings (RoPE) have proven remarkably effective in language modeling,
prompting interest in adapting their success to higher-dimensional domains such as vision and
multimodal learning [Siméoni et al.,[2025]]. Extending RoPE beyond 1D sequences requires careful
consideration to preserve properties such as relative positional dependence (shift-equivariance) and
reversibility [Liu and Zhou, [2025] Su, 2021[]. While early extensions sought to preserve strict
equivariance [Yu et al.| 2025, |Schenck et al., 2025]], recent findings suggest this property may not be
essential for strong performance, opening the door to non-commutative generalizations [van de Geijn
et al.].

Spherical RoPE [van de Geijn et al.] exemplifies this approach: the rotations are performed on a sphere

— a space where rotations fail to commute — thus breaking strict equivariance. Its implementation
uses Euler angles (yaw and roll matrices), which explicitly constrain the rotations to be around the
principal axes. Rather utilizing the Euler angles, one could parameterize rotations with quaternions,
an idea mused in [Su| [2021]], but discarded due to their non-commutativity. This allows for simple
parameterization of the axes of rotation.
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In this work, we revisit Quaternion Rotary Embeddings (QuatRo). Quaternions offer a compact,
stable representation of 3D rotations allowing us to parameterize the axes of rotation rather than
the assumed principal axes of Spherical RoPE. We further generalize QuatRo to Clifford Algebraic
Rotary Embeddings (CARE), leveraging the geometric algebra framework. By interpreting quaternion
rotors as grade-2 blades of C1(3, 0, 0) acting on grade-1 vectors, we derive a principled method for:

1. Generalizing rotary embeddings to arbitrary dimensions.

2. Allowing embeddings to inhabit multivector spaces, enabling richer positional transforma-
tions across grades.

This generalization not only subsumes quaternion-based methods but also creates new possibilities
for encoding positional structure in higher-dimensional and multimodal settings. While CARE
generalizes QuatRo to higher-dimensional data such as video or point clouds, this work is still in
progress, and experiments are currently restricted to 2D images.

2 Related Work

Several recent efforts have sought to extend Rotary Positional Embeddings (RoPE) to higher-
dimensional data [Su et al., [2024]]. The most general formulation to date is LieRE [Ostmeier et al.,
2024]), which models RoPE as a rotation of D-dimensional query sub-vectors via the exponential
of a linear combination of skew-symmetric matrices. Under the standard proof of RoPE’s relative
positional property, these generators must commute, as can be seen through the Baker—Campbell—
Hausdorff formula. This constraint has led prior work to impose commutativity requirements on the
rotation generators to preserve strict shift-equivariance [[Yu et al.} 2025, |Schenck et al.| [2025] [Liu and
Zhou, 2025]].

However, recent studies have questioned the necessity of these constraints. In particular, van de
Geijn et al.| propose Spherical RoPE, which applies rotary encodings on the sphere—a setting where
rotations do not commute—showing that performance can remain competitive despite breaking
equivariance. Their approach parameterizes rotations using Euler angles, introducing potential issues
such as gimbal lock and unintuitive composition behavior.

Our method, Quaternion Rotary Embeddings (QuatRo), builds on this line of work by replacing
Euler angles with quaternion rotations. Quaternions can be viewed as a compact and numerically
stable representation of 3D rotations, corresponding to the even subalgebra of Ci(3,0,0). While
QuatRo can be interpreted as a special case of LieRE with fixed 3 x 3 skew-symmetric generators,
our generalization—Clifford Algebraic Rotary Embeddings (CARE)—extends beyond LieRE’s scope.
CARE treats rotary embeddings as Clifford rotors acting on multivectors, enabling both higher-
dimensional generalization and graded (multi-grade) positional encoding.

The relationship between LieRE and CARE is nuanced: in one view, LieRE can be seen as a restricted
subclass of CARE where the generators are limited to certain skew-symmetric matrices; in another
view, certain CARE configurations reduce to LieRE.

3 Background

Due to space constraints, we focus on the specific algebraic tools and notation relevant to our method,
and refer the reader to Roelfs and Keninck|[[2021]] for comprehensive dives into geometric algebra
and rotors and|van de Geijn et al.|for N-D positional encodings.

3.1 Quaternions and Rotors

Quaternions form a four-dimensional non-commutative algebra over the real numbers, with basis
{1,1,j,k} and multiplication rules:

i’=j =k’ =ijk =1,
ij=k, jk=i, ki=},

with anti-commutativity for distinct basis elements, e.g., ji = —ij. A quaternion ¢ = ao + a;i + a;j +
axk can be split into a scalar part ag and a vector part v = a;i + a;j + axk.



Pure quaternions (zero scalar part) can represent 3D vectors, while unit quaternions represent 3D
rotations. Given a unit quaternion rotor

r=e?" = cos(0/2) + usin(9/2),
where u is a unit pure quaternion indicating the rotation axis, a vector a is rotated via
a'=rar 1t
This provides smooth composition of rotations as they can be composed with the quaternion product

T =Tiro.

3.2 Geometric Algebra and Clifford Rotors

Quaternions are isomorphic to the even subalgebra of C1(3,0,0), making them a special case of
Clifford rotors. This perspective

allows generalization to higher di- Quaternions ‘ Even-Grade CA
mensions by replacing quaternion ro- 1 t J k 1 ez ey e
tors with the bivectors of Cl(n, 0, 0). 1)1 i 3 k 1 T €12 e es
These generalized rotors perform ro- i1 -1 k —j e | e12 -1 ez —egs
tations with the operation, JlJg —k -1 1 €23 | €23 —ei3  —1 e
kil 3§ -1 -1 €13 | €13 €23 —€12 -1
a =e2Bae 2B,

Figure 1: Multiplication tables of quaternions and the even subal-
where 2B = cos(0/2)+Bsin(6/2). gebra of C1(3, 0, 0), illustrating their isomorphism.

B is a unit bivector which defines the

plane of rotation, analogous to the unit quaternion. However, in contrast to quaternions, Clifford
rotors can act not only on vectors (grade-1) but also on higher-grade elements, enabling a potentially
richer positional encoding schemes.

3.3 Rotary Positional Embeddings (RoPE)

RoPE encodes absolute positions by applying a position-dependent rotation to query and key vectors
in the attention mechanism. For the ith 2D sub-vector of the query and key (x;, y;), RoPE applies a
rotation by angle 6, determined by the position p:

;@b |cosbip —sinbp| |x;
i = yi| — |sinfip  cos@ip | |yl

In this formulation, p is one dimensional, however it can be extended to 2D inputs. One method of
extending RoPE to 2D is to perform two spherical rotations to 3D sub-vectors of the query and key.

X 1 0 0 cosf;ps —sinb;py 0] [z;

q,/L = y; = |0 cos 0ip1 —sin 9,;p1 sin Hipg [¢0)] 91])2 0 Yi
/
i

z 0 sinf;p;  cosb;p; 0 0 1] |z

4 QuatRo

While Spherical RoPE rotates around two of the principle axes, we propose us-
ing quaternion algebras, Quaternion Rotary (QuatRo) embeddings, to easily compose
arbirary rotations. This allows us to parameterize the axes
of rotation in each sub-vector rather than rotating around
orthogonal axes. To do this, we parameterize (*) =

[agx), agx), a,(f)] such that,

()

r, =a i—l—ajm)

Jj+ a,(f) k, ry = e'Pe

and similarly for p,. We then apply the rotations to the
) query or key sub-vector.

Figure 2: QuatRo can rotate around any two

axes unlike Spherical RoPE. q; =TgTy di Ty 17’; !



Table 1: Performance comparison (top-1 accuracy) on CIFAR100 across methods and implementations.

Top-1 Accuracy (%) on CIFAR100

Fixed Encoding Mixed Spherical QuatRo CARE
Quaternion Framework 74.3 74.2 74.3

Clifford Algebraic Framework 74.8 74.0 74.1 74.8
ViT Baselines Absolute PE  64.2 Axial RoPE 72.1

The difference between QuatRo and Spherical RoPE is illustrated in Fig[2] While QuatRo is equivalent
to Spherical RoPE when the axes are orthogonal, QuatRo is equivalent to Mixed RoPE when the
axes of rotation are parallel. By fixing the axis of rotation and only learning the rotation speeds, we
can implement both Mixed and Spherical RoPE in the context of QuatRo. To keep the emphasis on
whether generalization is worth while and reduce the effects of “lucky” implementations, we compare
the accuracies of each method implemented within the QuatRo framework.

S CARE

We generalize QuatRo by allowing the Clifford rotors act on all grades of the multivector. Rather
than 3D sub-vectors, the query and key are split into 8D sub-vectors corresponding to each scalar
coefficient in CI1(3,0,0). However, the rotor is represented by only 3 parameters per dimension for
each position coordinate, like in QuatRo.

As QuatRo can be seen as a case of CARE where the sub-vector of the query/key is restricted to the
grade-1 (vector) component, we can once implement all methods within the CARE framework. In
Table[T} we show the accuracy of these methods in both frameworks trained with a ViT-B [Dosovitskiy,
et al.,2020] on CIFAR100.

6 Discussion

QuatRo generalizes both Spherical and Mixed RoPE, so we would expect it to have higher per-
formance. However, we see that among all, CARE performs the best along with Mixed RoPE
implemented in the clifford algebraic framework. Mixed RoPE’s performance over Spherical RoOPE
suggests that there is a small benefit to strict equivariance as an inductive bias. However, this may
also be noise from better random initialization.

While conceptually CARE generalizes the other methods, in practice, it is more restrictive since it
requires 8 coefficients per sub-vector. However, our initial experiments indicate that CARE preforms
better than Spherical or Quaternion RoPE. While it would be interesting to look its utilization of each
grade, we have not done this as of yet. We predict that it may emphasize the scalar channels which
remain position invariant.

Future Work We plan to use CARE to expand to higher dimensional data such as 3D point clouds.
We also intend to experiment with different algebras. For example, one could perform rotations in
space-time algebra which allows for rotations in hyperbolic space.

Limitations In its current form, QuatRo is marginally slower than previous methods, however
CARE is significantly slower due to the geometric product. It is unclear if this limit is unsurpassable
or due to the current lack of well optimized Clifford Algebra computations. Additionally, conclusions
are hard to draw from the results of one run on CIFAR100.
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A CARE formulation

Let ¢; € R® encode the coefficients of a multivector in the CI(3,0) basis corresponding to
(1,e1,e2, €12, €3, €31, €23, €123). For a position p = (p, py ), we define per-axis bivectors By, B, €
A%R? and angles 0, (p.), 0, (p,). The CARE rotor is applied via the sandwich product:

qi = Ry(py) RL(pL) qi Rw(px)ilRy(py)ila R(x(poz) = eXP(% oa(pa) B(x)a

with a € {z,y}. We parameterize each B, by a unit 3D axis (three degrees of freedom, shared with
QuatRo), and each 6,,(+) by standard RoPE frequency schedules. This preserves QuatRo’s parameter
efficiency while acting on all grades of the multivector via a single rotor field.

Crucially, this framework subsumes previous variants: vector-only CARE with orthogonal bivectors
recovers Spherical RoPE, even-grade CARE restricted to the even subalgebra reduces to QuatRo,
and parallel-axis CARE collapses to Mixed RoPE.
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