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Abstract

ReLU networks and their variants are a key building block of modern deep learning
architectures. Despite their ubiquity, our understanding of learning dynamics in
these models is still limited. Previous work has relied on a strong set of simplifying
assumptions such as the removal of bias terms or predefined gating structures.
Here, we explore empirically how the inclusion of bias terms influences learning
dynamics in ReLU networks in the rich learning regime. Surprisingly, we find that
the inclusion of bias terms simplifies learning dynamics, i.e. ReLU networks
with bias terms have learning dynamics that are strongly aligned to those of
well-understood linear models. Further, ReLU and linear networks with bias
terms trained on nonlinear problems display a transient correspondence early in
learning that is also reflected in highly structured, linear-like representations. We
also highlight additional downstream effects of early linearity and find that the
inclusion of bias terms boosts simplicity biases and the over-representation of
features associated with simple tasks. We demonstrate the practical relevance of
our results beyond simplified settings and show that bias terms can also induce
early linearity on image classification tasks. Our results illustrate how seemingly
minor and common architectural choices can change learning dynamics, biases
towards simplicity, and representational alignment between systems.

1 Introduction

Neural networks, whether artificial or biological, learn representational structures that support a broad
set of cognitive functions ranging from perception to complex reasoning. A large body of recent work
has found remarkable similarities between representations of natural and artificial learning systems
[Yamins et al., 2014, Khaligh-Razavi and Kriegeskorte, 2014, Schrimpf et al., 2020]. In machine
learning, the representational alignment between different artificial systems has also been extensively
explored in the hope of understanding the role of representations in model behavior and to enhance
model interpretability [Kornblith et al., 2019, Klabunde et al., 2025, Sucholutsky et al., 2024].

Representations in neural networks emerge through the complex interplay of architecture, dataset,
and the dynamics of learning. Much theoretical work has explored how learning dynamics shape
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Figure 1: Functional similarity between linear and ReLU networks. A. The hierarchical learning
task. This problem can be be solved by a linear network. B. Loss of ReLU and linear networks.
Both network types are functionally similar when equipped with bias terms and display stage-like
learning. Also note the good agreement of ReLU networks with exact solutions by [Saxe et al., 2014]
devised for linear networks. C. A non-linear learning problem. D. ReLU networks with bias are also
transiently aligned to linear networks on non-linear problems.

the neural network’s internal representations [Saxe et al., 2014, Dominé et al., 2024, Braun et al.,
2022] and noted that qualitatively and quantitatively similar representational structure can emerge
in linear and non-linear connectionist models [Saxe et al., 2019, Zhang et al., 2025]. Despite this
observed similarity there is still debate about how much similar patterns of representations relate to
computation and behavior of models [Lampinen et al., 2024, Prince et al., Lampinen et al., 2025,
Braun et al., 2025]. Furthermore, the factors that lead to the emergence of similarity have also been
debated [Huh et al., 2024]. In particular, Lampinen et al. [2024] demonstrated that neural networks
represent features relevant to simpler tasks more strongly. This difference is driven in part by the
fact that simpler features are learned more quickly. This early learning ties the representational
structure of neural networks to the simplicity bias of deep learning [Huh et al., 2023, Shah et al.,
2020, Kalimeris et al., 2019].

While some similarities have been observed between the dynamics and representations in linear
and nonlinear models, their learning dynamics are typically distinct [Jarvis et al., 2025, Saxe et al.,
2022] and have only been found to be equivalent in specific cases [Zhang et al., 2025]. Here we
make the surprising observation that ReLU and linear networks have remarkably similar learning
dynamics only when equipped with bias terms. We show how gradient-based learning in these
different architectures arrives at similar solutions despite differences in architecture and expressivity.
Our findings also underscore how bias terms can enhance simplicity biases and drive representational
and functional alignment between distinct model classes.

Our contributions are as follows: (i) We show that ReLU networks and linear networks have
equivalent learning dynamics when equipped with bias terms. This phenomenon also persists for
non-linear task, where dynamics are aligned in early learning. (ii) We examine implications of
this phenomenon for representations and find that bias-ReLU networks learn representations in a
structured, linear-like fashion. (iii) We show that the alignment increases representational biases such
that simple features are strongly overrepresented. (iv) We highlight that the bias-induced transient
alignment extends beyond simple settings and can be observed in networks trained on image data.

2 Alignment of ReLU and linear networks

Setting. We are studying functional and representational alignment of ReLU and linear networks
when these models are equipped with bias terms. We consider a learning task in which a network
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Figure 2: Representational alignment between linear and ReLU networks. A. Alignment is
high when networks have bias terms. Centered Kernel Alignment (CKA) between linear and ReLU
networks with (left) and without (right) bias terms throughout training. B. Multi-dimensional scaling
of hidden representations. With bias terms representations in ReLU networks emerge in a structured,
linear-like fashion. In non-bias ReLU networks representations evolve in a less structured manner
and separate almost from the beginning of learning.

is presented with input vectors xi ∈ RNin that are associated to output vectors yi ∈ RNout . The
total dataset consists of {xi,yi}Ni=1 with N samples. We consider two layer linear networks where
the forward pass computes ŷi = W2(W1xi + b). We also train ReLU networks of the form
ŷi = W2σ(W̃1xi + b) with σ(x) = max(x, 0). Here, the weight matrices are of dimensions
W1 ∈ RNhid×Nin , W2 ∈ RNout×Nhid and the bias vector is of dimension b ∈ RNhid . We train our
networks to minimize a squared error loss of the form L(ŷ) = 1

2

∑N
i=1 ∥yi − ŷi∥2. We optimize

networks using full batch-gradient descent in the gradient flow regime starting from small initial
conditions. For simulations in Fig. 1, Fig. 2, and Fig. 3 we use a hidden size of 64.

Alignment of learning dynamics. To assess the effect of bias terms on ReLU network learning
dynamics. We first train networks on a linearly solvable semantic learning problem similar to those
considered by Saxe et al. (2019) [Saxe et al., 2019]. The problem is visualized in Fig. 1A. Linear
networks in this setting display characteristic stage-like learning that is driven by the progressive
acquisition of SVD modes of the dataset input-output correlation matrix (see Appendix A for a quick
review of these dynamics). Surprisingly, we find that ReLU networks with bias terms closely track the
dynamics of their linear counterparts, so much so that exact solutions developed for linear networks
(see Appendix A) provide an excellent match. However, when removing bias terms the connection
breaks down and dynamics diverge. We show the general pattern of our result in Fig. 1B.

We also assess the correspondence on a non-linear problem displayed in Fig. 1C. In Fig. 1D we show
that even for non-linear problems bias-ReLU and bias-linear network dynamics are exactly matched
in early training. As before, the correspondence breaks down when bias terms are ablated. We can
see that ReLU networks in early training can be effectively characterized as linear networks when
they are equipped with bias terms (Appendix B also shows similar results for biases in both layers).
We will next examine the effect of bias terms on the representational structure in these networks.

Representational alignment of ReLU and linear models. We would like to know if the functional
similarity between ReLU and linear networks also translates into a representational alignment of both
models. In particular, we analyze network hidden representations in ReLU and deep linear networks
during the training on the hierarchical learning task (Fig. 1A). To this end, we compare network
representations using Centered Kernel Alignment (CKA, Kornblith et al. [2019]). In Fig. 2A we find
that representations in ReLU and linear networks are strongly aligned when networks have bias terms.
Further we visualize the evolution of hidden layer representations throughout training via Multi-
dimensional scaling (Fig. 2B). We can see how hidden representations evolve in an orderly fashion in
bias ReLU networks that show excellent agreement with linear networks. The representations for
different classes with shared hierarchical features co-evolve, mirroring stage-like learning trajectories.
In contrast, representations in bias-free ReLU networks evolve in a less structured manner, with the
representations for the different classes separating at the very beginning of learning.

Simple before complex learning in bias-ReLU networks. Recent work demonstrated how learning
order contributes to "representational biases" in which simple features and tasks explain large amount
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Figure 3: Linear to non-linear learning in ReLU networks. A. Models are trained on a linear
problem (top) and a non-linear problem (bottom) problem in parallel. Problems are defined on the
same four data-points. B. With bias (left) ReLU networks are aligned to linear models in early training
and learn the linear task (dotted line) first. C. Representational variance explained via the linear and
non-linear tasks. More variance in the representations of bias-ReLU networks is explained by the
linear task than for non-bias ReLU networks. While ReLU networks without bias also represent
features relevant to the linear task more strongly, the early linear alignment of ReLU networks with
bias to linear models boosts this phenomenon. (Averages across 10 seeds, error bars 95%-CIs.)

of variance in representations [Lampinen et al., 2024]. To interrogate if such biases are enhanced
by linear-like learning we design a task (see Fig. 3A) in which networks have to solve a linear
and non-linear problem in parallel. Fig. 3B shows how bias-ReLU networks are aligned to linear
networks in early training and initially only learn the linear problem. ReLU networks without bias
also appear to learn slower after learning the linear task. However, the corresponding saddle point is
less pronounced in these models.

When interrogating model representations we find that early linearity is indeed a key contributor to
representational biases. We follow the analysis by Lampinen et al. [2024] and fit linear regressions
that predict activations of each hidden layer unit from binary inputs which represent input examples
in terms of the linear and nonlinear task. In Fig. 3C we illustrate that ReLU networks with bias
represent the linear task more strongly than their bias-free counterparts. However, both models
represent linear features more prominently than non-linear features while solving both tasks with zero
loss. Intriguingly, we also find that less overall representational variance is explained when fitting a
regression that contains regressor for both linear and non-linear features in bias-free ReLU networks,
hinting at less structured and task-attuned representations.

Alignment on naturalistic data. We next investigate if our insights also extend beyond simplified
learning problems. We train ReLU networks on naturalistic image data, namely MINST and CIFAR-
10 (grayscale) classification tasks. We maintain small initial weights, learning rate and squared error
loss for these simulations. For MNIST we train models with a single hidden layer and increase
hidden depth to two hidden layers for CIFAR-10. For naturalistic data full ablation of bias terms can
be challenging as input correlations (e.g. constantly active pixels) can effectively act as bias terms
[Rubruck et al., 2025]. To minimize this effect we normalize each input xi by the pixel-wise mean
over the full dataset, i.e. x̃i = xi − x̄, where x̄ = 1

N

∑N
i xi. As before, we find that loss curves of

ReLU networks with bias terms are closely aligned to those of linear networks, while loss curves
diverge faster when bias terms are ablated. Intriguingly, we observed the match between linear and
ReLU networks to only be exact when hidden layer size of linear networks were reduced to be half
the size of corresponding ReLU networks. The result indicates that dynamics between linear and
ReLU networks are preserved albeit under different learning speeds similar to observations made by
[Zhang et al., 2025]. Our results demonstrate that the phenomenon of early linearity of bias-ReLU
networks can be observed for networks trained on naturalistic data.

3 Conclusion

We found strong functional and representational alignment between ReLU and linear networks when
models are equipped with bias terms. We further demonstrated that this correspondence is not
constrained to linear problems but that transient, early alignment can also be observed for non-linear
problems. While our work does not yet provide an exact mathematical characterization learning
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Figure 4: Transient alignment on naturalistic data. We show that bias terms drive alignment on
naturalistic image data. Loss curves of linear and linear networks are more closely aligned in early
training when models have bias terms (shaded region indicates SE).

dynamics in bias-ReLU networks the close match to exact solutions derived for linear networks
indicates that a more exact understanding of ReLU learning dynamics in these cases should be
attainable. This bias towards early linearity also induces strict linear before non-linear learning, while
enhancing representational biases towards linear features in network hidden activations.
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A A Quick review of exact solutions in linear neural networks

We will quickly review the derivation of exact learning dynamics in deep linear networks by Saxe
et al. [2014, 2019]. Consider the same setup as outlined in our section 2, setting. When training
networks using full batch gradient descent in the gradient flow regime dynamics in linear networks
are solely dependent on the dataset input-output and input-input correlation matrices. Using singular
value decomposition (SVD), these matrices can be expressed as

Σyx =
1

N
YXT = USVT , Σx =

1

N
XXT = VDVT . (1)

Here X ∈ RNin×N and Y ∈ RNout×Ncontain the full set of input and output vectors. Crucially, if
the right singular vectors VT of Σyx diagonalize Σx the full evolution of network weights for deep
and shallow networks can be described as

W2(t)W1(t) = UA(t)VT . (2)

Here A(t) is a diagonal matrix. The evolution of these diagonal values A(t)αα = aα(t) at each
time-step t then follows a sigmoidal trajectory.

aα(t) =
sα/dα

1− (1− sα
dαa0

)e−
2sα
τ t

(3)

In sα = Sαα and dα = Dαα denote the relevant singular values of Σyx and the eigenvalues of Σx

respectively, a0 are the singular values at initialization, and τ = 1
Nϵ is the time constant where ϵ is

the learning rate.

B Alignment with bias terms in both layers.

For completeness, we also examine how dynamics are aligned in cases where networks contain bias
terms in both layers. I.e. ŷi = W2σ(W̃1xi + b1) + b2. We find that dynamics in these cases are
also aligned and ReLU networks display characteristic, stage-like learning.

A B

Figure 5: Alignment of ReLU and Linear networks with bias terms in both layers. A. Stage-like
learning in ReLU networks that have bias terms on both layers on the hierarchical learning task in
Fig. 1A. Dynamics appear preserved but under slightly different time constants. B. Early dynamics
are also aligned on the non-linear problem from Fig. 1C.
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