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Abstract

In this paper, we study the classical HEDGE algorithm in combinatorial settings.
In each round, the learner selects a vector xt from a set X ⊆ {0, 1}d, observes
a full loss vector yt ∈ Rd, and incurs a loss ⟨xt,yt⟩ ∈ [−1, 1]. This setting
captures several important problems, including extensive-form games, resource
allocation, m-sets, online multitask learning, and shortest-path problems on di-
rected acyclic graphs (DAGs). It is well known that HEDGE achieves a regret
of O

(√
T log |X |

)
after T rounds of interaction. In this paper, we ask whether

HEDGE is optimal across all combinatorial settings. To that end, we show that for
any X ⊆ {0, 1}d, HEDGE is near-optimal—specifically, up to a

√
log d factor—by

establishing a lower bound of Ω
(√

T log(|X |)/ log d
)

that holds for any algo-
rithm. We then identify a natural class of combinatorial sets—namely, m-sets with
log d ≤ m ≤

√
d—for which this lower bound is tight, and for which HEDGE is

provably suboptimal by a factor of exactly
√
log d. At the same time, we show that

HEDGE is optimal for online multitask learning, a generalization of the classical
K-experts problem. Finally, we leverage the near-optimality of HEDGE to establish
the existence of a near-optimal regularizer for online shortest-path problems in
DAGs—a setting that subsumes a broad range of combinatorial domains. Specifi-
cally, we show that the classical Online Mirror Descent (OMD) algorithm, when
instantiated with the dilated entropy regularizer, is iterate-equivalent to HEDGE,
and therefore inherits its near-optimal regret guarantees for DAGs.

1 Introduction

Prediction with expert advice is a central problem in online learning [31, 13, 11, 14, 2]. In this
problem, a learner selects a probability distribution over a set of experts {1, 2, . . . ,K} in each round.
After making the choice, the learner observes the losses of all experts, which may be assigned
adversarially within [−1, 1]. The goal is to minimize the cumulative regret, defined as the difference
between the learner’s expected total loss and the loss of the best expert in hindsight after T rounds. A
simple and widely used algorithm for this setting is HEDGE, introduced by Freund and Schapire [24],
which guarantees a regret bound of O(

√
T logK).

Since its introduction, the HEDGE algorithm has been extended to a variety of settings, including
adversarial bandits [3], continuous action spaces [30], stochastic regimes [34], discounted losses
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[23], and adaptive learning rates [18]. An important special case is combinatorial settings, where
the learner selects a vector xt from a combinatorial set X ⊆ {0, 1}d in each round, observes a loss
vector yt, and incurs a loss of ⟨xt,yt⟩ ∈ [−1, 1]. The objective remains to minimize regret against
the best fixed vector x∗ ∈ X in hindsight.

The combinatorial setting captures a wide variety of problems, including extensive-form games,
resource allocation games (e.g., Colonel Blotto problems), online multitask learning problem, {0, 1}d
hypercube, perfect matchings, spanning trees, cut sets, m-sets, and online shortest paths in directed
acyclic graphs (DAGs). These problems have wide-ranging applications. For instance, extensive-form
games provide a foundational framework for modeling sequential games with imperfect information
and have been used to build human-level and even superhuman-level AI agents for real-world games
[33, 7–9]. Online shortest path problems in DAGs arise naturally in applications like network routing
[4, 17]. Resource allocation games have been widely studied in the context of military strategy,
political campaigns, sports, and advertising [6, 1].

Given their broad relevance, these combinatorial problems have been extensively studied through
the lens of online learning [44, 28, 29, 12, 16, 36, 45]. In the full-information setting, where the
learner observes the entire loss vector, an important class of extensive-form games admits optimal
algorithms that are efficiently implementable, with HEDGE shown to satisfy both properties in this
context [5, 19]. Another example is the work of Takimoto and Warmuth [44], which provided an
efficient implementation of a variant of HEDGE for online shortest path problems in DAGs. In the
bandit setting, refined variants of HEDGE achieve minimax-optimal regret [12, 10], though a recent
work shows they can still be significantly suboptimal for certain combinatorial families [32].

In this paper, we return to the full-information setting and revisit a natural approach for addressing
combinatorial problems: treating each element x ∈ X as an expert and directly applying the
HEDGE algorithm. This yields a regret bound of O

(√
T log |X |

)
. While this naive approach is

often computationally intractable due to the size of X , Farina et al. [20] (building on prior ideas
by Takimoto and Warmuth [44]) recently showed that HEDGE and its optimistic variants can be
implemented efficiently in a variety of important combinatorial settings that admit an efficient kernel.
Given HEDGE’s fundamental advantages—both its simplicity and its broad applicability—we are
motivated to ask the following natural question:

Does HEDGE achieve optimal regret guarantees for every combinatorial set X ⊆ {0, 1}d?

1.1 Our Contributions

In this paper, we address the above question by establishing the following results:
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General Lower Bound (Theorem 3.2)

m-sets (Section 4)
Multitask Learning (Section 5)
Online Shortest Path (Section 6)

Theorem 4.4

Theorem 4.6

Su
bo

pt
im

al
ity

of
H

E
D

G
E

Theorems 5.1, 6.1

H
E

D
G

E
ca

n
be

op
tim

al

√
T · log |X |

log d

√
T log |X |

Optimal
regret range

Figure 1: An overview of our results. The x-axis indexes different combinatorial decision sets
X ⊆ {0, 1}d, and the y-axis shows the optimal regret over T rounds. We show that HEDGE is
near-optimal for all X , up to a

√
log d factor. For m-sets, HEDGE is provably suboptimal by a factor

of
√
log d, whereas in structured settings such as online multitask learning and important families of

DAGs, it is in fact optimal.
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• Universal Near-Optimality: In Theorem 3.2, we show that HEDGE is universally near optimal
for combinatorial games by proving that the regret lower bound for any algorithm on any
combinatorial set X ⊆ {0, 1}d is Ω

(
max{

√
T log |X |/ log d,

√
T}
)
.

• Suboptimality in Specific Cases: In Theorems 4.4 and 4.6, we show that the lower bound from
Theorem 3.2 is tight for a natural class of combinatorial sets X , and that HEDGE is provably
suboptimal for these sets. Specifically, for m-sets with log d ≤ m ≤

√
d, we prove that HEDGE

necessarily incurs a regret of Ω
(√

T log |X |
)
, while we design an Online Mirror Descent (OMD)

algorithm that achieves an optimal regret of O
(√

T log |X |/ log d
)
.

• Optimality in Specific Cases: In Theorem 5.1, we show that HEDGE is optimal for a specific
class of combinatorial sets X . In particular, for online multitask learning—which generalizes the
classicalK-experts problem—we prove that any algorithm must incur a regret of Ω

(√
T log |X |

)
.

Beyond these results, we further investigate the optimality of HEDGE and its connection to
regularization-based algorithms in the structured setting of directed acyclic graphs (DAGs), which cap-
ture a broad class of combinatorial problems—including extensive-form games, resource allocation
game, m-sets, multitask learning, and the {0, 1}d hypercube:

• In Theorem 6.1, we show that HEDGE is minimax optimal when X corresponds to the set of
paths from source to sink in a DAG.

• In Section 6.1, we show that OMD with the dilated entropy regularizer achieves a minimax-
optimal regret of O

(√
T log |X |

)
for DAGs.

• In Theorem 6.5, we show that OMD with the dilated entropy regularizer is iterate-equivalent to
HEDGE on DAGs—thereby inheriting the regret guarantees of HEDGE and demonstrating that
HEDGE can be implemented efficiently on DAGs via OMD.

1.2 Related Works

Prediction with Expert Advice. One of the earliest works on online prediction was by Littlestone
and Warmuth [31], who introduced the Weighted Majority algorithm. Cesa-Bianchi et al. [13]
extended this line of work by studying the setting where experts’ predictions lie in the interval [0, 1],
while the outcomes are binary. Subsequently, Freund and Schapire [24] addressed the more general
setting where both predictions and outcomes lie in [0, 1]. They proposed the HEDGE algorithm and
established a regret bound of O(

√
T logK), where T is the time horizon and K is the number of

experts.

This foundational result gave rise to several important subsequent works. Erven et al. [18] introduced
AdaHedge, a variant of HEDGE with adaptive learning rates that achieves a regret of roughly√
L∗
T logK, where L∗

T is the cumulative loss of the best expert. Krichene et al. [30] studied a
continuous version of HEDGE for online optimization over compact convex sets S ⊂ Rd. In the
stochastic setting, Mourtada and Gaïffas [34] analyzed HEDGE with decreasing learning rates and
obtained a regret bound of O(logN/∆), where ∆ denotes the sub-optimality gap. For the bandit
feedback setting, Auer et al. [3] developed EXP3, a bandit-feedback variant of HEDGE that achieves
a regret of O(

√
KT ).

Combinatorial Settings. Online learning in combinatorial games has recently received consider-
able attention. Farina et al. [20] showed that HEDGE and its optimistic variants [15, 37] can be
implemented efficiently when the combinatorial game admits an efficient kernel. Examples of such
problems include extensive-form games, resource allocation games, m-sets, and, more generally,
online shortest path problems in directed acyclic graphs (DAGs). Hoda et al. [27] introduced the
dilated entropy regularizer for extensive-form games and analyzed its properties (cf. also Farina et al.
[21]). Building on this, Bai et al. [5] demonstrated that Online Mirror Descent (OMD) with the a
specific variant of the dilated entropy regularizer is iterate-equivalent to HEDGE in extensive-form
games. Fan et al. [19] subsequently provided the first OMD-based regret analysis for this regularizer,
matching the known bounds for HEDGE. Their analysis introduced a new norm, called the treeplex
norm, to facilitate the regret bounds.

In the bandit feedback setting, Cesa-Bianchi and Lugosi [12] analyzed online learning over specific
combinatorial sets X ⊆ {0, 1}d, and proposed a variant of HEDGE called COMBAND, achieving an
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expected regret bound of O
(√

dT log |X |
)

for those sets. Bubeck et al. [10] subsequently extended
this result to any combinatorial set X ⊆ {0, 1}d, using a variant of HEDGE known as EXP2 with
John’s exploration. Recently, Maiti et al. [32] showed that this bound is sub-optimal by a factor of
d1/4 for a specific family of directed acyclic graphs, thereby demonstrating that these variants of
HEDGE can, in fact, be substantially sub-optimal.

While the above prior works—as well as our own—focus on loss vectors yt such that ⟨x,yt⟩ ∈ [−1, 1]
for all x ∈ X , other works [44, 29, 36] consider coordinate-wise bounded losses, where each
yt[i] ∈ [0, 1] for all i ∈ [d]. Under coordinate-wise bounded losses, Takimoto and Warmuth [44]
were the first to implement a variant of HEDGE efficiently on DAGs by leveraging the additivity of
losses across the edges of a path. Koolen et al. [29] subsequently analyzed the COMPONENT HEDGE
algorithm over various combinatorial sets, including m-sets and DAGs. Rahmanian and Warmuth
[36] further extended COMPONENT HEDGE to the k-multipaths problem.

Rademacher Complexity. Orabona and Pál [35] provided a non-asymptotic lower bound of
Ω(
√
T logN) for the experts problem by analyzing the supremum of a sum of Rademacher random

variables. A series of works [39, 38, 22] extended this analysis to more general online learning prob-
lems—including combinatorial settings—by characterizing regret in terms of sequential Rademacher
complexity. Srebro et al. [42] showed that there always exists an instance of Follow-the-Regularized-
Leader (FTRL) that is nearly optimal for online linear optimization. This was recently strengthened
by Gatmiry et al. [25], who showed that an optimal FTRL instance always exists for online linear
optimization. However, the construction of an optimal regularizer for FTRL may incur significant
computational overhead.

2 Preliminaries

In this paper, we study the repeated online decision-making problem in a combinatorial setting.
Denote by d the dimension of the problem. The agent is given a set of discrete actions X ⊆ {0, 1}d.
At each round t = 1, 2, . . . , the agent selects an action xt from the decision set X . The environment
simultaneously chooses a loss vector yt ∈ Y , potentially adversarially based on the interaction
history Ft := {(xτ ,yτ )}t−1

τ=1. The agent then incurs a loss of ⟨xt,yt⟩ and observes the loss vector
yt. The goal of the agent is to minimize the total loss over T rounds, or equivalently, to minimize the
cumulative regret:

Regret(T ) :=

T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩.

We focus on the combinatorial game setting, in which the loss vector is restricted so that the loss
incurred at each round is bounded within [−1, 1]. In this case, the loss vector set Y is the polar
set of the convex hull co(X ). We note that this assumption covers various settings in the literature,
including extensive-form games [20, 5]. Formally, we make the following assumption:

Assumption 2.1. The loss vector set is defined as Y :=
{
y ∈ Rd : maxx∈X |⟨x,y⟩| ≤ 1

}
.

The Hedge Algorithm A classical approach for solving this problem is the HEDGE algorithm [24],
also known as Multiplicative Weight Updates (MWU). In this algorithm, the agent chooses actions in
a randomized manner based on the past performance of the actions. Specifically, let η > 0 be the
learning rate, the probability of choosing an action x in round t is proportional to

Pt(x) ∝ wt(x) := exp

(
− η

t−1∑
τ=1

⟨x,yτ ⟩
)
, ∀x ∈ X .

A classical result shows under learning rate η :=
√

log |X |/T , this algorithm has a regret upper bound
of O

(√
T log |X |

)
in the combinatorial game setting (i.e., under Assumption 2.1). Furthermore,

the algorithm requires O(d|X |) time per round to compute the updates. This may be exponential
in d when only a succinct representation of the decision set X is provided. It is known that when
the kernel of the decision set X can be computed efficiently, it is possible to simulate the MWU
algorithm in polynomial time using the KERNELIZED MWU algorithm [20].
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Proximal Methods We recall the foundational concepts and notations commonly used in proximal
optimization methods. Let X denote the decision set. The proximal methods is built upon on some
regularizer φ : co(X )→ R, which is required to be µ-strongly convex with respect to a chosen norm
∥ · ∥ over co(X ). Such a function naturally gives rise to a generalized measure of divergence known
as the Bregman divergence, defined for any vectors x′,x ∈ X as:

Dφ(x′ ∥x) := φ(x′)− φ(x)− ⟨∇φ(x),x′ − x⟩.

Among proximal methods, a general approach to solving the online decision problem is the Online
Mirror Descent (OMD) algorithm [15]. Let η > 0 be the learning rate, and let φ : co(X )→ R be
a strongly convex regularizer. The algorithm maintains a policy in each round t. In the first round,
the policy is set so the regularizer is unique minimizer: x̃1 ← argminx∈co(X ) φ(x). For each round
t = 2, 3, . . . , the agent takes proximal step:

x̃t ← argmin
x∈co(X )

{
η ⟨yt−1,x⟩+Dφ(x ∥ x̃t−1)

}
Then, the agent draws and plays an action xt ∈ X by matching its expectation to the proposed policy,
i.e., Et[xt] = x̃t. It is known that this algorithm achieves the following regret upper bound:

Theorem 2.2 (Regret Bound for OMD, [37, 43]). Let ∥ · ∥ and ∥ · ∥∗ be a pair of primal-dual norm
defined on Rd. Let φ be a DGF that is µ-strongly convex on ∥ · ∥. Denote yt as the reward gradient
received in episode t. The cumulative regret of running OMD with DGF φ and learning rate η > 0
can be upper bounded by

R̃egret(T ) :=
T∑
t=1

⟨x̃t,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩ ≤
1

η
Dφ(x∗ ∥ x̃1) +

η

2µ

T∑
t=1

∥yt∥2∗.

General Notation We use lowercase boldface letters, such as x, to denote vectors. The notation
|x| denotes the element-wise absolute value. For an index set C, let x[C] ∈ RC denote the subvector
of x restricted to entries indexed by C, and let |C| denote the cardinality of the set. We write
JkK := {1, 2, . . . , k} and use ∅ to denote the empty set. The probability simplex over a finite set C is
denoted by P(C). We use log x to denote the logarithm of x in base 2 and lnx to denote the natural
logarithm of x. For non-negative sequences {an} and {bn}, we write an ≤ O(bn) or equivalently
bn ≥ Ω(an) to indicate the existence of a global constant C > 0 such that an ≤ Cbn for all n > 0.
Similarly, we write an = Θ(bn) to indicate the existence of global constants C1, C2 > 0 such that
C1bn ≤ an ≤ C2bn for all n > 0. Lastly, we denote by co(X ) the convex hull of a set X .

3 Universal Near Optimality of Hedge

In this section, we show that for any given combinatorial decision set X ⊆ {0, 1}d, the HEDGE
algorithm achieves a near optimal regret bound in the combinatorial game setting. We begin by
stating the following classical result.

Lemma 3.1 (Sauer–Shelah Lemma [40, 41]). Let C be a family of sets whose union has n elements.
A set S is said to be shattered by C if every subset of S can be obtained as the intersection S ∩ C for
some set C ∈ C. C shatters a set of size k, if the number of sets in the family satisfies

|C| >
k−1∑
i=0

(
n

i

)
.

By the Sauer–Shelah Lemma, there exists an index set I ⊆ JdK of size Ω(log |X |/ log d) such that
the restriction of X to the coordinates in I equals the full hypercube {0, 1}I . Consequently, any hard
instance with loss vectors supported only on coordinates in I is at least as hard as the corresponding
instance of the combinatorial game over the hypercube X ′ := {0, 1}I . As any algorithm suffers a
regret lower bound of Ω

(√
T |I|

)
in the combinatorial game over the hypercube. This yields a regret

lower bound of Ω
(√

T log |X |/ log d
)
.

We formally state our main result in the following theorem. We defer the proof to Appendix A.

5



Theorem 3.2. Let X ⊆ {0, 1}d be a decision set and let Y be the corresponding loss vector set that
satisfies Assumption 2.1. For any T ≥ 1 and any Algorithm ALG, there exists a sequence of loss
vectors y1,y2, . . . ,yT ∈ Y such that the algorithm incurs an expected regret of at least

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩

]
≥ Ω

(
max

{√
T · log |X |

log d
,
√
T

})
.

The expectation is taken over any potential randomness of the algorithm.

4 The Sub-Optimality of Hedge on m-Sets

In this section, we consider a specific decision set X—namely, the family of m-sets—to illustrate the
suboptimality of the HEDGE algorithm. For an integer m ∈ Jd/2K, the m-sets problem corresponds
to the decision set X :=

{
x ∈ {0, 1}d :

∑d
i=1 x[i] = m

}
. We show that OMD, with a suitable

regularizer, matches the regret lower bound from Theorem 3.2 when log d ≤ m ≤ d/2, whereas
HEDGE suffers a regret lower bound of Ω(

√
T log |X |), establishing a suboptimality gap of

√
log d.

4.1 The Regret Upper Bound of m-Sets

We begin by presenting our OMD algorithm for m-sets, for any m ∈ Jd/2K. Previous work [42]
shows that there always exists a regularizer that enables the OMD algorithm to achieve a near-optimal
regret bound. However, the regularizer is not constructive, and the corresponding regret bound is
implicit. Instead, we need to construct a regularizer suitable for the decision set so that the regret
bound in Theorem 2.2 is minimized. Specifically, we analyze the OMD algorithm with the following
regularizer:

φ(x) :=

d∑
i=1

(
x[i]2 +

1

m
x[i] lnx[i]

)
. (4.1)

According to Theorem 2.2, it suffices to pick a pair of primal-dual norm ∥ · ∥ and ∥ · ∥∗ and analyze
the strong convexity of φ and also the vector norm ∥yt∥∗. We define a pair of dual-primal norms:

∥z∥∗ := max
x∈X
|⟨x, z⟩|, ∥z∥ := max

∥y∥∗≤1
⟨y, z⟩.

First, we state the following proposition that establishes an upper bound on the primal norm ∥z∥.
The proof is done by direct calculation, and we defer the details to Appendix B.

Proposition 4.1. For any vector z ∈ Rd, the primal norm ∥ · ∥ is upper bounded by the ℓ1 and ℓ∞
norms together, namely,

∥z∥ ≤ 3∥z∥∞ +
1

m
∥z∥1.

By applying the above proposition, we establish the strong convexity of the regularizer φ with respect
to the primal norm. We defer the proof to Appendix B.

Lemma 4.2. The function φ is 1/9-strongly convex with respect to the primal norm ∥ · ∥.

The following lemma bounds the Bregman divergence under the regularizer φ.

Lemma 4.3. We have Dφ(x∗ ∥ x̃1) ≤ m+ ln(d/m), for any vector x∗ ∈ X .

We defer the proof to Appendix B. Using the above results, we are able to establish the regret upper
bound for running OMD with the regularizer defined in (4.1).

Theorem 4.4. Let 1 ≤ m ≤ d/2. With the choice η :=
√
2(m+ ln(d/m))/(9T ), the expected

regret of running OMD with the regularizer in (4.1) over m-sets is upper bounded by

E[Regret(T )] ≤ O
(√

Tm+ T log(d/m)
)
.
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Proof. According to the definition of ∥ ·∥∗, we have that ∥yt∥∗ ≤ 1. Combining this with Lemma 4.2
and Lemma 4.3, and applying Theorem 2.2 together with E[xt] = x̃t, we conclude that

E[Regret(T )] ≤ 1

η
Dφ(x∗ ∥ x̃1) +

η

2µ

T∑
t=1

∥yt∥2∗

≤ 1

η

(
m+ ln(d/m)

)
+

9η

2
· T

≤
√
18Tm+ 18T ln(d/m),

where the last inequality is given by the choice η.

We show that this regret upper bound is in fact optimal by establishing a matching lower bound.
Specifically, we construct our lower bound using the hard instance from Theorem 3.2 along with the
hard instance for the K-experts problem (see Lemma F.4). Formally, we show the following:

Theorem 4.5. Consider integers m, d, T such that 1 ≤ m ≤ d/2 ≤ exp(T/3)/2. For the m-sets
problem and any Algorithm ALG, there exists a sequence of loss vectors y1,y2, . . . ,yT ∈ Y such
that the algorithm incurs a expected regret of at least

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩

]
≥ Ω

(√
Tm+ T log(d/m)

)
.

We defer the proof to Appendix B.

4.2 The Regret Lower Bound of Hedge

We introduce the following theorem, showing that the HEDGE algorithm is strictly sub-optimal on
m-sets, when log d ≤ m ≤

√
d. The full proof is deferred to Appendix B.

Theorem 4.6. Consider integersm, d, T such that 1 ≤ m ≤ d/2 ≤ exp(T/3)/2 andm log(d/m) ≤
T . For any η > 0, there exists a there exists a sequence of loss vectors y1,y2, . . . ,yT ∈ Y over
m-sets such that the HEDGE algorithm with learning rate η incurs a expected regret of at least

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩

]
≥ Ω

(√
Tm log(d/m)

)
.

Proof sketch. We divide the proof into two cases based on how η compares to the base learning rate
η0 :=

√
T−1m ln(d/m) = Θ

(√
T−1 log |X |

)
.

When the learning rate is small, i.e., η ≤ η0, we construct a hard instance by assigning the same
fixed loss vector yt across all rounds, where yt[i] := 1[i ∈ JmK]/m for all i ∈ JdK. In this
case, we can show that HEDGE with a small learning rate incurs a constant regret for any round
t ≤ t0 := Ω

(√
Tm log(d/m)

)
. Thus, we establish a regret lower bound of Ω

(√
Tm log(d/m)

)
.

When the learning rate is large, i.e., η > η0, we construct a hard instance by setting yt[i] = 0 for all
coordinates i ≥ 2 across all rounds. For the first coordinate, the loss yt[1] is assigned in two phases,
based on the threshold t0 := ln(d/m)/η (assuming t0 ∈ N for simplicity). In Phase 1 (rounds
t ≤ t0), we set yt[1] = −1. In Phase 2 (rounds t > t0), the value of yt[1] alternates: it is 1 if t− t0
is odd, and −1 if t− t0 is even.

In this case, we can show that HEDGE with a large learning rate incurs a regret of Ω
(
min{η, 1}

)
for

every two rounds after t > t0. Thus, we establish a regret lower bound via

E[Regret(T )] ≥ (T − t0) · Ω
(
min{η, 1}

)
≥ Ω

(√
Tm log(d/m)

)
.

In general, we conclude that HEDGE has a regret lower bound of Ω
(√

Tm log(d/m)
)

on the m-sets
for any learning rate η > 0.
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5 The Optimality of Hedge for Online Multitask Learning

In the previous section, we showed that the HEDGE algorithm can be strictly suboptimal for certain
combinatorial decision sets, such as m-sets. This naturally leads to the question: are there combina-
torial settings where HEDGE remains optimal? In this section, we answer this in the affirmative by
analyzing the Online Multitask Learning problem—a setting that generalizes the classical K-experts
problem and has been studied in the bandit learning literature as the Multi-Task Bandit problem. In
this problem, the learner is presented with m ≥ 1 separate expert problems, where the i-th problem
involves di ≥ 2 experts. In each round, the learner selects one expert from each problem and incurs a
loss that is the sum of the losses associated with the chosen experts. The goal is to minimize regret
with respect to the best expert in each problem in hindsight.

We parameterize the online multitask learning problem as follows: Let d1:i :=
∑i
j=1 dj be the total

number of experts in the first i expert problems, with d1:0 := 0. The decision set X is of dimension
d = d1:m given by

X =

{
x ∈ {0, 1}d :

d1:i∑
j=d1:i−1+1

x[j] = 1, ∀i ∈ JmK

}
.

Recall that the adversary is restricted to choose yt such that ⟨x,yt⟩ ∈ [−1, 1] for all x ∈ X in
each round t following from Assumption 2.1. In this case, HEDGE has a regret upper bound of
O
(√

T log |X |
)

. In the following theorem we show that HEDGE is optimal for the online multitask
Learning problem. We construct a hard instance by using the hard instance for the i-th expert problem
over log di∑m

j=1 log dj
· T rounds. The full proof is deferred to Appendix C.

Theorem 5.1. Consider any instance of the online multitask learning problem on X of dimension
d ≥ 2. Let the corresponding loss vector set Y satisfy Assumption 2.1. Consider an integer T ≥
3 log |X |. Then for any Algorithm ALG, there exists a sequence of loss vectors y1,y2, . . . ,yT ∈ Y
such that the algorithm incurs a regret of at least

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩

]
≥ Ω

(√
T log |X |

)
.

6 Minimax Optimal Regularizers for Directed Acyclic Graphs

We consider the online shortest path problem in the Directed Acyclic Graphs (DAGs). LetG = (V,E)
be a DAG with the source vertex s ∈ V and the sink t ∈ V . We assume that every vertex v ∈ V
is reachable from s and can reach t. Denote by X ⊆ {0, 1}E the set of all s-t paths of the graph
G, indexed by the edges in E. Each vertex x ∈ X encodes a s-t path in the graph, where x[e] = 1
indicates that e ∈ E appears in the path. The convex hull of X forms the flow polytope:

co(X ) =

{
x ∈ [0, 1]E :

∑
e∈δ+(s)

x[e] =
∑

e∈δ−(t)

x[e] = 1 and
∑

e∈δ−(v)

x[e] =
∑

e∈δ+(v)

x[e], ∀v ∈ V

}
,

where δ−(v) = {(u, v) ∈ E} and δ+(v) = {(v, w) ∈ E} denotes the set of incoming edges and
outgoing edges, respectively. We note that in this case, the loss vector y ∈ Y ⊆ RE is an assignment
of the weights such that any s-t path has a weight between −1 and 1.

In the following theorem, we show that HEDGE is minimax optimal for DAGs. The proof involves a
careful construction of a DAG, parameterized by upper bounds on the number of edges and paths.
The full proof is deferred to Appendix D.
Theorem 6.1. For any integers d,N, T such that 16 ≤ 2d ≤ N ≤ 2d and 3 logN ≤ T , and for any
algorithm ALG, there exists a DAG G with at most d edges and at most N paths from source s to sink
t, and a corresponding sequence of loss vectors y1,y2, . . . ,yT ∈ Y such that the algorithm incurs a
regret lower bound of

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩

]
≥ Ω

(√
T logN

)
.
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6.1 OMD with Dilated Entropy Regularizer

While our main focus has been on the HEDGE algorithm, it is natural to consider its close counterpart,
Online Mirror Descent (OMD). With an appropriate distance-generating function, OMD is known to
be iterate-equivalent to HEDGE in extensive-form games [5, 19]. Since DAGs can model such games
[32], and HEDGE is minimax-optimal on DAGs, this motivates a closer examination of OMD on
DAGs. In this section, we analyze OMD with the dilated entropy regularizer on DAGs and show that
it also achieves minimax-optimal regret. Formally, the dilated entropy ψ : co(X )→ R is defined by

ψ(x) :=
∑
e∈E

x[e] lnx[e]−
∑
v∈V

x[v] lnx[v] =
∑

v∈V \{t}:x[v]>0

∑
e∈δ+(v)

x[e] ln
x[e]

x[v]
,

where, by standard convention, 0 ln 0 := 0. Here, x[v] :=
∑
e∈δ+(v) x[e] for all v ̸= t, and x[t] := 1.

We note that the regularizer on the policy x̃ ∈ co(X ) is closely related to the Shannon entropy
over the chosen action x ∈ X . In fact, consider the following procedure for sampling an action
x ∼ D(x̃) ∈ P(X ): we start from the active vertex u ← s. At each step, we first set x[u] = 1,
then randomly pick an edge e = (u, v) ∈ δ+(u) with probability x̃[e]/x̃[u], set x[e] = 1, and move
to u ← v. Following this Markovian sampling procedure, one can see that the drawn vector x is
consistent with x̃, i.e., E[x] = x̃. Furthermore, we have the following:
Lemma 6.2. For any x̃ ∈ co(X ), we have

ψ(x̃) = −H(x) := E
x∼D(x̃)

[lnP(x)],

where H(·) denotes the Shannon entropy of the random variable.

The proof of the above lemma is deferred to Appendix D. We will now show that running OMD with
the dilated regularizer enjoys a regret upper bound of O

(√
T log |X |

)
, based on the OMD regret

bound in Theorem 2.2. From Lemma 6.2, we have that ψ is equivalent to the negative entropy of
distribution over X . This indicates Dψ(x∗ ∥ x̃1) ≤ ln |X |. It remains to pick the norm functions and
show the strong convexity. Consider a pair of primal dual norms

∥z∥∗ := max
x∈X
|⟨x, z⟩|, ∥z∥ := max

∥y∥∗≤1
⟨y, z⟩.

We note that since co(X ) is the flow polytope, its dual, {y : ∥y∥∗ ≤ 1}, is closely related to the set
of all cuts of the graph. The next lemma shows ψ is strongly convex over primal norm ∥ · ∥. We defer
the proof to Appendix D.
Lemma 6.3. The function ψ is 1/10-strongly convex with respect to the primal norm ∥·∥ in span(X ).

From the standard OMD analysis, running OMD under the dilated entropy ψ achieves a regret upper
bound of O

(√
T log |X |

)
. Hence, OMD with dilated entropy is minimax optimal for DAGs.

6.2 Equivalence of Dilated Entropy and HEDGE

As shown earlier, both OMD with the dilated entropy regularizer and HEDGE over the set of paths in
a DAG achieve minimax optimal regret. This naturally raises a fundamental question: are these two
approaches equivalent? In this section, we answer this question in the affirmative.

Let G = (V,E) be a directed acyclic graph (DAG) with a designated source vertex s and sink vertex
t, and let X denote the set of all paths from s to t. If G contains only a single source-to-sink path, the
equivalence is immediate. Therefore, we focus on the case where G admits multiple such paths.

We begin by state the following lemma, the proof of which is deferred to Appendix D.
Lemma 6.4. The dilated entropy ψ is differentiable and strictly convex on the relative interior
C := relint(co(X )). Moreover, limn→∞ ∥∇xψ(xn)∥2 = ∞ if {xn}n is sequence of points in C
approaching the boundary of C.

Now, we present the following theorem, which demonstrate that OMD is, in fact, iterate-equivalent
to HEDGE. The proof proceeds by formulating the KKT conditions and applying Lemma 6.4 to
establish the equivalence. The proof is deferred to Appendix D.
Theorem 6.5. OMD with dilated entropy is iterate-equivalent to HEDGE over the set of paths X .
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7 Conclusion and Future works

We investigated the optimality of the classical HEDGE algorithm in combinatorial online learning
settings. While HEDGE achieves a regret of O

(√
T log |X |

)
, we established that this rate is nearly

optimal—up to a
√
log d factor—for any set X ⊆ {0, 1}d. We further identified a class of m-sets for

which HEDGE is provably suboptimal and showed that it remains optimal for the multitask learning
problem. Finally, we demonstrated that Online Mirror Descent with the dilated entropy regularizer is
iterate-equivalent to HEDGE on DAGs, providing a computationally efficient regularization framework
for a broad family of combinatorial domains.

Our work opens up several interesting directions for future research. One natural question is whether
there exists a family of efficiently constructible regularizers that are near-optimal for the combinatorial
sets. We conjecture that negative entropy in a suitably lifted space may serve as such a regularizer. In
support of this, we refer the reader to Appendix E, where we show that the conjecture holds for DAGs.
Another compelling direction is to explore whether there exist near-optimal variants of the Follow-
the-Perturbed-Leader algorithm for the combinatorial sets. Since perturbations are often considered
more implementation-friendly, exploring near-optimal variants of the Follow-the-Perturbed-Leader
algorithm could yield both theoretical and practical advances. Finally, we ask whether there are
variants of HEDGE that achieve near-optimal regret for arbitrary finite subsets of Rd.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: Theorems match the claims made in the abstract and introduction.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [NA] .

Justification: We don’t see any limitations of our work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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will be specifically instructed to not penalize honesty concerning limitations.
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Justification: Every assumption on our problem setting is clearly mentioned in the introduc-
tion.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper does not include experiments.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper is theoretical in nature.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper is theoretical in nature.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper is theoretical in nature.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our paper is theoretical in nature.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: Our paper is theoretical in nature.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper is theoretical in nature.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper is theoretical in nature.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Deferred Proofs from Section 3

Theorem 3.2. Let X ⊆ {0, 1}d be a decision set and let Y be the corresponding loss vector set that
satisfies Assumption 2.1. For any T ≥ 1 and any Algorithm ALG, there exists a sequence of loss
vectors y1,y2, . . . ,yT ∈ Y such that the algorithm incurs an expected regret of at least

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩

]
≥ Ω

(
max

{√
T · log |X |

log d
,
√
T

})
.

The expectation is taken over any potential randomness of the algorithm.

Proof. If |X | = 1, the result holds trivially. Therefore, we assume |X | ≥ 2. We begin by considering
a deterministic algorithm ALG and establish a regret lower bound for it. The result is then extended
to randomized algorithms via Yao’s lemma.

Let k := max
{⌊

log |X |
log(2ed)

⌋
, 1
}

. We will show that |X | >
∑k−1
i=0

(
d
i

)
in general. This is clear when

k = 1, as we have |X | ≥ 2 > 1 =
∑k−1
i=0

(
d
i

)
. In the case where k ∈ J2, dK, we have that

|X | ≥ (2ed)k > k ·
(
2ed

k

)k
≥

k∑
i=1

(
2d

k

)
>

k∑
i=1

(
2d

i

)
>

k−1∑
i=0

(
2d

i

)
>

k−1∑
i=0

(
d

i

)
.

For every vector x ∈ X , we construct a corresponding indicator set Cx := {i ∈ JdK : x[i] = 1}.
Denote by C := {Cx : x ∈ X} be the collection of such sets. According to Lemma 3.1, there exists
a set I ⊆ JdK of size k that is shattered by C. From the definition of shattering and the construction
of C, we have that for any vector z ∈ {0, 1}I , there exists some vector x ∈ X such that x[I] = z.

We now construct the hard instance. For the simplicity of presentation, we assume that T divides |I|.
We partition the T rounds into |I| equal-length segments, each assigned to a unique element of I.
Let it denote the unique element in I associated with the segment that round t belongs to. The loss
vector in round t is then generated as

yt := eit · ξt,
where ξt is drawn from the Rademacher distribution, i.e., P(ξt = ±1) = 1/2.

Now consider the expected loss incurred by the Algorithm ALG. The decisions generated by
Algorithm ALG satisfy xt ⊥ yt | Ft, i.e., xt is conditionally independent of yt given Ft. Therefore,

E
[ T∑
t=1

⟨xt,yt⟩
]
=

T∑
t=1

E[⟨xt,yt⟩ | Ft] =
T∑
t=1

E[xt[it] · ξt | Ft] = 0.

On the other hand, the loss of the optimal action x∗ ∈ X satifies

min
x∗∈X

T∑
t=1

⟨x∗,yt⟩ = min
x∗∈X

T∑
t=1

x∗[it] · ξt = min
x∗∈X

∑
i∈I

x∗[i]
∑
t:it=i

ξt.

According to the selection of I, for any vector z ∈ Rd, there exists some vector x ∈ X such that
x[i] = 1 if and only if z[i] < 0 for every i ∈ I . This implies that we can always choose some vector
x ∈ X to minimize ⟨x[I], z[I]⟩ simultaneously across all coordinates in I. Thus,

min
x∗∈X

∑
i∈I

x∗[i]
∑
t:it=i

ξt =
∑
i∈I

min

{ ∑
t:it=i

ξt, 0

}
.

Taking the expectation over the randomness of ξt, this implies

E
[
min
x∗∈X

T∑
t=1

⟨x∗,yt⟩
]
=
∑
i∈I

E

[
min

{ ∑
t:it=i

ξt, 0

}]
= −1

2

∑
i∈I

E
∣∣∣∣ ∑
t:it=i

ξt

∣∣∣∣
≤ −

∑
i∈I

√
T/(8|I|) = −

√
T |I|/8.
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where the second inequality follows from Khintchine Inequality (Lemma F.2) in which the expected
absolute sum of n independent Rademacher variables is at least

√
n/2, and the size of set {t : it = i}

is exactly T/|I|.
In general, we can conclude that

E[Regret(T )] = E
[ T∑
t=1

⟨xt,yt⟩−min
x∗∈X

T∑
t=1

⟨x∗,yt⟩
]
≥
√
T |I|
8

= Ω

(
max

{√
T log |X |
log d

,
√
T

})
where the last equality follows from |I| = k = Ω(max{log |X |/ log d, 1}).
By Yao’s lemma, for any randomized algorithm ALG, there exists a sequence of loss vectors
y1,y2, . . . ,yT ∈ Y such that the algorithm incurs a regret of at least

E[Regret(T )] ≥ Ω

(
max

{√
T log |X |
log d

,
√
T

})
.

B Deferred Proofs from Section 4

Proposition 4.1. For any vector z ∈ Rd, the primal norm ∥ · ∥ is upper bounded by the ℓ1 and ℓ∞
norms together, namely,

∥z∥ ≤ 3∥z∥∞ +
1

m
∥z∥1.

Proof. It is sufficient to show that ⟨y, z⟩ ≤ 3∥z∥∞ + (1/m)∥z∥1 for any two vectors y, z ∈ Rd
with ∥y∥∗ ≤ 1. Let S1 := {i ∈ [d] : y[i] ≥ 0} and S2 := {i ∈ [d] : y[i] < 0}. Let us assume that
|S1| ≤ d/2.

Let us reindex the indices in S2 as {i1, i2, . . . , i|S2|} such that y[i1] ≤ y[i2] ≤ . . . ≤ y[i|S2|].
Observe that

∑m
j=1 y[ij ] ≥ −1. Hence, y[ij ] ≥ −1/m for all m ≤ j ≤ |S2|.

Let us reindex the indices in S1 as {s1, s2, . . . , s|S1|} such that y[s1] ≥ y[s2] ≥ . . . ≥ y[s|S2|]. Let
us first consider the case whenm ≤ |S1| ≤ d/2. Observe that

∑m
j=1 y[sj ] ≤ 1. Hence, y[sj ] ≤ 1/m

for all m ≤ j ≤ |S2|. In this case, we have the following:

⟨z,y⟩ ≤
m∑
j=1

|z[ij ]| · |y[ij ]|+
|S2|∑

j=m+1

|z[ij ]| · |y[ij ]|+
m∑
j=1

|z[sj ]| · |y[sj ]|+
|S1|∑

j=m+1

|z[sj ]| · |y[sj ]|

≤ ∥z∥∞ ·
m∑
j=1

|y[ij ]|+
1

m
·

|S2|∑
j=m+1

|z[ij ]|+ ∥z∥∞ ·
m∑
j=1

|y[sj ]|+
1

m
·

|S1|∑
j=m+1

|z[sj ]|

≤ 2∥z∥∞ +
1

m
∥z∥1

Next, let us consider the case when |S1| < m. If |S1| ̸= 0, then consider the set I = S1 ∪
{i1, i2, . . . , im−|S1|}. Now observe that

∑
i∈I y[i] ≤ 1. Hence, we have that

∑|S1|
j=1 y[sj ] ≤

1−
∑m−|S1|
j=1 y[ij ] ≤ 2 as

∑m−|S1|
j=1 y[ij ] ≥

∑m
j=1 y[ij ] ≥ −1. In this case, we have the following:

⟨z,y⟩ ≤ 1{|S1| ≠ 0} ·
|S1|∑
j=1

|z[sj ]| · |y[ij ]|+
m∑
j=1

|z[ij ]| · |y[ij ]|+
|S2|∑

j=m+1

|z[ij ]| · |y[ij ]|

≤ 1{|S1| ≠ 0} · ∥z∥∞ ·
|S1|∑
j=1

|y[sj ]|+ ∥z∥∞ ·
m∑
j=1

|y[ij ]|+
1

m
·

|S2|∑
j=m+1

|z[ij ]|

≤ 3∥z∥∞ +
1

m
∥z∥1
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If |S1| > d/2, using analogous calculations we can again show that

⟨z,y⟩ ≤ 3∥z∥∞ +
1

m
∥z∥1.

Lemma 4.2. The function φ is 1/9-strongly convex with respect to the primal norm ∥ · ∥.

Proof. Take z ∈ Rd. Plugging in (a+ b)2 ≤ 2a2 +2b2 for any a, b ∈ R into Proposition 4.1 implies

∥z∥2 ≤ 18∥z∥2∞ +
2

m2
∥z∥21. (B.1)

According to the definition of the regularizer φ, the Hessian matrix of the function is a diagonal
matrix with∇2φ(x)[i, i] = 2+1/(m ·x[i]). Considering the local norm of the vector z with respect
to φ(x), we have

∥z∥2∇2φ(x) = z⊤∇2φ(x)z =
d∑
i=1

z[i]2 ·
(
2 +

1

mx[i]

)
= 2

d∑
i=1

z[i]2︸ ︷︷ ︸
I1

+
1

m

d∑
i=1

z[i]2

x[i]︸ ︷︷ ︸
I2

. (B.2)

We note that

I1 =

d∑
i=1

z[i]2 ≥ d
max
i=1

z[i]2 = ∥z∥2∞. (B.3)

Furthermore, by the definition of the m-Set, we have
∑d
i=1 x[i] = m for x ∈ X . Therefore, we can

write

I2 =

( d∑
i=1

z[i]2

x[i]

)
· 1
m

( d∑
i=1

x[i]

)
≥ 1

m

(
d∑
i=1

√
z[i]2

x[i]
·
√

x[i]

)2

=
1

m
∥z∥21, (B.4)

where the inequality follows from the Cauchy–Schwarz inequality.

Plugging (B.3) and (B.4) into (B.2), we get

∥z∥2∇2φ(x) ≥ 2∥z∥2∞ +
1

m2
∥z∥21 ≥

1

9
∥z∥2,

where the last inequality follows from (B.1). This concludes that φ is 1/9-strongly convex with
respect to the primal norm ∥ · ∥.

Lemma 4.3. We have Dφ(x∗ ∥ x̃1) ≤ m+ ln(d/m), for any vector x∗ ∈ X .

Proof. From the first-order optimality of x̃1 := argminx∈co(X ) φ(x), it satisfies that for any vector
x∗ ∈ X , ⟨∇φ(x̃1),x∗ − x̃1⟩ = 0. Therefore,

Dφ(x∗ ∥ x̃1) ≤ max
x∈co(X )

φ(x)− min
x∈co(X )

φ(x). (B.5)

Consider x ∈ co(X ). On the one hand, we have

φ(x) =

d∑
i=1

(
x[i]2 +

1

m
x[i] lnx[i]

)
≤

d∑
i=1

x[i] + 0 = m, (B.6)

where the first term is bounded by x[i]2 ≤ x[i] for x[i] ∈ [0, 1], and the second term satisfies
x[i] lnx[i] ≤ 0.
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On the other hand, define p = x/m. Then, p lies in the probability simplex by the definition of
x ∈ co(X ).

φ(x) =

d∑
i=1

(
x[i]2 +

1

m
x[i] lnx[i]

)

≥ 0 +

d∑
i=1

p[i] lnp[i] +

d∑
i=1

p[i] lnm

=

d∑
i=1

p[i] lnp[i] + lnm

≥ − ln(d/m), (B.7)

where the first inequality uses x[i]2 ≥ 0, and the second inequality follows from the entropy upper
bound over the probability simplex.

Finally, plugging (B.6) and (B.7) into (B.5) yields

Dφ(x∗ ∥ x̃1) ≤ m+ ln(d/m).

Theorem 4.5. Consider integers m, d, T such that 1 ≤ m ≤ d/2 ≤ exp(T/3)/2. For the m-sets
problem and any Algorithm ALG, there exists a sequence of loss vectors y1,y2, . . . ,yT ∈ Y such
that the algorithm incurs a expected regret of at least

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩

]
≥ Ω

(√
Tm+ T log(d/m)

)
.

Proof. For every vector x ∈ X , we construct a corresponding indicator set Cx := {i ∈ JdK : x[i] =
1}. Denote by C := {Cx : x ∈ X} the collection of these sets. We have |C| = |X |. Notice
that the set I = {1, . . . ,m}, of size m, is shattered by C. Hence, by the same argument as in the
proof of Theorem 3.2, for any randomized algorithm ALG there exists a sequence of loss vectors
y1,y2, . . . ,yT ∈ Y such that the algorithm incurs a regret of at least Ω(

√
Tm) .

To prove that Regret(T ) ≥ Ω
(√

T log(d/m)
)
, we construct a hard instance as follows. For

simplicity of presentation, we assume that d divides m. Let K := d/m. Let DK denote the
zero-mean distribution over {−1,+1}K from Lemma F.4. In each round t, the environment first
draws a vector zt ∼ DK and assigns

yt :=

[
zt[1]

m
,
zt[1]

m
, . . . ,

zt[1]

m︸ ︷︷ ︸
m

,
zt[2]

m
,
zt[2]

m
, . . . ,

zt[2]

m︸ ︷︷ ︸
m

, . . . ,
zt[K]

m
,
zt[K]

m
, . . . ,

zt[K]

m︸ ︷︷ ︸
m

]⊤
.

Next for all i ∈ JKK, let x(i) be a vector in X that is defined as

x(i) :=

[
0, 0, . . . , 0, 1, 1, . . . , 1︸ ︷︷ ︸

i-th block ofm coordinates

, 0, 0, . . . , 0

]⊤
,

that is, x(i)[j] = 1 if (i− 1)m+ 1 ≤ j ≤ i ·m and x(i)[j] = 0 otherwise.

We begin by considering a deterministic algorithm ALG and establish a regret lower bound for
it. The result is then extended to randomized algorithms via Yao’s lemma. Let xt be the vector
chosen by the Algorithm ALG in the round t. Observe that the expected loss of ALG is zero as
E[⟨xt,yt⟩] = E[E[⟨xt,yt⟩|Ft]] = E[⟨xt,E[yt|Ft]⟩] = 0. On the other hand, we have

E
[
min
x∈X

T∑
t=1

⟨x,yt⟩
]
≤ E

[
min
i∈JKK

T∑
t=1

⟨x(i),yt⟩
]
= E

[
min
i∈JKK

T∑
t=1

⟨ei, zt⟩
]
.
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Hence, the regret of ALG is lower bounded as

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∈X

T∑
t=1

⟨x,yt⟩

]
≥ −E

[
min
i∈JKK

T∑
t=1

⟨ei, zt⟩

]
≥ Ω(

√
T log(d/m)),

where the last inequality follows from Lemma F.4.

By Yao’s lemma, for any randomized algorithm ALG, there exists a sequence of loss vectors
y1,y2, . . . ,yT ∈ Y such that the algorithm incurs a regret of at least Ω

(√
T log(d/m)

)
.

Combining both the lower bounds, we conclude the desired regret lower bound:

E[Regret(T )] ≥ Ω
(
max

{√
Tm,

√
T log(d/m)

})
≥ Ω

(√
Tm+ T log(d/m)

)
.

Theorem 4.6. Consider integersm, d, T such that 1 ≤ m ≤ d/2 ≤ exp(T/3)/2 andm log(d/m) ≤
T . For any η > 0, there exists a there exists a sequence of loss vectors y1,y2, . . . ,yT ∈ Y over
m-sets such that the HEDGE algorithm with learning rate η incurs a expected regret of at least

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩

]
≥ Ω

(√
Tm log(d/m)

)
.

Proof. Recall that the HEDGE algorithm with learning rate η > 0 selects an action x ∈ X in round t
with probability proportional to:

Pt(x) ∝ wt(x) := exp

(
− η

t−1∑
τ=1

⟨x,yτ ⟩
)
.

If m ≤ 20, the regret lower bound of Ω
(√

mT ln(d/m)
)
= Ω

(√
T log d

)
for HEDGE directly

follows from Theorem 4.5. Hence, for the rest of the proof we assume that m ≥ 20.

We divide the proof into two cases based on how η compares to the base learning rate

η0 :=

√
m ln(d/m)

T
= Θ

(√
log |X |
T

)
.

Regime where the learning rate is small, η ≤ η0:

When the learning rate is small, we construct the hard instance by assigning a fixed loss vector yt
across the rounds according to

yt[i] := (1/m) · 1[i ∈ JmK].
Let the set of bad actions that place small Hamming weight on the first m coordinates be defined as

S :=

{
x ∈ X :

∣∣{i ∈ JmK : xt[i] ̸= 1
}∣∣ ≥ ⌊m

20

⌋}
.

From the calculation in Lemma G.3, we have that the subset S is relatively large with respect to the
whole decision set X :

|X \ S|
|X |

≤ exp

(
− m

20
· ln
(
d

m

))
=: w0.

For any round t ≤ t0 :=
√

(m/400) · T ln(d/m), the weight of any action x ∈ S is at least

wt(x) = exp

(
− η

t−1∑
τ=1

⟨x,yτ ⟩
)
≥ exp(−η0 · t0) = exp

(
− m

20
· ln
(
d

m

))
= w0.

Furthermore, for any x ∈ X \ S, it is clear that the weight satisfies wt(x) ≤ 1. Now consider the
probability that some bad action xt ∈ S is chosen in round t ≤ t0. We have:

P(xt ∈ S) =
∑

x∈S wt(x)∑
x∈X wt(x)

≥
(
1+

∑
x∈X\S wt(x)∑
x∈S wt(x)

)−1

≥
(
1+
|X \ S|
|S|

·maxx∈X wt(x)

minx∈S wt(x)

)−1

≥ 1

2
.
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Observe that in round t, if HEDGE chooses any action x ∈ S, then it incurs a regret of at least
(1/m) · ⌊m/20⌋ ≥ 1/40, where the last inequality follows from Lemma G.1. Hence, HEDGE incurs
a constant regret in each round t ≤ t0. Note that as loss vector is fixed, HEDGE can not achieve
negative regret in any round. This indicates that HEDGE incurs a total regret of at least

E[Regret(T )] ≥ min{t0, T} · P(xt ∈ S) ·
1

40
≥ Ω

(√
Tm log(d/m)

)
,

for m log(d/m) ≤ T , when the learning rate η ≤ η0 is small.

Regime where the learning rate is large, η > η0:

When the learning rate is large, we construct the hard instance as follows. We set yt[i] = 0 for all
coordinates i ≥ 2 across all rounds t ∈ JT K. For the first coordinate, we define yt[1] in two phases,
determined by t0 := ln(d/m)/η ≤

√
T ln(d/m)/m.

• Phase 1: For the first t ≤ ⌊t0⌋ rounds, we assign yt[1] = −1. If t0 /∈ N, then in round
t = ⌈t0⌉, we assign yt[1] = −(t0 − ⌊t0⌋). In this way, the cumulative loss over the first
⌈t0⌉ rounds is exactly −t0 on the first coordinate.

• Phase 2: For all remaining rounds t > ⌈t0⌉, we assign yt[1] in an alternating manner as
follows:

yt[1] :=

{
+1 if t− ⌈t0⌉ is odd,
−1 if t− ⌈t0⌉ is even.

Let S0 := {x ∈ X : x[1] = 0} and S1 := {x ∈ X : x[1] = 1} denote a partition of the action set
based on whether mass is placed on the first coordinate. Note that

|S0| =
(
1− m

d

)
·
(
d

m

)
, |S1| =

m

d
·
(
d

m

)
.

According to the loss structure of the hard instance, every action in S1 incurs a same loss of yt[1] in
each round t, while every action in S0 incurs zero loss. According to the HEDGE update rule, one can
see running HEDGE on X is essentially equivalent to running the algorithm on two aggregate actions
x0 and x1, where x0 represents playing a uniformly random action from S0 and x1 represents
playing uniformly from S1. The initial weights are given by w1(x0) = |S0| and w1(x1) = |S1|. In
each round t, action x1 suffers a loss of yt[1], and action x0 suffers a loss of 0.

We analyze HEDGE on actions x0 and x1. For simplicity, we assume that T −⌈t0⌉ is an even number.
Consider a round t1 := ⌈t0⌉ + 2b, for some integer b ≥ 0. Let w0 and w1 denote the weights of
actions x0 and x1 in round t1 + 1, respectively. Then, HEDGE chooses action x1 with probability
w1

w0+w1 in round t1 + 1, and with probability w1·exp(−η)
w0+w1·exp(−η) in round t1 + 2. Therefore, the total

expected loss incurred in these two rounds is
t1+2∑
t=t1+1

E[⟨xt,yt⟩] = (+1) · w1

w0 + w1
+ (−1) · w1 · exp(−η)

w0 + w1 · exp(−η)
=

w0w1(1− e−η)
(w0 + w1)(w0 + w1 · e−η)

.

Since the cumulative loss in the first t1 rounds of action x0 is 0, and that of action x1 is −t0, we have

w0 = |S0| · exp(−η · 0) = |S0| =
(
1− m

d

)
·
(
d

m

)
,

w1 = |S1| · exp(−η · (−t0)) = |S1| · exp(ln(d/m)) =

(
d

m

)
.

From 1 ≤ m ≤ d/2, it follows that 1 ≤ w1/w0 ≤ 2. Plugging this into the expression gives:

t1+2∑
t=t1+1

E[⟨xt,yt⟩] ≥
w0w1(1− e−η)
(w0 + w1)2

≥ Ω
(
min{η, 1}

)
,

where the last inequality follows from 1 ≤ w1/w0 ≤ 2 and also (1− e−x) ≥ (1− e−1) ·min{x, 1}
for all x > 0.
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Now observe that any action x ∈ S1 is the best action in hindsight over T rounds, incurring a
cumulative loss of−t0. The HEDGE algorithm suffers at least−t0 expected loss in the first phase and
incurs an expected loss of at least Ω(min{η, 1}) every two rounds in the second phase. Therefore,
the total regret incurred by HEDGE is at least

E[Regret(T )] ≥ T − ⌈t0⌉
2

· Ω
(
min{η, 1}

)
≥ Ω

(√
Tm log(d/m)

)
,

for m log(d/m) ≤ T , when the learning rate η > η0 is large.

C Deferred Proof from Section 5

Theorem 5.1. Consider any instance of the online multitask learning problem on X of dimension
d ≥ 2. Let the corresponding loss vector set Y satisfy Assumption 2.1. Consider an integer T ≥
3 log |X |. Then for any Algorithm ALG, there exists a sequence of loss vectors y1,y2, . . . ,yT ∈ Y
such that the algorithm incurs a regret of at least

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩

]
≥ Ω

(√
T log |X |

)
.

Proof. We begin by considering a deterministic algorithm ALG and establish a regret lower bound
for it. The result is then extended to randomized algorithms via Yao’s lemma.

Let us assume that there are m expert problems and the i-th problem has di ≥ 2 experts. Recall
that d1:i =

∑i
j=1 dj and d1:0 = 0. For all i ∈ JmK, let Ti := log di∑m

j=1 log dj
· T . For simplicity of

presentation, let us assume that Ti is a positive integer for all i ∈ JmK. Let T1:i =
∑i
j=1 Tj and

d1:0 = 0. For any K ≥ 2, let DK be the zero-mean distribution over {−1,+1}K from Lemma F.4.

We begin by dividing the T rounds into m phases, where i-th phase lasts for Ti rounds. In a round t
in the i-th phase, we choose zt ∼ Ddi and define the loss vector yt as follows:

yt[s] =

{
zt[j] if s = d1:i−1 + j,

0 otherwise.

Let xt be the vector chosen by the Algorithm ALG in the round t. Observe that the expected loss of
ALG is zero as E[⟨xt,yt⟩] = E[E[⟨xt,yt⟩|Ft]] = 0. Given the structure of the loss vector yt, the
problem reduces to solving m separate expert problems, each in its own phase. Consequently, the
regret incurred by ALG can be decomposed as follows:

E [Regret(T )] =
m∑
i=1

−E

 min
j∈JdiK

T1:i∑
t=T1:i−1+1

⟨ej , zt⟩


≥ c0 ·

m∑
i=1

√
Ti log di (due to Lemma F.4)

= c0 ·
(
∑m
i=1 log di) ·

√
T√∑m

i=1 log di

= c0 ·
√
T log |X |, (as

∏m
i=1 di = |X |)

where c0 is the universal constant from Lemma F.4.

By Yao’s lemma, for any randomized algorithm ALG, there exists a sequence of loss vectors
y1,y2, . . . ,yT ∈ Y such that the algorithm incurs a regret of at least Ω

(√
T log |X |

)
.

D Deferred Proof from Section 6

Theorem 6.1. For any integers d,N, T such that 16 ≤ 2d ≤ N ≤ 2d and 3 logN ≤ T , and for any
algorithm ALG, there exists a DAG G with at most d edges and at most N paths from source s to sink
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t, and a corresponding sequence of loss vectors y1,y2, . . . ,yT ∈ Y such that the algorithm incurs a
regret lower bound of

E[Regret(T )] = E

[
T∑
t=1

⟨xt,yt⟩ − min
x∗∈X

T∑
t=1

⟨x∗,yt⟩

]
≥ Ω

(√
T logN

)
.

Proof. Let us assume that d ≥ 8 and 2d ≤ N ≤ 2d. Let d0 := 8⌊d/8⌋. Due to Lemma G.1, we have
d/2 ≤ d0 ≤ d. Let N0 := min{N, 2d0/4}. Note that log(N0) = Θ(logN). Let m be the largest
integer such that m ≤ d0/8 and ( d02m )m ≤ N0. Now we claim that m log(⌊ d02m⌋) ≥ Ω(logN).

If m = d0/8, then we have m log(⌊ d02m⌋) = (d0/8) log(4) ≥ Ω(logN). Let us consider the case
when m < d0/8. Due to Lemma G.2, (a/x)x is increasing in the range [1, a/3] for any a > 3.
Hence, we have ( d02m )m ≤ N0 < ( d0

2(m+1) )
m+1. Next we have the following:

(m+ 1) log( d0
2(m+1) )

m log( d02m )
≤

(m+ 1) log( d02m )

m log( d02m )
≤ m+ 1

m
≤ 2

Due to the above inequality, Lemma G.1 and d0/m ≥ 8, we have the following

m log

(⌊
d0
2m

⌋)
≥ m log

(
d0
4m

)
≥ m

2
log

(
d0
2m

)
≥ m+ 1

4
log

(
d0

2(m+ 1)

)
≥ Ω(logN).

Consider a DAG G = (V,E) where the set of vertices V and the set of edges E are defined as
follows:

V := {vi}mi=0∪
{
vji | i ∈ JmK, j ∈

s⌊
d0
2m

⌋{}
, E :=

{
(vi−1, v

j
i ), (v

j
i , vi) | i ∈ JmK, j ∈

s⌊
d0
2m

⌋{}
Observe that |E| = 2m ·

q⌊
d0
2m

⌋y
≤ d. Also observe that the number of paths from source to sink in

G is
⌊
d0
2m

⌋m ≤ N0 ≤ N . Hence, G is in the family of DAGs Fd,N . Now we show that any algorithm
incurs a regret of Ω(

√
T logN) on the DAG G.

For any K ≥ 2, let DK denote the zero-mean distribution over {−1,+1}K from Lemma F.4. We
begin by dividing the T rounds into m+ 1 phases: the first m phases each last for ⌊T/m⌋ rounds,
and the (m+ 1)-th phase lasts for the remaining T −m⌊T/m⌋ rounds. In any round t of the i-th
phase with i ≤ m, we sample zt ∼ D⌊d0/(2m)⌋, and define the loss vector yt as follows:

yt[e] =

{
zt[j] if e = (vi−1, v

j
i ),

0 otherwise.

In a round t in the m+ 1-th phase, we choose yt = 0.

We begin by considering a deterministic algorithm ALG and establish a regret lower bound for
it. The result is then extended to randomized algorithms via Yao’s lemma. Let xt be the vector
chosen by the Algorithm ALG in the round t. Observe that the expected loss of ALG is zero as
E[⟨xt,yt⟩] = E[E[⟨xt,yt⟩|Ft]] = 0. Given the structure of the loss vector yt, the problem reduces
to solving m separate expert problems, one in each phase i ≤ m. Consequently, the regret incurred
by ALG can be decomposed as follows:

E [Regret(T )] =

m∑
i=1

−E

 min
j∈J⌊d0/(2m)⌋K

i·⌊T/m⌋∑
t=(i−1)·⌊T/m⌋+1

⟨ej , zt⟩


≥ (c0/2) ·

m∑
i=1

√
(T/m) log(⌊d0/(2m)⌋) (due to Lemma F.4 and Lemma G.1)

= (c0/2) ·
√
mT log(⌊d0/(2m)⌋)

= Ω
(√

T logN
)
, (as m log(⌊d0/(2m)⌋) ≥ Ω(logN))
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where c0 is the universal constant from Lemma F.4.

By Yao’s lemma, for any randomized algorithm ALG, there exists a sequence of loss vectors
y1,y2, . . . ,yT ∈ Y such that the algorithm incurs a regret of at least Ω

(√
T logN

)
.

Lemma 6.2. For any x̃ ∈ co(X ), we have

ψ(x̃) = −H(x) := E
x∼D(x̃)

[lnP(x)],

where H(·) denotes the Shannon entropy of the random variable.

Proof. From the procedure of Markovian sampling in Section 6.1, we have for any x ∈ X

P(x) =
∏

(u,v)∈E:x[(u,v)]=1

x̃[(u, v)]

x̃[u]
=

∏
e∈E:x[e]=1 x̃[e]∏
v∈V :x[v]=1 x̃[v]

.

Therefore, we have

−H(x) = E
x∼D(x̃)

[lnP(x)]

= E
x∼D(x̃)

[ ∑
e∈E:x[e]=1

ln x̃[e]−
∑

v∈V :x[v]=1

ln x̃[v]

]

= E
x∼D(x̃)

[∑
e∈E

1{x[e] = 1} · ln x̃[e]−
∑
v∈V

1{x[v] = 1} · ln x̃[v]

]
=
∑
e∈E

x̃[e] ln x̃[e]−
∑
v∈V

x̃[v] ln x̃[v] = ψ(x̃),

where the fourth equality follows from E[x] = x̃, which concludes the proof for the equality.

Lemma 6.3. The function ψ is 1/10-strongly convex with respect to the primal norm ∥·∥ in span(X ).

Proof. It is sufficient to show that 10∥z∥2∇2ψ(x) ≥ ⟨y, z⟩
2 for any vector x ∈ relint(co(X )),

∥y∥∗ ≤ 1, and z ∈ span(X ).
Consider a weight assignment y of the edges. For every vertex v ∈ V , we define dmin(v) ∈ R as the
weight of the shortest path from v to t, and dmax(v) ∈ R as the weight of the longest path from v to
t. We have dmin(t) = dmax(t) = 0, as well as −1 ≤ dmin(s) ≤ dmax(s) ≤ 1.

We construct a vector y′ by assigning

y′[(u, v)] = y[(u, v)] + dmin(v)− dmin(u)

for every edge (u, v) ∈ E. By the triangle inequality, all values y′[(u, v)] are nonnegative. Since
z ∈ span(X ), we have

⟨y′, z⟩ =
∑

(u,v)∈E

z[(u, v)] ·
(
y[(u, v)] + dmin(v)− dmin(u)

)
=
∑
e∈E

z[e] · y[e] +
∑

v∈V \{s,t}

dmin(v) ·
( ∑
e∈δ−(v)

z[e]−
∑

e∈δ+(v)

z[e]

)
− dmin(s) ·

∑
e∈δ+(s)

z[e]

= ⟨y, z⟩ − dmin(s) · z[s], (D.1)

where z[s] :=
∑
e∈δ+(s) z[e] and the last equality follows from the flow constraints implied by

z ∈ span(X ). Note that this equality also holds for x ∈ relint(co(X )). Combined with the facts
that ⟨y,x⟩ ≤ 1, dmin(s) ≥ −1, and x[s] = 1, we have

0 ≤ ⟨y′,x⟩ ≤ 2. (D.2)
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Now, we define a function d∆(v) : V → R by assigning d∆(v) := dmax(v)− dmin(v) ∈ [0, 2] for
each vertex v ∈ V . In this case,

IV :=
∑
v∈V

2x[v] lnx[v] =
∑
v∈V

d∆(v) · x[v] lnx[v] +
∑
v∈V

(
2− d∆(v)

)
· x[v] lnx[v]

=
∑

v∈V \{s}

d∆(v)
∑

e∈δ−(v)

x[e] lnx[v] +
∑

v∈V \{t}

(
2− d∆(v)

) ∑
e∈δ+(v)

x[e] lnx[v]

(D.3)

Furthermore, for every edge (u, v) ∈ E, we define

y′′[(u, v)] := d∆(v) + y′[(u, v)]− d∆(u) = dmax(v) + y[(u, v)]− dmax(u).

By the triangle inequality, we have y′′[e] ≤ 0 for all e ∈ E. Similarly, from the properties of y′ and
d∆(·), we also have y′′[e] ≥ −2 for any edge e ∈ E. Furthermore, we can write

I ′E :=
∑
e∈E

(
2 + y′′[e]

)
· x[e] lnx[e]

=
∑

(u,v)∈E

(
d∆(v) + y′[(u, v)] + 2− d∆(u)

)
· x[(u, v)] lnx[(u, v)]

=
∑

v∈V \{s}

d∆(v)
∑

e∈δ−(v)

x[e] lnx[e] +
∑
e∈E

y′[e] · x[e] lnx[e] +
∑

v∈V \{t}

(
2− d∆(v)

) ∑
e∈δ+(v)

x[e] lnx[e]

(D.4)

As a result, we have

ψ(x) =
1

2

∑
e∈E

(
2 + y′′[e]

)
x[e] lnx[e]︸ ︷︷ ︸

I′
E

−1

2

∑
e∈E

y′′[e] · x[e] lnx[e]− 1

2

∑
v∈V

2x[v] lnx[v]︸ ︷︷ ︸
IV

=
1

2

∑
v∈V \{s}

d∆(v)
∑

e∈δ−(v)

x[e] ln

(
x[e]

x[v]

)
︸ ︷︷ ︸

I+

+
1

2

∑
v∈V \{t}

(
2− d∆(v)

) ∑
e∈δ+(v)

x[e] ln

(
x[e]

x[v]

)
︸ ︷︷ ︸

I−

+
1

2

∑
e∈E

y′[e] · x[e] lnx[e]︸ ︷︷ ︸
I′

+
1

2

∑
e∈E
−y′′[e] · x[e] lnx[e]︸ ︷︷ ︸

I′′

where the second equality follows from (D.3) and (D.4). Since d∆(v) ∈ [0, 2] and y′′[e] ≤ 0, we
have that I+, I−, and I ′′ are all sums of convex functions. Therefore, their sum is also convex. Thus,
for any vector z ∈ span(X ),

z⊤∇2
xx

(
I+ + I− + I ′′

)
z ≥ 0.

Furthermore, from the second-order derivative (x lnx)′′ = 1/x, we have

z⊤∇2
xxI ′z =

∑
e∈E

z[e]2 · y
′[e]

x[e]
≥
(∑
e∈E

z[e]2 · y
′[e]

x[e]

)
· 1
2

(∑
e∈E

x[e] · y′[e]

)

≥ 1

2

(∑
e∈E

z[e] ·

√
y′[e]

x[e]
·
√

x[e] · y′[e]

)2

=
1

2
⟨y′, z⟩2.

The first inequality follows from ⟨x,y′⟩ ≤ 2 in (D.2), and the second inequality follows from the
Cauchy–Schwarz inequality. Plugging in the two inequalities above gives

∥z∥2∇2ψ(x) := z⊤∇2ψ(x)z ≥ 1

4
⟨y′, z⟩2. (D.5)
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Furthermore, we can also decompose the regularizer as

ψ(x) =
∑

v∈V \{s,t}

∑
e∈δ+(v)

x[e] ln

(
x[e]

x[v]

)
︸ ︷︷ ︸

IE

+
∑

e∈δ+(s)

x[e] lnx[e]

︸ ︷︷ ︸
IV

.

Since IE is the sum of convex functions, for any z ∈ span(X ), we have z⊤∇2
xxIEz ≥ 0. From the

second order derivative (x lnx)′′ = 1/x, we have that

z⊤∇2
xxIV z =

∑
e∈δ+(s)

z[e]2 · 1

x[e]
≥
( ∑
e∈δ+(s)

z[e]2 · 1

x[e]

)
·
( ∑
e∈δ+(s)

x[e]

)

≥

( ∑
e∈δ+(s)

z[e] ·

√
1

x[e]
·
√
x[e]

)2

≥
(
dmin(s) · z[s]

)2
where the second inequality follows from the Cauchy-Schwarz inequality, and the last inequality
follows from

∣∣dmin(s)
∣∣ ≤ 1. This indicates

∥z∥2∇2ψ(x) := z⊤∇2ψ(x)z ≥
(
dmin(s) · z[s]

)2
(D.6)

Combining (D.5) and (D.6) concludes that

10∥z∥2∇2ψ(x) = 10z⊤∇2ψ(x)z ≥ 2
∣∣⟨y′, z⟩

∣∣2+2
(
dmin(s)·z[s]

)2 ≥ (⟨y′, z⟩+dmin(s)·z[s]
)2

= ⟨y, z⟩2

where the second inequality follows from 2a2+2b2 ≥ (a+ b)2 for any a, b ∈ R, and the last equality
follows from (D.1). This completes the proof.

Lemma 6.4. The dilated entropy ψ is differentiable and strictly convex on the relative interior
C := relint(co(X )). Moreover, limn→∞ ∥∇xψ(xn)∥2 = ∞ if {xn}n is sequence of points in C
approaching the boundary of C.

Proof. Let C := relint(co(X )) and let ∂C := co(X ) \ C. As every coordinate is positive inside
the relative interior C, ψ is differentiable on C. Due to Lemma 6.3, it follows that ψ is also strictly
convex on C.

Next consider a sequence {xn}n with xn ∈ C for all n and limn→∞ xn = x∗ ∈ ∂C. Consider a
vertex u ∈ V such that x∗[u] > 0 and there exists an edge e = (u, v) such that x∗[e] = 0. Note that
such a vertex u exists otherwise x∗ ∈ C. Now observe that

lim
n→∞

∣∣∇xψ(xn)[e]
∣∣ = lim

n→∞

∣∣ lnxn[e]− lnxn[u]
∣∣ =∞.

Hence, we have limn→∞ ∥∇xψ(xn)∥2 =∞.

Theorem 6.5. OMD with dilated entropy is iterate-equivalent to HEDGE over the set of paths X .

Proof. Due to Lemma 6.4, the solution of the following OMD equation lies in the relative interior of
co(X ):

x̃t ← argmin
x∈co(X )

{
η⟨yt−1,x⟩+Dψ(x ∥ x̃t−1)

}
where ψ(x) is the dilated entropy and η =

√
log |X |/T . That is, for all edges e, we have x̃t[e] > 0.
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For any vertex v, denote by δ−(v) and δ+(v) the sets of incoming and outgoing edges from v,
respectively. Recall that co(X ) is described by the following linear constraints:

gv(x) :=
∑

e∈δ−(v)

x[e]−
∑

e∈δ+(v)

x[e] = 0 ∀v ∈ V \ {s, t}

gs(x) := 1−
∑

e∈δ+(s)

x[e] = 0

gt(x) :=
∑

e∈δ−(t)

x[e]− 1 = 0

he(x) := −x[e] ≤ 0

Let the Lagrangian be defined as:

Lt(x,λ,µ) := η⟨yt−1,x⟩+Dψ(x ∥ x̃t−1) +
∑
v∈V

λ[v]gv(x) +
∑
e∈E

µ[e]he(x)

By the KKT conditions, there exists a tuple (x̃t,λt,µt) such that

∂Lt(x,λ,µ)
∂x[e]

∣∣∣∣
x=x̃t, λ=λt, µ=µt

= 0.

Due to complementary slackness and the fact that x̃t[e] > 0 for all e ∈ E, it follows that µt[e] = 0
for all e ∈ E. Hence, we obtain:

ln
x̃t[e]

x̃t[u]
= ln

x̃t−1[e]

x̃t−1[u]
− (ηyt−1[e]− λt[u] + λt[v])

where e = (u, v).

Let Pt(p) denote the probability of choosing path p in round t. Observe that

Pt(p) =
∏

e=(u,v)∈p

x̃t[e]

x̃t[u]
∝

∏
e=(u,v)∈p

x̃t−1[e]

x̃t−1[u]
exp

(
− η

∑
e=(u,v)∈p

yt−1[e]

)

= Pt−1(p) exp

(
− η

∑
e=(u,v)∈p

yt−1[e]

)
.

Thus, OMD with dilated entropy is equivalent to HEDGE over paths.

E Another Near-optimal OMD for DAGs

Let G = (V,E) be a DAG, and let X ⊆ {0, 1}E represent all paths from the source vertex s to the
sink vertex t. According to Maiti et al. [32], there always exists a strategically equivalent DAG in
which the longest s-t path contains at most O(log |X |) edges. Therefore, without loss of generality,
we assume that the longest path from s to t contains O(log |X |) edges.

Let yt ∈ RE be the loss vector observed in round t. We construct a modified non-negative loss vector
y′
t ∈ RE≥0 such that:

• There exists a constant αt such that ⟨x,y′
t⟩ = ⟨x,yt⟩+ αt for any x ∈ X .

• For any x ∈ X , it satisfies
∑
e∈E x[e]y′

t[e]
2 ≤ 4.

Given the weight vector yt, we define, for each vertex v ∈ V , the quantities dmin(v) ∈ R and
dmax(v) ∈ R as the weights of the shortest and longest paths from s to v, respectively. Clearly,
dmin(s) = dmax(s) = 0, and −1 ≤ dmin(t) ≤ dmax(t) ≤ 1.

We define the modified loss vector y′
t ∈ RE by assigning:

y′
t[(u, v)] = yt[(u, v)] + dmin(u)− dmin(v).
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Then, for any x ∈ X , we have ⟨x,y′
t⟩ = ⟨x,yt⟩ − dmin(t).

We now prove that
∑
e∈E x[e]y′

t[e]
2 ≤ 4 for any x ∈ X . Define a function d∆ : V → R by

d∆(v) := dmax(v) − dmin(v) ∈ [0, 2] for each v ∈ V . Note that y′
t[(u, v)] ≥ 0 by the triangle

inequality. Furthermore, using the inequality dmax(v) ≥ dmax(u) + yt[(u, v)], we get:

y′
t[(u, v)] ≤ dmax(v)− dmax(u) + dmin(u)− dmin(v) = d∆(v)− d∆(u).

Now, consider any path x ∈ X with vertices v0 = s, v1, . . . , vk = t. We have:∑
e∈E

x[e]y′
t[e]

2 =

k∑
i=1

y′
t[(vi−1, vi)]

2 ≤
k∑
i=1

(
d∆(vi)− d∆(vi−1)

)2
≤

(
k∑
i=1

(
d∆(vi)− d∆(vi−1)

))2

= d∆(t)
2 ≤ 4.

Now consider the OMD update rule:

x̃t ← argmin
x̃∈co(X )

{
η⟨y′

t−1, x̃⟩+Dϕ(x̃ ∥ x̃t−1)
}

where the regularizer is defined as

ϕ(x̃) :=
∑
e∈E

(
x̃[e] ln x̃[e]− x̃[e]

)
.

Let ∥ · ∥∇2ϕ(x̃t) denote the local norm induced by the Hessian of ϕ at x̃t, and the corresponding dual
norm is given by ∥ · ∥∇−2ϕ(x̃t). Using standard regret analysis, we have:

E[Regret(T )] ≤ 1

η

(
max

x̃∈co(X )
ϕ(x̃)− min

x̃∈co(X )
ϕ(x̃)

)
+ η

T∑
t=1

∥y′
t∥2∇−2ϕ(x̃t)

≤ 1

η
max

x̃∈co(X )

∑
e∈E

(x̃[e] ln(1/x̃[e]) + x̃[e]) + η

T∑
t=1

∥y′
t∥2∇−2ϕ(x̃t)

≤ c

η
· log |X | · log d+ η

T∑
t=1

∑
e∈E

x̃t[e]y
′
t[e]

2

≤ c

η
· log |X | · log d+ 4η · T

where c is an absolute constant. The third inequality uses the fact that the number of edges in any
path is upper bounded by O(log |X |), along with Jensen’s inequality. The fourth inequality follows
from the construction of y′

t. By setting η =
√
T−1 log |X | · log d, the regret is upper bounded by

O
(√

T log |X | · log d
)
.

Having established an alternative OMD algorithm for DAGs, we now outline a general template for de-
signing near-optimal OMD algorithms using the negative entropy regularizer for other combinatorial
sets X ⊆ {0, 1}d.

• Lift the action set: Map X to an equivalent higher-dimensional set X̃ ⊆ {0, 1}D, where
D = poly(d), such that the diameter of X̃ is small with respect to the negative entropy
regularizer.

• Change the loss vectors: Construct an equivalent non-negative loss vector such that the
sum of squared dual norms is small.

F Auxiliary Lemmas

Lemma F.1 (Yao’s lemma). Let A be a set of deterministic algorithms, and Y a set of inputs. Let
c(A, y) denote the cost incurred by a deterministic algorithmA ∈ A on input y ∈ Y , such as its regret.
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Let D be a distribution over inputs andR be a class of distributions over deterministic algorithms.
Then for any randomized algorithm R ∈ R, we have:

min
A∈A

Ey∼D[c(A, y)] ≤ max
y∈Y

ER[c(R, y)].

Remark: By Yao’s lemma, to prove a lower bound on the expected cost of any randomized algorithm,
it suffices to exhibit a distribution over inputs under which every deterministic algorithm incurs high
expected cost.
Lemma F.2 (Khintchine inequality (restated), Haagerup [26]). Let {ξt}Tt=1 be T independent
Rademacher random variables with P(ξt = ±1) = 1/2. Let x1, . . . , xT ∈ C. Then,√√√√1

2

T∑
t=1

|xt|2 ≤ E
∣∣∣∣ T∑
t=1

ξtxt

∣∣∣∣ ≤
√√√√ T∑

t=1

|xt|2.

Lemma F.3 (Orabona and Pál [35]). There exists universal constants c1 ≥ 8 and c2 > 0 such that
for any d ∈ [c1, exp(T/3)], we have

E
[
max
i∈JdK

T∑
t=1

ξt,i

]
≥ c2 ·

√
T log d.

where {ξt,i}T,dt=1,i=1 are i.i.d. Rademacher random variables with P(ξt,i = ±1) = 1/2.

Lemma F.4. For any 2 ≤ K ≤ exp(T/3), there exists a zero-mean distributionDK over {−1,+1}K
such that if yt ∼ DK for t = 1, . . . , T , then

−E

[
min
i∈JKK

T∑
t=1

⟨ei,yt⟩

]
≥ c0 ·

√
T logK,

where c0 > 0 is some universal constant

Proof. Consider the universal constants c1 and c2 from Lemma F.3. If 2 ≤ K < c1, we define the
distribution DK as the uniform distribution over {e1,−e1}. If yt ∼ DK for t = 1, . . . , T , then by
applying the same analysis as in Theorem 3.2, we obtain:

−E

[
min
i∈JKK

T∑
t=1

⟨ei,yt⟩

]
≥
√
T/8 ≥

√
T logK/(8 log c1).

On the other hand, if K ≥ c1, we define the distribution DK as the uniform distribution over
{−1,+1}K . If yt ∼ DK for t = 1, . . . , T , then by applying the Lemma F.3, we obtain:

−E

[
min
i∈JKK

T∑
t=1

⟨ei,yt⟩

]
= E

[
max
i∈JKK

T∑
t=1

⟨ei,−yt⟩

]
≥ c2 ·

√
T logK.

G Numerical Lemmas

Lemma G.1. Let a, b > 0 be two numbers such that a ≥ b. Then⌊
a

b

⌋
≥ a

2b
.

Proof. If we set
x =

a

b
≥ 1, n =

⌊
x
⌋
,

then
x = n+ k, 0 ≤ k < 1,
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so
a

2b
=
x

2
=
n+ k

2
≤ n+ 1

2
.

Since n ≥ 1,
n+ 1

2
≤ n⇐⇒ n+ 1 ≤ 2n⇐⇒ n ≥ 1.

Hence
a

2b
=
x

2
≤ n =

⌊
a

b

⌋
.

Lemma G.2. For any a > 3, (a/x)x is an increasing in the range [1, a/3].

Proof. It suffices to show that for every real x ∈ [1, a/4] the derivative of

f(x) :=

(
a

x

)x
is strictly positive. Consider

g(x) := ln f(x) = x ln

(
a

x

)
= x ln a− x lnx,

so

g′(x) = ln a− (lnx+ 1) = ln

(
a

x

)
− 1.

Whenever x ≤ a/3, we have

a

x
≥ a

a/3
= 3 =⇒ ln

(
a

x

)
≥ ln 3.

Since ln 3 ≈ 1.098 > 1, it follows that

g′(x) = ln

(
a

x

)
− 1 ≥ ln 3− 1 > 0.

Because f ′(x) = f(x)g′(x) and f(x) > 0, we obtain

f ′(x) > 0 for all 1 ≤ x ≤ a/3.

Lemma G.3. Denote by

X :=

{
x ∈ {0, 1}d :

d∑
i=1

x[i] = m

}
.

S :=

{
x ∈ X :

∣∣{i ∈ JmK : x[i] ̸= 1
}∣∣ ≥ ⌊m

20

⌋}
.

When m ∈ J20, d/2K, it satisfies that

|X \ S|
|X |

≤ exp

(
− m

20
· ln
(
d

m

))
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Proof. We upper bound |X \ S| by enumerating on possible values of k :=
∣∣{i ∈ JmK : x[i] ̸=

1
}∣∣ = ∣∣{i /∈ JmK : x[i] = 1

}∣∣.
|X \ S| =

⌊m/20⌋−1∑
k=0

(
m

k

)(
d−m
k

)
≤ m

20
·
(

m

⌊m/20⌋

)(
d

⌊m/20⌋

)
≤ m

20
·
(

em

⌊m/20⌋

)⌊m/20⌋(
ed

⌊m/20⌋

)⌊m/20⌋

(as
(
d
m

)
≤
(
ed
m

)m
)

≤ m

20
· (20e)m/20

(
20ed

m

)m/20
(due to Lemma G.2)

≤ (m/20) · (20e)m/10 (d/m)
m/20

(d/m)m
·
(
d

m

)
(as (d/m)m ≤

(
d
m

)
)

≤ (m/20) · (20e)m/10

29m/10
· (m/d)m/20 ·

(
d

m

)
(as m ≤ d/2)

≤ exp

(
− m

20
· ln
(
d

m

))
·
(
d

m

)
(as (m/20)·(20e)m/10

29m/10 ≤ 1)

Since |X | =
(
d
m

)
, we immediately reach the desired result.
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