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A large part of classical visual psychophysics was
concerned with the fundamental question of how
pattern information is initially encoded in the human
visual system. From these studies a relatively standard
model of early spatial vision emerged, based on spatial
frequency and orientation-specific channels followed by
an accelerating nonlinearity and divisive normalization:
contrast gain-control. Here we implement such a model
in an image-computable way, allowing it to take
arbitrary luminance images as input. Testing our
implementation on classical psychophysical data, we
find that it explains contrast detection data including
the ModelFest data, contrast discrimination data, and
oblique masking data, using a single set of parameters.
Leveraging the advantage of an image-computable
model, we test our model against a recent dataset using
natural images as masks. We find that the model
explains these data reasonably well, too. To explain
data obtained at different presentation durations, our
model requires different parameters to achieve an
acceptable fit. In addition, we show that contrast gain-
control with the fitted parameters results in a very
sparse encoding of luminance information, in line with
notions from efficient coding. Translating the standard
early spatial vision model to be image-computable
resulted in two further insights: First, the nonlinear
processing requires a denser sampling of spatial
frequency and orientation than optimal coding
suggests. Second, the normalization needs to be fairly
local in space to fit the data obtained with natural
image masks. Finally, our image-computable model can
serve as tool in future quantitative analyses: It allows
optimized stimuli to be used to test the model and
variants of it, with potential applications as an image-

quality metric. In addition, it may serve as a building
block for models of higher level processing.

Introduction

The initial encoding of visual information by the
human visual system has been studied extensively since
the seminal studies of the late 1960s and early 1970s
(e.g., Blakemore & Campbell, 1969; Campbell &
Robson, 1968; Carter & Henning, 1971; Graham &
Nachmias, 1971; Nachmias & Sansbury, 1974). Their
insights have shaped how we now think about the first
computations of the visual system: spatial frequency
and orientation specific channels followed by a static
nonlinearity. This conceptual model is both broadly
consistent with physiology up to primary visual cortex,
as well as with normative theories on how the available
information should be processed.

As a conceptual framework, the standard model of
spatial visual processing is useful and successful.
Computational models of it, however, are usually only
implemented to work with an abstract representation of
visual stimuli, not with ‘‘real’’ images. Typically, the
models start with activity in the frequency channels,
calculated—or taken—from the parameters of the
simple one-dimensional stimuli (e.g., Goris, Putzeys,
Wagemans, & Wichmann, 2013; Foley, 1994; Itti,
Koch, & Braun, 2000; Legge, Kersten, & Burgess,
1987). This simple implementation of early spatial
vision models is highly efficient because first, it
bypasses the computational intensive multiscale image
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decomposition and second, it requires few computa-
tional units because it is only one-dimensional (1D)—
the models are only applicable to (simple) one-
dimensional stimuli. Historically, it was the lack of
computational power which precluded image-comput-
able models.

Implementing a model to be image-computable, i.e.,
to work on any image as input, helps to generalize its
application to a wide range of tasks and datasets—only
image-computable models allow quantitative predic-
tions for any input image (c.f. the discussion of the
importance of image-computability by Yamins &
DiCarlo, 2016, in the context of convolutional deep
neural networks (DNNs) as models of object recogni-
tion). Furthermore, image-computable models may
reveal—and make it easier to explore—potentially
counter-intuitive effects of nonlinearities in one’s
model. Another benefit is that image-computable
models of early spatial vision may be useful beyond
spatial vision, because they can be used as psycho-
physically plausible preprocessors in investigations of
higher level processing and for more natural tasks.
Finally, image-computable models allow the investiga-
tion of statistics of the model output, comparing it to
normative theories from, e.g., the efficient coding
hypothesis (Attneave, 1954; Barlow, 1959; Olshausen &
Field, 1996; Schwartz & Simoncelli, 2001; Simoncelli &
Olshausen, 2001).

But even for spatial vision, an image-computable
model may aid further development: An image based
implementation necessarily requires that the model is
implemented in full 2D, including orientations and the
spatial sizes of filters and normalization pools; they
necessitate thinking about spatial vision jointly in the
space as well as the spatial-frequency domain. This
aspect is likely important for the understanding of
visual processing (Daugman, 1980), but is typically not
implemented in the abstract, 1D models (Goris et al.,
2013).

In this paper we present a psychophysical, image-
computable model for early spatial visual processing;
we aim to explain human performance in behavioral
tasks and thus evaluate our model only on behavioral
data from human observers.

History and classical experiments in spatial
vision

Psychophysics has a long tradition of quantifying
behavior, summarizing it using equations—often called
‘‘laws’’ to mimic physics (Fechner, 1860; Stevens, 1957;
Weber, 1834). We have a good quantitative under-
standing of sensitivity to luminance differences, the
dependence of luminance discrimination on wave-
length, and the size of test patches (reviewed by Hood,

1998; Hood & Finkelstein, 1986). These early results
allow us to convert physical light patterns first into
luminance patterns and subsequently into contrast
images. The contrast images largely determine detec-
tion and discrimination performance (once the display
is sufficiently bright).

Arguably, the advent of modern spatial vision came
with the discovery of spatial frequency and orientation
tuned ‘‘channels’’ (Campbell & Kulikowski, 1966;
Campbell & Robson, 1968). Later, the existence of
these channels was confirmed by numerous studies,
including signal mixture and adaptation experiments
(e.g., Blakemore & Campbell, 1969; Graham &
Nachmias, 1971). The postulate of independent spatial
frequency and orientation channels allows predicting
detection thresholds for any signal pattern from the
knowledge of the Fourier spectrum of the stimulus and
the sensitivity to single sinusoidal gratings of different
frequencies, i.e., the contrast sensitivity function.

Because of its pivotal role in the early linear channel
model, the contrast sensitivity function was measured
under many different conditions, including peripheral
presentation (Baldwin, Meese, & Baker, 2012; Rovamo
& Virsu, 1979a, 1979b; Virsu & Rovamo, 1979),
different luminances (Hahn & Geisler, 1995; Kortum &
Geisler, 1995; Rovamo, Luntinen, & Näsänen, 1993,
1994), different temporal conditions (Kelly, 1979;
Watson, 1986; Watson & Nachmias, 1977) and
different spatial envelopes (Robson & Graham, 1981;
Rovamo, Mustonen, & Näsänen, 1994).

Another line of research investigated how the
(putative) spatial frequency channel responses are
further processed and combined to produce visual
behavior. This line of research started with contrast
discrimination experiments, measuring the contrast
increment needed in addition to a pedestal contrast to
produce a detectable difference (Foley & Legge, 1981;
Nachmias & Sansbury, 1974). Typically the so-called
‘‘dipper function’’ is found: Low pedestal contrasts
facilitate detection; i.e., discrimination can be better
than detection, while discrimination requires progres-
sively larger contrast increments for growing pedestal
contrast (as to be expected from Weber’s law). To
explain the shape of the dipper function, Legge and
Foley (1980) proposed a Naka-Rushton nonlinearity
(Naka & Rushton, 1966) on the spatial frequency
channel outputs. Later Foley (1994) revised this model
to replace the single-channel nonlinearity with a
normalization by the other channel responses to
explain oblique masking data, i.e., experiments in
which the mask grating had a different orientation than
the signal to be detected. This across-channel-normal-
ization is in spirit very close to the typical divisive
contrast-gain control introduced to explain the behav-
ior of simple cells in V1 (Cavanaugh, Bair, & Movshon,
2002a; Geisler & Albrecht, 1995; Heeger, 1992).
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Finally, the last processing step of (most) models in
vision is one of decoding: deriving the open behavioral
response from the activity in the model. In older spatial
vision models, simple task-independent Minkowski
norms were used (the popular ‘‘max-rule’’ or ‘‘winner-
takes-all-rule’’; i.e., the decision is based on the
maximally active unit or channel only, corresponds to a
Minkowski norm with large—in the limit infinite—
exponent). Decoding as an important part of spatial
vision models was first discussed by Pelli (1985) in the
context of uncertainty. In more modern models,
channels are explicitly modelled to respond noisily such
that the decoding can be understood in its original
statistical meaning of deriving the response from the
noisy channel responses. Frequently, this decoding is
assumed to be optimal (e.g., Goris et al., 2013; May &
Solomon, 2015a, 2015b).

Much of the history of the field, its psychophysical
experiments and the purely abstract 1D spatial vision
models are summarized and discussed in the compre-
hensive book of Graham (1989).

There have been earlier attempts to make image-
computable models of spatial visual processing, for
example by Teo and Heeger (1994) and by Watson and
Solomon (1997). However, these earlier models were
limited by the available computational power at their
time, which required them to tailor their models to the
processed stimuli or to limit the possible computations,
for example, to entirely local normalization. Recently
some more models were implemented to work on
images (e.g., Alam, Patil, Hagan, & Chandler, 2015;
Bradley, Abrams, & Geisler, 2014). These models
usually do not cover the whole complexity, but simplify
the normalization steps to reach a computationally
more efficient model (Bradley et al., 2014) or are based
on entirely different approaches like neural networks
trained to predict the detectability of specific distor-
tions (Alam et al., 2015).

One major incentive to develop image-computable
models of early visual processing is the applications in
image processing. The classical aim here is image
quality assessment, i.e., to produce a metric which
measures how bad a particular distortion of an
arbitrary image is as perceived by humans. Conse-
quentially, the classical models were immediately
proposed as such image quality metrics (Teo &
Heeger, 1994; Watson, Borthwick, & Taylor, 1997).
Such an image quality metric can then be used to
optimize various image processing algorithms like
compression or tone mapping. This cascade towards
application has recently been demonstrated for a
different biologically inspired model, the normalized
Laplacian pyramid (Laparra, Ballé, Berardino, &
Simoncelli, 2016; Laparra, Berardino, Ballé, &
Simoncelli, 2017). Our model seems to be a good start
for a similar path towards application as it makes

valid predictions what distortions are visible to
humans and also the optimization of suprathreshold
distortions yields reasonable predictions as we shall
see below.

Outline

In the following, we first describe how we imple-
mented the spatial vision model to operate on images.
We then show that our model reproduces classical
psychophysical spatial vision findings, namely those
which gave rise to the now accepted model structure in
terms of linear filters and divisive normalization.
Thereafter, we evaluate our model on a dataset
measuring masking by natural images. Then we show
that the model produces a sparse representation, as
predicted—and desired—from normative consider-
ations. As a final step, we create optimized stimuli to
maximize or minimize differentiability according to our
model.

Model description

Like most image processing spatial vision models,
our model contains four major parts: Images are first
preprocessed. Then they are decomposed into spatial
frequency and orientation specific channels and pass an
accelerating nonlinearity and normalization. Finally, for
decoding, we assume additive noise and optimal
decoding to predict how well images can be differen-
tiated.

Preprocessing

In most psychophysical experiments, stimuli are
directly defined in contrast units because the pattern
and the contrast together explain most variance, once
the stimuli are bright enough. Thus, these stimuli could
be passed into our model as they are defined, without
any preprocessing.

Nonetheless, we implement the conversion from
physical light patterns into the contrast-coded input to
our main processing explicitly for two reasons: First,
we aim for a model, which can process arbitrary images
displayed on a screen and images are usually not given
in contrast units (as the example image in Figure 1A).
Second, optical effects and retinal processing could be
modelled in more detail than we do here. Thus, our
simple preprocessing steps mark, where in the model
more complex precortical processes fit in and which
properties of them we model.

First, we convert all images to luminance values at
each pixel. The stimuli used in the classical experiments
were already given in luminance values. For modelling
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the natural image masking database by Alam, Vilan-
kar, Field, and Chandler (2014) as we describe below,
we use the pixel value to luminance conversion function
as provided with the data. For all other natural images,
we used measured spectra from a monitor in our lab
(Mitsubishi Diamond Pro 2070) and the Vk curves as
given by Sharpe, Stockman, Jagla, and Jägle (2005) to
convert the pixel values to luminance. This monitor
(the one we used for the eye movement experiments) we
use for the evaluation of our models’ responses below.
For display in this paper we converted them back to
RGB values by calculating the nearest value with equal
strength in all three channels (See Figure 1B for an
example of this).

Next, we apply optical distortions according to the
mean modulation transfer function of a well corrected
human eye. To do this, we use a formula by Watson
(2013), which was based on optical aberration mea-
surements by Thibos, Hong, Bradley, & Cheng (2002)
on 200 eyes of 100 healthy, well-corrected eyes. We
fixed the pupil diameter required for these formulas at 4
mm for our simulations. The pupil diameter could be
measured, experimentally controlled, or estimated from

the luminance over the visual field (Watson & Yellott,
2012). However, in none of the experiments that we fit
here pupil diameter or luminance were varied explicitly
and conditions were reasonably similar in all experi-
ments, such that we opted for this slight simplification.

Conversion of stimuli to contrast is then performed
by dividing by their mean and subtracting 1. Then we
cropped the stimulus to an area of 28 3 28 of visual
angle around the assumed fixation location (for most
classical stimuli the center of the stimuli where they
reach maximal nominal contrast). If the stimulus was
smaller than 28 3 28, we filled the rest of the area with
zeros. Finally, we resized the image to 256 3 256 pixels
using MATLAB’s ‘‘imresize’’ function, which performs
a bicubic interpolation.

We then implement the higher neuronal sensitivity
for medium to high spatial frequencies as an additional
linear filter similar to the ‘‘high pass filtering of neural
origin’’ of Rovamo et al. (1993), which depends on
presentation time. As in earlier approaches, we
estimated the neuronal influence on contrast sensitivity
simply as the necessary filter to match contrast
sensitivity. To implement this filter with as few

Figure 1. Overview over the model processing. As an example, a photograph of the town hall of Tübingen (A) is passed through the

model. (B) Shows the image after conversion to luminance, and (C) shows it after incorporation of eye optics, a hand-tuned contrast

sensitivity function and cut-out of the fovea. The image is then decomposed into spatial frequency and orientation channels. The

output of these channels for the example image is displayed in (D) and (E). (D) Shows the real part of the output and the absolute

value of the output overlaid on the image for three example channels marked in (E). (E) Shows the mean absolute value of each

channel overlaid over the original luminance image. Finally, each channel’s activity is passed through an accelerating nonlinearity and

is normalized by a surrounding normalization pool. The result of this is displayed in (F) and (G). (F) Shows the activity of the same

three channels as (D) after normalization, first isolated and then overlaid over the original image. (G) Shows each channel’s mean

activity over the image after normalization.
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assumptions as possible, we fitted its modulation
transfer function (MTF) by hand as a third order
spline.

To complete preprocessing, we smoothly cut out the
image patch corresponding to the fovea, as we want to
restrict ourselves to foveal processing here and to avoid
any border effects in later processing. For this purpose,
we use a 28 3 28 raised cosine window. This window is
above half height over the central disc of 18 diameter,
roughly fitting the size of the foveola with maximal
resolution and sensitivity.

The final preprocessing result for an example image
is displayed in Figure 1C.

Decomposition

Next we aimed to implement the well-established
orientation and spatial frequency selective channels
(Campbell & Robson, 1968). These were implemented
as a dense filter-bank with each individual filter fitting
psychophysical and neuronal measurements of channel
specificity, as illustrated in Figure 2.

Many functional forms exist that can represent the
filter shape of the psychophysical channels closely
enough. Here we chose to use a log-Gabor as the basic
filter shape, which corresponds to a Gaussian shape in
log-frequency and in orientation. A log-Gabor is
directly and completely defined by its preferred spatial
frequency and orientation and its bandwidth in each
dimension, which are all properties estimated from
psychophysical and physiological data routinely. Ad-
ditionally, Gabor-filters are maximally localized jointly
in space and frequency, have a monotonically and
smoothly decreasing response for frequencies and

orientations moving away from the preferred parame-
ters, and no response to uniform fields. These are all
desirable properties for a subband decomposition,
which gives our filter choice some normative justifica-
tion. Ultimately, however, any functional form that
closely represents the specificities of the psychophysical
channels (and thus, V1 neurons) will yield indistin-
guishable responses in the channels and thus results
indistinguishable from our choice.

Additionally to spatial frequency and orientation
specificity, linear filters are also tuned to the phase of
the stimulus as simple cells in primary visual cortex are
(Daugman, 1980). However, psychophysical perfor-
mance seems not to depend on absolute phase. The
most parsimonious model to achieve such phase
independent behavior is to use a quadrature pair, i.e.,
filters which differ only in their phase preference and
exactly by 908. Such a quadrature pair is usually written
as a single complex filter with one filter defining the real
and one defining the imaginary part of the filter,
optimizing the implementation further. From a quad-
rature pair, the response of a filter preferring any phase
can be computed as a linear combination of these two
filters. Especially, we can compute the absolute value of
the complex response, which represents the response of
an optimally phase-tuned channel at each position. For
our channels we implemented this scheme and pass
only the absolute value of each channel’s response on
to further processing, as illustrated in Figure 3. As we
demonstrate in Figure 3B, this treatment of phase leads
to a phase independent response.

Quadrature pairs could be implemented neuronally
using four phase preference types of neurons for
positive and negative responses of the two filters in the
pair as discussed by Watson and Solomon (1997).
Indeed, neurons in macaque primary visual cortex

Figure 2. Illustration of the filters used for the decomposition. (A) half response curves in frequency space for all filters. Lighter gray

for higher frequency channels. Additionally, one filter is displayed separately to show the half bandwidths at half height of each

channel. The distribution of channels may appear tilted in the figure, because we included filters in the cardinal directions; however,

by mirror symmetry the filters cover or tile the space equally. (B) Three example channels of different frequency and orientations

relative to horizontal. For each channel, a heat map of the weights in frequency space and the real and imaginary part of the filter

weights in space are given. The similarity of the filters to receptive fields of V1 neurons is not incidental.
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Downloaded From: http://jov.arvojournals.org/ on 01/11/2018



cluster around even and odd symmetric phases (Ring-
ach, 2002). However, there are neurons at all preferred
phases, and strongly orientation tuned neurons tend to
prefer odd phase while less tuned neurons tend to
prefer even phase. Both of these observations are
incompatible with a direct implementation of quadra-
ture pairs in neurons. Consequently, quadrature pairs
must be seen as a simplification.

We set the bandwidth of the channels based on the
literature, as we do not include data here that could
constrain the spatial frequency selectivity of the
channels. For spatial frequency, we chose a standard
deviation rF of 0.5945 octaves corresponding to 0.7
octaves half bandwidth at half height, roughly match-
ing the adaptation data of Blakemore and Campbell
(1969) and the neural data of Ringach, Shapley, and
Hawken (2002). For orientation, we chose a standard
deviation rh of 0.2965, corresponding to 208 half
bandwidth at half height based on early psychophysical
measurements (Campbell & Kulikowski, 1966; Phillips
&Wilson, 1984). These measurements used data similar
to our oblique masking data to estimate the bandwidth
of the channels. Consequently, any substantial devia-
tion of the estimates would be noticeable when
comparing our predictions to these data. Additionally,
these estimates are in good agreement with physiolog-
ical measurements (Campbell et al., 1968), as already
noted in the original papers and do fit more modern
measurements like Ringach et al. (2002). Nonetheless,
our filter collection only roughly approximates the
neural population, because there is substantial vari-
ability in the specificity of cortical neurons (Goris,
Simoncelli, & Movshon, 2015; Ringach et al., 2002)
and we ignore known dependencies between preferred
spatial frequency and the bandwidths (Phillips &

Wilson, 1984), an issue on which we comment in more
detail in the Discussion.

Finally, we need to specify how many channels at
which spatial frequencies and orientations to use.
Normative theory from signal processing tells us that
two different orientations and octave-spaced spatial
frequency channels suffice to represent the whole
information present in an image as it is done for
wavelet decompositions (Strang & Nguyen, 1996).
Commonly, pyramid schemes are applied to achieve
such a decomposition with as few filter responses and
as little computation as possible (Simoncelli, Freeman,
Adelson, & Heeger, 1992; Watson, 1987). Specific types
of filters allow these pyramids to achieve additional
advantageous properties like steerability or shiftability
(Freeman & Adelson, 1991; Simoncelli et al., 1992).

To achieve this, however, one needs to choose
specific filter shapes which need to be broad in
frequency and orientation. Using narrower filters, more
different filters are required to cover all orientations,
and there are only discrete choices which fix both
bandwidth and number of channels in each scheme.
Even worse, for spatial frequency the whole pyramid
scheme breaks down once one wants channels that are
not octave-spaced because downsampling by other
factors than two is much less efficient. Thus, these
pyramid schemes do not allow us to fit the channel
bandwidths and the density of channels independently
and limit us to octave-spaced channels.

One could glance over this and approximate the
filters with the best fitting pyramid as Watson and
Solomon (1997) did, for example, were we not using
nonlinear processing after the decomposition. A
stimulus that matches a filter in the model leads to a
single large response in that channel, whereas a
stimulus between channels leads to several smaller

Figure 3. Illustration of the phase handling in the model. (A) The preprocessed example image called ‘‘Original’’ passes through the

processing of a single channel. The complex filtering corresponds to filtering with two filter shapes, an even phase filter for the real

part and an odd phase filter for the imaginary part, which are illustrated in the second column. In the third column the responses of

the filters to the image are shown, which are then combined to the absolute value at each position illustrated in the last panel. (B)

The model response (plotted as the signal-to-noise ratio d0 for detection of the stimulus) to a 38 3 38 Hanning-windowed horizontal

grating of 10 cyc
deg
, changing the phase of the grating. The response of the model is phase independent up to numerical precision.
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responses. Then the accelerating nonlinearity amplifies
the larger response more than the several smaller
responses leading to a stronger model response to
stimuli that match a channel than to stimuli that fall
between channels.

In our model this leads to an oscillating response
with peaks at the orientations and spatial frequencies of
the channels (see Figure 4). Note that such oscillatory
behavior must occur for any model that employs
nonlinearities after the decomposition in channels for
specific frequencies and orientations. A nonlinearity
imposes different weights on the channels depending on
signal strength. However, the activities of any set of
linear channels keep the same relative strength when
the absolute signal strength changes. Thus, no linear
channel shape can fully compensate for the nonlinearity
unless the nonlinearity is computing energy, i.e.,
squaring and summing over channels.

In contrast, one observes neither oscillating perfor-
mance nor any clustering in preferred spatial frequency
or orientation in either psychophysics or neurophysi-
ology. Neurons seem to cover every frequency and
orientation in the range they cover, and human
performance on psychophysical tasks seems to change
smoothly with scale and orientation.

To mimic the dense neural covering of spatial
frequencies and orientations, we chose to simply
increase the number of frequency and orientation
channels until the oscillations of performance were
sufficiently small (see Figure 4). This method allows us
to keep the implementation as a convolution, which is
still necessary to reach an acceptable computation time.
An implementation that includes a realistic sampling of
the channels would go far beyond our horizon here as
this seems not to be constrained psychophysically, and
such decompositions with variable channels were not
studied in detail so far.

Following these considerations, we used a complex-
valued log-Gabor filterbank with 8 3 12 filters for
orientation and spatial frequency for our decomposi-
tion. The eight preferred orientations were equally
spaced over 1808, covering half the frequency space.
The 12 preferred spatial frequencies were placed
logarithmically on the spatial frequency axis from 0:5
cyc
deg to 20 cyc

deg, which roughly covers the range of
frequencies visible to human observers. The kind and
range of filters we used are illustrated in Figure 2.

Each of the filters was precomputed in frequency
space. We then calculated the filter response by
multiplying the Fourier transform of the preprocessed
image with the frequency space representations of the
filters, which yields a complex-valued images for each
channel. This complex-valued image contains responses
of an even symmetric filter as its real part and the
responses of an odd symmetric filter as its imaginary
part. As discussed above, we pass the absolute value of
this response on to further processing, dropping phase
entirely.

The results of the whole decomposition stage are
illustrated for the example natural image in Figure 1D
and E. In D we show the results before and after
removing phase information for three example chan-
nels. In E you find an overview over all channels in
which we display only the average absolute response of
each channel.

Normalization and nonlinearity

Masking and contrast discrimination experiments
show clearly nonlinear relationships between thresholds
and mask contrast (Legge & Foley, 1980). To model
these psychophysical results and the corresponding
interactions observed in primary visual cortex neurons

Figure 4. Illustration of the effects of using fewer channels on

model performance. Left column: Estimated signal-to-noise

ratio for a 38 3 38 Hanning-windowed horizontal grating with

10% contrast against the frequency of the grating. Lighter gray

levels correspond to more channels. Each row shows the

marked area in the row above, representing different zoom

levels. Right column: As the left column, but fixing the

frequency of the grating to 10 cyc
deg

(marked in the left column by

a dashed line) and varying the orientation of the grating instead.

The results shown here were obtained for 256 3 256 pixel

images, but the effects are largely independent of image size.
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(Cavanaugh et al., 2002a; Heeger, 1992), the channel
activities are passed through a divisive normalization
(Carandini & Heeger, 2011; Foley, 1994; Heeger, 1992;
Watson & Solomon, 1997). In our model, we restrict
the normalization to a pool localized in space, spatial
frequency, and orientation. The localization in space
and frequency is not controversial, while it is sometimes
claimed that the normalization pool is not orientation
selective, on which we comment in the Discussion.

In older models, this step was modelled as a Naka-
Rushton nonlinearity (Foley & Legge, 1981; Legge &
Foley, 1980; Naka & Rushton, 1966), which is
equivalent to this normalization with an extremely
narrow pool that contains only the channel itself as an
input.

In our model the formula for divisive normalization
of original channel activities A ¼ ðaiÞi2I to compute
normalized final responses R ¼ ðriÞi2I is

ri ¼
a
pþq
i

Cp þ bi
ð1Þ

Using an index set I , which indexes all different
channels and all positions, a constant C, exponents p
and q and B ¼ fbigi2I , an array of normalization
coefficients, which are computed from the element wise
powers Ap :¼ ðaipÞi2I :

B ¼ Ap � G, bi ¼
X
j2I

Gðxi � xjÞa p
j ; ð2Þ

by convolution with G, a 4D Gaussian normalization
pool with standard deviations xx ¼ xy in space, xF in
spatial frequency, and xh in orientation.1

The weights for the pool in spatial frequency and
orientation are displayed in Figure 5. For frequency we
set this to a rough estimate of xF ¼ 1 octave standard
deviation. For orientation we fit the pool bandwidth xh

based on oblique masking data (displayed in Figure
11), as explained in more detail below.

For the spatial extent we first implemented the model
using a Gaussian profile. However, we lack the data to
constrain the size of the normalization pool in space.
Instead of arbitrarily setting a pool size, we tested the
extreme cases of such a model here. Specifically, we set
the normalization pool to be either the exact pixel to be
normalized only or all responses over the image
weighted equally. These cases correspond to an
infinitely small and an infinitely large pool respectively.
For the classical grating based data, we find that the
normalization over the whole image leads to a better
result and more consistent parameter estimates,
whereas the natural image data is better explained by
the perfectly local normalization.

Nonetheless, we believe neither that the normali-
zation pool is perfectly local nor that is fills the whole
space. Both psychophysical (Snowden & Hammett,
1998) and neural data (Cavanaugh et al., 2002a)
suggest that the normalization pool has some extent
beyond the classical receptive field (roughly 2.5–3
times the radius from the neuronal data). Also our
model allows arbitrary intermediate sizes for the
normalization pool, and sporadic fits we made with
intermediate pool sizes yielded good fits to the
classical data as well. Consequently, we do not argue
against the normalization pool having a nonzero
spatial extent.

We require the additional exponent q, because a
single saturating function per channel cannot explain
the discrimination thresholds at high contrasts, which
grow much less than predicted from a saturating
response function (Goris et al., 2013). This approach
was used earlier by Foley (1994) and Watson and
Solomon (1997) in their models.

The neural mechanism allowing high contrast
discrimination with saturating neurons seems to be
neurons with higher C, which start to respond only at
higher contrasts. Following Watson and Solomon
(1997), we interpret the function in (1) as the sum of
responses of neurons responsible for different contrast
ranges. For such a sum, the formula with q . 0 is
practically equivalent as Watson and Solomon (1997)
discuss in detail (see their figure 16 and discussion point
4.E). As we are not aware of any psychophysical data
requiring a separation into contrast channels, we do
not include this complication here.

The results after the nonlinearity and normalization
are displayed for a natural image in Figure 1F and G.
As for the raw decomposition in D and E, the spatially
resolved responses for three example channels are
displayed in F, and the average response for all
channels in G.

Figure 5. Illustration of the normalization pool G over spatial

frequency and orientation. Both are shown for the central pixel

in the 2:7 cyc
deg

, 908 orientation channel.
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Downloaded From: http://jov.arvojournals.org/ on 01/11/2018



Noise and decoding

Finally, we need a method to quantify how well
stimuli can be discriminated based on their model
representations. Here we model noise on the channel
outputs and then assume that the rest of the brain
optimally decodes from the noisy channel outputs. This
allows us to predict whole psychometric functions, i.e.,
how the proportion of correct responses grows with
growing differences. Additionally, it provides a more
plausible mechanical interpretation than just comput-
ing the difference and pooling with some Minkowski
norm as done by earlier models. Our computations for
this are illustrated for some typical spatial vision
stimuli and tasks in Figure 6.

For our model, we assume independent Gaussian
noise for each individual pixel in each channel whose
variance scales linearly with the activity in the channel.
This model allows us to scale smoothly between pure
constant noise and noise that scales completely with the
response. Obviously, the independent Gaussian is a
specific choice. However, the decision variable will be

roughly Gaussian distributed whatever the original
distribution was, as our decoding combines many
responses for any decision. We also include no noise
correlations here, as it would impose a high computa-
tional hurdle and is most probably not constrained by
the psychophysical data. We discuss our choice of noise
in some more detail in the Discussion.

Using this noise model, we can compute a signal-to-
noise ratio for each pixel’s ability to discriminate a pair
of images. Finally we combine the information using
optimal linear decoding, which boils down to a
weighting by the signal-to-noise ratio, as the pixels are
modelled as independent.

First, we calculate the variance of the Gaussian noise
ni for any response ri of the model:

ni ¼ Nc þNfri ð3Þ
using two parameters, the variance of a constant noise
source Nc and the factor for the linear noise Nf. When
fitting to data, we found that q and NF can compensate
each other, such that we setNF¼0 regressing to constant
noise below (see Appendix A for details on this).

Figure 6. Illustration of the readout mechanism of the model. For four different typical spatial vision stimuli, we show the channel

mean of the raw decomposition results and of the final normalized responses. To predict how well two images can be differentiated in

psychophysical experiments, the responses for each pixel in each channel are subtracted from each other and divided by the noise

standard deviation. This formula results in a signal-to-noise ratio for each position in each channel indicating how well this pixels’

activity differentiates the two images. The mean of these signal-to-noise ratios over each channel are shown in the last column. For

one channel we also show the spatial distribution of the differentiability and for each we computed the overall discriminability d0. The

three pairs of stimuli correspond to contrast detection, contrast discrimination, and oblique masking experiments, respectively.
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For the ith pixel we can then calculate the signal-to-
noise ratio for differentiating two images (1) and (2)
from the model responses r

ð1Þ
i and r

ð2Þ
i at this pixel:

si ¼
ðrð1Þi � r

ð2Þ
i Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ð1Þ
i þ n

ð2Þ
i

q ð4Þ

Using this signal-to-noise ratio we can calculate the
mean value di and variance gi for each pixel weighted
by its signal-to-noise ratio for discriminating this
specific pair of images:

di ¼ siðrð1Þi � r
ð2Þ
i Þ gi ¼ s2i ðn

ð1Þ
i þ n

ð2Þ
i Þ ð5Þ

From that we arrive at the summed signal d and its
variance g and can calculate the percent correct p0c for a
2AFC task using the standard cumulative normal
distribution U:

p0c ¼ U
dffiffiffi
g
p
� �

¼ U

P
i2I diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2I gi

p
 !

¼ U
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2I gi

p X
i2I

siðrð1Þi � r
ð2Þ
i Þ

 !
ð6Þ

Note that this system applies only for exactly two
images to be compared. If one wanted to decode
information about groups of stimuli, the optimal
decoder is almost always more complex.

For the natural images we once chose a simpler
decoding principle. The simpler decoder weights all
pixels and channels equally, i.e., (5) is replaced by di
¼ jrð1Þi � r

ð2Þ
i j and gi ¼ n

ð1Þ
i þ n

ð2Þ
i . This essentially as-

sumes that the decoder weights all channels in the
correct direction, but has no information on how well
each channel discriminates.

Finally, to handle rare lapses of subjects, we simulate
a lapse rate of 1% by rescaling p0c into the final pc

pc ¼ kþ ð1� 2kÞp0c ð7Þ
with k ¼ 0.005. Taking these lapses into account is
necessary as a predicted pc of 1 renders failures
impossible. Thus, without a modelled lapse rate, lapses
at high stimulus levels can strongly influence parameter
estimates (Wichmann & Hill, 2001).

Calculating thresholds

Our model calculates percent correct for differenti-
ating two images. Thus, we require a method to
calculate thresholds. We chose to calculate thresholds
by a bisection method.

We start by testing whether the model predicts
observers to be correct at maximal displayable contrast
(one minus the mask contrast) with a probability higher

than a threshold (typically 75%). If this is the case, we
start the bisection method with 0 contrast and the
maximal displayable contrast defining the first interval.

In each step of the bisection method, we calculate the
predicted percent correct for the center of interval
calculated so far and take this point as the new top or
bottom end of the interval depending on whether the
predicted percent correct is larger or smaller than the
threshold percent correct.

We repeat bisectionmethod steps until the width of the
interval divided by the lower end is less than 5% and use
the center of the last interval as the threshold estimate.

Parameter fits

We fixed our model up to the decomposition into
different spatial frequency channels without free
parameters. After this regulating, however, there are
some parameters that we need to fit to data. Namely
the two exponents p and q, the constant of the
normalization C, the bandwidth of the normalization
pool xh, and the noise strengths NC and NF.

To fit parameters, we calculated a single maximum
likelihood fit to the data obtained from all observers.
This adequately weights the different datasets we have
for estimating parameters and uses all data well.

In short, we started with a grid search over the unset
parameters. As a conclusion from this grid search, we
restricted ourselves to a purely constant noise source
setting NF to zero as we found that changing q can fully
compensate for different NF, such that the model can
explain the data equally well, largely independent of
NF. Additionally, we fixed the bandwidth of the
normalization pool xh based on the oblique masking
data starting an optimization of this parameter from
the grid search result.

Using the fixed normalization bandwidth and the
purely constant noise source, we then fitted the other
parameters to the contrast discrimination data for each
presentation time and once additionally for the oblique
masking data. For this fitting step we used a quasi-
Newton optimization.

Additionally, we decided to fit the parameters again
for the ModelFest dataset. As we have only threshold
data for this dataset, we had to convert these thresholds
into contrast, percent correct pairs for fitting. When we
use only a data point at threshold, this favors shallow
psychometric functions that predict threshold percent
correct for any pair of stimuli. To avoid this problem,
we added a data point at 1.5 times threshold contrast
with 199 of 200 trials correct and a data point at the
third of the threshold with 100 or 200 trials, which
represents change performance. As threshold detection
data usually do not constrain the normalization
exponent q, we fixed it to the value from our longest
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presentation time of 1497 ms. Fits with this parameter
free yield similar prediction quality.

A more detailed description of our method of fitting
is given in Appendix A.

Data for model evaluation

The data for contrast detection, contrast discrimi-
nation, and oblique and plaid masking were collected
during the doctoral studies of Wichmann (1999). Some
of the data are published in Bird, Henning, and
Wichmann (2002). In these reports all technical details
can be found, and we report only an overview here.

The classical psychophysical data were collected as
temporal two alternative forced choice (2-AFC) ex-
periments; i.e., two stimuli were presented in succession
and the observers’ task was to report which time
interval contained the signal. Presentation time was
marked with tones, and there was immediate auditory
feedback indicating which was the correct interval. In
total, seven observers participated; they were all
experienced psychophysical observers, were aware of
the purpose of the experiments, and had normal or
corrected-to-normal visual acuity. Stimuli were pre-
sented on a calibrated, digitally linearized CRT screen
with a mean luminance of 88:5 cd

m2 with a refresh rate of
152.3 Hz. To guarantee independence of signal and
mask in the stimuli, they were presented in different
refreshes combining three refreshes into one frame (one
for the signal and one for each of two possible masks).
There were three different temporal presentation
modes: (a) Stimuli were presented for a single frame,
i.e., three refreshes, nominally for 19.7 ms. (b) Stimuli
were presented for 4 3 3 frames, nominally 79 ms. (c)
Stimuli were presented with the contrast of all
components following a Hanning window of 1497 ms
total duration. All reported contrasts are the peak
contrast at the center of the time interval. To extract
thresholds from the data we fitted the data using
psignifit 4 with the standard prior set based on the
tested stimulus range (Schütt, Harmeling, Macke, &
Wichmann, 2016). Error-bars represent 95% credible
intervals.

We also present data from the Modelfest dataset
(Watson & Ahumada, 2005) and a natural image-
masking database (Alam et al., 2014) here. The
Modelfest dataset consists of contrast detection
thresholds for 43 different 256 3 256 pixel targets
presented at 120 pixels/8. Target contrast was tempo-
rally modulated by a Gaussian envelope with a
standard deviation of 125 ms. The natural image-
masking database consists of the detection thresholds
for 3:7 cyc

deg log-Gabor-filtered noise targets masked by
1080 natural image patches taken from 30 black and
white digital photographs. Thresholds were measured

using a spatial three alternative force choice task. Three
stimuli were presented simultaneously, and subjects
had 5 s to indicate which stimulus contained the noise
Gabor target overlaid over the natural image patch.
Further technical details for these datasets are provided
in the original studies.

Results

Classical psychophysical results

We first test our model on classical psychophysical
experiments. These experiments were specifically de-
signed to test hypotheses about early spatial visual
processing. To achieve this, the stimuli are composed of
sinusoidal gratings intended to activate the spatial
frequency and orientation channels as specifically as
possible. We shall start with the sensitivity of single
channels and continue with masking experiments,
which test how well activation of additional channels
masks the signals.

Contrast detection

We present detection data for three different
temporal presentation modes, roughly 20 ms and 80 ms
with hard on and offsets and contrast changing
according to a 1.5-s long Hanning window/raised
cosine window.

The data are presented in the form of contrast
sensitivity functions (CSFs) in Figure 7. The contrast
sensitivity functions show the typical bandpass shape
for long presentation times and the more low-pass
shape for the short presentation times.

The model reproduces the contrast sensitivity
functions closely. This is not surprising as we fitted a
weighting for the spatial frequencies in our prepro-
cessing for each presentation time.

ModelFest

Next we evaluate our model against the ModelFest
database, incorporating detection performance for 43
different patterns measured with many observers in
different labs.

The results of our model for these data are displayed
in Figure 8. First we ran our model with a new contrast
sensitivity function and the parameters fitted for the
adjacent presentation times. With these parameters we
already obtained promising fits displayed as the gray
lines in Figure 8, which fitted almost all patterns in the
data. The main error seems to be a constant offset,
which we could probably correct by adjusting the initial
weighting filter. Using parameters fitted to the data, we
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obtain an even slightly better fit to the data plotted as

the black line in Figure 8.

The clearly largest deviation from the data for all

parameter settings is the Gaussian blob (stimulus #26).

This very low spatial frequency target is strongly

affected by our initial luminance normalization. Con-

sequently, we believe that this represents a problem of

our overly simplistic preprocessing, which ignores

stimulation before and after the stimulus, which sets the

adaptation level differently from the mean of the image

presented.

Contrast discrimination

The next type of data we compare our model to is
contrast discrimination data, which originally moti-
vated the nonlinearity (Foley & Legge, 1981; Legge &
Foley, 1980). Here the task is to report which of two
presented gratings has the higher contrast, i.e., to
discriminate gratings, that differ only in contrast.

We start by investigating only the 78.8-ms presen-
tation data presented in Figure 9. At all spatial
frequencies the thresholds for discrimination follow
the classically observed dipper shape (Foley & Legge,
1981; Legge & Foley, 1980). All curves first decrease

Figure 7. Results for the contrast detection data for different presentation times. Different symbols represent the measured data from

different observers. Each observer has their own fixed symbol across all figures. Error bars represent 95% credible intervals from a

Bayesian analysis of individual psychometric functions. The continuous line represents the prediction of the model. (A and B) Both

19.7- and 79-ms (three and 12 frames) presentation time with hard on- and offsets. (C) Contrast Hanning-windowed in time with a

total presentation time of 1497 ms.

Figure 8. Results for the ModelFest dataset. We here plot (log-) contrast sensitivity for the 43 different stimuli ordered along the x

axis. The dots represent the average measured threshold, with error bars representing the range of measured thresholds. The lines

represent the predictions of our model using different parameters. Above the plot we show tiny full contrast images of the stimuli.
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such that at low pedestal contrasts, contrast discrim-
ination is easier than detection (Nachmias & Sans-
bury, 1974). At higher contrasts, discrimination
thresholds lie roughly on a straight line in the log-log
plot, indicating a power law for the contrast discrim-
ination threshold.

The model reproduces the contrast discrimination
curves quite well for all spatial frequencies. Also the
slopes of the psychometric functions seem to be
captured by the model, since we fit thresholds at
different performance levels. Especially the shallower

psychometric functions in the dipper reported by Bird
et al. (2002) are reproduced.

Next, we can investigate how contrast discrimination
performance varies with presentation time. For the 8:3
7 cyc
deg target we also have contrast discrimination data at

the two other presentation times of 19.7 ms and the
1497-ms Hanning window.

These data with model fits are plotted in Figure 10.
In each panel we show the data measured with given
presentation time together with three different fits. All
of these fits use the contrast sensitivity filter fitted for
the correct presentation time, but normalization

Figure 9. Results for contrast discrimination data. All data were collected with 79-ms presentation time with hard on and offsets. (A)

Data for 8:37 cyc
deg
, the frequency for which we have the most data. The different gray values indicate different percent correct to be

reached to define the threshold. The difference between these lines illustrates the change in the slope of the psychometric function

over the range of contrasts. Specifically it is shallower in the dip and steepest for detection. (B) Results for different spatial

frequencies. Here only the data for the 75% contrast are shown. 0:00 cyc
deg

indicates discrimination in the brightness of a blob. All other

conventions are as in Figure 7.

Figure 10. Results for contrast discrimination data for different presentation times. Each panel shows the contrast discrimination data

for the 8:37 cyc
deg

for one presentation time. Again different symbols show the 75% threshold from different observers with 95%

credible intervals. The lines represent the predictions from three different sets of parameters. In each panel the prediction with

parameters fit to the displayed data is highlighted in black. All other conventions are as in Figure 9.
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parameters fitted to the three presentation times. The
model can reproduce the data for each presentation
time. However, the different presentation times require
different parameters since the curves simulated from a
single parameter set do not capture the data ade-
quately. Especially the width of the dip and its position
relative to the detection threshold differ between
presentation times.

Oblique masking

Next we compare our model to oblique masking
data, which represent the psychophysical reason for
replacing the channel wise nonlinearity with normali-
zation across channels (Foley, 1994). Here the task is to
detect the presence of a horizontal grating, while all
observation intervals contain an additional ‘‘oblique
mask,’’ i.e., another grating of the same spatial
frequency and spatial envelope, but with a different
orientation. All oblique masking experiments were
performed with the 1497-ms presentation time and 38 3
38, 3 cyc

deg targets.
Results of these experiments are presented in Figure

11. While the masking effect of nearby orientations is
slightly underestimated by the model the overall fit of
the model to the data is good.

Plaid masking

The next type of data we compare our model to is
plaid masking data. Here, the task is the same as for
oblique masking, but the one oblique mask is now
replaced with two masks rotated away in opposite
directions from the signal orientation, which are
together called a plaid.

Results of these experiments are displayed in Figure
12. Characteristic for these experiments is that at
relatively high contrast (here 25%) plaids 308–458 (and
even further away from the signal orientation) sub-
stantially mask the signal, while each of the two
gratings composing the plaid alone hardly mask the
signal. Thus, the two gratings’ masking capabilities
combine strongly superadditively. To show this super-
additivity, we replotted the oblique masking data in the
figure.

Our model fails to replicate the super additive
masking effect of plaid masks, as most probably all
other spatial vision models based on the multiresolu-
tion theory do (Derrington & Henning, 1989). A clearly
favoured explanation of this effect has not yet emerged
although it is strong and reliable. For some weaker
forms of plaid masking where the signal and mask are
separated in spatial frequency, linear summations over
channels can explain plaid masking (Holmes & Meese,
2004). For the effects of plaids of the same spatial
frequency only speculations exist though. One is that
plaid masking is a perceptual effect created because
observers frequently perceive high contrast plaids as
‘‘checkerboards’’ oriented between the orientations of
the plaid components (Georgeson & Meese, 1997). A
different one is that the recurrent dynamics of V1 might
create activity at orientations different from the signal
orientations, especially at the orientation between the
two plaid components (Carandini & Ringach, 1997).

Figure 11. Results for oblique masking experiments, spatial

frequency for both signal and mask was 3 cyc
deg

. As in previous

figures, symbols represent data and lines the predictions of our

model. The black line uses parameters specifically fit to the

oblique masking data; the gray line is the prediction using the

parameters estimated using all data at the long presentation

time of 1497 ms.

Figure 12. Results for Plaid masking experiments, here only for

the 25% contrast mask. The plaid data and model predictions

are plotted as the black symbols and line again. Additionally we

replot the data and prediction for a single oblique mask from

Figure 11 in gray.
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However, neither of these suggestions can be easily
incorporated into the kind of model we propose here.

Natural scene masking database

To include some evaluation of our model on more
natural stimuli than gratings, we evaluate our model on
a natural image-masking database (Alam et al., 2014).
The database consists of the detection thresholds for
log-Gabor filtered noise targets masked by 1080 natural
image patches taken from 30 black and white digital
photographs.

To apply our model, we used a single exemplar of
the noise, which accompanies the database and
calculated its detectability on the different patches
imitating the conditions the subjects saw in the
experiment as closely as possible. As subjects were
allowed to move their eyes and our model cuts out a
rather small foveal area, we simulated not only a
fixation at the exact center of the patch and signal, but
also at the eight points moved 0.58 up and down and/
or left and right from the center. Following the
overarching theme of optimality, we display the lowest
of the nine thresholds obtained this way. For the
parameters, we chose the parameters for the long, 1.5 s
Hanning window as the natural image patches were
displayed for an even longer time of 5 s.

To convert the images to luminance values, we used
the formula provided with the database, although it
returns values smaller than the minimum luminance of
the monitor reported in the paper. Thus, the data for
dark patches seems to be unreliable. Also, the original

paper excluded patches with low average luminance.
Consequently, we follow the lead of the original paper
and exclude patches with an average nominal lumi-
nance below 4 cd

m2 from further analysis. These excluded
patches are still displayed in Figure 13 as gray dots.

The results of our model are displayed in Figure 13.
We find that the model generally overestimates the
sensitivity of observers on the natural image stimuli,
but produces thresholds highly correlated to the
measured ones and thus seems to represent a sensible
upper bound on these data. Models designed and
adjusted specifically to fit this database can produce
higher correlations with the data (Alam et al., 2014,
2015). Nonetheless, for generalization from grating-
based experiments, the predictions seem to be quite
accurate. Also, we err in the explainable direction. It
seems plausible that highly trained observers perform
better on simple grating stimuli without any random
variation than less trained observers on natural image
patches whose exact properties they were not exten-
sively familiar with.

Surprisingly, we find that the single pixel normali-
zation scheme, which was problematic for predicting
the classical grating data, yields a higher correlation to
human thresholds (r¼ 0.5801) than the mean normal-
ization scheme (r ¼ 0.5196), which was better at
predicting the grating data. Tentatively, we assume that
there is a local normalization scheme of medium size,
which still fits the grating data and produces an equally
good prediction as the local normalization.

One possible explanation for why our model predicts
too low thresholds for the natural image stimuli might
be that subjects are worse at decoding the noise signals

Figure 13. Results for the natural image masking database. First we plot the measured thresholds against the predictions of our model

setting the spatial extent of the normalization pool either to the whole image or to a single pixel. Patches darker than 4 cd
m2 are plotted

in gray, all others in black. Additionally, we marked one low and one high threshold example patch each, where the measured

threshold was higher, lower, or roughly equal to the prediction.
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on the natural image masks than they are in the simpler
classical grating experiments. In Figure 14 we show one
specific weaker decoder. Namely, it weights any
difference only by its sign instead of its signal-to-noise
ratio. This limitation results in a decoder that simply
adds all image differences, but ignores how well the
specific channel differentiates the two images. This
scheme is equivalent to taking the Minkowski-1-norm
of the difference between the images drawing the
connection to earlier models. Clearly such a simpler,
worse decoder moves our predictions much closer to
the measurements. However, we do not claim that this
specific decoder mimics human behavior, as many
other bad decoders would certainly increase the
predicted thresholds equally. Nonetheless, this illus-
trates the point that a realistic but suboptimal decoding
could explain the weaker performance of subjects in
this natural image-masking task.

Different parameter sets

To further investigate the models’ internal process-
ing, we shall have a look at how the parameters needed
to be changed to fit the different presentation times and
data types. As described in detail in Appendix A, we
first fit the longest presentation time for which we also
have the oblique masking data to fix the orientation
bandwidth of the normalization pool and then fit the
parameters of the final normalization for the different
presentation times and for ModelFest.

The parameter fits are given in Table 1. First, note
that the linear contribution to the noise Nf is 0 for all
datasets. We set this because we noticed that the
exponent q can compensate for vastly different Nf such
that all of them explain the data equally well (see
Appendix A). Additionally, there is a presentation time
dependent scaling of the input in our model. Thus, the
constant C cannot be compared directly across presen-

Parameter Meaning 19 ms 79 ms 1497 ms Oblique ModelFest

Nc Constant noise variance 1.4389 0.6450 0.4763 0.4235 0.0070

Nf Noise variance factor 0* 0* 0* 0* 0*

C Nonlinearity, constant 0.0031 0.0046 0.0027 0.0014 0.0147

p Nonlinearity, exponent 2.7996 2.0253 1.8667 1.3732 1.2090

q Difference exponents 0.3767 0.3676 0.3032 0.3755 0.3032

xh Normalization pool orientation 0.2008 0.2008 0.2008 0.2008 0.2008

rh Filter standard deviation orientation 0.2965 0.2965 0.2965 0.2965 0.2965

xf Normalization pool frequency 1 1 1 1 1

rf Filter standard deviation frequency 0.5945 0.5945 0.5945 0.5945 0.5945

xx ¼ xy Normalization pool space — — — — —

Table 1. Parameter values used for the different experiments. Note: The bold values were fit for the data in the experiment; the others
were kept at the values we estimated from the 1497-ms presentation time, as we had the most oblique masking data to constrain the
parameters at that time.

Figure 14. Using a weaker decoder for predicting the early natural image-masking database. The gray dots represent the predictions

from the model when differences between the two images are summed disregarding their signal strength. The black symbols

reproduce for the optimal decoder from Figure 13.
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tation times. Consequently, only the exponents p, q and
possibly the noise strength NC can be compared between
presentation times. Furthermore, the parameters we
fitted for ModelFest depend on the data augmentation
we used to achieve a good fit from the thresholds only,
and the oblique masking data were fit to a considerably
different kind of data. Thus, we shall restrict our
discussion to the parameter sets fit to the contrast
discrimination data at the three presentation times.

For these three presentation times we see that q,
which regulates the high contrast behavior of the model,
changes little with the presentation time. This corre-
sponds to the empirical statement that the power law
behavior at high contrasts has a similar log-log slope for
all presentation times. The exponent p changes such that
longer presentation times require a lower exponent. This
change fits the empirical observation of a less pro-
nounced dip at longer presentation times (see Figure 10).
Additionally we can observe that the noise variance NC

decreases with presentation time fitting the absolute
decrease in thresholds for longer presentation times.
This could be interpreted as averaging away noise over
time. However, caused by the different scaling of
contrast applied before the decomposition and the
different C it is not entirely clear whether this conclusion
should be taken seriously based on these data.

Analysis of the models representation

Additional to the theories developed based on
psychophysical or neural measurements, researchers
developed normative theories to characterize what the
information extracted from natural stimulation for
animals or humans should be. Our model was not

designed to maximize coding efficiency or to fit natural
stimuli. Thus, it is interesting to have a more detailed
look at what responses to natural stimuli look like and
which normative principles our model follows.

As a first qualitative analysis on the model output,
we looked at the responses our model produces to
natural images. Simply summing the responses from all
channels, we found that our model indeed highlights
edges. This fits the earliest accounts of the responses of
primary visual cortex neurons (Hubel & Wiesel, 1968).
As an example, we show the summed response for the
example photograph of the Tübingen town hall in
Figure 15A. To allow a better display, we show the
square root of the sum. Note also that the town hall is
easily recognizable from this representation.

Sparseness

To get some more quantitative information about
the typical responses of our model, we analyzed the
responses of our model to some natural images, for
which eye movement data are available from an earlier
study (Engbert, Trukenbrod, Barthelme, & Wichmann,
2015). In this study 35 observers explored 15 natural
scenes and 15 photographs of texture surfaces for 10 s
each to memorize them. During this experiment they
produced 24,582 fixations. At each of these fixations we
extracted the activity at the fixated pixel from an image
we had processed by the model as a whole without the
foveal window. This might give us some hint what the
internal representation in our model looks like for
natural foveal stimulation of human observers.

First, we looked at the range of activations observed
and found an extremely skewed distribution (see Figure

Figure 15. Some information on the output of the model. (A) Square root of the sum of the outputs of all channels for the example

photograph of the town hall of Tübingen as an example unrelated to panels (B), (C), and (D). The output of our model highlights

edges. (B) Histogram of all channel activities over fixation locations in natural images. As the highest channel activity we observe is

194, we cut the histogram at 5 to make some distribution visible. The activity distribution is extremely skewed, i.e., our model

produces a sparse code. (C) As in (B), but only for the most active channel (vertical with 2:7 cyc
deg

peak sensitivity) to show that each

channel is sparsely active. (D) Mean activation over all fixation locations.
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15B): Maximal activations were almost 200, while
98.7% of the channel activities observed was smaller
than 5. This effect is caused by skewed distributions in
each channel. To illustrate this distortion we show the
activity histogram of the most active channel in Figure
15C. Even this most active channel is rarely active.
These observations fit well with theoretical arguments
for using a sparse code (Olshausen & Field, 1996) and
physiological observations showing sparse neuronal
responses (Buzsáki & Mizuseki, 2014).

To quantify the sparsity of the model responses, we
used the formula developed first by Rolls and Tovee
(1995) and refined and applied to primate primary
visual cortex by Vinje and Gallant (2000):

S ¼ 1�
1
n

Pn
i¼1 ri

� �2
1
n

Pn
i¼1 r

2
i

1

1� 1
n

: ð8Þ

S measures the proportion of the sum of squares
explained by the mean response and subtracts it from 1.
After dividing by 1� 1

n this yields a measure which
conveniently scales from 0 to 1 from a constant
response to a perfectly sparse response, which reacts
exactly to one stimulus and is 0 for all others. Applying

this formula to our model responses, we follow
Froudarakis et al. (2014) in separating population
sparseness (whether the population response to a
stimulus is sparse) from lifetime sparseness (whether an
individual channel is sparsely active over the presenta-
tion of all stimuli).

For population sparseness, we find an average value
of 33.86% for the raw decomposition and 52.31% for
the normalized responses, which is more sparse than
average neuronal populations in mouse V1 (mean ¼
0.26, maximum � 0.6) as measured by Froudarakis et
al. (2014), but within the range observed. Due to the
small numbers of simultaneously recorded neurons in
typical primate recordings, we lack data to compare
our model to for monkey primary visual cortex.

Investigating lifetime sparseness, we find high values
for the sparseness of the channels as displayed in Figure
16. On average the channels after the raw decomposi-
tion have S¼55.07%, which increases to an even higher
S of 73.85% after normalization. These are both much
higher than the lifetime sparseness measured in mouse
V1 by Froudarakis et al. (2014), which was 35% on
average.

Figure 16. Lifetime sparseness for the different spatial frequency and orientation channels. Left shows the sparseness of the linear

filter responses (before nonlinearities and normalization). Right shows the sparseness of the final responses. In the top row we show

the sparseness of activities at fixated locations. In the lower row we show the difference between the sparseness at fixated locations

and the sparseness at nonfixated control locations.
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Furthermore, our model also reproduces the obser-
vation that natural stimulation—viewing natural im-
ages—elicits a sparser code. Patches extracted around
fixated locations yield higher lifetime sparseness in high
spatial frequency channels than do control patches,
which we extracted at the measured fixation locations,
but from different images from the stimulus set (see
Figure 16).

We also computed the average activations produced
by the channels in our model. The results are displayed
in Figure 15D. After the normalization the fall off for
higher spatial frequencies inherent in natural images
(Field, 1987) is not observed any more. In contrast, the
higher content for the cardinal axes (08 and 908 in our
notation) persists after the normalization (Furmanski
& Engel, 2000; Li, Peterson, & Freeman, 2003). This
activation pattern qualitatively fits reasonably well to
the distribution of neurons in primary visual cortex,
fitting the idea that the distribution of neuronal
preferences reflects the distribution of activations
produced by natural stimulation (Field, 1987; Laugh-
lin, 1983).

Optimized stimuli

One additional benefit of (successful) image-com-
putable models of human vision is that they should
allow the generation of image modifications leading to
minimal and/or maximal perceptual differences, ex-
ploiting the idea of maximally differentiating (MAD)
stimuli (Wang & Simoncelli, 2008). In the following we
illustrate the viability of MAD applied to our image-
computable spatial vision model, comparing changes in
the model responses to the default and simple root
mean squared error (RMSE) metric.

For our illustration we optimized the images to be as
easy or as hard to differentiate from the image of the

Tübingen town hall as possible with a given RMSE
after conversion to luminance and application of the
foveal window. The exact optimization scheme we
applied is described in detail in Appendix C.

In Figure 17 we show three images with equal RMSE
from the original Tübingen town hall example image:
one with minimized differentiability, one with simple
Gaussian noise, and one with maximized differentia-
bility. The optimization clearly produced stimuli which
are predicted to be considerably more or less differen-
tiable from the original image but all have the same
RMSE.

In the image with maximized differentiability, we can
observe two aspects of the model: First, a single, local
signal is predicted to be more easily detectable. Second,
the optimized signal is similar to the filter shape of a
single channel of medium spatial frequency where
contrast sensitivity is highest.

In the image with minimized differentiability, the
RMSE is realized as a high frequency nonoriented and
distributed noise on the image. This indeed becomes
practically invisible when viewed such that the image
covers the 28 3 28 simulated in the model (around a 1.4
m distance if you printed this paper on A4, such that
the images are 5 3 5 cm).

These generated stimuli demonstrate that our model
is capable of producing predictions for suprathreshold
stimuli and their differences, which are interpretable
and testable. This makes our model potentially
applicable for image quality assessment, and, as
discussed below, allows more thorough tests of the
model to be performed.

Discussion

We describe an image-computable model of spatial
vision. When applied to classical psychophysical

Figure 17. Stimuli with optimized differentiability from the original Tübingen town hall image, with a given RMSE in the windowed

contrast image. Luminance images are displayed assuming a gamma of 2.2. In the model these images were simulated to cover 28 3

28 of visual angle. (A) Minimized differentiability, (B) Gaussian noise over the area within the foveal window, and (C) Maximized

differentiability.
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results, it is consistent with the broad range of contrast
detection, discrimination and oblique (orientation)
masking data fitted by earlier, more abstractly imple-
mented, nonimage-computable models. In addition, we
tested our model on the ModelFest dataset on which it
also performs well. Alas, our model—like all previous
models—fails to account for human plaid masking
data.

While developing our model, we uncovered two
crucial ingredients for a successful image-computable
spatial vision model: First, when including nonlinear
interactions between channels after the decomposition,
strong oscillations in the response are observed unless
we sample the spatial frequency and orientations axes
more densely than required from signal processing
considerations. In the human visual system, this
problem appears to be solved by not having discrete
channels like in engineered subband transforms, but by
having a continuous distribution of cells covering the
relevant spatial frequencies and orientations.

Second, different temporal presentation modes
require—systematically—different parameters of the
model: Shorter presentation times require higher
exponents for both the signal and the normalization
pool, yielding stronger nonlinearities for short presen-
tation times. This finding confirms an earlier conjecture
by Wichmann (1999), based on much simpler models,
and might explain differences in estimated exponents
between different labs and studies. For the parameter q,
the difference in the exponent between numerator and
denominator—we find little dependence on the pre-
sentation time once we assume only a constant noise.
Finally, variance of the constant noise decreases with
presentation time. All these changes in parameters are
consistent with the following picture: Channels show an
onset response with stronger nonlinearity, followed by
a less nonlinear sustained response. Over time human
observers appear to be able to average some of the
noise.

When we applied our model to the natural image-
masking database by Alam et al. (2014), we found that
our model predicted the data reasonably well, but
almost always predicted lower thresholds than ob-
served in their experiment. Potential reasons for the
discrepancy include the following: First, our optimal
decoder knows both signal and mask exactly, which is
unlikely to be true for human observers with either
stochastic or hitherto unseen natural images as masks.
Thus, the overestimation of performance of our model
may in part be due to our too knowledgeable decoder.
Second, our model is solely fit to data from very
experienced psychophysical observers, and we do not
know about the experience of the observers in the
natural image-masking study (c.f. Jäkel & Wichmann,
2006).

To investigate whether our model conforms to
normative notions derived from efficient coding, we
analyzed its response to natural images at positions
foveated by human observers. We found our model to
be sparse as expected from theoretical considerations.
Furthermore, average responses still contain a bias for
cardinal orientations as observed in natural images, but
the 1/f decline over spatial frequency associated with
natural images is obliterated by normalization.

Finally we created MAD stimuli to compare our
model to the RMSE. These stimuli illustrate the
behavior of our model. Additionally, such stimuli
might be used to psychophysically test our model in the
future, which is the intended purpose of MAD stimuli
(Wang & Simoncelli, 2008). Especially once one wants
to test different, more complex models against each
other, analyses like this are invaluable.

Comparison to earlier models

As we specifically designed our model to be an
image-computable version of the standard spatial
vision model, it naturally shares many properties with
earlier models and implementations.

The model by Foley (1994) first introduced the
spatial frequency and orientation channel decomposi-
tion followed by divisive normalization, which is at the
heart of our model. However, Foley implemented
decoding as a Minkowski norm of the difference
between responses instead of explicitly modelling noise
and optimal factorial decoding as we do here. Another
model using the simpler Minkowski norm decoding
scheme is the model by Itti et al. (2000). This model is
also an important precursor of our model, as it showed
that different tasks like spatial frequency and orienta-
tion discrimination could be explained by a single
model of the style we use here. Finally, the most closely
related abstract, nonimage-computable model is the
model by Goris et al. (2013). The remaining conceptual
differences of our model to the Goris model are, on the
one hand, that we did not include noise correlations or
adaptation present in the Goris model, but, on the
other hand, we added the spatial extend of the
normalization pool, orientation, etc., to move our
model from 1D to 2D.

Of the few image-based spatial vision models, the
two most closely related ones to ours are the models by
Teo and Heeger (1994) and by Watson and Solomon
(1997), which both implement a spatial frequency
decomposition and divisive normalization. However,
they use the simplistic Minkowski norm decoding and
were implemented with the technology of their time,
which made diverse compromises for speed necessary.
For example, the Watson and Solomon (1997) model
represented only three spatial frequency channels of
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which one always hit the spatial frequency of the target.
Also both models were compared to a rather small
range of data and some views and questions like
natural scene statistics and optimal coding were not yet
discussed at the time of these models.

Most other image-computable models of spatial
vision do not aim to mimic the internal processes
involved in spatial visual processing, but simply
optimize prediction with computationally less de-
manding processes. Especially the most modern models
of this kind (Bradley et al., 2014) predict human
performance quite well and can even include peripheral
limitations. However, these models are designed for
different purposes than our model, providing no output
similar to the output of the first steps of the human
visual system and allow no direct tests of hypotheses
about the early visual processing either.

Potentially controversial details

Phase invariance

Our model provides phase invariant output, which
represents the information perfect complex cells would
convey. This is computationally efficient and provides
all information necessary for the psychophysical tasks
we model. Additionally, this output nicely fits with
other psychophysical data which explicitly shows phase
independence for the detection of multiple sufficiently
separate components (Graham & Nachmias, 1971) and
that phase perception can be explained based on
detection of local contrast changes (Badcock, 1984,
1988). However, neuronal data show that the distinc-
tion between simple and complex cells is gradual, and
both types express some sensitivity to relative phase
(Mechler, Reich, & Victor, 2002). Furthermore humans
show more dependence on phase information for object
recognition than predicted from contrast reduction
caused by phase noise (Wichmann, Braun, & Gegen-
furtner, 2006). Consequently, a more complete model
might add decoding from phase dependent output to
mimic simple cells, or even include both simple and
complex cells.

Tuning and complexity of the normalization pool

The spatial vision community is divided whether the
normalization pool is orientation specific. In our purely
divisive normalization implementation—without a
subtractive normalization—orientation specific nor-
malization is required to be consistent with our data;
the same is true for the model by Itti et al. (2000). The
models by Foley (1994) and by Teo and Heeger (1994)
argue for an orientation unspecific normalization, in
line with neurophysiology (Heeger, 1992).

In our data and the data of Itti et al. (2000),
orthogonal gratings barely mask each other, even at
high mask contrasts—thus a nontuned divisive nor-
malization does not fit such data. In the data by Foley
(1994), however, orthogonal gratings mask the signal
grating. Similarly physiologists sometimes find that
orthogonal gratings considerably attenuate neuronal
responses (Heeger, 1992)—cross-orientation inhibition.
However, at least the suppressive surround is some-
times found to be tuned (Cavanaugh, Bair, &
Movshon, 2002b). One possible explanation for this
discrepancy in the data is the temporal presentation of
the stimuli during the experiments. Our data and the
Itti et al. (2000) data were collected using static gratings
presented for an extended period of time, whereas the
data of Foley (1994) and Foley and Boynton (1994)
were collected using very short presentation times.
Thus, the normalization pool may initially be broadly
tuned, but narrows during prolonged presentation.

Furthermore, the normalization we implemented
does not cover all interactions reported between
channels. There are well known facilitatory effects of
collinear flankers (Polat & Sagi, 1993). Most commonly
these are interpreted as facilitatory effects between
channels, but alternatively these could be explained by
collector units further up in the hierarchy of visual
processing (Solomon & Morgan, 2000). Similar ideas
were also proposed to explain the unexpectedly strong
masking produced by amplitude modulated gratings at
their modulation frequency (Henning, Hertz, &
Broadbent, 1975). Such explanations based on further
processing of the filter responses are compatible with
our model being a correct model of the first transfor-
mations in spatial vision. If the interpretation as
facilitatory effects in the earliest representation is
correct, however, it should be included in future spatial
vision models.

High contrast signals

Another aspect differing between models is how they
treat high contrast signals. In our model we implement
a higher numerator exponent in the normalization,
which yields nonsaturating responses in the individual
channels as in the model by Watson and Solomon
(1997). The alternative approach followed by Teo and
Heeger (1994) is to simulate multiple types of channels
covering different contrast ranges (in their case four).
This second approach models the responses in closer
agreement to neuronal data, as neurons undeniably
saturate. From a psychophysical perspective this seems
to add little, however, as channels differing only in their
absolute sensitivity cannot be targeted specifically by
any stimuli and are thus modelled quite adequately as a
single channel. Only if the cells or channels for higher
contrasts had different tuning curves or interactions
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with other channels than the low contrast ones, it
would be necessary to separate them. Consequently, we
interpret the V1 neurons for different contrast levels as
the neuronal implementation of a single channel using
multiple neurons to avoid saturation.

Decoding stage

In our decoding ideas we follow modern abstract
models like the Goris et al. (2013) model and explicitly
model the noise on individual channels and propose
optimal or near optimal readout of the channel
responses in a Bayesian sense (c.f. Beck et al., 2008;
Ma, Shen, Dziugaite, & van den Berg, 2015). The idea
that observers in basic psychophysical tasks are (only)
limited by an internal noise source has recently been
challenged. Beck, Ma, Pitkow, Latham, and Pouget
(2012) instead propose that performance is limited by
imperfections of the readout mechanism. For explain-
ing the systematic discrepancy between our model and
natural image database data by Alam et al. (2014), we
follow this interpretation. It appears that (highly
experienced) observers during simple contrast detection
and discrimination experiments were more sensitive
than subjects producing the natural image-masking
data. We suggest that this might be caused by better
decoding rather than more available information,
similar to the suggestion that perceptual learning
improves decoding rather than the original represen-
tation (Diaz, Queirazza, & Philiastides, 2017). In our
model the decoding is optimal for the classical grating
experiments, as these experiments are set up to make
decoding as easy as possible for humans.

Variance and type of internal noise

The noise model used in early spatial vision models
has always been a matter of discussion, partly because
the psychophysical data collected during classical
detection and discrimination tasks appear not to
constrain the standard model sufficiently. Even funda-
mental questions as whether the noise variance changes
with signal strength were not finally answered by
psychophysics yet, although some attempts were made
(Georgeson & Meese, 2006; Kingdom, 2016; Kontse-
vich, Chen, & Tyler, 2002; Wichmann, 1999). Based on
our maximum-likelihood estimation we cannot, unfor-
tunately, answer the question whether the noise grows
with the signal or not. Our model can explain the data
with constant noise equally well as with noise variance
growing linearly with the signal. The underlying reason
for this is that changing the q-parameter can compen-
sate for a growing noise. In terms of the neural
implementation this corresponds to the statement that
adding more neurons tuned to high contrasts can
compensate for neurons being noisier when responding

strongly. This insight explains why we cannot differ-
entiate how the noise should change with increasing
contrast based on psychophysics—at least not based on
the data currently available. Also it might serve as a
reminder that the nonlinearity we employ in our
psychophysical model does not directly map to the
nonlinearity of neurons, although they use the same
basic form.

If the connection to neuronal processing was closer,
we could use the typically employed noise forms from
physiology. In physiology, noise is typically modelled
as Poisson noise or variations of it with different
factors between mean response and variance, or with
additional variance shared between units (Goris,
Movshon, & Simoncelli, 2014). For our model,
however, it is unclear how many neurons a channel
response at a single pixel represents, and on which level
of the model the noise relevant for a task is induced.
Thus we believe that modelling the noise as Gaussian is
warranted for simplicity.

We include no noise correlations in our model—it
was simply unnecessary to add this additional ‘‘com-
plication’’ in order to fit our psychophysical data.
Including noise correlations in our model is computa-
tionally far from trivial, caused by the sheer number of
activities which could be correlated. Furthermore,
having to decide which channel responses should be
correlated would add many additional degrees of
freedom not constrained by psychophysical data. This
does not argue against noise correlations, of course, but
only that adding more uncorrelated noise adequately
mimics the effects of these correlations for our
purposes.

Processing heterogeneity

Like all previous spatial vision models—image-
computable or not—we did not model the diversity of
V1 neurons (and, presumably, psychophysical chan-
nels). For computational efficiency all the channels in
our model have the same bandwidths, i.e., all neurons
have the same receptive field, scaled and rotated to
adjust their preferred spatial frequency and orientation.
In contrast, V1 neurons have diverse bandwidths (De
Valois, Albrecht, & Thorell, 1982; Ringach et al., 2002),
which seems to be adaptive for natural scenes (Goris et
al., 2015). Also all channels in our model cover the
image with constant and equal density, although in
truth V1 neurons seem to be sparser and the number of
neurons differs between different spatial frequencies
and orientations, which manifests itself in the psycho-
physical oblique effects (Furmanski & Engel, 2000; Li
et al., 2003). Changing the density of neurons might be
adaptive to concentrate resources on frequent stimuli
and to implicitly represent the prior distribution over
stimuli (Laughlin, 1983). However, as for the simple
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Gaussian noise approximation discussed above, our
simplified model appears sufficient to capture human
behavior in response to classical psychophysically
employed stimuli.

Limitations of the presented model

Although we tried to closely represent the concepts
realized in classical spatial vision models, we did not
include all ideas in our model for computational
simplicity. Phrased negatively, we excluded substantial
areas of spatial vision, as we discuss below.

Temporal dynamics, color, and stereo

We restrict our model to static, gray-scale luminance
images projected onto a single cyclopean fovea. This
excludes any kind of temporal changes beyond the very
coarse separation by presentation duration we made in
our model. A true processing of stimuli over time
would go beyond our current computational capabil-
ities. Nonetheless, it is worth highlighting that temporal
processing was investigated and seems to be explainable
by two or maximally three temporal channels (Watson,
1986; Watson & Nachmias, 1977). However, we are not
aware of a combination of these models for temporal
processing with masking or discrimination models.
Furthermore, luminance images exclude color process-
ing, which requires considerably more complex models
of the optics to include chromatic aberrations (Bedford
& Wyszecki, 1957; Charman & Jennings, 1976) and of
the retinal sampling, adaptation and processing, which
differ between color channels (Brainard, 2015). Addi-
tionally, cortical processing of color is understood less
completely (Gegenfurtner, 2003). Finally, luminance
images contain no depth information, which relieves us
from explicitly modelling 3D scenes, the optical effects
on objects outside the focal plane and binocular vision.
Modelling binocular vision is possible, but results in
considerably more complex psychophysical models
(Baker, Meese, & Georgeson, 2007; Georgeson, Wallis,
Meese, & Baker, 2016; Legge, 1984a, 1984b; Meese,
Georgeson, & Baker, 2006). The additional complexity
arises, because human observers do not only non-
trivially combine the binocular input into one com-
bined image, but can also perceive disparity (spatial
shift between eyes) and luster (contrast differences
between eyes). Under dichoptic presentation, these
additional channels can lead to interesting unintuitive
results (e.g., May & Zhaoping, 2016).

Adaptation

Our model includes no adaptation effects yet. This
means that some classical psychophysical datasets are

not within the scope of our model (Blakemore &
Campbell, 1969, for example). Some abstract models
(Foley & Chen, 1997; Goris et al., 2013; Meese &
Holmes, 2002, for example) contain adaptation and
discuss which parts of the model adapt to what kind of
stimuli. However, adaptation would at least require
additional input besides the stimuli to be discriminated
and depends considerably on the duration of the
adaptation stimulus and the interval between adapta-
tion and test stimuli. Thus adaptation in our image-
based model would require substantial additional
work, and would perhaps best be tackled after a model
with adequate temporal dynamics exists.

Peripheral vision

We restrict ourselves to a purely foveal model, and
thus to a model with uniform processing and sensitivity.
Peripheral vision differs from foveal vision already in the
optical quality (Jennings & Charman, 1981; Navarro,
Williams, & Artal, 1993; Williams, Artal, Navarro,
McMahon, & Brainard, 1996) and retinal processing—
at least by the sampling density (Curcio, Sloan, Packer,
Hendrickson, & Kalina, 1987; Curcio & Allen, 1990).
Additionally, the interactions between channels, which
we model in our normalization step, are different in the
periphery (Xing & Heeger, 2000). More generally, higher
level restrictions like crowding (Whitney & Levi, 2011)
play a larger role in the periphery, presumably due the
stronger information reduction and the faster growth in
peripheral receptive field size (Gattass, Sousa, & Gross,
1988; Rosenholtz, 2016). Hence, a detailed modelling of
the periphery would require a considerable effort beyond
our current model.

Additional tasks

In this paper we evaluate our model exclusively on
discrimination data, and we cover a broad range of
psychophysical data, but, of course, not all of it.
Obvious omissions are data from direct estimation
tasks (‘‘What was the orientation of the grating?’’) as
well as classification tasks (‘‘Was the grating tilted left
or right?’’), because our model cannot deal with data
from such tasks in its present form. Clearly, such tasks
are important and have been used to investigate models
of early visual processing (Meng & Qian, 2005;
Solomon, Felisberti, & Morgan, 2004). Such tasks
could be implemented as a different type of decoding
based on the model representation, an avenue we are
planning to pursue. To explain biases in human
perception explanations of these effects might require
the inclusion of prior beliefs about the categories
(Girshick, Landy, & Simoncelli, 2011) or deviations
from optimal decoding.
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Applications in and beyond spatial vision

On the one hand we hope to facilitate investigations
into the details of spatial visual processing, using our
model as a starting point or basis. Further developments
are still necessary, not least to address the limitations
and controversial design choice we discuss above. To do
this, image-computable models can be applied to a much
wider range of existing data and allow the generation of
optimized stimuli to differentiate different models, as we
demonstrated in the Optimized stimuli section. In
addition, image-computable models allow direct com-
parisons to normative theories, as we have started on a
small scale in this paper. Whatever normative ideas
might arise in the future, it can be assessed whether our
spatial vision model optimizes the proposed measures.

On the other hand, going beyond early spatial visual
processing, our model might help with the development
of mechanistic models of mid- or high-level visual
processing by providing a psychophysically sound basis
in which to represent images beyond pixels. This tool, we
conjecture, might improve the match between mid- and
high-level vision models and human perception. One
clear target for such endeavors are convolutional DNNs
in object recognition (Kriegeskorte, 2015; LeCun,
Bengio, & Hinton, 2015; Yamins & DiCarlo, 2016).

Finally a working spatial vision model might have
practical applications as an image quality metric as was
the original intention of Teo and Heeger (1994). Later
image quality metrics like the structural similarity
metric (SSIM, Wang, Simoncelli, & Bovik, 2003;
Wang, Bovik, Sheikh, & Simoncelli, 2004) claim to go
beyond error visibility, but arguably getting error
visibility right would be a good start as well. As it is
currently demonstrated for the Normalized Laplacian
Pyramid (Laparra et al., 2016), such image quality
metrics can then be used to optimize the display of
images to make it match the perception of the original
(Laparra et al., 2017).

Keywords: model, spatial vision, image-computable,
psychophysics
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Footnotes

1 Technically, we should use a von Mises distribu-
tion for orientation, which wraps the tails of the normal
distribution around as orientation is a circular dimen-
sion. However, as the normalization pool we find is
narrow, the difference between a Gaussian and the von
Mises distribution is negligible.

2 0 represents normalization exclusively by channels
with the same orientation, and ‘ represents equal
weighting of all orientations.
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Laparra, V., Ballé, J., Berardino, A., & Simoncelli, E.
P. (2016). Perceptual image quality assessment
using a normalized Laplacian pyramid. Electronic
Imaging, 2016(16), 1–6.

Laparra, V., Berardino, A., Ballé, J., & Simoncelli, E.
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Appendix A: Fitting

In the main text our presentation follows the order in
which the experimental findings depend on each other,
building up from grating detection experiments to
masking by arbitrary natural images. As this is not the
order in which we fitted the parameters to data, we
explain the setting of parameters in this appendix in the
order we fixed the parameters.

As our model computes a percent correct pci for any
pair of stimuli to be discriminated, we can compute the
likelihood L—the probability of observing the data
given the model parameters—directly from the ob-
served number of correct trials ki and the total number
of trials ni in each specific experimental condition using
the Binomial distribution B:

LðhjdataÞ ¼ PMðdatajhÞ ¼
YN
i¼1
Bðkijni; pciÞ ð9Þ

¼
YN
i¼1

ni
ki

� �
ðpciÞkið1� pciÞni�ki ð10Þ

As it is usually done, we computed the log-likelihood
l from this and removed constant factors from the
equation:

lðhjdataÞ ¼ logðLðhjdataÞÞ ¼
XN
i¼1

log Bðkijni; pciÞð Þ

ð11Þ

¼
XN
i¼1

log
ni
ki

� �� �

þ
XN
i¼1

ki logðpciÞ þ ðni � kiÞ logð1� pciÞð Þ ð12Þ

¼ Cþ
XN
i¼1

ki logðpciÞ þ ðni � kiÞ logð1� pciÞð Þ

ð13Þ
For this log-likelihood we calculated a gradient over

the parameters of the nonlinearity as detailed in
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Appendix B and optimized using a BFGS algorithm as
implemented in MATLAB’s ‘‘fminunc’’ function.

As not all data are constrained in each condition, for
which we needed a separate parameter fit, we had to fit
the parameters in a successive fashion.

We first fixed the parameters of the preprocessing for
all presentation times. For the optical distortions we
fixed the pupil size to 4 mm diameter as a rough
estimate for the environment of psychophysical mea-
surements. Using preliminary parameter estimates from
the literature, we then fixed the initial neural weighting
of spatial frequencies to fit the detection data for each
presentation duration.

Next we fixed the parameters of the log-Gabor-
decomposition. We set the filter bandwidths to 408 and
1.4 octaves for orientation and frequency respectively,
based on rough estimates from earlier measurements.
We then set the range of spatial frequencies to :5� 20
cyc
deg roughly covering the visible range of frequencies.
For the number of channels we set the model to use
eight orientations and 12 frequencies to reduce the
ripple artefacts in the output to a bearable range as
described in the main text. At this stage, we also fixed
the bandwidth of the normalization pool, setting the
standard deviation of the Gaussian to be rF ¼ 0.5
octaves.

Next we fixed the bandwidth of the normalization
pool in orientation based on the oblique masking data
for the 1497-ms presentation time, for which we had
most data. To do so, we computed the likelihood for a
grid of parameter values over the normalization
bandwidth xh, p, q, and C.

One computational trick we used to reduce the
number of parameters to evaluate was to fit the overall
noise variance independently of the other parameters.
This can be done very efficiently, because scaling the
noise for all pixels and all channels by the same factor
ce does not change the optimal decoding scheme. Thus,
the signal-to-noise ratio (SNR) with a changed overall
noise size can be computed using only the final SNR
from the original evaluation. We used this trick to
replace the two parameters NF and NC with the single
parameter NF

NC
:

We then used a grid search to optimize parameters
for each presentation time. In this grid search we used
the parameters listed in Table 2. These parameter
values cover the range for p, q, and C densely. For rh

we chose 0; 38 ;
7
8 ;

12
8 ;‘

� �
3 rh—the orientation band-

width of the filter—covering the range of qualitative
behaviors for this parameter.2 Similarly we set the
linear noise factor NF to {0, 0.1, 1, 10}3NC. By saving
the likelihood value for each image combination
separately, we could extract this cube for different parts
of the data.

The results of the grid search are displayed in Figure
18, displaying the maximum likelihood found in the

slice which sets the given parameter to the plotted
value. Different lines give the values for the different NF

NC

values. The different panels are based on different
subsets of the data.

Based on the displayed results on the grid search, we
drew the following conclusions:

� As displayed in Panel A, the clearly best bandwidth
of the normalization pool xh is the one slightly
smaller than the bandwidth of the filter. ðxh ¼ 7

8 rhÞ
� From Panel B: The composition of the noise and q
are coupled. When the linear contribution to the
noise grows, larger values of q are needed to
compensate this. However, any NF

NC
-ratio explains

the data equally well, when we use the adequate q.
To remove this ambiguity, we set NF to zero.
� Finally, from Panels C and D: p and C are
reasonably well constrained by the data. However,
the oblique masking data and the contrast dis-
crimination favor slightly different values for p and
C (not shown). These result in the two parameter
values we display in the main paper. The two
parameters differ only slightly, however, and make
reasonably similar predictions as we saw in the
main paper.

We evaluated the same range of parameter values for
the other presentation times and for single pixel
normalization. For the other presentation times, we can
draw the same conclusions as above. For the single
pixel normalization, however, we find a pronounced
inconsistency of oblique masking and contrast dis-
crimination. The oblique masking requires a much
higher p value than the discrimination data. Conse-
quently a parameter which optimizes the results for
both conditions is considerably worse in the single pixel
normalization model than in the mean normalization
model.

As our grid was a bit coarse, we used the best
parameter from the grid search as a starting point for
some further optimization with a BFGS algorithm
employing the gradients from Appendix B:

Parameter Levels

p 1.00, 1.50, 1.60, 1.70, 1.80, 1.90

2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70,

2.80, 2.90

3.00, 3.25, 3.50, 3.75, 4.00, 4.50, 5.00

q 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

C 3 102 0.1000, 0.1292, 0.1668, 0.2154, 0.2783

0.3594, 0.4642, 0.5995, 0.7743, 1.0000

xh 0, 0.1112, 0.2594, 0.4447, ‘
NF

NC
0, 0.1, 1, 10

Table 2. Parameter values evaluated in the grid search for
parameters. Note: For each parameter combination an optimal
factor to the final variance was fit as a final noise factor.
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� First, we fit the bandwidth xh to the oblique
masking data, fixing NF to 0 and p, q, and C to the
optimal values from the grid.
� Using the estimate for xh from this optimization,
we fitted four parameter values for p, q, C, and NC:
- One for each presentation time to the corre-
sponding contrast discrimination data, starting
the optimization at the optimal value from the
grid search for that presentation time.

- One to the oblique masking data for the 1497-ms
presentation time, starting at the best grid point
again.

- One for the ModelFest dataset starting at the
optimal parameter for the 1497-ms presentation
time from the grid search.

For an additional comparison on the ModelFest
data, we fitted the ModelFest data adjusting only NC

starting from the parameter for 1497 ms and 79 ms
respectively. To fit these, we again calculated perfor-
mance from the signal-to-noise ratios, reducing the
computational cost for this step.

Finally, we fitted a parameter set for the ModelFest
dataset specifically, although the estimates from the
classical data were decent already. As we did not have

individual percent correct values for these data, we
transformed the given thresholds to surrogate blocks of
trials with percent correct. We assumed three blocks of
100 trials each: One with 86 correct trials at the
threshold, one with 100 correct trials at 1.5 times the
threshold, and a block with 50 correct trials a factor 3
below threshold. Using this surrogate data we then
fitted the normalization and noise parameters (Nc, Nf,
C, p, and q) as for the classical data.

As a last rather cosmetic step,we refit the neuronalfilter
we employ with the final parameters to fit the data for
detection well, which was necessary as the processing of
the model does distort the csf (higher exponents exagger-
ate the differences between different input strengths).

To give the reader a better understanding of what the
different parameter values mean, Figure 19 shows the
effect on the contrast discrimination results, when the
different parameters are varied separately. Clearly the
parameters Nf, Nc, and C merely move the function
around hardly changing its shape. In contrast changing
p—i.e., both exponents—controls how peaked the dip in
the contrast sensitivity function is. Changing q—i.e., only
the numerator exponent—strongly affects detection
performance and how steeply the discrimination thresh-
olds risewithpedestal contrast for highpedestal contrasts.

Figure 18. Evaluation of the grid search over the parameter space for the 1497-ms presentation time. Each panel shows the maximum

likelihood reached with the given parameter value. (A) Bandwidth of the normalization pool evaluated over the oblique masking data.

Maximum is at 7
8
rh: xh ¼ ‘ is plotted at xh¼ 1. (B) Exponent q evaluated on the contrast discrimination data. (C) Constant C

evaluated over all data. (D) Exponent p evaluated on the contrast discrimination data.
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Appendix B: Derivatives of the
model

For parameter optimization we derived a gradient
of the model likelihood with respect to all parameters.
To compute this, we also compute derivatives for the
signal-to-noise ratio, percent correct, and quite a few
of the internal model states against each other. For a
mathematically proficient reader these might thus
provide some insight into the internal dependencies of
the model. Also these calculations illustrate that the
derivatives of the stages in our model can be computed
as for the now popular deep neural network models.

Our presentation of the model derivatives follows
the calculation in backward order in analogy to the
back prop algorithms for deep neural networks; i.e.,
we start with the likelihood and go back to the

parameters using the chain rule consecutively. Com-
putation can be implemented in forward order with
equal ease.

For each step we will first calculate the derivatives
with respect to the parameters used in the step directly
and then the one to the input of the processing step,
which allows the calculation of derivatives with
respect to parameters used in the previous processing
step.

Likelihood from signal-to-noise ratio

We start with the log-likelihood, which depends on
the lapse rate k and the signal-to-noise ratio dffiffi

g
p from the

model. As a first step we calculate the derivative with
respect to pc, the percent correct predicted by the model
without lapses:

Figure 19. Effects of changing the parameters on contrast discrimination curves. Each panel shows the curve of contrast discrimination

thresholds (‘‘the dipper’’) when a single parameter of the model is changed, leaving the others at their fitted values.
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]lðcorrectÞ
]p0c

¼ ]

]p0c
logðkþ ð1� 2kÞp0cÞ

¼ 1� 2k
kþ ð1� 2kÞp0c

ð14Þ

]lðincorrectÞ
]p0c

¼ ]

]p0c
logð1� k� ð1� 2kÞp0cÞ

¼ �ð1� 2kÞ
1� k� ð1� 2kÞp0c

ð15Þ

The derivative of the predicted percent correct pc with
regard to the signal-to-noise ratio dffiffi

g
p is simply the density

of the normal distribution at the signal-to-noise ratio:

]p0c

] dffiffi
g
p
	 
 ¼ /

dffiffiffi
g
p
� �

ð16Þ

Decoding

Next we analyses the decoding stage. This stage
receives two arrays of model responses frð1Þi g and fr

ð2Þ
i g

both indexed with an index i from an index-set I over
position, orientation, and frequency. As the output we

consider the signal-to-noise ratio dffiffi
g
p : To calculate the

derivative of the signal-to-noise ratio dffiffi
g
p with respect to

any parameter used earlier in the model x, we use the
following formulas:

]

]x

dffiffiffi
g
p ¼ 1ffiffiffi

g
p

]d

]x
þ dg

�3
2

]g
]x

¼ 1ffiffiffi
g
p
X
i2I

]di
]x
þ dg

�3
2
X
i2I

]gi
]x

ð17Þ

The two parameters of the decoding stage are the
size of the constant noise Nc and the factor for the
noise variance Nf for which we calculate the deriva-
tives first:

]gi
]Nc
¼ 1

]gi
]NF
¼ ri

]ri
]NC

¼ ]ri
]NF
¼ 0 ð18Þ

For any other parameters x which changes ri, we can
calculate the derivatives from the derivative ]ri

]x:

8i 2 I :
]gi
]x
¼ ]

]x

r
ð1Þ
i � r

ð2Þ
i

	 
2
n
ð1Þ
i þ n

ð2Þ
i

ðnð1Þi þ n
ð2Þ
i Þ

¼ ]

]x
r
ð1Þ
i � r

ð2Þ
i

	 
2
ð19Þ

¼ 2 r
ð1Þ
i � r

ð2Þ
i

	 
 ]r
ð1Þ
i

]x
� ]r

ð2Þ
i

]x

 !
ð20Þ

]di
]x
¼ ]

]x

r
ð1Þ
i � r

ð2Þ
i

	 
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
ð1Þ
i þ n

ð2Þ
i

q ð21Þ

¼ 2
r
ð1Þ
i � r

ð2Þ
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ð1Þ
i þ n

ð2Þ
i

q ]r
ð1Þ
i

]x
� ]r

ð2Þ
i

]x

 !

�
r
ð1Þ
i � r

ð2Þ
i

	 
2
2 n

ð1Þ
i þ n

ð2Þ
i

	 
3
2

]n
ð1Þ
i

]x
þ ]n

ð2Þ
i

]x

 !
ð22Þ

¼ 2
r
ð1Þ
i � r

ð2Þ
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
ð1Þ
i þ n

ð2Þ
i

q ]r
ð1Þ
i

]x
� ]r

ð2Þ
i

]x

 !

�Nf

r
ð1Þ
i � r

ð2Þ
i

	 
2
2 n

ð1Þ
i þ n

ð2Þ
i

	 
3
2

]r
ð1Þ
i

]x
þ ]r

ð2Þ
i

]x

 !
ð23Þ

using in the last step:

]ni
]x
¼ Nf

]ri
]x

ð24Þ

Normalization

Thus, in the Normalization stage we require the
derivatives of the response ri, which we again first
compute for the parameters of this stage p, q, and C
and then for the bandwidths of the normalization x
and the filter r.

For ai ¼ 0 all derivatives are 0 because ri is then 0
independent of all parameters; for ai . 0:

]ri
]p
¼ logðaiÞri

� a
pþq
i

Cp þ bið Þ2
logðCÞ þ

X
i2I
ðG � logðaÞÞðxiÞ

" #

ð25Þ

]ri
]q
¼ logðaiÞri ð26Þ

]ri
]C
¼ �rip

Cp�1

Cp þ bi
ð27Þ

For computing the derivatives with respect to the rs
we need to compute the derivatives of ri towards ai and
bi as well as the derivatives of the filter values:

]ri
]ai
¼ ðpþ qÞ a

pþq�1
i

Cp þ bi
þ ]ri

]bi

]bi
]ai

ð28Þ
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]ri
]bi
¼ �ri

1

Cp þ bi
ð29Þ

A Gaussian G(xjr) in x without normalization (as
the ones in frequency space to define the log-Gabors)
has the following derivative with respect to its standard
deviation r

]G

]r
ðxÞ ¼ ðx� �xÞ2

r3
exp �ðx� �xÞ2

2r2

 !
ð30Þ

For the normalization of a Gaussians Gn ¼ Gn(�jr),
we used the sum over the grid in each case, i.e.,:

8i 2 I : GnðxiÞ ¼
GðxiÞP
j2I GðxjÞ

ð31Þ

The derivative of this normalized Gaussians Gn with
respect to its SD r is thus given by:

]Gn

]r
ðxiÞ ¼

1P
j2I GðxjÞ

]G

]r
ðxiÞ

� GðxiÞ
ð
P

j2I GðxjÞÞ
2

X
j2I

]G

]r
ðxjÞ ð32Þ

¼ 1P
j2I GðxjÞ

]G

]r
ðxiÞ � GnðxiÞ

X
j2I

]G

]r
ðxjÞ

 !
ð33Þ

For a convolution, when only one of the two
convolved functions f depends on the variable x:

]ðfðxÞ � gðyÞÞ
]x

¼ ]fðxÞ
]x
� gðyÞ ð34Þ

]ðgðyÞ � fðxÞÞ
]x

¼ gðyÞ � ]fðxÞ
]x

ð35Þ

Thus, we can compute the derivatives of B ¼ {bi}i�I
interpreted as the four dimensional array of normali-
zation inputs for each channel at each position: For any
of the standard deviations xx,y,/,f we can decompose
the 4D Gaussian into the four one-dimensional
convolutions and compute the four derivatives as
follows:

]B

]xx
¼ ]GðxxÞ

]xx
� Gðxy;x/;xfÞ � Ap ð36Þ

]B

]xy
¼ ]GðxyÞ

]xy
� Gðxx;x/;xfÞ � Ap ð37Þ

]B

]x/
¼ ]Gðx/Þ

]x/
� Gðxx;xy;xfÞ � Ap ð38Þ

]B

]xf
¼ ]GðxfÞ

]xf
� Gðxx;xy;x/Þ � Ap ð39Þ

For any parameter, except the parameters of the
normalization pool:

]B

]A
¼ Gðxx;xy;x/;xfÞ �

]Ap

]A
ð40Þ

¼ Gðxx;xy;x/;xfÞ � pAp�1 ð41Þ

Decomposition

As we did not fit the filters to data, we do not require
the derivatives to their bandwidths for fitting. These
derivatives can be computed nonetheless as follows:

The derivative of the absolute value we apply
between the decomposition and the nonlinearity with
respect to a parameter which influences real < and
imaginary = part of a complex number z is:

]jfðxÞj
]x

¼ <ðfðxÞÞjfðxÞj
]<ðfðxÞÞ

]x
þ=ðfðxÞÞjfðxÞj

]=ðfðxÞÞ
]x

ð42Þ
This is not a proper complex derivative, but only a

real derivative by interpreting the complex z as � R2

Finally, to compute the derivatives of the filter
output against the filter parameters, we can use the
following formula

]FðfÞ
]x
¼ F ]f

]x

� �
; ð43Þ

because the Fourier-transform is a linear operator.
The filtering in Fourier space is an element wise

multiplication. Thus, the derivative of a channel
response f(x, y) can be computed from the derivatives
of the filters in Fourier space g(x, y) and the image I(x,
y):

]fðxÞ
]r
¼ ]

]r
F�1 FðIðx; yÞÞgðx; yÞð Þ

¼ F�1 FðIðx; yÞÞ ]gðx; yÞ
]r

� �
ð44Þ

Preprocessing

Our preprocessing is an affine transformation. Thus
the derivatives with respect to the original inputs can be
computed from derivatives with respect to the prepro-
cessed image simply by applying the same filters with
flipped phase and adding back the mean luminance.
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Appendix C: Optimizing stimuli

To compare different models, one interesting meth-
od is to optimize stimuli which are especially different
or similar according to one model while keeping
similarity according to another model constant (Wang
& Simoncelli, 2008). As analyses of this type are a
strength of image-computable models, we use it in the
main text to show the advantages of an image-
computable model. In this appendix we explain the
details of the optimization procedure we employ to get
the stimuli.

We aim to find luminance images ðI1; I22 RN3NÞ
which have a given Root Mean Square Error (RMSE0)
from a given start image I0 after conversion to contrast
and cut out of the fovea and are either maximally easy
(I1)or maximally hard (I2) to differentiate from I0
according to the model.

Furthermore we require two constraints on the
images to yield displayable and interesting stimuli: (a)
All pixels must be in the range [0, Lm] for a maximal
displayable luminance Lm. (b) Pixels for which the
foveal window w2 RN3N is 0 shall be equal to the
corresponding pixels in I0.

For notation we shall use:

� N for the size of the square images

� I0 ¼ w � I= 1
N2

PN
j;k¼1 I0jk

	 
	 

for the image I after

conversion to contrast and application of the
foveal window w. Here ‘‘/’’ means element-wise
division. Note that we always use the mean
luminance of I0 for this conversion.
� RMSEðI01; I00Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðI01; I00Þ

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j;k¼1ðI01jk � I00jkÞ
2

q
to denote the root mean

squared error of two (converted) images I0 and I1.
� d0(I1, I0) to denote the discriminability d0 of I1 and
I0 according to our model. Additionally we write
d0ðI01; I00Þ :¼ d0ðI1; I0Þ for converted images over-
loading notation.

To allow a conversion back from a contrast image I0

to a luminance image I, we set (suppressing indices):

IðI0Þ ¼ I0 w � 0:001
1
N2

PN
j;k¼1 I0jkÞðI0=wÞ w.0:001

�
; ð45Þ

i.e., wherever the foveal window is 0 we set the
luminance image to be equal to I0. As we enforce I1 and
I2 to be equal to I0 there, this yields correct results. To

avoid numerical issues with the division by w, we
extend this enforced equality to pixels with w � 0.001.

This yields the following optimization problem in
mathematical shorthand:

Minimize d0(I1, I0) / Maximize d0(I2, I0)
subject to:

0 � I1; I2 � Lm ð46Þ

RMSEðI02; I00Þ ¼ RMSEðI01; I00Þ ¼ RMSE0 ð47Þ

8j; k ¼ 1 . . .N : wjk � 0:001) I1jk ¼ I2jk ¼ I0jk

ð48Þ
To solve this problem with nonlinear equality

constraints approximately, we relax the constraints
quadratically and add one common parameter b which
shall increase during optimization to increase the
penalty for missing the constraints. Finally, we add
another regularize

PN
j;k¼1ð1� wjkÞbðI00jk � I01jkÞ

2 which
pushes the optimization to yield similar images near the
edges of the window w.

For I1 this yields the following relaxed optimization
problem:

Minimize:

d0ðI1; I0Þ þ b4ðMSEðI01; I00Þ � RMSE2
0Þ

2 ð49Þ

þb2
XN
j;k¼1
ð1� wjkÞbðI00jk � I01jkÞ

2 ð50Þ

subject to:

0, I1 ,Lm ð51Þ
We then use a gradient decent algorithm to solve this

optimization problem starting from Gaussian noise
added to the area where w . 0.001 with the correct
RMSE0 and cut to fit the displayable luminance range.
We then apply a gradient descent during which we test
at each point whether it is better than the previous one.
Depending on the outcome of this, we adjust the
stepsize, adding 30% every time we update successfully
and dividing by 2 every time we fail. We increase b by 1
every time the change predicted by the current gradient
and step size is smaller than 0.001. When b¼ 100 and
the predicted change is smaller than 10–6, we end the
optimization. If at any time a pixel leaves the allowed
luminance range, we set it back inside the range by the
smallest possible numerical value.

Journal of Vision (2017) 17(12):12, 1–35 Schütt & Wichmann 35
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