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Abstract

Recent agent frameworks and inference-time001
algorithms often struggle with natural planning002
problems due to limitations in verifying gener-003
ated plans or reasoning and varying complex-004
ity of instances within a single task. Many005
existing methods for these tasks either per-006
form task-level verification without considering007
constraints or apply inference-time algorithms008
without adapting to instance-level complex-009
ity. To address these limitations, we propose010
PlanGEN, a model-agnostic and easily scalable011
agent framework with three key components:012
constraint, verification, and selection agents.013
Specifically, our approach proposes constraint-014
guided iterative verification to enhance perfor-015
mance of inference-time algorithms–Best ofN ,016
Tree-of-Thought, and REBASE. In PlanGEN017
framework, the selection agent optimizes algo-018
rithm choice based on instance complexity, en-019
suring better adaptability to complex planning020
problems. Experimental results demonstrate021
significant improvements over the strongest022
baseline across multiple benchmarks, achieving023
state-of-the-art results on NATURAL PLAN024
(∼8%↑), OlympiadBench (∼4%↑), DocFinQA025
(∼7%↑), and GPQA (∼1%↑). Our key finding026
highlights that constraint-guided iterative verifi-027
cation improves inference-time algorithms, and028
adaptive selection further boosts performance029
on complex planning and reasoning problems.030

1 Introduction031

In many real-world tasks, we often encounter the032

word “plan for” or “plan to”. For example, prompt-033

ing large language models (LLMs) with “Let us034

make a plan to ...” yields completions such as035

“travel the world”, “schedule a meeting”, or “or-036

ganize a visit” (App. B for examples). The tasks037

related to such prompts are referred to as “natural038

planning” which is different from the traditional039

classical AI planning, where given an initial state,040

goal, descriptions of executability and effect of041

actions, one has to come up with a sequence of 042

executable actions which achieves the goal1. Re- 043

cent works (Kambhampati et al., 2024; Valmeekam 044

et al., 2024) have shown that LLMs are not good 045

at such planning, and natural planning with LLMs 046

offers a promising direction, aligning better with 047

real-world tasks (Hao et al., 2023; Zhao et al., 2023; 048

Wang et al., 2024c; Jiao et al., 2024). Thus, our fo- 049

cus is only on natural planning (Zheng et al., 2024) 050

and its effect on downstream reasoning tasks (App. 051

G for examples) where the formulation does not 052

necessarily match with a classical planning setting. 053

In recent years, LLM agents have shown impres- 054

sive abilities to solve complex reasoning problems 055

(Yao et al., 2023; Xiao et al., 2024; Wang et al., 056

2024a). Orthogonal to this exploration, scaling a 057

search space during inference-time (i.e., test-time 058

scaling) (Snell et al., 2024; Welleck et al., 2024) 059

has gained popularity in tackling difficult problems 060

such as mathematical reasoning (Zhang et al., 2024) 061

and code generation (Wang et al., 2025). Despite 062

the success of these frameworks, we hypothesize 063

that they often struggle with complex planning and 064

reasoning due to the lack of better verification mod- 065

ule, and a failure to account for instance-level com- 066

plexity across single-task. Furthermore, although 067

some initial explorations exist (Bohnet et al., 2024; 068

Lee et al., 2025)2, effectiveness of these frame- 069

works for natural planning is under-explored. Mo- 070

tivated by these, we proposed PlanGEN, a model- 071

agnostic, easily scalable, multi-agent framework 072

for effective natural plan generation. 073

PlanGEN consists of three specialized agents: 074

constraint agent, verification agent, and selec- 075

tion agent. The constraint agent extracts instance- 076

specific constraints (e.g., budget, concepts, rules, 077

etc.); the verification agent evaluates plan qual- 078

1Classical AI planning, which in early settings had inputs
in specific formats (i.e., not in natural language), has high
computational complexity (Bylander, 1994).

2Extended related work is presented in App. A
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Constraint
Agent

Task Description and Problem Statement

Example Task:
Schedule a 30-minute meeting for
Alexander, Elizabeth, and Walter on
Monday between 9:00 and 17:00.

Alexander: Busy at 9:30-10:00, 10:30-
11:00, 12:30-13:00, 14:30-15:00, 16:00-
17:00.
Elizabeth: Busy at 9:00-9:30, 11:30-
12:30, 13:00-14:30.
Walter: Busy at 9:00-14:30, 15:30-17:00.

Find an earliest time slot that works for
all participants.

Initial Generated Plan
1. Analyze Constraints: we need a half-
hour meeting ...
2. Identify individual availability ...
3. Determine common availability ...
4. Prioritize earliest time slot ...
5. Ensure solution exists ...

SOLUTION: Here is the proposed time:
Monday, 14:30 - 15:00

Generated Constraints
1. Analyze the list of participants
2. Make sure of correct meeting duration
3. Validate the time frame
4. Make sure of individual schedules
(availability and unavailability)

PlanGEN (BoN)

Any LLM

Verifier Agent

Verify and Reward
1. Incorrect availability for Alex ...
2. Incorrect availability for Eliza ...
3. Incorrect availability for Walter ...
4. Incorrect common availability ...
5. Incorrect solution ...
6. Format adherence ...

Due to the significant errors in
determining availability and the
resulting incorrect solution, the plan
receives a low score.
Score: -50Selection Agent

Score
<

Th

Score
>

Th

Final Generated Plan

1. Re-analyze the constraints ...
2. Adjust incorrect individual
availability ..
3. Re-determine common
availability ...
4. Find common availability ...
5. Prioritize earliest time slot ...

SOLUTION: Here is the proposed
time: Monday, 15:00 - 15:30

LLM-based Selection
- Best of N: This problem involve ...
- Rebase: Rebase is not well-suited
for this since ...
- ToT: Tree of Thought is a good fit
for this since...
Scores: ("Best of N", 0.4),
("Rebase", 0.1), ("ToT", 0.9)

Modified UCB-based Selection
UCB Scores: ("Best of N", 4.0),
("Rebase", 1.0), ("ToT", 9.0)

Selected
Algorithm

Updated
Plan

PlanGEN (ToT)

PlanGEN (RS)

Iterative
Update

Pipeline for
Downstream
Reasoning

Plan Execution
+

Final Answer

Any
LLM

PlanGEN (Mixture of Algorithms)

Figure 1: Schematic representation of PlanGEN (Mixture of Algorithms). An initial plan and constraints guide
iterative plan refinement. The verification agent provides reward scores for plan quality, and the selection agent
chooses inference algorithms until the highest-reward plan is found and used for downstream reasoning (if needed).
UCB: Upper Confidence Bound, BoN: Best of N , ToT: Tree-of-Thought, RS: REBASE.

ity and provides a reward score considering the079

constraints; and the selection agent dynamically080

chooses the best inference algorithm using an im-081

proved Upper Confidence Bound (UCB) formula082

(Han et al., 2024) for instance of different com-083

plexity. We explore popular and widely used three084

inference algorithms within PlanGEN: Best of N085

(Brown et al., 2024), Tree-of-Thought (ToT) (Yao086

et al., 2024), and REward-BAlanced SEarch (RE-087

BASE) (Wu et al., 2024a). We combine our agents088

with these algorithms, yielding four frameworks:089

(1) PlanGEN (Best of N ), (2) PlanGEN (ToT), (3)090

PlanGEN (REBASE), and (4) PlanGEN (Mixture091

of Algorithms). In PlanGEN, “Multi-Agent” signi-092

fies using the constraint and verification agents for093

the first three approaches, and all three agents for094

the “Mixture of Algorithms” (Figure 1). Figure 1095

shows example from NATURAL PLAN (Calendar096

scheduling), and App. G provides more examples.097

We perform all experiments using Gemini-1.5-098

Pro (Team et al., 2024) as underlying model in099

PlanGEN. We further present case-study on Gemini-100

2.5-Pro, Gemini-2.0-Flash, and GPT-4o (Hurst101

et al., 2024) to show the model-agnostic nature.102

We evaluate natural planning ability on NATU-103

RAL PLAN (Zheng et al., 2024), scientific/mathe-104

matical reasoning on GPQA (Rein et al., 2024) 105

and OlympiadBench (He et al., 2024), and fi- 106

nancial reasoning on DocFinQA (Reddy et al., 107

2024). Performance is compared against Zero- 108

shot Chain-of-Thought (CoT) and a vanilla multi- 109

agent baselines. We achieve state-of-the-art results 110

on NATURAL PLAN (∼8%↑ average across all 111

categories), OlympiadBench (text-only) (∼5%↑ 112

on MATH, ∼4%↑ on PHYSICS), and DocFinQA 113

(∼7%↑). On GPQA, we outperform Gemini-1.5- 114

Pro (∼13%↑), GPT-4o (∼12%↑), and Claude-3.5- 115

Opus (∼9%↑), while achieving competitive perfor- 116

mance compared to the vanilla multi-agent baseline 117

(∼1%↑). Further analysis reveals that the simplest 118

method (i.e., PlanGEN (Best of N )) achieves the 119

best performance on NATURAL PLAN (Figure 120

5). PlanGEN (Mixture of Algorithms) achieves the 121

best performance for complex problems (Figure 122

6) including GPQA, and OlympiadBench(MATH). 123

Our case study on QwQ-32B (Team, 2025) demon- 124

strates PlanGEN’s compatibility with recent open- 125

source reasoning models. Additionally, our com- 126

parison with Buffer-of-Thought (BOT) (Yang et al., 127

2024) show that PlanGEN achieves superior per- 128

formance compared to reasoning-based prompting. 129

We further conduct a thorough analysis of the re- 130
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sults which reveals several important findings. In131

summary, our contributions are: (1) PlanGEN, a132

novel, model-agnostic, and scalable multi-agent133

framework for enhancing LLM natural planning;134

(2) SOTA results on several complex planning and135

reasoning benchmarks; and (3) a novel approach136

to constraint-based verification and instance-level137

complexity-based inference algorithm selection.138

2 PlanGEN139

2.1 Proposed LLM Agents140

PlanGEN comprises three specialized LLM agents:141

a constraint agent, a verification agent, and a se-142

lection agent. Each agent utilizes an off-the-shelf143

LLM (e.g., Gemini, GPT) which is equipped with144

task-specific prompts for efficient performance.145

2.1.1 Constraint Agent146

We define “constraints” as the instance-specific cri-147

teria necessary for verifying solutions to planning148

problems. For instance, in the calendar schedul-149

ing from NATURAL PLAN, relevant constraints150

include ‘individual schedules’, ‘availabilities’, and151

‘preferences’. In a scientific reasoning problems152

from GPQA, constraints might be the ‘concepts153

used’, ‘calculation correctness’, and ‘formula selec-154

tion’. We argue that careful extraction of these con-155

straints is critical for successful verification. The156

constraint agent serves as a preprocessing compo-157

nent in the framework, designed to extract instance-158

specific constraints from the problem description.159

By analyzing the input problem, this agent identi-160

fies maximum possible constraints that are required161

for verifying generated plans to improve the overall162

relevance and quality of the planning process. The163

prompt used by the constraint agent enables it to164

systematically identify constraints by asking the165

underlying LLM to focus on specific aspects of the166

problem. This ensures that no critical information167

is overlooked and that the resulting constraints are168

comprehensive. While constraint agent is effective169

in capturing the majority of constraints, it does not170

offer a formal guarantee of exhaustiveness in con-171

straint extraction. Prompts used by the constraint172

agent and examples of generated constraints are173

provided in App. C and App. G, respectively.174

2.1.2 Verification Agent175

The verification agent plays a critical role in the176

framework by assessing the quality of generated177

plans based on constraints. This agent ensures that178

plans are aligned with task objectives, adhere to179

constraints, and progress logically toward a cor- 180

rect and complete solution. This agent has two key 181

components: (i) feedback generation, and (ii) nu- 182

merical reward score generation based on feedback. 183

Verification prompts and examples of verification 184

are provided in App. C and App. G, respectively. 185

Feedback Generation While verifying each gen- 186

erated plan against different constraints, the veri- 187

fication agent generates detailed natural language 188

reasoning regarding plan quality. We consider this 189

explanation as “feedback”, offering interpretability 190

and actionable next step towards improvement. 191

Numerical Reward Generation Motivated by 192

Zhang et al. (2024), we instruct the agent to evalu- 193

ate the plan against various constraints and assign a 194

reward score on a scale of −100 to 100. The scor- 195

ing mechanism is designed to enforce strict quality 196

standards, with a threshold (e.g., a score of 95 or 197

higher) indicating a verified, high-quality plan. 198

2.1.3 Selection Agent 199

The selection agent dynamically determines the 200

most suitable inference algorithm for solving a 201

given problem instance based on its complexity. 202

It leverages a combination of historical perfor- 203

mance; diversity, and recovery scores; and guid- 204

ance from a LLM to adaptively select the best al- 205

gorithm (among three) for the given instance. To 206

create the selection agent, we utilize a modified 207

UCB policy. The policy combines multiple factors, 208

including normalized rewards, exploration bonuses, 209

diversity adjustments, and recovery scores. Addi- 210

tionally, the agent incorporates LLM-guided priors, 211

which provide algorithm suitability scores based 212

on the problem statement, task requirements, and 213

previous plan (if available). These priors enable 214

the agent to align its selections with the input in- 215

stance complexity and corresponding constraints, 216

improving the relevance of the chosen algorithm. 217

UCB(a) =
R(a)

N(a)
+

√
2 log(T + 1)

N(a)
218

+ λprior · Prior(a) 219

+
αdiversity

N(a) + 1
220

+ αrecovery · Srecovery(a) 221

Modified UCB Policy equation combines several 222

terms to balance exploitation, and exploration when 223

selecting the best algorithm for given task instance. 224
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To modify UCB, we first conducted a prelimi-225

nary ablation study, presented in App. C. All terms226

in equation given above are calculated across one227

evaluation run. Here, the cost of calculation is neg-228

ligible since it only utilizes reward values from229

previous runs, but only one LLM call require to get230

score for Prior(a). The first term, R(a)
N(a) , represents231

the average reward for algorithm a, where R(a)232

is the total reward accumulated by the algorithm,233

and N(a) is the number of times the algorithm has234

been selected. This term ensures that algorithms235

with higher historical performance are prioritized.236

The second term,
√

2 log(T+1)
N(a) , serves as the ex-237

ploration component, encouraging the selection of238

algorithms with fewer trials, denoted as T . This239

term ensures that under-explored options are ad-240

equately evaluated. Furthermore, λprior · Prior(a),241

which leverages LLM-guided priors to align algo-242

rithm selection with the instance-specific complex-243

ity. Here, λprior is a dynamically decaying weight244

defined as λprior
1+T , where T represents the total num-245

ber of trials. This decay gradually shifts the fo-246

cus from initial priors to historical performance247

as trials progress. The diversity bonus, αdiversity
N(a)+1 ,248

penalizes overused algorithms, ensuring balanced249

exploration across all options. Finally, the recovery250

term, αrecovery ·Srecovery(a), rewards algorithms that251

recover effectively from failures, with Srecovery(a)252

representing the recovery score for algorithm a.253

Selection Process This process begins by initial-254

izing algorithm-specific variables, such as accumu-255

lated rewards, selection counts, and failure counts.256

Further details on this can be found in Algorithm 1257

(App. C). The agent then incorporates LLM-guided258

priors to generate algorithm suitability scores based259

on the problem statement and any provided feed-260

back. These priors are derived from a LLM (prompt261

for this given in App. C), and serve as initial esti-262

mates to adjust the UCB (Han et al., 2024) values.263

2.2 Proposed Frameworks264

Within PlanGEN, we propose four different frame-265

works: (1) PlanGEN (Best of N ) (Figure 2), (2)266

PlanGEN (ToT) (Figure 3), and (3) PlanGEN (RE-267

BASE) (Figure 4), and (4) PlanGEN (Mixture of268

Algorithms) (Figure 1).269

2.2.1 PlanGEN (Best of N )270

Motivated by Brown et al. (2024), we adapted the271

Best of N algorithm and modified it using our272

constraint and verification agents as illustrated in273

Task Description
and Problem

Statement
Constraint 

Agent

Set of
Constraints

Verification 
Agent

Plan 1 Plan 2 Plan n

Reward 1 Reward 2 Reward n

Final Plan → Plan with Maximum Reward

Figure 2: Schematic representation of PlanGEN (BoN).

Figure 2. The framework generates N candidate 274

plans (Plan 1, Plan 2, ..., Plan n), and each plan is 275

assessed by a verification agent based on a set of 276

constraints. Then, a corresponding reward (Reward 277

1, Reward 2, ..., Reward n) gets assigned by the ver- 278

ification agent. Finally, the plan with the highest 279

reward from generated candidates is selected, re- 280

sulting a plan that aligns to the problem constraints. 281

2.2.2 PlanGEN (ToT) 282

ToT algorithm has been studied in detail for solv- 283

ing many complex problems (Yao et al., 2024). As 284

shown in Figure 3, we modify the ToT algorithm 285

with our constraint and verification agents. The 286

method begins by initializing a root node that repre- 287

sents the problem and generating multiple potential 288

next steps, creating a tree-like structure. The gen- 289

erated steps are verified using a verification agent 290

which assigns reward scores based on a set of con- 291

straints. The iterative process involves evaluating 292

all possible steps at a given depth, selecting the 293

most promising path based on reward scores, and 294

expanding it further by generating new steps. This 295

process continues until a valid solution is identi- 296

fied or a pre-defined limit on iterations is reached. 297

Further details on various prompts for the ToT are 298

presented in App. D. 299

2.2.3 PlanGEN (REBASE) 300

The REBASE tree search method inherits the ex- 301

ploitation and pruning properties of tree search and 302

is well-studied for mathematical reasoning (Wu 303

et al., 2024a). As shown in Figure 4, the frame- 304

work incorporates a dynamic selection and expan- 305

sion strategy to iteratively refine solutions. At each 306

depth of the tree, candidate nodes are ranked based 307

on their assigned reward scores (obtained using a 308

verification agent), ensuring that the most promis- 309

ing candidates are explored first. Even steps with 310
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Task Description
and Problem

Statement
Constraint 

Agent

Set of
Constraints

Step 1 (1) Step 1 (2) Step 1 (3)

Step 2 (1) Step 2 (2) Step 2 (3)

Step n (1) Step n (2) Step n (3) Completion

Verification 
Agent

Step
Reward 1

Step
Reward 2

Step
Reward 3

Iteratively happens for each step

Figure 3: Schematic representation of PlanGEN (ToT).
Highest-reward steps are highlighted in green.

lower rewards are considered but with a reducing311

number of children, meaning that their exploration312

depth is limited. This hierarchical pruning helps313

maintain efficiency, thereby reducing unnecessary314

exploration of weaker nodes. This process contin-315

ues until either a valid, complete solution is found316

or a predefined depth or width limit is reached.317

Also, there is a completion check similar to ToT318

which identifies nodes that represent complete solu-319

tions, enabling REBASE to terminate early once a320

satisfactory outcome is identified. App. D provides321

further details on prompts for the REBASE.322

2.2.4 PlanGEN (Mixture of Algorithms)323

The Mixture of Algorithms framework (Figure 1)324

introduces a selection agent (§2.1.3) which dynam-325

ically selects the best possible inference-time al-326

gorithms proposed in the above sections based on327

instance-level complexity. The framework oper-328

ates in a modular and iterative manner, ensuring329

adaptability in addressing planning and reasoning330

problems with different complexity effectively.331

Orchestration The process begins with generat-332

ing an initial plan using LLM based on the task de-333

scription and problem statement. Along with this,334

the constraint agent (§2.1.1) is employed to gener-335

ate an instance-specific set of constraints. Based336

on the constraints, the verification agent (§2.1.2)337

evaluates the quality of the initial plan and pro-338

vides a reward score (indicated as ‘Score’ in Figure339

1). If the initial plan meets the required threshold340

(denoted Th), it is acceptable as the “Final Plan”.341

Otherwise, the iterative refinement process begins.342

Iterative Refinement The refinement loop is343

driven by a suite of inference algorithms as shown344

in Figure 1. During this iterative refinement, the345

Task Description
and Problem

Statement
Constraint 

Agent

Set of
Constraints

Step 1 (1) Step 1 (2) Step 1 (3)

Step 2 (1) Step 2 (2) Step 2 (1) Step 2 (2) Step 2 (3)

Step n (1) Step n (2) Step n (3)

Verification 
Agent

Step Rewards
(Similar to ToT)

Figure 4: Schematic representation of PlanGEN (RE-
BASE). Green shading indicates step reward (darker =
higher). Darker steps prioritized for exploration.

selection agent (§2.1.3) determines the most suit- 346

able algorithm based on the instance-specific com- 347

plexity and historical UCB values. The selected 348

algorithm produces an updated plan, which is then 349

re-evaluated by the verification agent. To ensure 350

continual improvement, the framework incorpo- 351

rates feedback generated by a verification agent 352

that provides guidance, and this feedback loop en- 353

ables the system to refine the plan incrementally. 354

3 Experiments and Results 355

3.1 Experimental Setup 356

Datasets To demonstrate improvement in natu- 357

ral planning abilities, we utilize the NATURAL 358

PLAN (Zheng et al., 2024). After improving the 359

planning, we show that this significantly enhances 360

the reasoning capabilities of LLMs on two bench- 361

marks: GPQA (Rein et al., 2024) and Olympiad- 362

Bench (text-only) (He et al., 2024). Additionally, 363

we show that PlanGEN improves performance on a 364

domain-specific dataset, DocFinQA (Reddy et al., 365

2024). Further details are presented in App. E. 366

Baselines and Our Frameworks We develop 367

two baselines: (i) Zero-shot CoT (Kojima et al., 368

2024) and (ii) a Vanilla Multi-Agent Baseline. In 369

the Zero-shot CoT, we provide an input prompt to 370

the model, which generates outputs in the form 371

of <CoT reasoning, Answer>. For the “Multi- 372

Agent Baseline”, the same model is called itera- 373

tively across multiple iterations. The system re- 374

peatedly refines its outputs through feedback loops, 375

where the feedback is generated based on a self- 376

reflective prompt (App. E) designed to improve 377

reasoning. We evaluate all proposed frameworks 378

(§2.2) on all benchmarks. For reasoning tasks, we 379
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Figure 5: Performance comparison of the proposed multi-agent frameworks against baselines across four benchmarks.
All experiments are conducted using Gemini-1.5-Pro. Algo: Algorithms, PHY: Physics.

use a two-stage approach: (1) generating plan us-380

ing PlanGEN, and (2) executing the plan to produce381

the final answer (Figure 1). App. E presents further382

details on model selection, metrics, and experiment383

hyper-parameters including the hyper-parameter384

choices for inference-time algorithms.385

3.2 Main Results386

Figure 5 compares performance of PlanGEN frame-387

works across various baselines (varies across bench-388

marks - some single-agent baselines for GPQA are389

obtained from https://klu.ai/glossary/gpqa-eval),390

showing that multi-agent frameworks are consis-391

tently outperforming the baselines.392

Performance on NATURAL PLAN From Fig-393

ure 5a, PlanGEN (Best of N ) achieves the highest394

EM scores across all tasks: 60.70 (Calendar), 43.80395

(Meeting), and 41.63 (Trip). In calendar schedul-396

ing, all four frameworks surpass the strongest base-397

line (Multi-Agent) by ∼ 10%. For meeting and398

trip planning, all except ToT outperform the best 399

baseline (Gemini-1.5-Pro) by ∼ 6% and ∼ 7%, 400

respectively. PlanGEN (Mixture of Algo.) achieves 401

the second-highest performance in meeting and 402

trip planning while remains competitive in calendar 403

scheduling. These results demonstrate the effective- 404

ness of our frameworks in handling diverse natural 405

language planning tasks and establishing SOTA for 406

all three categories of NATURAL PLAN. 407

Performance on OlympiadBench From Figure 408

5b, PlanGEN (Mixture of Algo.) achieves the 409

highest accuracy in the MATH (55.94%), outper- 410

forming the Multi-Agent Baseline (50.68%) by 411

∼ 5%. The superior performance of the PlanGEN 412

in MATH highlights its effectiveness in complex 413

mathematical reasoning, setting a SOTA for the 414

MATH. In the PHY, all PlanGEN frameworks sur- 415

pass Gemini-1.5-Flash (strongest baseline), with 416

PlanGEN (Best of N ) achieving the highest accu- 417

racy (31.78%), setting a SOTA for the PHY. 418
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Figure 6: Performance comparison of inference-time al-
gorithms across different complexity levels for calendar
scheduling from NATURAL PLAN.

Performance on GPQA From Figure 5c, the419

PlanGEN (Mixture of Algo.) achieves the highest420

accuracy (59.6%). The individual inference-time421

algorithms achieve a lower performance, indicating422

the usefulness of selection. All proposed frame-423

works outperform Gemini-1.5-Pro (46.2%), GPT424

models (∼ 48%), and Claude-3-Opus (50.4%) by a425

large margin. While Claude-3.5-Sonnet, and Multi-426

Agent Baseline perform competitively (∼ 59%)427

compared to PlanGEN (Mixture of Algo.).428

Performance on DocFinQA From Figure 5d,429

our frameworks significantly improve performance430

on DocFinQA, with PlanGEN (Best of N ) achiev-431

ing the highest accuracy (31.16%) and F1-Score432

(29.45%), setting SOTA for the task. All our frame-433

works outperform the Gemini-1.5-Pro (strong base-434

line) by∼ 7%. These results highlight the effective-435

ness of PlanGEN in performing financial reasoning.436

Performance of PlanGEN w.r.t. different com-437

plexity As shown in Figure 6, we conduct a case438

study on calendar scheduling task from NATURAL439

PLAN to analyze the impact of varying complex-440

ity levels on the performance of different frame-441

works. For the calendar scheduling, we observe442

that PlanGEN (ToT) performs best for simple prob-443

lems, while PlanGEN (Best of N ) is more effec-444

tive for intermediate problems. As complexity in-445

creases, a PlanGEN (Mixture of Algo.) proves to be446

the most effective approach. We further conduct a447

similar analysis for meeting and trip planning from448

NATURAL PLAN presented in App. F.449

Main Findings Compared to single-agent sys-450

tems, PlanGEN consistently outperform in gener-451

ating better planning trajectories (Figure 5). Fur-452

thermore, Multi-Agent (Baseline) is not always the 453

strongest benchmark, as self-correction can intro- 454

duce challenges as shown in Huang et al. (2024). 455

Thus, different agents within the system require 456

distinct handling strategies similar to our PlanGEN. 457

Additionally, even in PlanGEN frameworks, rely- 458

ing on a single inference-time algorithm proves 459

insufficient for more complex problems (Figure 460

6). A PlanGEN (Mixture of Algo.) approach of- 461

fers substantial advantages for solving complex 462

reasoning problems, highlighting the importance 463

of algorithm selection based on instance-specific 464

complexity (Figure 1). Given that our frameworks 465

are multi-agent, we provide further discussion on 466

latency (calls/time) vs. performance in App. F. 467

4 Analysis and Discussion 468

Importance of Verification Agent Figure 7 469

demonstrates the verification agent’s crucial role 470

in PlanGEN by showing a strong correlation be- 471

tween assigned reward values and prediction cor- 472

rectness (1 for correct, 0 for incorrect). The plot- 473

ted points represent the average correctness rate 474

for data buckets of varying reward values, each 475

bucket containing hundreds of samples. A logistic 476

regression model trained on DocFinQA and GPQA 477

data (∼ 1100 total samples) reveals a sigmoidal 478

trend: higher rewards correlate with increased suc- 479

cess probability, highlighting the agent’s effective- 480

ness. This reinforces the importance of constraint- 481

guided verification for improving inference-time 482

algorithms (see App. F for further details). 483

Importance of Selection Agent Figure 8 illus- 484

trates the importance of the selection agent by com- 485

paring the performance on the NATURAL PLAN. 486

Here, Multi-Agent (Ver.) includes only the verifi- 487

cation agent, while Multi-Agent (Ver. + Selection) 488

further includes a selection agent. The results high- 489

light the progressive impact of these components. 490

For example, in calendar scheduling, Multi- 491

Agent (Ver.) improves performance to 56.1 EM 492

compared to Multi-Agent (Baseline). However, 493

Multi-Agent (Ver. + Selection) achieves 59.3 EM, 494

demonstrating the additional benefit of algorithm 495

selection. A similar trend is observed in trip plan- 496

ning where Multi-Agent (Ver. + Selection) outper- 497

forms Multi-Agent (Ver.) (41.17 EM vs. 35.44 498

EM) and the Multi-Agent (Baseline). For meeting 499

planning, Multi-Agent (Ver.) achieves 43.1 EM 500

compared to 36.8 EM of Multi-Agent (Baseline), 501

whereas, Multi-Agent (Ver. + Selection) achieves 502
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OlympiadBench OlympiadBench
Methods GPQA NATURAL PLAN

(Calendar) MATH PHY Methods GPQA NATURAL PLAN
(Calendar) MATH PHY Methods GPQA Methods GPQA

Gemini-1.5-Pro 46.20 48.90 32.63 28.35 Gemini-2.0-Flash 60.10 61.10 51.13 27.54 GPT-4o 47.98 Gemini-2.5-Pro 53.03

PlanGEN (BoN)
Gemini-1.5-Pro

56.60 60.70 53.85 31.78 PlanGEN (BoN)
Gemini-2.0-Flash

56.83 68.90 59.90 35.60
PlanGEN (BoN)

GPT-4o
40.40

PlanGEN (BoN)
Gemini-2.5

77.27

PlanGEN (ToT)
Gemini-1.5-Pro

56.60 59.10 54.45 29.37
PlanGEN (ToT)

Gemini-2.0-Flash
59.18 62.30 60.30 35.70

PlanGEN (ToT)
GPT-4o

46.70
PlanGEN (ToT)
Gemini-2.5-Pro

75.25

PlanGEN (REBASE)
Gemini-1.5-Pro

57.10 59.90 54.90 31.36
PlanGEN (REBASE)

Gemini-2.0-Flash
64.14 61.50 60.98 36.02

PlanGEN (REBASE)
GPT-4o

41.40
PlanGEN (REBASE)

Gemini-2.5-Pro
71.72

PlanGEN (MoA)
Gemini-1.5-Pro

59.60 59.30 55.94 31.28
PlanGEN (MoA)
Gemini-2.0-Flash

63.64 66.55 64.10 37.29 PlanGEN (MoA)
GPT-4o

49.40 PlanGEN (MoA)
Gemini-2.5-Pro

68.19

Table 1: Performance comparison for model-agnostic nature of PlanGEN. We utilize Gemini-1.5-Pro, Gemini-
2.0-Flash, GPT-4o, and Gemini-2.5-Pro as baseline and underlying models in PlanGEN frameworks. Comparing
methods that use the same base and underlying model for a fair assessment. MoA: Mixture of Algorithms.
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Figure 7: Logistic regression plot showing verification
agent’s positive performance impact. P(Successful Out-
come) = probability of prediction being correct.

competitive performance. Together, verification503

and selection agents drive significant improvements504

over single-agent and multi-agent baselines.505

Model-Agnostic Nature The results from Ta-506

ble 1 demonstrate the model-agnostic nature of507

PlanGEN frameworks. While the primary experi-508

ments were conducted using Gemini-1.5-Pro, the509

framework’s effectiveness holds across different un-510

derlying models, such as Gemini-2.5-Pro, Gemini-511

2.0-Flash and GPT-4o. For instance, in the NATU-512

RAL PLAN (calendar scheduling), the PlanGEN513

(Best of N ) framework achieves a significant514

improvement, reaching 68.90 EM, outperform-515

ing Gemini-2.0-Flash (61.10 EM). Similarly, in516

OlympiadBench, the PlanGEN (Mixture of Algo.)517

achieves the highest scores in MATH (64.10) and518

PHY (37.29), surpassing Gemini-2.0-Flash (52.13519

MATH, 27.54 PHY). Note that, the Mixture of520

Algo. outperforms other three frameworks, show-521

ing effectiveness of selection agent. On GPQA,522

Mixture of Algo. (49.40), PlanGEN (REBASE)523

(64.14), and PlanGEN (Best of N ) (77.27) outper-524

form GPT-4o (47.98), Gemini-2.0-Flash (60.10),525

and Gemini-2.5-Pro (53.03), respectively. These526

results highlight that regardless of the underlying527

model, our frameworks consistently enhance per-528

formance by leveraging multi-agent collaboration.529
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Figure 8: Case study on NATURAL PLAN, showing
the impact of selection agent. Ver.: Verification

Additional Analysis We provide further analysis 530

on compatibility of PlanGEN with recent reason- 531

ing models, PlanGEN performance compared to 532

reasoning-based prompting, selection of parame- 533

ters for PlanGEN, and many more in App. F. 534

5 Conclusions 535

In this work, we proposed PlanGEN, an easily scal- 536

able multi-agent approach incorporating three key 537

components: constraint, verification, and selec- 538

tion agents. We leveraged these agents to im- 539

prove the verification process of existing infer- 540

ence algorithms and proposed three frameworks: 541

Multi-Agent Best of N , ToT, and REBASE. Fur- 542

ther, we introduced a Mixture of Algorithms, 543

an iterative framework that integrates the selec- 544

tion agent (Figure 1) to dynamically choose the 545

best algorithm. We evaluated our frameworks on 546

NATURAL PLAN, OlympiadBench, GPQA, and 547

DocFinQA. Experimental results demonstrate that 548

PlanGEN outperforms strong baselines, achieving 549

SOTA results across datasets. Furthermore, our 550

findings suggest that the proposed frameworks are 551

scalable and generalizable to different LLMs, im- 552

proving their natural language planning ability. 553
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Limitations554

Despite the strong performance of our frameworks,555

an area of improvement is the reliance on prede-556

fined heuristics for selecting inference-time algo-557

rithms, which may not always generalize optimally558

across all tasks and domains. Additionally, while559

our frameworks demonstrate strong performance,560

their computational overhead could be further opti-561

mized for efficiency in real-world applications. We562

believe that our frameworks can be useful in further563

boosting the planning and reasoning capabilities of564

existing models such as o1 and Gemini-thinking. In565

addition, the use of reinforcement learning or meta-566

learning techniques to dynamically adapt agent567

strategies based on task complexity could be an568

interesting area to explore. Moreover, broadening569

the scope to multi-modal and multi-lingual reason-570

ing would significantly expand the applicability571

of our approach, and exploring the use of gener-572

ated planning trajectories for model training offers573

valuable direction.574

Ethics Statement575

The use of proprietary LLMs such as GPT-4, Gem-576

ini, and Claude-3 in this study adheres to their poli-577

cies of usage. We have used AI assistants (Gram-578

marly and Gemini) to address the grammatical er-579

rors and rephrase the sentences.580
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A Related Works772

LLM Agents for Planning Agent-based frame-773

works for planning have gained interest, focusing774

on enhancing how LLMs decompose tasks and re-775

fine their outputs. The Sibyl framework (Wang776

et al., 2024c) effectively decomposes tasks into777

smaller subtasks, assigning each to specialized778

agents that iteratively collaborate until a solution779

is reached. OS-Copilot (Wu et al., 2024b) intro-780

duces a generalist computer agent that employs self-781

improvement through modularization and feedback782

loops. Another approach is KnowAgent (Zhu et al.,783

2024), which integrates knowledge-augmented784

planning to enhance the decision-making capabili-785

ties of LLM agents. Similarly, Tool-Planner (Liu786

et al., 2024) proposed grouping tools based on sim-787

ilar functionalities into toolkits, allowing LLMs to788

select the best tool for a given task. Many agent-789

based works focusing on planning have been devel-790

oped (Chen et al., 2024; Xie and Zou, 2024; Wang791

et al., 2024b). Despite the progress, these meth-792

ods generally (i) focus on domain-specific tasks or793

limited benchmarks, reducing generalizability, and794

(ii) lack or under-explore mechanisms for verifying795

and refining plans iteratively. While some works796

explore natural language planning (Bohnet et al.,797

2024; Lee et al., 2025), they either single-agent798

frameworks or evaluate proposed framework on799

domain-specific benchmarks.800

Inference-time Algorithms Inference-time algo-801

rithms have recently shown a significant improve-802

ment in LLMs performance during inference. For803

instance, Best of N sampling (Brown et al., 2024)804

selects the most promising output from multiple805

generations performed using temperature sampling,806

while Tree-of-Thought (ToT) (Yao et al., 2024)807

models reasoning as an iterative tree search. RE-808

BASE (Wu et al., 2024a) optimizes search-space809

pruning using reward balancing. One very popu-810

lar approach is Monte Carlo Tree Search (MCTS)811

(Zhang et al., 2024) which iteratively explores so-812

lution paths during inference. Applied to models813

such as LLaMa-3-8B, it enables self-refinement by814

revisiting and improving initial solutions. Test-time815

optimization (Snell et al., 2024), focuses on dynam-816

ically adjusting computational resources during in-817

ference (Wu et al., 2024a). Furthermore, Wang818

et al. (2025) uses the inference time algorithms to819

improve LLMs planning capabilities to solve code820

synthesis problems. In inference-time algorithms,821

verification is the key component. In contrast to822

these past works, here, we enhance performance 823

of inference-time algorithms utilizing constraint- 824

guided verification, and multi-agent collaboration 825

for natural language planning, and its applications 826

in downstream complex reasoning tasks. 827

B Natural Planning Prompt Examples 828

To show open-ended, “everyday” plans from LLMs, 829

we show below two prompt templates and their 830

ChatGPT-4o (checkpoint: May 2025) completions. 831

B.1 Prompt: “Let us make a plan to . . . ” 832

• Let us make a plan to travel the world on a 833

budget. 834

• Let us make a plan to surprise our parents with 835

a visit. 836

• Let us make a plan to start our own small 837

business. 838

• Let us make a plan to eat healthier without 839

giving up flavor. 840

• Let us make a plan to finish that project we 841

started months ago. 842

• Let us make a plan to learn a new language 843

together. 844

• Let us make a plan to volunteer in our local 845

community. 846

• Let us make a plan to save enough money for 847

a down payment. 848

• Let us make a plan to reconnect with old 849

friends. 850

• Let us make a plan to spend more quality time 851

offline. 852

B.2 Prompt: “Let us make a plan for . . . ” 853

• Let us make a plan for our next big adventure. 854

• Let us make a plan for retirement that actually 855

excites us. 856

• Let us make a plan for the weekend so it 857

doesn’t slip away. 858

• Let us make a plan for dealing with unex- 859

pected emergencies. 860

• Let us make a plan for hosting the perfect 861

dinner party. 862

• Let us make a plan for our child’s education 863

journey. 864

• Let us make a plan for how to reach our fitness 865

goals. 866

• Let us make a plan for moving into our dream 867

home. 868

• Let us make a plan for celebrating our anniver- 869

sary in style. 870
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C Further Details on LLM Agents871

In this section, we provide additional details about872

each specialized agent in PlanGEN. We present the873

prompts used for each agent, highlighting their874

roles in the framework. The prompt for the con-875

straint agent includes task-specific parameters that876

can be adjusted to extract relevant constraints for877

different tasks. In contrast, the prompts for the878

verification agent and selection agent are entirely879

task-agnostic, ensuring generalizability and adapt-880

ability across various problem domains.881

Prompts for Constraint Agent The constraint882

agent is responsible for extracting problem-specific883

constraints that guide the planning process. To en-884

able systematic extraction of constraints, we design885

a task-specific prompt for the constraint agent:886

Prompt

You are an expert in understanding an input
problem and generating set of constraints.
Analyze the input problem and extract all
relevant instance-specific constraints and
contextual details necessary for accurate
and feasible planning.

(Optional) These constraints may in-
clude:

<You may provide any specific type of
constraints>

<You may provide any formatting instruc-
tion>

Input Problem: <problem statement>
887

Based on the above prompts, we define the types888

of constraints used in the NATURAL PLAN bench-889

mark for different planning tasks: calendar schedul-890

ing, meeting planning, and trip planning. For891

DocFinQA, we provide a set of formatting instruc-892

tions to ensure structured constraint generation. For893

GPQA and OlympiadBench, the constraint extrac-894

tion follows the general prompt outlined above.895

Prompts for Verification Agent The prompt896

for the verification agent is designed to be task-897

agnostic, meaning it can be applied across different898

problem domains without modification. By enforc-899

ing strict evaluation criteria, this agent enhances900

the reliability of PlanGEN, making it robust for var- 901

ious planning and reasoning tasks. In this prompt, 902

list of constraints are generated using constraint 903

agent. Notably, the list of constraints used in the 904

verification prompt is dynamically generated by the 905

constraint agent. This ensures that the verification 906

process is based on instance-specific constraints 907

rather than relying on predefined, static rules. 908

Prompt

Provide a reward score between -100 and
100 for the quality of the provided plan
steps, using strict evaluation standards. En-
sure the reward reflects how effectively the
plan contributes to progressing toward the
correct solution.
Problem Statement:
{problem}
Plan:
{plan}
Consider the following constraints while
evaluating:
- [Constraint 1]
- [Constraint 2]
- [Constraint 3]
Provide feedback in the following format:
[Step-by-step reasoning for the reward
score]
Score: [Strictly provide an integer reward
score between -100 and 100]

909

Prompts for Selection Agent The prompt for the 910

Selection Agent is task-agnostic, allowing it to be 911

applied across various domains without modifica- 912

tion. It processes feedback from the verification 913

agent and contextual information from the problem 914

statement to assign suitability scores to different 915

inference-time algorithms. 916

Prompt

Analyze the following planning problem
and explain your reasoning for assigning
priority scores to the algorithms based on
their suitability. Scores should be between 0
and 1, where 1 represents the most suitable
algorithm for the given problem.
Problem Statement: <problem statement>
Requirements: <feedback>
Context: <context if context else ‘None
provided’>

917
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Start by providing a brief reasoning for each
algorithm’s suitability based on problem
complexity. Then, ONLY output your re-
sponse strictly as a list with the exact for-
mat below:
Reasoning:

• Best of N: [Explain why this algorithm
is or isn’t suitable]

• Rebase: [Explain why this algorithm
is or isn’t suitable]

• ToT: [Explain why this algorithm is or
isn’t suitable]

Scores:

[("Best of N", float),

("Rebase", float),

("ToT", float)]
918

Algorithm for Selection using UCB The algo-919

rithm (Algorithm 1) presented is a modified UCB920

selection strategy that incorporates additional fac-921

tors for exploration, diversity, and recovery. It ini-922

tializes each algorithm with basic statistics like923

reward (R(a)), count of trials (C(a)), and recovery924

score (Rec(a)). The algorithm computes a normal-925

ized reward R̄norm(a) for each option, balancing926

the reward with exploration (E(a)), which encour-927

ages trying less-used algorithms. A diversity bonus928

D(a) penalizes overused algorithms, while a recov-929

ery bonus RecB(a) rewards algorithms that per-930

form well after prior failures. LLM-guided priors931

(LLM_prior) are used to influence the selection932

process based on prior knowledge. The final selec-933

tion is made by maximizing the UCB score, which934

combines these factors to balance exploitation and935

exploration.936

Ablation Study on UCB Modifications To de-937

sign our selection agent, we conducted an ablation938

study evaluating modifications to the UCB formula,939

shown in Figure 9. Initially, we replaced the selec-940

tion agent with a simple sequential strategy, termed941

“Multi-Agent (Sequential)”, where algorithms exe-942

cute in sequence, and the verification agent selects943

the highest-scoring plan. Next, we implemented a944

UCB selection agent, but excluded the ‘diversity945

bonus’ and ‘recovery term’ introduced in our pro-946

posed formulation in the main paper, denoted as947

“Multi-Agent (UCB w/o div. and rec.)”. Finally, we948
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Figure 9: Ablation Study of UCB Modifications on
Selection Agent and its impact on Multi-Agent Mixture
of Algorithms framework. div.: diversity bonus, rec:
recovery term.

implemented the complete selection agent incor- 949

porating our proposed UCB, labeled “Multi-Agent 950

(UCB)”. As shown in Figure 9, the inclusion of the 951

diversity bonus and recovery terms in the UCB for- 952

mula ("Multi-Agent (UCB)") resulted in ∼ 3.5% 953

performance gain compared to the UCB variant 954

without these terms, further enhancing overall re- 955

sults. Note that the LLM-guided priors are still the 956

part of Multi-Agent (UCB w/o div. and rec.) and 957

Multi-Agent (UCB). 958

D Details on Proposed Frameworks 959

We provide further details in this section regarding 960

the prompts used for PlanGEN (ToT) and PlanGEN 961

(REBASE), as well as the specific algorithms used 962

to execute these inference-time methods. 963

Prompts used for ToT and REBASE PlanGEN 964

(ToT) and PlanGEN (REBASE) employ three 965

prompt types: (1) step prompt, (2) step reward 966

prompt, and (3) completion prompt. Step prompt 967

guide the model to generate subsequent steps based 968

on the problem statement and previously gener- 969

ated steps. Step reward prompt evaluate each in- 970

termediate step against the problem statement and 971

constraints, similar to the prompts used by a ver- 972

ification agent. Completion prompt check for a 973

complete solution after each step. If a solution is 974

found, exploration terminates; otherwise, the pro- 975

cess continues until a solution is reached. 976

13



Step Prompt

You are an expert assistant for generating
step-by-step plan to solve a given question
using specified tools. Given the problem
and any intermediate steps, output only the
next step in the plan. Ensure that the next
action helps in moving toward the correct
plan to solve the given question. Do not
provide the full plan. Keep responses con-
cise, focusing solely on the immediate next
step that is most effective in progressing
toward the correct plan.

<problem>
{Add a problem statement here}
</problem>

<intermediate_step>
{Append previously generated steps}
</intermediate_step>

977

Completion Prompt

You are an assistant tasked with verifying
if the final, complete plan to solve the
given question has been achieved within the
intermediate steps. Output only ‘1’ if the
intermediate steps contain the full solution
needed to solve the question. If the full plan
has not yet been reached, output only ‘0’.
Provide no additional commentary—return
exclusively ‘1’ or ‘0’.

<problem>
{Add a problem statement here}
</problem>

<intermediate_step>
{Append previously generated steps}
</intermediate_step>

978

E Further Details on Benchmarks and979

Experiments980

Statistics of Benchmarks For evaluation, we uti-981

lize evaluation sets of all four benchmarks. For982

NATURAL PLAN, we employed the provided eval-983

uation sets, consisting of 1000 instances each for984

Calendar Scheduling and Meeting Planning, and985

1600 instances for Trip Planning. The GPQA evalu-986

ation was conducted using the Diamond set, which987

comprises 198 highly challenging instances. From 988

OlympiadBench, we selected the text-only prob- 989

lems, excluding those requiring a theorem prover, 990

resulting in 674 instances for the MATH category 991

and 236 for the PHY category. We also used 922 992

instances from the DocFinQA evaluation set. 993

Models Our primary evaluations use Gemini-1.5- 994

Pro for all the experiments. We also present a 995

case study with Gemini-2.0-Flash, Gemini-2.5-Pro, 996

GPT-4o, and QwQ-32B (recent reasoning model) 997

to showcase the model-agnostic nature and gener- 998

alizability of PlanGEN. For all models, we utilize a 999

checkpoint from January 2025. 1000

Metrics We use task-specific metrics for all eval- 1001

uations. Specifically, we use Exact Match (EM) for 1002

NATURAL PLAN similar to Zheng et al. (2024), 1003

micro-average accuracy for OlympiadBench simi- 1004

lar to He et al. (2024), and accuracy for GPQA and 1005

DocFinQA (along with F1-Score for DocFinQA). 1006

Feedback prompt for Multi-Agent Baseline In 1007

the multi-agent baseline, we employ a feedback 1008

prompt to iteratively generate improved and refined 1009

outputs. The prompt is provided below: 1010

Feedback Prompt

Analyze the following planning problem
and explain your reasoning for assigning pri-
ority scores You are an intelligent assistant
capable of self-reflection and refinement. I
will provide you with your last response,
and your task is to improve it, if necessary.
Here is your previous response:
{previous_response}
Analyze and refine your response step-by-
step:
1. Reflect on your reasoning process.
Where might it be unclear or incorrect? Im-
prove it.
2. Revise the explanation to address any
identified issues and make it more logical
and comprehensive.
3. Ensure the final answer is correct, sup-
ported by clear reasoning.

1011

Hyper-parameters for Experiments To ensure 1012

deterministic behavior, we set the temperature of 1013

all models to 0 for each agent. For the inference- 1014

time algorithms, we used the following settings: 1015

PlanGEN (Best of N ) with five samples at a tem- 1016

perature of 0.7; Tree of Thoughts (ToT) with three 1017
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Figure 10: KDE plot illustrating the relationship be-
tween reward value and outcome (success/failure)

Methods OlympiadBench

MATH PHY

PlanGEN (Best of N ) (5) 53.26 32.63
PlanGEN (Best of N ) (10) 54.90 31.36
PlanGEN (Best of N ) (20) 53.22 29.38

PlanGEN (ToT) (3) 52.97 31.36
PlanGEN (ToT) (5) 55.20 32.05
PlanGEN (ToT) (10) 55.79 32.52

PlanGEN (REBASE) (10) 54.45 31.78
PlanGEN (REBASE) (20) 54.45 29.37
PlanGEN (REBASE) (30) 55.04 30.28

Table 2: Performance impact of hyper-parameters on
inference-time algorithms in OlympiadBench

children per root node, generated at a temperature1018

of 0.7; and REBASE, initialized with width 10 at1019

temperature of 0.7, decremented by 1 after each1020

call to expand. For our experiments, we set λprior1021

= 10, αdiversity = 1, αrecovery = 1, and capped the1022

exploration term at M = 5 (retaining the standard 21023

under the square root). All these hyperparameters1024

are selected based on empirical study.1025

F More Analysis1026

Performance of our frameworks w.r.t. differ-1027

ent complexity From Figure 11, in the meeting1028

planning, PlanGEN (Best of N ) excels in both sim-1029

ple and intermediate problems, whereas a PlanGEN1030

(Mixture of Algo.) performs better for complex1031

problems. The trip planning presents a different1032

trend, where PlanGEN (Best of N ) and a PlanGEN1033

(Mixture of Algo.) consistently outperform other1034

approaches across all complexity levels. Nonethe-1035

less, in very complex problems for meeting and trip1036

planning, all algorithms exhibit poor performance.1037

Importance of Verification Agent The kernel1038

density estimation (KDE) plot visualizes the distri-1039

bution of reward values assigned to two distinct out-1040

Frameworks NATURAL PLAN OlympiadBench GPQA DocFinQA

PlanGEN (BoN) 19.55% 7.09% 8.56% 81.03%
PlanGEN (ToT) 68.85% 90.09% 85.59% 12.5%
PlanGEN (REBASE) 11.6% 2.82% 5.86% 6.47%

Table 3: Algorithm Selection Frequency by Dataset

comes: “Success” (green) and “Failure” (red). The 1041

plot reveals a clear separation between the reward 1042

distributions, with “Success” outcomes strongly as- 1043

sociated with high reward values (around 80-100) 1044

and “Failure” outcomes primarily associated with 1045

low reward values (around 20-40). The sharply 1046

peaked green curve suggests consistent and high 1047

rewards for successful outcomes, while the broader 1048

red curve reflects more variability in rewards as- 1049

signed to failures. However, a small bump in the 1050

red curve at high reward values (around 80-90) 1051

suggests a few instances where failures received 1052

unexpectedly high rewards, warranting further in- 1053

vestigation. This observation is further supported 1054

by a statistically significant difference between 1055

the reward distributions, a Mann-Whitney U test 1056

(U = 116128.0, p < 0.0001). The low p-value 1057

(3.42e-09) provides evidence that the difference in 1058

reward distributions is statistically significant. 1059

Different hyper-parameters of inference-time 1060

algorithms vs. their performance We conduct 1061

a case study on OlympiadBench, where we ana- 1062

lyze the impact of varying hyper-parameters on 1063

the performance of different inference-time algo- 1064

rithms. The results (Table 2) indicate that while in- 1065

creasing the number of samples (Best of N ), steps 1066

(ToT), or refinements (REBASE) lead to marginal 1067

improvements, the overall differences remain rela- 1068

tively small. Given this, we opted for lower hyper- 1069

parameter values across all inference-time algo- 1070

rithms to balance efficiency and performance. 1071

Frequency of inference-time algorithm selection 1072

across datasets For the PlanGEN (Mixture of 1073

Algo.) method, we analyze how frequently each 1074

inference-time algorithm (Best of N , ToT, and RE- 1075

BASE) is selected across different datasets. The 1076

results (shown in Table 3) show that PlanGEN (ToT) 1077

is the most frequently chosen algorithm in NATU- 1078

RAL PLAN, OlympiadBench, and GPQA, indi- 1079

cating its effectiveness in these domains. In con- 1080

trast, for DocFinQA, PlanGEN (Best of N ) is the 1081

dominant choice, suggesting that its strategy aligns 1082

better with financial reasoning tasks. PlanGEN (RE- 1083

BASE) is selected the least across all datasets, im- 1084

plying that its refinements are less favored by the 1085
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Figure 12: Comparison of baselines and our frame-
works, showing the trade-off between LLM calls and
performance (%) for OlympiadBench (MATH).

selection mechanism. These findings highlight the1086

dataset-dependent nature of inference-time algo-1087

rithm effectiveness and the adaptability of the mix-1088

ture approach in dynamically choosing the most1089

suitable method.1090

Discussion on LLM calls vs. Performance (%)1091

Figure 12 shows the relationship between the num-1092

ber of LLM calls and task performance across base-1093

lines (single-agent and multi-agent) and proposed1094

frameworks, using OlympiadBench (MATH cate-1095

gory). The single-agent system, zero-shot CoT, re-1096

quires only one LLM call. The multi-agent baseline1097

requires the same number of calls as PlanGEN (Best1098

of N ), but our framework outperforms the multi-1099

agent baseline. For PlanGEN (ToT) and PlanGEN1100

(REBASE), we focus on LLM calls during the tree1101

expansion phase. PlanGEN (ToT) involves dynamic1102

exploration, where each explored path requires1103

three LLM calls: step generation, reward evalu-1104

ation, and completion verification. The total cost1105

is the per-path cost multiplied by the number of1106

paths explored, constrained by either the number1107

of steps generated for each problem or a predefined1108

Figure 13: Comparison of baselines and our frame-
works, showing the trade-off between time (seconds)
and performance (%) for OlympiadBench (MATH).

iteration budget (i.e., 20). For PlanGEN (REBASE), 1109

the number of LLM calls depends on the search 1110

width (i.e., 10). Each solution path expansion in- 1111

volves three calls: step generation, quality eval- 1112

uation, and completion verification, thus, giving 1113

maximum 30 LLM calls for single problem. For 1114

PlanGEN (Mixture of Algo.), we estimate the av- 1115

erage LLM calls by summing the estimated calls 1116

for each selected algorithm per problem, then di- 1117

viding by the total number of problems. As shown 1118

in Figure 12, the single-agent system exhibits the 1119

lowest performance despite requiring just one LLM 1120

call. Multi-agent approaches show improved per- 1121

formance, with PlanGEN (ToT) and PlanGEN (RE- 1122

BASE) balancing LLM call efficiency and accuracy. 1123

The PlanGEN (Mixture of Algo.) method achieves 1124

the highest performance, suggesting that combin- 1125

ing diverse planning strategies enhances efficiency. 1126

Figure 13 shows the relationship between the 1127

time for running per instance and task performance 1128

across baselines (single-agent and multi-agent) 1129

and proposed frameworks, using OlympiadBench 1130

(MATH category). Since the algorithms used with 1131

the PlanGEN framework are dynamic and to ab- 1132
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stract from transient issues like the existing quota1133

limit and retrying, we calculate the average seconds1134

per instance based on the latency of a single call1135

(denoted as latency_of_single_call). For example,1136

for a method that supports running LLM calls in1137

parallel, the total time for 10 calls would be approx-1138

imately 1 × latency_of_single_call. In contrast, for1139

methods that process calls sequentially, the total1140

time would be closer to 10 × latency_of_single_call.1141

This shows similar trend as Figure 12.1142

PlanGEN with Recent Reasoning Models We1143

conducted a case study using the latest QwQ-1144

32B model (Team, 2025) on GPQA. In a zero-1145

shot setting, it achieves 65.15% accuracy. When1146

plugged into our PlanGEN frameworks, its per-1147

formance further improves—reaching 68.01%1148

under PlanGEN (Best of N ), 70.00% under1149

PlanGEN (ToT), and 60.71% under PlanGEN (RE-1150

BASE)—demonstrating that PlanGEN consistently1151

boosts even state-of-the-art reasoning models.1152

Hence, we can say that PlanGEN is model-agnostic1153

(also discussed in Table 1) and compatible with1154

recent reasoning models.1155

PlanGEN vs. BOT We incorporate Buffer-of-1156

Thoughts (BOT) (Yang et al., 2024)—a recent rea-1157

soning method—into our evaluation. We imple-1158

ment BOT using Gemini-1.5-Pro (to match our1159

PlanGEN setup), we measured accuracy across1160

four benchmarks. BOT scores 55.50% on GPQA,1161

52.96% on MATH, and 27.11% on PHY. As shown1162

in Figure 5, all of our PlanGEN variants outperform1163

BOT by ∼ 4% on GPQA and OlympiadBench.1164

These results show that PlanGEN remains superior1165

to state-of-the-art single-agent reasoning methods.1166

G Various Examples for Different1167

Components of PlanGEN1168

Examples for Constraint Agent To illustrate1169

the output of our constraint agent, Table 4, Table1170

5, and Table 6 present representative examples of1171

generated constraints. These tables highlight the1172

diverse constraints generated for problem instances1173

of different tasks.1174

Example for Verification Agent To illustrate the1175

output of our verification agent, Table 7 presents1176

representative examples of verification process for1177

NATURAL PLAN (calendar scheduling). This ta-1178

ble highlights the how the verification agent verifies1179

the generated plan using constraints.1180

Examples of Generated Plans To demonstrate 1181

the plan generation process, Table 8, Table 9, Table 1182

10, and Table 11 present example plans for NAT- 1183

URAL PLAN, GPQA, DocFinQA, and Olympiad- 1184

Bench. Generated using PlanGEN (Best of N ), 1185

these tables highlight the varied nature of plans 1186

produced across different task types. For GPQA, 1187

DocFinQA, and OlympiadBench (i.e., downstream 1188

reasoning tasks), the examples additionally illus- 1189

trate how these generated plans are executed to 1190

derive the final answer. 1191

More examples for agents and frameworks 1192

within PlanGEN are provided at https://anonymous. 1193

4open.science/r/plangen-0C99 1194
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Algorithm 1 Selection using Modified UCB with LLM-Guided Priors

1: Initialize: R(a)← 0, C(a)← 1, Rec(a)← 0, F (a)← 0, D(a)← 1, T ← 0
2: Set λprior, αdiversity, αrecovery
3: Load LLM-guided priors
4: procedure SELECTALGORITHM(args)
5: Compute prior decay: λprior ←

λprior
1+T ▷ Reduces as trials increase

6: Set max exploration term M ← 5
7: Obtain LLM prior scores: LLM_prior ← LLM_Guided_Prior(args)
8: Compute max reward: Rmax ← max(R(a)) (set to 1 if all rewards are 0)
9: for each algorithm a do

10: Compute normalized reward:

R̄norm(a)←
R(a)

C(a)Rmax

▷ Scales rewards between 0 and 1 for comparability
11: Compute exploration term:

E(a)← min

(√
2 log(T + 1)

C(a)
,M

)

▷ Encourages trying less-used algorithms, capped at M
12: Compute diversity bonus:

D(a)←
αdiversity

C(a) + 1

▷ Penalizes frequently used algorithms to encourage variety
13: Compute recovery bonus:

RecB(a)← αrecovery ·Rec(a)

▷ Rewards algorithms that perform well after failures
14: Compute final UCB score:

UCB(a)← R̄norm(a) + E(a) + λpriorLLM_prior(a) +D(a) +RecB(a)

▷ Balances exploitation, exploration, diversity, and recovery
15: end for
16: Select best algorithm:

a∗ ← argmax
a

UCB(a)

17: return (a∗, UCB(a∗))
18: end procedure
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Benchmark Problem Statement Generated Constraints

Calendar
Scheduling

You are an expert at scheduling meetings. You are
given a few constraints on the existing schedule of
each participant, the meeting duration, and possibly
some preferences on the meeting time. Note there
exists a solution that works with existing schedule of
every participant.
————
TASK: You need to schedule a meeting for Michelle,
Steven and Jerry for one hour between the work hours
of 9:00 to 17:00 on Monday.
————
Here are the existing schedules for everyone during
the day:
- Michelle has meetings on Monday during 11:00 to
12:00;
- Steven has blocked their calendar on Monday during
9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, 15:30
to 16:00;
-Jerry has blocked their calendar on Monday during
9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00
to 14:30, 15:30 to 16:00, 16:30 to 17:00;
————
Find a time that works for everyone’s schedule and
constraints.

Instance-Specific Constraints and Details:
Participants: Michelle, Steven, Jerry - The meeting
must include all three.
————
Meeting Duration: 1 hour - The meeting requires a
contiguous 60-minute slot.
————
Work Hours: 9:00 to 17:00 (Monday) - The meeting
must start and end within these working hours. This
acts as a global constraint.
————
Individual Schedules (Existing Meetings/Blocked
Times):
- Michelle: Busy from 11:00 to 12:00 on Monday.
- Steven: Busy from 9:00 to 9:30, 11:30 to 12:00,
13:30 to 14:00, and 15:30 to 16:00 on Monday.
- Jerry: Busy from 9:00 to 9:30, 10:00 to 11:00, 11:30
to 12:30, 13:00 to 14:30, and 15:30 to 17:00 on Mon-
day (note this constraint ends at the end of the work-
day).
————
While the problem states "Note there exists a solu-
tion," this isn’t a constraint in itself; it’s a guarantee
that a feasible solution exists given the constraints.
The actual constraints are the schedules, meeting du-
ration, and working hours.

Meeting
Planning

You are visiting San Francisco for the day and want
to meet as many friends as possible. Solve the prob-
lem by considering various different schedules and
picking the best one to optimize your goals.
————
Travel distances (in minutes):
Bayview to Golden Gate Park: 22.
Golden Gate Park to Bayview: 23.
————
CONSTRAINTS: You arrive at Bayview at 9:00AM.
Barbara will be at Golden Gate Park from 8:00AM to
11:30AM. You’d like to meet Barbara for a minimum
of 90 minutes.
————
Your response should start with ’SOLUTION:’

Instance-Specific Constraints and Details:
Travel Times:
- Bayview to Golden Gate Park: 22 minutes.
- Golden Gate Park to Bayview: 23 minutes (Note:
This information is provided but not strictly neces-
sary for this specific problem as the return trip isn’t
relevant to meeting Barbara).
————
Locations:
- Starting Location: Bayview
- Meeting Location: Golden Gate Park
————
Scheduled Meeting Times/Participant Availability:
- Barbara is available at Golden Gate Park from 8:00
AM to 11:30 AM.
————
Arrival Time:
- You arrive at Bayview at 9:00 AM.
————
Minimum Meeting Duration:
- The meeting with Barbara must be at least 90 min-
utes long.
————
Sequence Requirements:
- Travel (Bayview to Golden Gate Park) → Wait (if
necessary, due to arriving before Barbara’s availabil-
ity ends) → Meeting (with Barbara)
————
Objective: Maximize the number of friends met (in
this case, it’s simplified to just meeting Barbara, so
the objective is to determine IF a meeting is possible
given the constraints).

Table 4: Examples of constraints generated by the constraint agent given problem statement. These examples
illustrate the constraint generation for calendar scheduling and meeting planning from NATURAL PLAN
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Question: Two quantum states with energies E1 and E2 have a lifetime of 10−9 sec and 10−8 sec, respectively. We want to
clearly distinguish these two energy levels. Which one of the following options could be their energy difference so that they can
be clearly resolved?
(A) 10−11 eV
(B) 10−8 eV
(C) 10−9 eV
(D) 10−4 eV

Constraints for Verifying the Energy Difference Solution for Resolvable Quantum States

This problem revolves around the energy-time uncertainty principle, which dictates the resolvability of energy levels given
their lifetimes. To verify a proposed energy difference (∆E = |E2 − E1|) that allows clear resolution, we need constraints
encompassing the following:

1. Uncertainty Principle Adherence:
Primary Constraint: The product of the uncertainty in energy (∆E) and the uncertainty in time (∆t) must satisfy the energy-
time uncertainty relation: ∆E∆t ≥ ℏ

2
, where ℏ is the reduced Planck constant.

Specific Constraint: Since we have two states, we must consider the combined uncertainty in time. We can approximate this as
the average of the individual lifetimes: ∆t ≈ τ1+τ2

2
, where τ1 and τ2 are the lifetimes of the two states.

Operational Constraint: For "clear resolution," we typically require ∆E to be significantly greater than the uncertainty dictated
by the uncertainty principle. A common rule of thumb is ∆E ≥ ℏ

∆t
. A stricter constraint might use a larger factor (e.g.,

∆E ≥ 2ℏ
∆t

) for even clearer resolution.

2. Units Consistency:
Unit Constraint: All calculations must use consistent units. Ensure that energy (∆E), time (∆t), and ℏ are expressed in
compatible units (e.g., Joules and seconds, or eV and seconds). Clearly state the chosen unit system.

3. Numerical Accuracy:
Precision Constraint: Calculations should be performed with sufficient numerical precision to avoid rounding errors. Define
the acceptable level of precision.
Constant Accuracy: Use a precise value for the reduced Planck constant (ℏ).

4. Solution Justification:
Explanation Constraint: The solution must not only provide a numerical value for ∆E but also clearly explain why this value
satisfies the constraints and allows for clear resolution. This explanation should reference the uncertainty principle and the
chosen resolution criterion.

5. Alternative Solutions Consideration (Optional):
Exploration Constraint: Explore whether multiple values of ∆E could satisfy the constraints. If so, discuss the trade-offs
between different solutions.

Example Implementation of Constraints:

Let’s assume we’re working in SI units (Joules and seconds).
1. Uncertainty Principle: ∆E ≥ ℏ

[(10−9 s+10−8 s)/2] , where ℏ ≈ 1.054× 10−34 J s.
2. Units: All calculations are in Joules and seconds.
3. Numerical Accuracy: Calculations will be performed to at least 4 significant figures.
4. Justification: The solution will explain how the calculated ∆E is significantly larger than the uncertainty, ensuring clear
resolution.

Table 5: Examples of constraints generated by the constraint agent given reasoning question. The example illustrates
the constraint generation for solving physics question from GPQA
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Question: For a positive integer a, define a sequence of integers x1, x2, . . . by letting x1 = a and xn+1 = 2xn + 1 for n ≥ 1.
Let yn = 2xn − 1. Determine the largest possible k such that, for some positive integer a, the numbers y1, . . . , yk are all prime.

Constraints for Verifying the Solution Plan for Prime Sequence Problem

This problem requires a solution plan that likely involves a combination of mathematical reasoning and computational verification.
Here’s a breakdown of constraints to verify and evaluate such a plan:

I. Mathematical Reasoning Constraints:

1. Correct Recurrence Relation: The plan must correctly interpret and utilize the given recurrence relations for xn and yn.
Verify that the plan doesn’t misinterpret or modify these definitions.
2. Mersenne Primes Understanding: The plan should demonstrate an understanding that yn are Mersenne numbers (numbers
of the form 2p − 1). It should acknowledge that for yn to be prime, xn must itself be prime (though this is a necessary but not
sufficient condition).
3. Logical Flow and Justification: The plan’s reasoning should be clear, logical, and well-justified. Each step should follow
from the previous ones, with clear explanations for any claims or deductions made. Avoid leaps of logic or unsubstantiated
assertions.
4. Handling of Base Case (k = 1): The plan should explicitly address the trivial case where k = 1. Since y1 = 2a − 1, any
prime value of ’a’ will result in y1 being a potential Mersenne prime. This confirms that k ≥ 1.
5. Strategy for Finding Maximum k: The plan must outline a clear strategy for determining the largest possible k. This likely
involves exploring increasing values of k and checking the primality of the resulting yn sequence. The plan should explain how
it avoids infinite search or unnecessary computations.
6. Optimality Argument: The plan should include an argument (or at least a strategy for developing an argument) for why the
found value of k is indeed the largest possible. This might involve demonstrating that for k + 1, no suitable ’a’ exists.

II. Computational Verification Constraints:

1. Primality Testing Algorithm: If the plan involves computational primality testing, it should specify the algorithm used (e.g.,
probabilistic tests like Miller-Rabin or deterministic tests like AKS). The plan should justify the choice of algorithm based on the
size of the numbers being tested and the desired level of certainty.
2. Correct Implementation: If code is involved, it must be correct and free of errors. The plan should include testing procedures
to ensure the code accurately implements the chosen primality test and the recurrence relations.
3. Computational Resources: The plan should consider the computational resources required for the primality testing. For
large values of xn, testing the primality of yn can be computationally expensive. The plan should address how it manages these
computational challenges.
4. Range of ’a’ considered: The plan should specify the range of values for ’a’ that will be explored. It should justify this range
and explain why exploring values outside this range is unnecessary.
5. Termination Condition: The plan must have a clear termination condition for its computational search. It should explain
how it determines when to stop searching for larger values of ’k’.

III. Presentation and Clarity Constraints:

1. Clear and Concise Explanation: The plan should be presented in a clear, concise, and easy-to-understand manner. Avoid
unnecessary jargon or overly complex language.
2. Well-Organized Structure: The plan should be well-organized, with a logical flow of ideas. Use headings, subheadings, and
bullet points to improve readability.
3. Reproducibility: The plan should be sufficiently detailed to allow another person to reproduce the results. All assumptions,
parameters, and procedures should be clearly stated.

Table 6: Examples of constraints generated by the constraint agent given mathematical reasoning problem. The
example illustrates the constraint generation for solving MATH question from OlympiadBench
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Problem Statement: You are an expert at scheduling meetings. You are given a few constraints on the existing schedule of each
participant, the meeting duration, and possibly some preferences on the meeting time. Note there exists a solution that works
with existing schedule of every participant.

TASK: You need to schedule a meeting for Michelle, Steven and Jerry for one hour between the work hours of 9:00 to 17:00 on
Monday.

Here are the existing schedules for everyone during the day:
- Michelle has meetings on Monday during 11:00 to 12:00;
- Steven has blocked their calendar on Monday during 9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, 15:30 to 16:00;
-Jerry has blocked their calendar on Monday during 9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00 to 14:30, 15:30 to 16:00,
16:30 to 17:00;

Find a time that works for everyone’s schedule and constraints.

Instance-Specific Constraints and Details:

Participants: Michelle, Steven, Jerry - The meeting must include all three.

Meeting Duration: 1 hour - The meeting requires a contiguous 60-minute slot.

Work Hours: 9:00 to 17:00 (Monday) - The meeting must start and end within these working hours. This acts as a global
constraint.

Individual Schedules (Existing Meetings/Blocked Times):
- Michelle: Busy from 11:00 to 12:00 on Monday.
- Steven: Busy from 9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, and 15:30 to 16:00 on Monday.
- Jerry: Busy from 9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00 to 14:30, and 15:30 to 17:00 on Monday (note this
constraint ends at the end of the workday).

While the problem states "Note there exists a solution," this isn’t a constraint in itself; it’s a guarantee that a feasible solution
exists given the constraints. The actual constraints are the schedules, meeting duration, and working hours.

Generated Plan:

1. Analyze Constraints:
- Participants: Michelle, Steven, Jerry
- Duration: 1 hour
- Work hours: 9:00 - 17:00
- Day: Monday

2. Identify Individual Availability:
- Michelle: 9:00-11:00, 12:00-17:00
- Steven: 9:30-11:30, 12:00-13:30, 14:00-15:30, 16:00-17:00
- Jerry: 9:30-10:00, 11:00-11:30, 12:30-13:00, 14:30-15:30, 16:00-16:30

3. Determine Common Availability: Looking for 1-hour slots:
- Comparing Michelle and Steven: 9:30-11:00, 12:00-13:30, 14:00-15:30, 16:00-17:00
- Comparing the above with Jerry: 14:30-15:30

4. Prioritize Earliest Time Slot: The earliest 1-hour slot is 14:30-15:30

5. Ensure Solution Exists: The slot 14:30-15:30 works for all three.

6. Strict Format Requirement:
SOLUTION: Here is the proposed time: Monday, 14:30 - 15:30

Verification:

The plan demonstrates significant improvement compared to the initial plan. It correctly identifies individual availabilities and
successfully finds the two viable one-hour slots: 9:30-10:30 and 14:30-15:30. It avoids exploring irrelevant shorter slots. The
plan is well-structured and clearly explains each step. It’s on the verge of providing the correct solution. However, it has not
yet explicitly stated the final answer (the prioritized earliest time slot) which is a key part of the task. Therefore, while much
improved, it doesn’t quite merit a top score due to this omission.

Score: 95

Table 7: Examples of verification generated by the verification agent given generated plan and constraints. This
example illustrates the verification process for calendar scheduling from NATURAL PLAN
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Category Problem Statement Generated Plan

Calendar
Scheduling

You are an expert at scheduling meetings. You are
given a few constraints on the existing schedule of
each participant, the meeting duration, and possibly
some preferences on the meeting time. Note there
exists a solution that works with existing schedule of
every participant.
————
TASK: You need to schedule a meeting for Michelle,
Steven and Jerry for one hour between the work hours
of 9:00 to 17:00 on Monday.
————
Here are the existing schedules for everyone during
the day:
- Michelle has meetings on Monday during 11:00 to
12:00;
- Steven has blocked their calendar on Monday during
9:00 to 9:30, 11:30 to 12:00, 13:30 to 14:00, 15:30
to 16:00;
-Jerry has blocked their calendar on Monday during
9:00 to 9:30, 10:00 to 11:00, 11:30 to 12:30, 13:00
to 14:30, 15:30 to 16:00, 16:30 to 17:00;
————
Find a time that works for everyone’s schedule and
constraints.

1. Analyze Constraints:
- Participants: Michelle, Steven, Jerry
- Duration: 1 hour
- Work hours: 9:00 - 17:00
- Day: Monday
————
2. Identify Individual Availability:
- Michelle: 9:00-11:00, 12:00-17:00
- Steven: 9:30-11:30, 12:00-13:30, 14:00-15:30,
16:00-17:00
- Jerry: 9:30-10:00, 11:00-11:30, 12:30-13:00, 14:30-
15:30, 16:00-16:30
————
3. Determine Common Availability: Looking for
1-hour slots:
- Comparing Michelle and Steven: 9:30-11:00, 12:00-
13:30, 14:00-15:30, 16:00-17:00
- Comparing the above with Jerry: 14:30-15:30
————
4. Prioritize Earliest Time Slot: The earliest 1-hour
slot is 14:30-15:30
————
5. Ensure Solution Exists: The slot 14:30-15:30
works for all three.
————
6. Strict Format Requirement:
SOLUTION: Here is the proposed time: Monday,
14:30 - 15:30

Meeting
Planning

You are visiting San Francisco for the day and want
to meet as many friends as possible. Solve the prob-
lem by considering various different schedules and
picking the best one to optimize your goals.
————
Travel distances (in minutes):
Bayview to Golden Gate Park: 22.
Golden Gate Park to Bayview: 23.
————
CONSTRAINTS: You arrive at Bayview at 9:00AM.
Barbara will be at Golden Gate Park from 8:00AM to
11:30AM. You’d like to meet Barbara for a minimum
of 90 minutes.

You leave Bayview at 9:00 AM and travel 22 minutes
to Golden Gate Park, arriving at 9:22 AM. You meet
Barbara from 9:22 AM – 10:52 AM, fulfilling the
90-minute requirement.

Trip
Planning

You plan to visit 4 European cities for 12 days in total.
You only take direct flights to commute between
cities. You plan to stay in Budapest for 6 days. You
plan to stay in Reykjavik for 5 days. You would like
to meet your friends at Reykjavik between day 6 and
day 10 to tour together. You want to spend 2 days in
Milan. You are going to attend a wedding in Milan
between day 10 and day 11. You would like to visit
Porto for 2 days.
————
Here are the cities that have direct flights:
Budapest and Reykjavik, Reykjavik and Milan, Bu-
dapest and Milan, Milan and Porto.
————
Find a trip plan of visiting the cities for 12 days by
taking direct flights to commute between them.

Day 1-6: Arriving in Budapest and visit Budapest
for 6 days.
Day 6: Fly from Budapest to Reykjavik.
Day 6-10: Visit Reykjavik for 5 days.
Day 10: Fly from Reykjavik to Milan.
Day 10-11: Visit Milan for 2 days.
Day 11: Fly from Milan to Porto.
Day 11-12: Visit Porto for 2 days.

Table 8: Examples of generated plans by PlanGEN (Best of N ) given problem statement. These examples illustrate
the plan generation for all three task categories from NATURAL PLAN
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Question: Two quantum states with energies E1 and E2 have a lifetime of 10−9 sec and 10−8 sec, respectively. We want to
clearly distinguish these two energy levels. Which one of the following options could be their energy difference so that they can
be clearly resolved?

Plan to solve the problem:

1. Identify the relevant physics principle: This problem involves the energy-time uncertainty principle, which states that the
product of the uncertainty in energy (∆E) and the uncertainty in time (∆t) is greater than or equal to h-bar/2 (ℏ/2). The
uncertainty in time is related to the lifetime of the states. To clearly distinguish the energy levels, the energy difference between
them must be greater than the uncertainty in their energies.

2. Relate lifetimes to time uncertainty: The lifetimes given (10−9 s and 10−8 s) represent the uncertainties in the time for each
state (∆t1 and ∆t2). We need to consider which lifetime is more restrictive for resolving the energy levels. Since we want to
*clearly* distinguish them, we should use the *smaller* lifetime as the relevant ∆t. This is because the shorter lifetime leads to
a larger energy uncertainty, making the levels harder to resolve.

3. Calculate the minimum energy difference: Use the energy-time uncertainty principle (∆E ∗∆t ≥ ℏ/2) with the smaller
lifetime to calculate the minimum resolvable energy difference (∆E). We can approximate this by setting ∆E ∗∆t ≈ ℏ/2.
We’ll need the value of ℏ (Planck’s constant divided by 2π) in eV·s.

4. Compare the calculated ∆E with the choices: Compare the calculated minimum resolvable energy difference (∆E) with the
given options (A) through (D). The correct answer will be the option that is *greater* than the calculated ∆E, ensuring that the
energy difference is large enough to resolve the two levels.

5. Select the correct answer: Based on the comparison in step 4, choose the option that represents an energy difference greater
than the minimum resolvable energy difference.

Plan Execution:

1. Identify the relevant physics principle: The energy-time uncertainty principle (∆E ∗∆t ≥ ℏ/2) governs this situation.

2. Relate lifetimes to time uncertainty: The shorter lifetime, 10−9 s, is the relevant ∆t because it leads to a larger energy
uncertainty, making resolution more difficult. So, ∆t = 10−9 s.

3. Calculate the minimum energy difference:
We have ∆E ∗∆t = ℏ/2. We need ℏ in eV·s. ℏ = 6.582× 10−16 eV·s.
∆E = (ℏ/2)/∆t
∆E = (6.582× 10−16 eV·s/2)/(10−9 s)
∆E = 3.291× 10−7 eV
This is approximately 3× 10−7 eV.

4. Compare the calculated ∆E with the choices: We need an energy difference greater than 3× 10−7 eV to clearly resolve the
levels.
(A) 10−11 eV - Too small
(B) 10−8 eV - Too small
(C) 10−9 eV - Too small
(D) 10−4 eV - Large enough

5. Select the correct answer: Option (D) is the only one significantly larger than the calculated minimum energy difference.

Answer: D

Table 9: Examples of generated plans by PlanGEN (Best of N ) given physics problem. The example illustrates the
plan generation and it’s execution for physics problem from GPQA

24



<Entire Document>

Question: What is the percentage change in cash flow hedges in 2011 compare to the 2010?

Plan to solve the problem:

1. Locate the information on cash flow hedges: Search the document for "cash flow hedges" or similar terms related to derivative
instruments used for hedging cash flows. Focus on sections discussing derivative instruments, hedging activities, and related
notional amounts.

2. Identify the notional amounts for 2011 and 2010: Once the relevant section is found (Note 2i), extract the notional amounts of
the cash flow hedges specifically for fiscal year 2011 and fiscal year 2010.

3. Calculate the percentage change: Use the formula for percentage change: [(Notional Amount 2011 - Notional Amount 2010) /
Notional Amount 2010] * 100. This will provide the percentage change in cash flow hedges from 2010 to 2011.

Plan Execution:

1. Locate the information on cash flow hedges: The information on cash flow hedges was located in a section discussing
derivative instruments and hedging activities. Specifically, it was found within a sentence detailing the notional amounts of
various hedging instruments.

Code (if needed):
“‘python
# No code needed for this step.
“‘
Result: Information on cash flow hedges located successfully.

2. Identify the notional amounts for 2011 and 2010: The notional amounts for cash flow hedges were identified as $153.7 million
for 2011 and $139.9 million for 2010.

Code (if needed):
“‘python
# No code needed for this step.
“‘
Result: 2011 notional amount: $153.7 million; 2010 notional amount: $139.9 million.

3. Calculate the percentage change:

Code (if needed):
“‘python
notional_2011 = 153.7
notional_2010 = 139.9
percentage_change = ((notional_2011 - notional_2010) / notional_2010) * 100
rounded_percentage_change = round(percentage_change, 1)
print(f"{rounded_percentage_change}%")
“‘

Answer: 9.9%

Table 10: Examples of generated plans by PlanGEN (Best of N ) given financial reasoning problem. The example
illustrates the plan generation and it’s execution for problem from DocFinQA
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Question: For a positive integer a, define a sequence of integers x1, x2, . . . by letting x1 = a and xn+1 = 2xn + 1 for n ≥ 1.
Let yn = 2xn − 1. Determine the largest possible k such that, for some positive integer a, the numbers y1, . . . , yk are all prime.

Plan for Solving the IMO Problem:
1. Problem Understanding: The problem defines a recursive sequence ‘x_n’ based on an initial value ‘a’, and a related sequence
‘y_n’ based on ‘x_n’. The goal is to find the largest ‘k’ such that ‘y_1’, ‘y_2’, ..., ‘y_k’ can all be prime numbers for some choice
of ‘a’.
2. Key Information and Variables:
‘a’: A positive integer, the starting value for the sequence ‘x_n’. This is the variable we need to choose optimally.
‘x_n’: Defined recursively as ‘x_1 = a’ and ‘x_(n+1) = 2x_n + 1’.
‘y_n’: Defined as ‘y_n = 2^(x_n) - 1’. This is the sequence we need to check for primality.
‘k’: The length of the subsequence of ‘y_n’ consisting only of primes. We want to maximize this.
3. Problem Type and Method: This is a number theory problem involving sequences, primality, and recursion. The method will
involve a combination of:
Analyzing the structure of ‘x_n’ and ’y_n’: Finding a closed-form expression for ’x_n’ in terms of ’a’ and ‘n‘ will be crucial.
This will help us understand the structure of ‘y_n’.
Primality testing/properties: We’ll need to leverage known properties of prime numbers, particularly those related to Mersenne
primes (primes of the form 2^p - 1, where p is prime).
Case analysis/exploration: We might need to explore small values of ‘a’ and ‘k’ to identify patterns and formulate conjectures.
Proof by contradiction: To establish the largest possible ‘k‘, we may need to assume a larger value is possible and derive a
contradiction.
4. Solution Process:
Step 1: Derive a closed-form expression for ‘x_n‘. The recursive definition suggests a linear recurrence relation. We can solve it
to express ‘x_n‘ directly in terms of ‘a‘ and ‘n‘.
Step 2: Substitute ‘x_n‘ into the definition of ‘y_n‘. This gives us a formula for ‘y_n‘ in terms of ‘a‘ and ‘n‘.
Step 3: Analyze the primality conditions for ‘y_n‘. Given that ‘y_n‘ has the form 2^m - 1, we know that for ‘y_n‘ to be prime,
‘m‘ (which is ‘x_n‘) must itself be prime. This suggests focusing on values of ‘a‘ that lead to prime values of ‘x_n‘.
Step 4: Explore small values of ‘a‘ and ‘k‘. This helps to identify patterns and limitations on the possible values of ‘k‘.
Step 5: Investigate divisibility properties. Consider the factors of ‘y_n‘ and how they might relate to previous terms in the
sequence. Look for patterns in the factors that might prevent multiple consecutive ‘y_n‘ from being prime.
Step 6: Formulate a conjecture for the maximum ‘k‘. Based on the observations from the previous steps, propose a value for the
maximum ‘k‘.
Step 7: Prove the conjecture. Use a proof by contradiction. Assume a larger ‘k‘ is possible and demonstrate that this leads to a
contradiction based on the divisibility properties of ‘y_n‘. This will establish the proposed value of ‘k‘ as the maximum.

Plan Execution:
1. Closed-form for xn: The recurrence relation xn+1 = 2xn + 1 with x1 = a can be solved as follows:
x2 = 2a+ 1
x3 = 2(2a+ 1) + 1 = 4a+ 3 = 22a+ 22 − 1
x4 = 2(4a+ 3) + 1 = 8a+ 7 = 23a+ 23 − 1
By induction, we can show that xn = 2n−1a+ 2n−1 − 1 = 2n−1(a+ 1)− 1.
2. yn in terms of a and n: Substituting the expression for xn into yn = 2xn − 1, we get yn = 22

n−1(a+1)−1 − 1.
3. Primality of yn: For yn to be prime, xn must be prime. Let xn = pn, where pn is a prime number.
4. Exploring small values:
If a = 1, x1 = 1, y1 = 21 − 1 = 1, which is not prime.
If a = 2, x1 = 2, y1 = 22 − 1 = 3, which is prime.
x2 = 2(2) + 1 = 5, y2 = 25 − 1 = 31, which is prime.
x3 = 2(5) + 1 = 11, y3 = 211 − 1 = 2047 = 23 · 89, which is not prime. So, for a = 2, k = 2.
5. Divisibility:
If x1 = a is prime, say a = p, then x2 = 2p+ 1. If x2 is also prime, then y1 and y2 are potentially Mersenne primes. However,
x3 = 2(2p + 1) + 1 = 4p + 3. If p = 2, x3 = 11, and y3 is not prime. If p = 3, x2 = 7, x3 = 15, which is not prime. If
p = 5, x2 = 11, x3 = 23, x4 = 47, x5 = 95, which is not prime.

If k = 3, we need x1 = a, x2 = 2a + 1, and x3 = 4a + 3 to all be prime. If a = 2, x1 = 2, x2 = 5, x3 = 11. But
y3 = 211 − 1 = 2047 = 23 · 89, which is not prime.

6. Conjecture: The largest possible k is 2.
7. Proof: We have shown that for a = 2, y1 and y2 are prime. We need to show that y3 cannot be prime. x3 = 4a+ 3. If a ≡ 2
(mod 3), then 4a + 3 ≡ 4(2) + 3 ≡ 11 ≡ 2 (mod 3). If a ≡ 1 (mod 3), then 4a + 3 ≡ 4(1) + 3 ≡ 7 ≡ 1 (mod 3). If
a ≡ 0 (mod 3), then 4a+3 ≡ 3 ≡ 0 (mod 3). So, if a > 3 and a ≡ 0 (mod 3), then x3 is divisible by 3 and greater than 3,
so it is not prime. If a = 3, x3 = 15, not prime. If a = 2, x3 = 11, and y3 = 2047 = 23 · 89.

So the final answer is 2 .

Table 11: Examples of generated plans by PlanGEN (Best of N ) given maths problem. The example illustrates the
plan generation and it’s execution for problem from OlympiadBench (MATH)
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