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ABSTRACT

Generating diverse objects (e.g., images) using generative models (such as GAN
or VAE) has achieved impressive results in the recent years, to help solve many
design problems that are traditionally done by humans. Going beyond image gen-
eration, we aim to find solutions to more general design problems, in which both
the diversity of the design and conformity of constraints are important. Such a
setting has applications in computer graphics, animation, industrial design, ma-
terial science, etc, in which we may want the output of the generator to follow
discrete/combinatorial constraints and penalize any deviation, which is non-trivial
with existing generative models and optimization solvers. To address this, we
propose GenCO, a novel framework that conducts end-to-end training of deep
generative models integrated with embedded combinatorial solvers, aiming to un-
cover high-quality solutions aligned with nonlinear objectives. While structurally
akin to conventional generative models, GenCO diverges in its role - it focuses
on generating instances of combinatorial optimization problems rather than final
objects (e.g., images). This shift allows finer control over the generated outputs,
enabling assessments of their feasibility and introducing an additional combina-
torial loss component. We demonstrate the effectiveness of our approach on a
variety of generative tasks characterized by combinatorial intricacies, including
game level generation and map creation for path planning, consistently demon-
strating its capability to yield diverse, high-quality solutions that reliably adhere
to user-specified combinatorial properties.

1 INTRODUCTION

Generating diverse and realistic objects with combinatorial properties is an important task with
many applications. For example, in video game level design, we may want to generate a variety
of levels that are both realistic and valid/playable (Zhang et al., 2020). Here, “valid” may refer
to certain discrete characteristics of the level that must be satisfied (e.g., a minimum number of
enemies, a path between the level entrance and exit, etc.). In automatic device design, we want
to generate a variety of devices that meet foundry manufacturing constraints and optimize physics-
related objectives (Schubert et al., 2022). In the design of new molecules, we want to generate
a variety of chemically valid molecules with specific properties (Pereira et al., 2021). In all of
these examples, the goal is to generate a variety of combinatorial solutions that are both feasible
and high quality with respect to a given nonlinear objective. Another situation to consider is when
the generated solutions do not have to strictly follow combinatorial constraints, but we want to
discourage certain things as a penalty. For example, if we are creating various images of a map, we
might want to ensure that the path planning in those maps is efficient (see section 4.2).

The difficulty in these settings arises from the fact that the generated objects need to satisfy specific
discrete properties incorporated either as combinatorial constraints or penalties and be of high qual-
ity as evaluated by a nonlinear objective. The combinatorial constraints make it challenging to apply
gradient-based methods to train standard generative models, such as GAN (Goodfellow et al., 2014),
or VAE (Kingma & Welling, 2013), which may generate examples that violate the user-specified
constraints. Additionally, the nonlinear objective makes it difficult to use traditional general-purpose
combinatorial optimization tools since mixed-integer nonlinear programming (MINLP) is often slow
in practice compared to the more heavily researched mixed integer linear programming (MILP), of-
ten requiring problem-specific solvers or leveraging specialized structure. Furthermore, traditional
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optimization solvers are not geared towards generating diverse solutions and do not have the flexibil-
ity of deep learning models to quickly adapt to slightly modified settings. Recent work has attempted
to address these issues by first training a generative model and then fixing/postprocessing the output
after the fact (Zhang et al., 2020). However, these approaches are limited in that they only use the
combinatorial solver to fix the output of the generative model and do not use the combinatorial solver
in training. As a result, the generative model is not trained with the combinatorial solver in mind
(i.e., end-to-end). Thus, the generator may fail to capture the distribution of high-quality feasible
solutions as many of the generated examples may be “fixed” to a single solution. Additionally, some
work constrains generative model outputs by penalizing the generator based on constraint violation
(Chao et al., 2021). While this approach may work in some settings where the constraints must be
satisfied, it is unclear how to extend this approach to more complex constraints, such as logical or
general combinatorial constraints that can be readily expressed in MILP.

As a result, we propose GenCO that generates diverse solutions to design problems with combi-
natorial nature. GenCO combines the flexibility of deep generative models with the combinatorial
efficiency of optimization solvers. Our approach mainly deals with two cases: (1) when the result-
ing solution needs to satisfy certain hard combinatorial constraints (hard constraints), and (2) the
imposition of a desired penalty if the solutions violate the constraints (soft constraints). To achieve
these two goals, we introduce a general concept known as the “combinatorial loss”, which serves as
an additional “restriction” on the generated solutions. In the context of combinatorial constraints,
the combinatorial loss takes the form of a projection expressed as a mixed-integer linear program
(MILP). In the second scenario, this general concept manifests as an extra penalty term within the
objective function. This, coupled with the diversity mechanisms inherent in deep generative models,
fine-tunes the generated solutions. This process both encourages diversity and ensures adherence to
the specified combinatorial properties.

Our main contributions involve introducing a framework, GenCO, that serves two key purposes: 1)
generating a range of solutions to nonlinear problems, ensuring they adhere to combinatorial prop-
erties; 2) integrating a combinatorial solver into the deep generative learning process. We showcase
the effectiveness of our approach through a series of experiments on various generative combinato-
rial optimization problems. This includes tasks like game level design (section 4.1) and generating
maps for path planning (section 4.2).

2 RELATED WORK

The interaction between generative models and combinatorial optimization has seen increased re-
search interest as practitioners seek to integrate or draw inspiration from both paradigms. A promi-
nent line of research has approached the problem of generating objects with combinatorial optimiza-
tion in mind.

Traditional constrained object generation Traditional constraint optimization methods were
modified to search for multiple feasible solutions for problems concerning building layout (Bao
et al., 2013), structural trusses (Hooshmand & Campbell, 2016), networks (Peng et al., 2016), build-
ing interiors (Wu et al., 2018), and urban design (Hua et al., 2019). Additionally, an approach based
on Markov chain Monte Carlo (Yeh et al., 2012) samples objects that satisfy certain constraints.
These approaches employ traditional sampling and optimization methods such as mathematical pro-
gramming and problem-specific heuristics to obtain multiple feasible solutions. These methods
often obtain multiple solutions by caching the feasible solutions found during the search process or
modifying hyperparameters such as budgets or seed solutions. These methods can guarantee fea-
sibility and optimality; however, they cannot synthesize insights from data such as historical good
design examples or generate unstructured objects like images that are difficult to handle explicitly
in optimization problems.

Infeasibility penalization Further work has endeavored to modify deep generative models such as
generative adversarial networks (Goodfellow et al., 2014) to penalize constraint violation. General
purpose methods are proposed for generating objects respecting constraint graphs (Para et al., 2021)
and blackbox constraints (Di Liello et al., 2020). Specialized approaches consider graph constraints
where the generated object should be a graph that meets certain constraints that are specified by
a blackbox function such as in the design of photonic crystals (Christensen et al., 2020), crystal
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structure prediction (Kim et al., 2020), graph-constrained house generation (Tang et al., 2023), and
general house plan generation (Nauata et al., 2021). In these settings, generating infeasible objects
is penalized, and the generative model often has an inductive bias in the network architecture to
generate feasible objects. These methods can use historical training datasets and handle unstructured
objects; however, the output is often infeasible.

Optimization-based priors In a related direction, previous work proposed conditioning varia-
tional autoencoders (VAE) (Kingma & Welling, 2013) with combinatorial programs (Misino et al.,
2022). Here, the latent information is extracted by the encoder and then fed through a logic program,
made differentiable via DeepProblog (Manhaeve et al., 2018), such as performing handwritten op-
erations on digits. The result is then fed through the decoder to generate the original image based on
logical relationships. At test time, the goal is to generate objects that hopefully satisfy the logical re-
lationship because the model was conditioned to do so. Here, the logical program helps to condition
the generative model to generate objects based on patterns resulting from logical relationships and
penalize cases where the logic is incorrect. Here, the generated objects are not guaranteed to satisfy
the combinatorial constraints, but rather, the generative model has a logical structural prior. Previous
work has made various optimization problems differentiable, such as quadratic programs (Amos &
Kolter, 2017), probabilistic logic programs (Manhaeve et al., 2018), linear programs (Wilder et al.,
2019a; Mandi & Guns, 2020; Elmachtoub & Grigas, 2017; Liu & Grigas, 2021), Stackelberg games
(Perrault et al., 2020), normal form games (Ling et al., 2018), kmeans clustering (Wilder et al.,
2019b), maximum likelihood computation (Niepert et al., 2021), graph matching (Rolı́nek et al.,
2020), knapsack (Demirovic et al., 2019b;a), maxsat (Wang et al., 2019), mixed integer linear pro-
grams (Mandi et al., 2020; Paulus et al., 2021; Ferber et al., 2020), blackbox combinatorial solvers
(Pogančić et al., 2020; Mandi et al., 2022; Berthet et al., 2020), nonlinear programs (Donti et al.,
2017), continuous constraint satisfaction (Donti et al., 2020), cone programs (Agrawal et al., 2019).
General-purpose methods are presented for minimizing downstream regret by learning surrogate loss
functions (Shah et al., 2022; 2023; Zharmagambetov et al., 2023). Additionally, previous work has
employed learnable linear solvers to solve nonlinear combinatorial problems (Ferber et al., 2023).
Finally, a survey investigates the intersection between machine learning and optimization (Kotary
et al., 2021). These approaches focus on identifying a single solution rather than generating diverse
solutions. Additionally, many of these approaches are amenable for use by GenCO if a specific
optimization problem better suits the generative problem.

Enhacing combinatorial optimization with generative models Recently, generative models
have been proposed to improve combinatorial optimization. Zhang et al. (2022) use generative
flow networks (gflownet) for robust scheduling problems. Sun & Yang (2023) use graph diffusion
to solve combinatorial problems on graphs. Ozair et al. (2021) use vector quantized variational au-
toencoders to compress the latent space for solving planning problems in reinforcement learning.
Zhao & You (2020) use generative adversarial networks to generate settings for sample average
approximation in robust chance-constrained optimization. Additionally, in (Lopez-Piqueres et al.,
2023), the authors generate continuous objects with tensor networks that satisfy linear constraints
for optimization problems. These approaches target solving a fully specified optimization problem
rather than generating objects with combinatorial constraints in mind.

3 GENCO: METHOD DESCRIPTION

3.1 MATHEMATICAL FORMULATION

The key distinction in our framework centers around the incorporation of a combinatorial loss, a
departure from conventional deep generative models like Generative Adversarial Networks (GANs)
illustrated in Figure 1. Rather than directly generating the ultimate object of interest, be it images
or any other complex entity, our generator G(ϵ; θ) parameterized by θ takes random noise ϵ and
transforms it into a problem representation c that encapsulates the underlying problem’s essential
features. This representation serves as a pivotal intermediary step. Subsequently, we feed c to
both the combinatorial loss and the generator loss (e.g. derived via a discriminator), ensuring that
the solutions produced by the generator exhibit the desired characteristics: diversity, realism, and
adherence to combinatorial properties.
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Figure 1: An overview of GenCO. The top part of the diagram corresponds to the ordinary “GAN-
style” generative model (chosen as an example). By integrating the “combinatorial loss” into both
the loss function and the object generation process (bottom part), we effectively encode the combi-
natorial nature of the problem.

To train such a generator, we define the following bi-objective function, effectively balancing the
generative loss Lgen with the combinatorial loss C:

min
θ

Eϵ[Lgen(c) + γC(h(c))]

s.t. c = G(ϵ; θ),
(1)

where Lgen encapsulates the generative loss, responsible for promoting diversity and realism. Its
form can vary substantially depending on the specific generative model employed. For example,
a Wasserstein GAN might utilize the adversarial discrepancy between outputs, while a Variational
Autoencoder (VAE) would make use of the Evidence Lower Bound (ELBO).

Conversely, the combinatorial loss C(·), penalized by the weighting factor γ, is coupled with the
downstream optimization solver h(·). This solver plays a crucial role in enforcing or encourag-
ing combinatorial properties. For instance, one might seek to generate objects that must adhere to
physical or logical constraints, all while minimizing a specified (linear) cost. In such a scenario,
it becomes imperative to formulate an instance of a Mixed-Integer Linear Program (MILP) or an-
other type of optimization problem with a well-defined feasible region. This problem instance then
integrates seamlessly into the training pipeline, serving as the backbone of C.

Below, we consider two potential and practical settings for C, each tailored to address specific real-
world applications.

3.2 CONSTRAINED GENERATOR

In this setting, we consider a problem domain where the goal is to train a generator that outputs
feasible solutions, which natively handles diversity. To generate objects that are guaranteed to be
feasible, we set γ → +∞ in equation 1 for any c that does not satisfy constraints (defined by
feasible region Ω), 0 otherwise. To handle this directly with such a high value of γ is computationally
inefficient. Instead, we employ a ”projection layer” denoted as h(·) that maps c to its nearest feasible
point in the feasible set Ω. Specifically, we define h(c) = argmaxx∈Ω cTx 1, where c is an output
of the generator G(ϵ; θ). In this context, a generated problem description c (as in Fig.1) can be
viewed as an unconstrained generated object that is subsequently mapped via h(·) to x to adhere
to the defined constraints. With this approach, we can reformulate equation 1 into the following
unconstrained optimization problem:

min
θ

Eϵ[Lgen(h(G(ϵ; θ)))]. (2)

Note that the feasibility within region Ω is guaranteed to be satisfied due to the form of h(·). Directly
minimizing this objective is possible thanks to the recent advancements in differentiable solvers
literature (Agrawal et al., 2019; Pogančić et al., 2020; Sahoo et al., 2022).

1Although a dot product is a natural choice of proximity for cosine distance, one could employ other metrics, e.g. |c − x|
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Algorithm 1 provides a high-level description of our method for this setting. It starts by initializing
the generator parameters. In each iteration, a problem description is randomly selected using the
generator. An optimization problem is then solved to find the solution that maximizes the similarity
between c within a defined feasible set (x is the corrected/feasible version of c). Finally, the genera-
tor parameters are updated through backpropagation. We also provide an application of this generic
algorithm to the concrete generative model examples of GANs and VQVAEs in Appendices B-C.

Algorithm 1: Generator Training in Constrained Setting
Output: Trained generator
Initialize generator parameters θ;
while not converged do

Sample a noise ϵ;
Sample a problem description c ∼ G(ϵ; θ);
Call a solver x∗ = argmaxx∈Ω cTx = h(c);
Compute loss = Lgen(x

∗);
Backpropagate ∇θloss to update θ;

end while

3.3 PENALIZED GENERATOR

The formulation from the previous section 3.2 naturally extends to penalty form, i.e., we encourage
generated problem representation c to respect certain combinatorial properties. In this scenario, we
can directly leverage equation 1 as there is no need in projection layer:

min
θ

Eϵ[Lgen(G(ϵ; θ)) + γC(h(G(ϵ; θ)))]. (3)

Here, we seamlessly integrate the generator into the objective function. While it is true that we do
not impose any explicit constraints on the output of the generator, and one could use the output of G
directly, we contend that introducing a combinatorial penalty or loss as a penalty remains a crucial
framework with significant practical utility. This approach serves to further guide the generation
process and injects domain-specific knowledge that is easy to interpret, ensuring that the generated
solutions exhibit desired combinatorial properties, a facet that holds immense practical relevance.

For instance, we may aim to generate images tailored for path planning in strategy games. These
maps feature various types of terrains, each incurring distinct costs when placed on the map. For effi-
cient path planning, our goal is to find a “low cost” shortest path between two endpoints. Therefore,
in this scenario, C incorporates a domain specific (fixed) mapping (e.g. a neural net) that transforms
an image into a graph with corresponding weights assigned to each edge, followed by solving the
shortest path problem (e.g. using Dijkstra’s algorithm).

However, in this particular case, there is no need to introduce a “projection” operator as in the
previous case since there are no explicit constraints that must be strictly satisfied. We can directly
employ gradient-based optimization, allowing for differentiation through the combinatorial problem.
This is achieved approximately by employing methods outlined in (Pogančić et al., 2020; Sahoo
et al., 2022). Pseudocode 2 describes the application of GenCO for penalty setting. Furthermore,
Appendix A.1 provides an application of this generic algorithm to a concrete example of GANs.

It is crucial to emphasize that the given penalized setting deviates from the conventional decision-
focused learning (DFL) or smart predict-then-optimize paradigms (Elmachtoub & Grigas, 2017;
Donti et al., 2017). In our approach, we do not possess access to the ground truth costs c, and the
ultimate loss function encompasses both the generator’s loss and the output of a solver.

4 EXPERIMENTS

We tested our approach on two applications: level generation for the Zelda game and map gen-
eration for path planning in Warcraft. Although both applications are in the game domain, they
have quite different use cases. Nevertheless, both settings involve combinatorial optimization in the
pipeline, which makes the typical use of deep generative models nontrivial. In these experiments,
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Algorithm 2: Generator Training in Penalty Setting
Output: Trained generator
Initialize generator parameters θ;
(optional) Define a fixed mapping g(·) for c
while not converged do

Sample a noise ϵ;
Sample a problem description c ∼ G(ϵ; θ);
(optional) apply a mapping g(·) to transform c;
Call a solver x∗ = h(g(c)) ;
Compute loss = Lgen(c) + γC(x∗);
Backpropagate ∇θloss to update θ;

end while

we demonstrated that GenCO significantly outperforms the baselines, efficiently finding diverse,
realistic solutions that obey combinatorial properties. This success paves the way for combining
combinatorial optimization with deep generative models.

4.1 GENERATING GAME LEVELS USING GANS

We evaluate our model on the task of generating diverse Zelda game levels. In this setting, we use
GenCO to train using a GAN-like constrained formulation (refer to section 3.2 and Appendix B).

4.1.1 SETTINGS

Explicitly Constrained GAN: Game Level Design We train GenCO on the task of generating
Zelda game levels. Here, we are given examples of human-crafted game levels and are asked to
generate fun new levels. The generated levels must be playable in that the player must be able to
solve them by moving the character through a route that reaches the destination. Additionally, the
levels should be realistic in that they should be somewhat similar to the real game levels as measured
by an adversary that is trained to distinguish between real and fake images (Lgen). We use the same
dataset as (Zhang et al., 2020), consisting of 50 Zelda game levels, as well as the same network
architectures, as we don’t tune the hyperparameters for our model in particular but rather compare
the different approaches, all else equal.

Here, we evaluate several approaches, including the previous work (Zhang et al., 2020), which we
call GAN + MILP fix. This approach first trains a standard Wasserstein GAN architecture to generate
the game levels. Specifically, they train the WGAN by alternatively training two components: a
generator and a discriminator. The generator is updated to “fool” the discriminator as much as
possible in that it tries to maximize the loss of the discriminator. The discriminator tries to correctly
separate the generated and real game levels into their respective classes. When the practitioner then
wants to generate a valid level, this approach generates a level with the generator and then fixes it
using a MILP formulation that finds the nearest feasible game level where proximity is determined
by cosine distance, which is equivalent to minimizing a dot product distance.

We evaluate two variants of GenCO, GenCO - Fixed Adversary, which iteratively updates the gen-
erative model to fool a fixed pretrained adversary, and GenCO - Updated Adversary, which updates
both the generator and adversary during training. The fixed adversary approach trains to fool a pre-
trained adversary that is obtained from the fully trained GAN from previous work (Zhang et al.,
2020). Both GenCO approaches are initialized with the fully trained GAN from previous work
(Zhang et al., 2020).

4.1.2 RESULTS

We present a table of results in Table 1 and examples in Figure 2, which includes the performance
of the previous approach as well as two variants of our proposed approach. In these settings, we es-
timate performance based on sampling 1000 levels. Each level is made out of a grid, with each grid
cell having one of 8 components: wall, empty, key, exit, 3 enemy types, and the player. A valid level
is one that can be solved by the player in that there is a valid route starting at the player’s location,
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Approach % unique GAN loss (Lgen)
(lower better)

GenCO adversary
(lower better)

GenCO - Updated Adversary 0.995 -10.10 -4.49
GenCO - Fixed Adversary 0.22 -1.45 -0.85

GAN + MILP fix (Previous Work) 0.52 0.22 0.24

Table 1: Game level design comparison. We compare GenCO with an updating adversary against
GenCO with a fixed adversary, and lastly, previous work that postprocesses solutions to be valid
game levels. Here, all levels are valid, but GenCO exhibits more diversity and realism.
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Figure 2: Generated zelda game examples. The GenCO Updated Adversary obtains solutions that
seem more realistic than mainly empty fixed GAN instances and fixed adversary instances.

collecting the key, and then reaching the exit. We evaluate the performance of the models using two
types of metrics: diversity, as measured by the percentage of unique levels generated, and fidelity,
as measured by the average objective quality of a fixed GAN adversary. We evaluate using adver-
saries from both the previous work and GenCO. As shown in Table 1, we find that GenCO with an
updating adversary generates unique solutions at a much higher rate than previous approaches and
also generates solutions that are of higher quality as measured by both the GAN adversary and its
own adversary. The adversary quality demonstrates that the solutions are realistic in that neither the
adversary from the previous work nor from GenCO is able to distinguish the generated examples
from the real examples. This is further demonstrated in Figure 2 with the updated adversary gener-
ating realistic and nontrivial game levels. Furthermore, given that the levels are trained on only 50
examples, we can obtain many more game levels. Note here that both approaches are guaranteed to
give playable levels as they are postprocessed to be valid. However, GenCO is able to generate more
diverse solutions that are also of higher quality.

Uniqueness As shown in Table 1, GenCO, with an updated adversary, obtains the highest percent-
age of unique solutions, generating 995 unique solutions out of 1000. This is significantly higher
than the previous work, which only generated 520 unique solutions. This is likely due to the fact
that the generator is trained with the downstream fixing explicitly in the loop. This means that while
the previous work may have been able to “hide” from the adversary by generating slightly different
continuous solutions, these continuous solutions may project to the same discrete solution. On the
other hand, by integrating the fixing into the training loop, GenCO’s generator is unable to hide
in the continuous solution space and thus is heavily penalized by generating the same solution as
the adversary will easily detect those to be originating from the generator. In essence, this makes
the adversary’s task easier as it only needs to consider distinguishing between valid discrete levels
rather than continuous and unconstrained levels. This is also reflected in the adversary quality, where
GenCO’s adversary is able to distinguish between levels coming from the previous work’s generator
and the real levels with a much better loss.
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4.2 MAP GENERATION FOR PATH PLANNING

In this experiment, we consider somewhat different and more challenging for GenCO setting of
generation of image maps for strategy games like Warcraft. This poses a greater challenge because
the generator G described in equation 1 is not restricted and can produce any image of a map (setting
descrbied in section 3.3). However, we are required to encourage G to generate a map with two main
criteria: 1) it should resemble real and diverse game maps, as determined by an adversary trained
to differentiate between real and fake images; 2) the cost of the shortest path from the top-left to
the bottom-right corners (source and destination) should be minimized. Intuitively, it corresponds
to (mostly) a diagonal part of the image, and a map can include various elements (terrains) like
mountains, lakes, forests, and land, each with a specific cost (for example, mountains may have a
cost of 3, while land has a cost of 0). To calculate this, we pass the generated image to the fixed
ResNet (called “cost NN”) to get the graph representation together with edge costs. The cost NN
corresponds to the mapping g(·) in Algorithm 2. This is then followed by the shortest path solver
(h(·) in Algorithm 2). The objective is to populate the map with a diverse range of objects while
ensuring the shortest path remains low-cost. We use the same dataset as in (Pogančić et al., 2020)
with DCGAN architecture adapted from (Zhang et al., 2020). More implementation details and
experimental settings can be found in Appendix A.

4.2.1 BASELINES

We examine various baseline models, including an “Ordinary GAN” that does not incorporate the
Shortest Path objective (see the top part of Fig. 1). Like the Zelda experiment, this approach em-
ploys a standard Wasserstein GAN architecture closely following (Zhang et al., 2020). However, in
this case, we generate images directly instead of encoding game levels. More precisely, we train the
WGAN by iteratively training two components: a generator and a discriminator. The generator is
fine-tuned to deceive the discriminator to the greatest extent possible, aiming to maximize the dis-
criminator’s loss. The discriminator, on the other hand, endeavors to accurately distinguish between
generated and authentic game levels and categorize them accordingly.

The next baseline is “GAN + cost NN”, which simultaneously feeds the generator’s output into
both the discriminator and a ResNet that calculates the costs for each edge in the grid. We then
average the output to obtain the final loss for generator. We then average these outputs to derive the
ultimate loss for the generator. While this approach considers costs associated with objects, it does
not incorporate information about the Shortest Path.

As for the GenCO, it generalizes both of these approaches incorporating combinatorial solver into
the pipeline. The detailed algorithm is given in Appendix A. To backpropagate through the solver,
we employ the “identity with projection” method from (Sahoo et al., 2022). The remaining settings
are similar to “Ordinary GAN”.

4.2.2 RESULTS

Quantitative results are showcased in Table 2. The “Ordinary GAN” focuses exclusively on the
GAN’s objective, without considering the Shortest Path’s objective f . In contrast, GenCO achieves
higher performance with regards to the SP’s objective, albeit with a slight reduction in GAN’s loss.
On the other hand, the “GAN + cost NN” approach optimizes using the cost vector of the entire map
(generated by ResNet). In other words, it tries to uniformly avoid placing costly objects in any part
of the image, whereas we are interested only in the shortest path. While it demonstrates a modest
enhancement in the objective f , it experiences a notable decline in terms of generator loss (Lgen).
This indicates a trade-off between optimizing for the Shortest Path and the GAN’s objective.

Such quantitative results directly translate into image qualities. In fig. 3, a subset of generated War-
craft map images using various methods is displayed. The “Ordinary GAN” tends to generate maps
with elements such as mountains and lakes, which are considered “very costly”, particularly along
the Shortest Path from the top-left to the bottom-right (which mostly goes through the diagonal).
This makes sense since WGAN is trained with no information about grid costs. In contrast, the
“GAN + cost NN” approach produces less costly maps, albeit with reduced diversity. For instance,
most part of the image is populated with the same object. On the other hand, GenCO strikes a bal-
ance, achieving a cheap Shortest Path while maintaining a diverse range of elements on the map.
The Shortest Path is efficient, and the map exhibits a rich variety of features simultaneously.
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Approach GAN loss (Lgen)
(lower better)

SP loss (C)
(lower better)

Ordinary GAN 0.6147 36.45
GAN + cost NN 0.8994 35.61
GenCO (ours) 0.6360 23.99

Table 2: Performance comparison on Warcraft map generation. Our here goal is to create a map that
is both realistic (“fools” discriminator, i.e. lower GAN loss) and has small objective for the shortest
path (SP). Results are averaged across 100 instances.
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Figure 3: A subset of generated Warcraft map images using various methods. “Ordinary GAN”
generates “very costly” maps (e.g. mountains, lakes) along the Shortest Path from top-left to bottom-
right; “GAN + cost NN” generates less costly maps but they are less diverse; GenCO: SP path is
cheap and the map is diverse at the same time.

5 CONCLUSION

In this paper, we introduce GenCO, a framework for integrating combinatorial constraints in a vari-
ety of generative models, and show how it can be used to generate diverse combinatorial solutions
to nonlinear optimization problems. Unlike existing generative models and optimization solvers,
GenCO guarantees that the generated diverse solutions satisfy combinatorial constraints, and we
show empirically that it can optimize nonlinear objectives.

The underlying idea of our framework is to combine the flexibility of deep generative models with
the guarantees of optimization solvers. By training the generator end-to-end with a surrogate lin-
ear combinatorial solver, GenCO generates diverse and combinatorially feasible solutions, with the
generative loss being computed only on feasible solutions.

We have tested GenCO on various combinatorial optimization problems and generative settings,
including GAN in Zelda game level generation and Warcraft map generation for path planning,
demonstrating the flexibility of our framework for integrating into different generative paradigms.
Our framework consistently produced diverse and high-quality solutions that satisfy the combinato-
rial constraints, which can be flexibly encoded using general-purpose combinatorial solvers.
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A DETAILED EXPERIMENTAL SETUP FOR MAP GENERATION

A.1 PSEUDOCODE

Algorithm 3: GenCO Penalized generator training for GANs.
1: Initialize generator parameters θgen;
2: Initialize adversary parameters θadv;
3: Input: distribution of the true dataset (ctrue ∼ pdata(c)), GAN’s objective L(θgen, θadv);
4: for epoch e do
5: for batch b do
6: Sample a noise ϵ;
7: Sample true examples from dataset ctrue ∼ pdata(c);
8: Sample fake examples using cfake ∼ G(ϵ; θgen);
9: Transform cfake into the coefficients of the optimization problem: c = g(cfake);

10: Solve: x∗ = argminx∈Ω cT z;
11: Backpropagate ∇θgen

[
L(cfake; θgen, θadv) + βcTx∗] to update θgen;

12: Backpropagate ∇θadv
[−L(cfake; θgen, θadv) + L(creal; θgen, θadv)] to update θadv;

13: end for
14: end for

Algorithm 3 provides a detailed description of the GenCO framework in our penalty formulation
and utilized in section 4.2. In this process, we sample both real and synthetic data, drawing from the
true data distribution and the generator G respectively (lines 7–8). Subsequently, the synthetic data
undergoes a fixed mapping (e.g. ResNet in our experiments), called cost neural net (or cost NN), to
obtain coefficients for the optimization problem, specifically the edge weights for the Shortest Path.
Following this, we invoke a solver that provides us with a solution and its associated objective (lines
10–11). We then proceed to update the parameters of the generator G using both the GAN’s objective
and the solver’s objective. Finally, we refine the parameters of the adversary (discriminator) in
accordance with the standard GAN’s objective.

A.2 SETTINGS

We employ ResNet as the mapping g(·) from Algorithm 3, which transforms an image of a map into
a 12× 12 grid representation of a weighted directed graph: g : ℜ96×96×3 → ℜ12×12. The first five
layers of ResNet18 are pre-trained (75 epochs, Adam optimizer with lr=5e − 4) using the dataset
from Pogančić et al. (2020), comprising 10,000 labeled pairs of image–grid (refer to the dataset
description below). Following pretraining, we feed the output into the Shortest Path solver, using
the top-left point as the source and the bottom-right point as the destination. The resulting objective
value from the Shortest Path corresponds to f .

Dataset The dataset used for training in the Shortest Path problem with k = 12 comprises
10,000 randomly generated terrain maps from the Warcraft II tileset Pogančić et al. (2020) (adapted
from Guyomarch (2017)). These maps are represented on a 12× 12 grid, with each vertex denoting
a terrain type and its associated fixed cost. For example, a mountain terrain may have a cost of 9,
while a forest is assigned a cost of 1. It’s important to note that in the execution of Algorithm 3, we
don’t directly utilize the actual (ground truth) costs, but rather rely on ResNet to generate them.

A.3 ARCHITECTURE

We employ similar DCGAN architecture taken from Zhang et al. (2020) (see fig. 3 therein). Input
to generator is 128 dimensional vector sampled from Gaussian noise centered around 0 and with a
std of 1. Generator consists of five (256–128–64–32–16) blocks of transposed convolutional layers,
each with 3 × 3 kernel sizes and batch normalization layers in between. Discriminator follows by
mirroring the same architecture in reverse fashion. The discriminator mirrors this architecture in
reverse order. The entire structure is trained using the WGAN algorithm, as described inZhang et al.
(2020).
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B GANS WITH COMBINATORIAL CONSTRAINTS

In the generative adversarial networks (GAN) setting, the generative objectives are measured by
the quality of a worst-case adversary, which is trained to distinguish between the generator’s output
and the true data distribution. Here, we use the combinatorial solver to ensure that the generator’s
output is always feasible and that the adversary’s loss is evaluated using only feasible solutions.
This not only ensures that the pipeline is more aligned with the real-world deployment but also that
the discriminator doesn’t have to dedicate model capacity to detecting infeasibility as indicating a
solution is fake and instead dedicate model capacity to distinguishing between real and fake inputs,
assuming they are all valid. Furthermore, we can ensure that the objective function is optimized by
penalizing the generator based on the generated solutions’ objective values:

Lgen(G(ϵ; θgen)) = Eϵ [log(1− fθadv
(G(ϵ; θgen)))] (4)

where fθadv
is an adversary (a.k.a. discriminator) and putting this in the context of equation 2 leads

to:
min
θgen

Lgen(S(G̃(ϵ; θgen))) = Eϵ

[
log(1− fθadv

(S(G̃(ϵ; θgen))))
]

(5)

where G̃ is unconstrained generator and S is a surrogate combinatorial solver as described above.
Here, we also have adversary’s learnable parameters θadv . However, that part does not depend on
combinatorial solver and can be trained as in usual GAN’s. The algorithm is presented in pseu-
docode 4.

Algorithm 4: GenCO in the constrained generator setting
Initialize generator parameters θgen;
Initialize adversary parameters θadv;
for epoch e do

for batch b do
Sample problem ϵ;
Sample true examples from dataset xtrue ∼ pdata(x);
Sample linear coefficients c ∼ G(ϵ; θgen);
Solve x∗ = argmaxx∈Ω cTx;
Backpropagate ∇θgenLgen(x

∗; θgen) to update generator (equation 5);
Backpropagate ∇θadv

[log(fθadv
(xtrue))− Lgen(x

∗; θgen)] to update adversary;
end for

end for

C GENCO – VQVAE

The formulation below spells out the VQVAE training procedure. Here, we simply train VQVAE on
a dataset of known objective coefficients, which solves the problem at hand. A variant of this also
puts the decision-focused loss on the generated objective coefficients, running optimizer gsolver on
the objective coefficients to get a solution and then computing the objective value of the solution.

LELBO(c, θ, E) = Eqθ(z|c)[log pθ(c|z)]− β ·DKL(qθ(z|c)||p(z)) + γ · ∥sg(ek)− ze,θ∥22 (6)

Here z is an embedding vector, c is the objective coefficients, log pθ(c|z) is a loss calculated via the
mean squared error between the decoder output and the original input objective coefficients, qθ(z|c)
is the encoder, p(z) is the prior, and sg(·) is the stop gradient operator, E is a discrete codebook that
is used to quantize the embedding.

Loptimization = Ec∼pθ(c|z) [fobj(gsolver(c; y))] (7)

The algorithm below maximizes a combination of the losses in Equation equation 6 and Equa-
tion equation 7.
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Algorithm 5: Constrained generator Training for VQVAE
Input:Training data distribution D over problem info y and known high-quality solutions x,

regularization weight β, linear surrogate solver gsolver, nonlinear objective fobjective.

Output:Trained encoder fenc, decoder fdec, and codebook E

Initialize the parameters of the encoder fenc, decoder fdec, and the codebook
E = {e1, e2, . . . , eK} with K embedding vectors;

for t = 1 to T do
Sample y, x from the distribution D;
Compute the encoder output ze = fenc(y, x);
Find the nearest embedding vector zq = argmine∈E ∥ze − e∥22;
Compute the quantization loss Lquant = ∥ze − zq∥22;
Decode the embedding c̃ = fdec(y, zq);
Solve x̃ = argmaxx∈Ω cTx;
Compute the reconstruction loss Lrecon = ∥x− x̃∥22;
GenCo Variant: Compute the optimization loss Lopt = fobjective(x̃);
Compute the total loss: Ltotal = Lrecon + β1Lquant + β2Lopt;
Update the parameters of the encoder, decoder, and codebook to minimize Ltotal;

end

D RESULTS FOR WARCRAFT WITH DENSITY/COVERAGE METRICS

Approach density
(higher better)

coverage
(higher better)

SP loss (C)
(lower better)

Ordinary GAN 0.81 0.98 36.45
GAN + cost NN 1.09 0.98 35.61
GenCO (ours) 0.94 0.93 23.99

Table 3: Performance comparison on Warcraft map generation. Our goal here is to create a map
that is both realistic/diverse (has higher density/coverage metrics) and has a small objective for the
shortest path (SP). Metrics are computed based on 100 random instances.

E DIVERSE INVERSE PHOTONIC DESIGN

To demonstrate that our approach is more broadly effective, we demonstrate improvement over a
generative + postprocess baseline for an inverse photonic device design setting.

The inverse photonic design problem Schubert et al. (2022) asks how to design a device consisting
of fixed and void space to route wavelengths of light from an incoming location to desired output
locations at high intensity. Here the feasible region consists of satisfying manufacturing constraints
that a die with a specific shape must be able to fit in every fixed and void shape. Specifically,
the fixed and void regions respectively should able to be represented as a union of the die shape.
The objective function here consists of a nonlinear but differentiable simulation of the light using
Maxwell’s equations. Previous work demonstrated an approach for finding a single optimal solution
to the problem. However, we propose generating a diverse collection of high-quality solutions using
a dataset of known solutions.

Here, we instantiate GenCO using a vector quantized variational autoencoder (VQVAE) Van
Den Oord et al. (2017) generative backbone. Here the autoencoder is fed in a known solution then
uses neural networks for the encoder and decoder. The continuous decoded object is then fed into
the constrained optimization layer to enforce that the generated solution is feasible. This feasible so-
lution is then used to calculate the reconstruction loss. Furthermore, in this setting we have a penalty
term that consists of the simulation of Maxwell’s equations. As such, we ablate the data distribution
approximation, and penalty components of GenCO: whether or not to train using the reconstruction
loss, and whether or not to penalize generated solutions based on Maxwell’s equations. We consider
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Approach % Unique Avg Solution Loss Density Coverage
(higher better) (lower better) (higher better) (higher better)

VQVAE + postprocess 30.6% 1.244 0.009 0.006
GenCO (reconstruction only) 100% 1.155 0.148 0.693
GenCO (objective only) 46.6% 0 0.013 0.036
GenCO (reconstruction + objective) 100% 0 0.153 0.738

Table 4: Comparison table for inverse photonic design evaluating variants of GenCO with a VQ-
VAE generative backbone against the same model architecture which postprocesses solutions to be
feasible. Solution loss is evaluated using a simulation of Maxwell’s equations as in previous work.

a baseline here of training the same generative architecture without the combinatorial optimization
layer and then postprocessing generated examples during evaluation using a combinatorial solver.
We demonstrate results below including the percentage of unique discrete solutions that are gen-
erated, the average loss evaluated using Maxwell’s equations, as well as the density and coverage
with respect to the training dataset. The dataset of 100 examples is obtained by expensively running
previous work [1] until it reaches an optimal loss 0 solution. We evaluate performance on generating
1000 feasible examples.

These results in Table 4 demonstrate that the postprocessing approach obtains very few unique solu-
tions which all have high loss and furthermore don’t cover the data distribution well. This is largely
due to the method not being trained with the postprocessing end-to-end. Although it closely approx-
imates the data distribution with continuous and infeasible objects, when these continuous objects
are postprocessed to be made feasible, they are no longer representative of the data distribution and
many continuous solutions collapse to the same discrete solution.

Here GenCO - reconstruction only gives many unique solutions that closely resemble the data dis-
tribution. However, the generated devices fail to perform optimally in the photonic task at hand.
Disregarding the reconstruction loss and only training the decoder to generate high-quality solutions
yields high-quality solutions but which are not diverse. Combining both the generative reconstruc-
tion penalty as well as the nonlinear objective, GenCO is able to generate a variety of unique solu-
tions that optimally solve the inverse photonic design problem and have good density and coverage
for the data distribution.
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