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Abstract

Generating novel crystalline materials has the potential to lead to advancements in
fields such as electronics, energy storage, and catalysis. The defining characteristic
of crystals is their symmetry, which plays a central role in determining their physical
properties. However, existing crystal generation methods either fail to generate
materials that display the symmetries of real-world crystals, or simply replicate
the symmetry information from examples in a database. To address this limitation,
we propose SymmCD2, a novel diffusion-based generative model that explicitly
incorporates crystallographic symmetry into the generative process. We decompose
crystals into two components and learn their joint distribution through diffusion: 1)
the asymmetric unit, the smallest subset of the crystal which can generate the whole
crystal through symmetry transformations, and; 2) the symmetry transformations
needed to be applied to each atom in the asymmetric unit. We also use a novel
and interpretable representation for these transformations, enabling generalization
across different crystallographic symmetry groups. We showcase the competitive
performance of SymmCD on a subset of the Materials Project, obtaining diverse
and valid crystals with realistic symmetries and predicted properties.

1 Introduction

Crystals serve as the fundamental building blocks of many materials, including most metals, ceramics,
and rocks. The discovery of new crystalline materials is expected to lead to diverse technological
breakthroughs in fields ranging from energy storage to computing hardware (Miret et al., 2024).
Generative models have the potential to greatly accelerate this process by proposing new candidates
materials, and possibly conditioning on desired properties or compositions.

The defining characteristic of crystals is their symmetry. These symmetries are Euclidean transforma-
tions that map the crystal structure back to itself. They can in general be some specific translations,
rotations, reflections and combinations of these. The set of these operations is called the space group
of the crystal. It is known that space groups in three dimensions fall into 230 distinct classes (Hahn
et al., 1983). The symmetry of a crystal plays a crucial role in determining its stability along with its
thermodynamic, electronic and mechanical properties (Nye, 1985). A classic example is given by
piezoelectricity, the ability of a material to generate an electric dipole under mechanical stress, which
can only be manifested in materials lacking inversion symmetry.

Importantly, many of the recently proposed generative models for crystals do not generate samples
with non-trivial symmetry: for example, the most frequently generated crystals by DiffCSP (Jiao
et al., 2023) and CDVAE (Xie et al., 2022) are in the low-symmetry P1 space group, which is very
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Figure 1: Illustration of the SymmCD method. Left. Representation of the unit cell of a 2D crystal
with p4m symmetry where the asymmetric unit and the site-symmetries of the atoms are highlighted.
Leveraging symmetry results in a much more compact, yet complete representation. Right. Diffusion
and denoising on the different components of the representation. For site symmetries and atom types,
discrete diffusion is used. For the coordinate and asymmetric unit continuous diffusion is used. The
diffusion and denoising processes preserve the space-group symmetry.

rare in nature. MatterGen (Zeni et al., 2023) can generate crystals conditioned on a desired space
group for space groups that are highly represented in the dataset, but they only recover the target
space group roughly 20% of the time, dropping to about 10% for more symmetric space groups.
Cheetham and Seshadri (2024) analyse the space groups of the stable crystal structures proposed by
the GNoME model of Merchant et al. (2023), finding that the top 4 most commonly generated space
groups account for 34% of all generated crystals, even though each of those 4 space groups appears
in less than 1% of crystals in the Inorganic Crystal Structure Database (Hellenbrandt, 2004).

In this work, we propose a novel approach for generative modeling of crystals that ensures any desired
distribution of space groups. The idea is similar to that of creating a paper snowflake, where we
fold the paper to create an unconstrained space, and after an unconstrained cutting of the paper in
this space, its unfolding creates an object with desired symmetries. In the context of crystals, the
unconstrained space is called the asymmetric unit, which is a maximal subset of the unit cell with no
redundancy. In order to be able to unfold the asymmetric unit, we need to generate the site symmetry
of each atom inside the unit, i.e. the symmetry transformations that fix the atoms in place. In our
generative process, the atomic positions are made consistent with generated site symmetries, enabling
the unfolding of asymmetric unit into a symmetric crystal; see Figure 1.

Crystals and their individual atoms have many different types of symmetries, and so we need to
address the issue of data-fragmentation. By representing symmetry information using standard
crystallographic notations, such as Hermann–Mauguin notation (Hahn et al., 1983), we are faced
with many crystals and site symmetries that have a low frequency in the training data. To address
this problem, we introduce a novel representation of crystal and site symmetries as binary matrices,
which enables information-sharing and generalization across both crystal and site symmetries.

The main contributions of this work are as follows: I) We demonstrate a novel approach to generating
crystals through the unconstrained generation of asymmetric units, along with their symmetry infor-
mation. II) We introduce a physically-motivated representation for crystallographic site symmetries
that generalizes across space groups. (III) We experimentally evaluate our method, finding that
it performs on par with previous methods in terms of generating stable structures, while offering
significantly improved computational efficiency due to our representation. (IV) We perform an
in-depth analysis of the symmetry and diversity of crystal structures generated by existing generative
models.

2 Related Work

There has been a growing body of work in developing machine-learning methods for crystal structure
modeling, including the development of datasets and benchmarks (Jain et al., 2013; Saal et al., 2013;
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Chanussot et al., 2021; Miret et al., 2023; Lee et al., 2023; Choudhary et al., 2024). Recent work
has also focused on developing architectures that are equivariant to various symmetries Duval et al.
(2023) or are specifically designed to include inductive biases useful for crystal structures (Xie and
Grossman, 2018; Kaba and Ravanbakhsh, 2022; Goodall et al., 2022; Yan et al., 2022, 2024).

In addition to structure-based modeling, prior work has also generated full-atom crystal structures,
in which all atoms of the three-dimensional structure are generated. A range of generation methods
including variational autoencoders (Noh et al., 2019; Xie et al., 2022; Zhu et al., 2024), GANs
(Nouira et al., 2018; Kim et al., 2020), reinforcement learning (Govindarajan et al., 2023), diffusion
models (Zeni et al., 2023; Yang et al., 2023; Jiao et al., 2023; Klipfel et al., 2024), flow-matching
models (Miller et al., 2024), and active learning based discovery (Merchant et al., 2023) have been
used. In addition to full-atom crystal generation, prior work has also applied text-based methods to
understand and generate crystals using language models (Gruver et al., 2024; Flam-Shepherd and
Aspuru-Guzik, 2023; Alampara et al., 2024).

Other works have pointed out the importance of symmetry of the generated structures. DiffCSP++
(Jiao et al., 2024), does so by using predefined structural templates from the training data and
learning atomic types and coordinates compatible with the templates. While this is an interesting
solution, we show that predefining the templates in this way severely limits the diversity and novelty
of the generated samples. CrystalGFN (AI4Science et al., 2023) incorporates constraints on the
lattice parameters and composition based on space groups, but does not guarantee that the atomic
positions respect the desired symmetry. CrystalFormer (Cao et al., 2024) and WyCryst Zhu et al.
(2024) generate symmetric crystals by predicting atom types along with their symmetries. However,
they use encodings for symmetries that do not enable generalization across groups. This leads to
data-fragmentation and the methods are therefore limited to generating from space groups that are
common in the dataset. By contrast, our method generalizes across groups and can generate valid
crystals even from groups that are rare in the dataset.

3 Background

Lattices and unit cells Crystals are macroscopic atomic systems characterized by a periodic
structure. A crystal can be described as an infinite 3-dimensional lattice of identical unit cells, each
containing atoms in set positions. We can represent a crystal with the tuple C = (L,X,A), where
L = (l1, l2, l3) ∈ R3×3 is a matrix of lattice vectors, X ∈ [0, 1)3×N represents the fractional
coordinates of N atoms within a unit cell, and A ∈ {0, 1}Z×N is a matrix of one-hot vectors of Z
possible elements for each atom. The lattice describes the tiling of unit cells: the cartesian coordinates
of atoms can be given by Xc = LX, and if xc

i is the cartesian coordinate of an atom in a unit cell,
then the crystal will also contain an identical atom at xc

i + Lj,∀j ∈ Z3.

Crystal symmetries In addition to the translational symmetry of the lattice, crystals typically have
many other symmetries. Understanding these symmetries is fundamental in characterizing crystals
and directly relates to many of the properties of these materials. The space group G of a crystal is
the group of all Euclidean transformations that leave the crystal invariant, i.e., that simply permutes
atoms of the same type. As space groups are subgroups of the Euclidean group, their elements
can be represented as (O, t), where O ∈ O (n) and t ∈ R3, with action on x ∈ R3 defined as
(O, t)x = Ox + t. The operations that are part of a space group can be generally understood as
belonging to different types: translations, rotations, inversions, reflections, screw axes (combinations
of rotations and translations), and glide planes (combinations of mirroring and translation). Different
combinations of these symmetry operations are possible.

Two space-group belong to the same type if all their operations can be mapped to each other by an
orientation-preserving Euclidean transformation (coordinate change). We denote the set of all space
group types as G. In 3 dimensions, there are only 230 unique space group types. By choosing a
canonical coordinate system, we can in general work only with space group types. The point group
P of a space group G is the image of the homomorphism (O, t) 7→ O, i.e the group obtained by
keeping only the orthogonal parts of G. By contrast with space groups, any point group must at least
preserve a single point, that is the origin. By a similar procedure to space groups, we can classify
point groups and find that there are 32 crystallographic point groups types, consisting of inversions,
rotations, and reflections. We denote the set of all point group types as P .
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Wyckoff positions Having classified symmetry groups, we can now also classify points of space
using symmetry considerations. This will be important to our method, as we will seek to use
these semantically meaningful classes to guide the generation process. Given a space group G, we
say that two points x,x′ ∈ R3 are part of the same crystallographic orbit if there is a (O, t) ∈
G such that (O, t)x = x′. The orbits form a partition of R3; they can be understood as the
finest level of classification under G. We define the site-symmetry group of a point x, Sx =
{(O, t) ∈ G | (O, t)x = x} as the subgroup of G that leaves x invariant. It is clear that the site-
symmetry must be a point group (since translations do not preserve any point), and is a subgroup of P .
From the orbit-stabilizer theorem (see e.g. Dummit and Foote (2004)), we can find that the number
of points in the orbit x and in the unit cell is given by |P |/|Sx|. Points in highly symmetric positions,
therefore, result in smaller orbits. A point is said to be in a general position if its site-symmetry group
is trivial. In this case, there is a one-to-one correspondence between points in the orbit and group
members. If the site-symmetry is non-trivial, a point is said to be in a special position.

Points in the same orbit have conjugate site-symmetry groups. Therefore, site-symmetry groups
related by conjugation can be understood as equivalent. This motivates a coarser level of classification
that will be very useful. Two points x,x′ ∈ R3 are part of the same Wyckoff position if their site-
symmetry group is conjugate. Wyckoff positions have a clear meaning: they classify regions of space
in terms of their type of symmetry. The multiplicity of a Wyckoff position is the number of equivalent
atoms that must occupy that position and is equal to the |P |/|Sx| ratio introduced earlier.

Asymmetric Units The unit cell of a crystal can further be reduced into an asymmetric unit, which
is a small part of the unit cell that contains no symmetry but can be used to generate the whole unit
cell by applying the symmetry transformations of the space group. An asymmetric unit will only
contain a single atom from each orbit.

4 Method: Symmetric Crystal Diffusion (SymmCD)

4.1 Representation of crystals with Wyckoff positions

As explained in the previous section, a crystal structure can, in general, be represented by the tuple
C = (L,X,A). This representation has been used in previous generative models for crystals (Xie
et al., 2022; Jiao et al., 2023; Luo et al., 2023; Zeni et al., 2023). However, a fundamental limitation
of a model based on this representation is that it does not leverage the inductive bias of crystal
symmetry and offers no guarantees for the generated positions X and lattice L to satisfy anything but
a trivial space group.

We introduce an alternative representation that respects symmetry in addition to having many desirable
properties. First, we explicitly specify the space group type of the crystal G ∈ G in the representation.
Given the space group, instead of representing each of the N atoms individually with X ∈ R3×N

and A ∈ RZ×N , we represent the M crystallographic orbits; replicating the atoms within the orbit
then creates the crystal. As explained in Section 3, the Wyckoff position identifies a set of orbits
by site-symmetries. Therefore, specifying the site-symmetry and an arbitrary orbit representative is
sufficient to identify a crystallographic orbit. This corresponds to a representation of an asymmetric
unit within the unit cell. We thus define the set of orbit representatives with their Wyckoff positions
as the tuple C′ = (k,X′,S,A′), where k is a parametrization of the lattice (to be explained later),
X′ = [x′

1, . . . ,x
′
M ] ∈ R3×M are the representative’s fractional coordinates in the asymmetric unit,

S =
[
Sx′

1
, . . . , Sx′

M

]
∈ PM are the site-symmetry groups and A′ = [a′1, . . . ,a

′
M ] ∈ RZ×M are the

atomic types.

From the set of representatives, we can go back to the representation X and A in a unique way. This
is done by generating the orbits using the replication operation that depends on the group G and
the site symmetry S. The replication operation essentially consists of applying all of the symmetry
operations of the space group except for the ones included in the site symmetry group. The details of
this operation are included in Appendix A.

Finally, the lattice L can be constrained to be compatible with the space group in a convenient way
using the vector k ∈ R6 (Jiao et al., 2024): log(L) =

∑6
i kiBi, where the Bi ∈ R3×3 is a standard

basis over symmetric matrices. This basis and the constraints on k for each space group are described
in Appendix B.
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Our representation of crystals that explicitly takes into account symmetry is therefore given by the
tuple C′ = (G,k,X′,S,A′). We convert crystal structures to this representation using the SPGLIB
symmetry finding algorithm (Togo and Tanaka, 2018a) provided in the PYMATGEN Python package
(Ong et al., 2013).

In addition to accounting for the symmetry, this representation of a crystal provides two important
advantages compared to existing methods. First, it provides the generative model with a powerful
physically-motivated inductive bias. It is known from crystallography that atoms are typically not
located in arbitrary positions in the unit cell (Aroyo, 2013). Rather, it is energetically more favourable
for atoms to occupy positions of high symmetry, e.g. special Wyckoff positions. The representation in
terms of positions X does not make this explicit. The representation using Wyckoff positions (X′,S′)
provides explicit supervision to the model and guides the generation process: the model decides in
which type of high-symmetry position an atom should be located and generates a position compatible
with that type. Second, the representation in terms of Wyckoff positions is much more compact than
the representation that operates on individual atoms. M is often significantly smaller than N . In the
MP-20 dataset (a subset of the Materials Project dataset (Jain et al., 2013)) for example, the average
number of orbits is M̄ = 4.7 whereas the average number of atoms per unit cells is N̄ = 18.9,
representing a fourfold difference 3. We therefore eliminate the redundant information from the
representation and increase the computational efficiency of our method.

4.2 Symmetry Representation

A key component of our representation of crystals with Wyckoff positions is the encoding of the
space group G and site-symmetry groups S′. While there are many existing methods to encode these
symmetries, they generally do not make explicit the commonalities between the site-symmetries of
Wyckoff positions in the same space group, and the commonalities between different space groups
across crystal systems. This is an important limitation: because there are 230 space groups, not
having a representation that is common across space groups results in dividing the effective amount of
data the model is trained on by a large amount. We propose a method to represent the site-symmetries
of different Wyckoff positions and to encode the symmetries of different space groups to address this
shortcoming.

We represent atom site-symmetries using a binary representation based on the oriented site-symmetry
symbol used by the International Tables for Crystallography to describe Wyckoff positions (Hahn
et al., 1983; Donnay and Turrell, 1974). The oriented site-symmetry symbols denote generators of
the site-symmetry group along different possible axes, such as body and face diagonals. In total, there
are 15 possible axes of symmetry in a crystal, corresponding to each of the Cartesian axes, along
with body and face diagonals. Examples of possible symmetry operations along each axis include
rotations and roto-inversions, as well as mirror symmetry along a plane perpendicular to the axis.
There are 13 possible symmetries along each axis. Listing out the site symmetry operation along each
axis yields a 15× 13 binary matrix, or equivalently 15 different one-hot vectors. There is an injective
mapping between site symmetries and site symmetry matrix representations, so a representative atom
can be replicated to produce a full orbit using this representation.

The space group G can also be encoded into a binary representation using a similar scheme, by
listing out the 15 possible axes of symmetry and listing out the possible symmetry operations along
each axis. Unlike the point group symmetries of atoms, these space group symmetry operations may
involve translations and so include screw and glide transformations, leading to 26 possible symmetry
operations. Further details are included in Appendix C.

4.3 Diffusion Model

We can now describe the generative model and training process. In SymmCD, the space group and
the number of orbit representatives are first sampled from separate distributions obtained from data,
such that the distribution over crystal structures is p (C) = p (k,X′,S,A′ |M,G) p (M | G) p (G).
We will seek to model the conditional distribution p (k,X′,S,A′ |M,G) with a denoising diffusion
model (Sohl-Dickstein et al., 2015; Ho et al., 2020).

3This is using the conventional unit cell, not the primitive unit cell. A conventional cell may be twice or four
times as big as a primitive cell.
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Figure 2: SymmCD training and sampling pipeline. For training, the crystal structures are pre-
processed to find the space groupG along with the site-symmetries S and a set of orbit representatives
inside the asymmetric unit. The denoising model is a GNN with fully connected graphs, followed
by a decoder. For sampling, the positions are projected to the closest one compatible with their
site-symmetry. Then, the asymmetric unit is replicated to obtain the unit cell.

We leverage our binary representation for incorporating crystal symmetry information (described
in Section 4.2) and perform joint diffusion over lattice representation (k), fractional coordinates of
atoms (X′), their types (A′), and the associated binary representation of site symmetry (S).

Diffusion process We consider a separate diffusion process over the different components of the
crystal representation. We apply discrete diffusion from Austin et al. (2021) for site-symmetries
and atom types. Rather than adding Gaussian noise as in conventional diffusion, we add noise to
categorical features by multiplying probability vectors by a transition matrix and sampling from the
new probabilities. Inspired by Vignac et al. (2023), the transition matrices are parameterized so that
the process converges to the marginals from the data distribution for atom types and site-symmetries.
The loss function used for discrete diffusion on atomic types is

LA′ = Eat∼Cat(a⊤
0 Q̄t),t∼U(1,T )

M∑
i=1

CrossEntropy(ai, âi), (1)

where a0 is the initial one-hot encoding of the atom types for a single representative and Q̄t =∏t
i=1 Qi ∈ RZ×Z is the cumulative product of transition matrices between timesteps, and âi are the

predicted denoised probabilities. The same loss function is used for site-symmetries.

Continuous diffusion is used for fractional coordinates and lattice parameters, similar to Jiao et al.
(2023). The loss function for the continuous diffusion on lattice parameters is

Lk = Eϵk∼N (0,I),t∼U(1,T )[||m⊙ ϵk − ϵ̂k(C′t, t)||22],

where m is a space group-dependent mask, and ϵ̂k is the predicted denoising vector. The same
loss function is used for the fractional coordinates, except that to capture their periodic nature, we
use a wrapped normal distributionWN (0, 1)3×M . We provide more details about the process in
Appendix D.

Denoising network The architecture of the denoiser is a message-passing graph neural network
that operates on a fully connected graph of representatives, based on Jiao et al. (2023). Features
for each representative hi are initialized using an embedding of their atom types ai and their site
symmetries Si, along with the graph-level features of the diffusion timestep t, the lattice features
k, and an embedding of the space group G. At each layer, messages mij are computed between
representatives i and j by applying an MLP to hi,hj , and a Fourier basis embedding of the vector
xi − xj to respect periodic invariance. These messages are then used to update hi. More details on
the architecture are included in Appendix E.1. Note that this denoising network is not equivariant.
It is not necessary since the unit cell axes provide a canonical reference system (Kaba et al., 2023).
We also found that using an equivariant denoising network like E(n)-GNN did not work well in part
due to the fact that since we use periodic encodings, the crystal structure input has a translational
symmetry. An equivariant model is not be able to break that symmetry (Kaba and Ravanbakhsh,
2023) resulting in a inability to output correct positions in the asymmetric unit (or unit cell).
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CDVAE
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FlowMM
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Figure 3: Proportion of space group symmetries of the dataset, and each method. The width of each
color segment represents the proportion of crystals with that symmetry. From left to right, the first
few spacegroups are: P1, Fm3̄m, Cm, P1̄, C2/m, I4/mmm, Pm3̄m, P63/mmc, and Pm.

Putting it all together Using a discrete diffusion loss, our model learns to denoise the site symmetry
S and atom types A′ of representative atoms in a crystal, and with a continuous diffusion loss, it
learns to denoise the lattice parameters k and fractional coordinates X′. We use different loss
coefficients λk, λX′ , λA′ and λS to weigh the importance of the different components of the model.
The algorithm for training our diffusion model is outlined in Algorithm 1.

The algorithm for sampling from the diffusion model is shown in Algorithm 2. Once the asymmetric
unit of a crystal is generated, each atom representative is projected to the closest coordinates that
correspond to a Wyckoff position with the same site symmetry as is predicted. Next, each atom is
replicated to produce the full unit cell, as described in Appendix A. The full training and sampling
pipeline is summarized in Figure 2.

5 Experiments

We test our model on de novo crystal generation using the MP-20 dataset (Xie et al., 2022), a subset
of the Materials Project (Jain et al., 2013) consisting of 40,476 crystals, each with up to 20 atoms per
primitive unit cell. The data is preprocessed to use the conventional unit cell rather than the primitive
unit cell, as the former has more conveniently expressed symmetries and constraints. A conventional
unit cell may be larger than a primitive unit cell, which results in up to 80 atoms in the unit cell. We
withhold 20% of the dataset as a validation set, and 20% as a test set.

We empirically demonstrate our contributions, particularly in ensuring we generate crystals with
desired symmetries while being competitive with existing baselines. In other words, we show that
SymmCD generates symmetric, stable, and valid crystals. We compare our proposed method with
four recent strong baselines: CDVAE (Xie et al., 2022), DiffCSP (Jiao et al., 2023), DiffCSP++ (Jiao
et al., 2024) and FlowMM (Miller et al., 2024), which we retrain using the hyperparameters they
report. We consider two variants of SymmCD when sampling. The first variant (All SGs) samples
space groups from the empirical distribution of MP-20. This allows us to verify if the model can
generate valid and diverse crystals from a wide distribution of space groups, most of them being
very rare in training data (see the top chart of Figure 3). The second one (10 SGs) samples space
groups from the MP-20 distribution, restricted to the 10 most common space groups, similar to (Cao
et al., 2024) 4 . This is to provide a more nuanced comparison with other methods, which are not
constrained in matching the space group distribution. This choice still captures a large portion of the
data distribution, since these are the most prevalent space groups.

5.1 Symmetry and structural diversity

First, we evaluate the different methods on their ability to generate crystals with diverse structures
and space groups. This aspect has not been investigated yet for the considered baselines, yet it is
significant in understanding if they generate realistic structures.

Space groups To detect the space group of the generated structures, we use spglib’s symmetry
finding method (Togo and Tanaka, 2018b; Ong et al., 2013) with a tolerance of 0.1Å. This is applied

4These spacegroups are numbered: 2, 12, 14, 62, 63, 139, 166, 194, 221, 225

7



to 10,000 crystals sampled from each model. The distribution of space groups of the generated
structures is shown in Figure 3. It can be observed that while SymmCD matches the highly diverse
data distribution, CDVAE mostly generates crystals with trivial P1 symmetry, and DiffCSP and
FlowMM generate many crystals with low symmetry and generally have lower diversity of space
groups. We also consider a new quantitative metric to characterize the space group distribution, dsg,
which is calculated as the Jensen-Shannon distance between the distribution of space groups of the
generated structures and the test set. We report it for the different methods in the rightmost column
of Table 2. The results confirm that SymmCD and DiffCSP++ are the only methods that accurately
match the distribution of space groups in the dataset.

Table 1: Template statistics for various models.
Method # Unique % in Train # New

Training Set 3318 100 -
CDVAE 797 28.7 568
DiffCSP 1347 43.2 764
DiffCSP++ 1905 94.2 110
FlowMM 1291 41.7 753
SymmCD (all SGs) 2794 40.8 1654
SymmCD (10 SGs) 919 51.9 477

Unique Templates We also evaluate the abil-
ity of the different methods to generate diverse
crystal structures. We define a structural tem-
plate to be a combination of a space group and a
multiset of occupied Wyckoff positions, regard-
less of the atomic types in the Wyckoff position.
Templates, also known as Wyckoff sequences,
are used in practice to classify crystals by their
symmetry. They have the advantage of provid-
ing a notion of a structure that is highly flexible,
while being robust to perturbations of coordi-
nates that do not change the position of atoms
with respect to symmetry elements. Most potential templates have not yet been experimentally
observed, motivating the development of methods that can discover materials with new templates
(Hornfeck, 2022).

The training dataset contains 3318 such unique templates. We examine the templates for the 10,000
crystals generated by each method, and report results in Table 1. We find that when sampling from
all space groups, SymmCD proposes the most unique and novel templates out of all models. This
highlights an important limitation of DiffCSP++. While it is able to produce diverse space groups and
to a certain extent diverse templates, since it uses pre-defined templates it fails to generate structures
with novel templates. Our method does not suffer from this problem as it learns to generate templates.

5.2 Proxy metrics

We compare the different methods using the metrics established by Xie et al. (2022), measuring
the validity, coverage, and property statistics of the generated crystals. We measure the validity
by checking structural validity, defined as whether no two atoms are closer than 0.5 Å apart, and
compositional validity, defined as whether the charges are balanced as determined by SMACT
(Davies et al., 2019)5. To determine coverage, we examine the CrystalNN structural fingerprints
(Zimmermann and Jain, 2020) and Magpie compositional fingerprints (Ward et al., 2016) of the
generated crystals, and look at their distances to the fingerprints of the crystals in the test set. This
gives us recall and precision metrics. We look at the distances between the properties of the valid
generated crystals and the crystals from the test set to compare the ability of each model to match the
data distribution. We specifically compare the Wasserstein distances between the atomic densities
dρ, number of unique elements delem, and predicted formation energy dE. The results are shown in
Table 2. We observe that SymmCD performs on par with other methods across different metrics, and
that sampling from a smaller set of space groups improves the validity of crystals while trading off
diversity and matching the data distribution. These results also show that SymmCD can generalize to
generate valid structures even for groups which are rarely represented in the training data.

5.3 Stable, unique and novel (S.U.N.) structures

Regardless of their target application, generative models for crystals should produce sets of crystals
that are thermodynamically stable, unique (not duplicated within the predicted set), and novel (not
already in the training data), or S.U.N. To this end, we adapt the evaluation procedure of Miller
et al. (2024) to assess the capability of our model to generate S.U.N. materials. Thermodynamic
stability is determined by estimating the energy of a material with respect to a convex hull. The

5It should be noted that the compositional validity of the MP-20 dataset is only 92%.
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Table 2: Results for comparing the validity, coverage, and property distribution metrics. Best results
in each category are bolded.

Validity (%) (↑) Coverage (%) (↑) Property Distribution (↓)

Struct. Comp. Recall Precision dρ dE delem dsg

CDVAE 99.93 86.93 98.31 99.35 0.9144 0.1645 1.6538 0.7263
DiffCSP 99.61 82.23 99.53 99.35 0.2565 0.1402 0.4027 0.4446
DiffCSP++ 99.99 85.81 99.48 99.66 0.2779 0.0872 0.4079 0.0771
FlowMM 96.43 83.37 99.47 99.71 0.2905 0.1072 0.0788 0.5137
SymmCD (All SGs) 94.32 85.85 99.64 98.87 0.0901 0.1166 0.3990 0.0899
SymmCD (10 SGs) 97.31 87.10 97.21 99.42 0.2829 0.1510 0.1769 0.4737

convex hull gives linear combinations of known phases that represent the lowest-energy mixtures of
materials; if a material has an energy above the hull, it is energetically favorable for it decompose
into a combination of these stable phases and is therefore thermodynamically unstable. We assess the
stability of generated crystals by estimating their energies using a pretrained CHGNet model (Deng
et al., 2023), and comparing that to a convex hull computed for Materials Project (Riebesell et al.,
2024).

Table 3: Number of stable and S.U.N. samples
produced from an initial set of 1000 generated
crystals for each method.

Initial Relaxed Relaxed
Stable Stable S.U.N.

CDVAE 0.1% 3.6% 3.5%
DiffCSP 8.9% 12.5% 9.7%
DiffCSP++ 8.9% 13.2% 9.1%
FlowMM 4.1% 9.3% 6.3%
SymmCD (all SGs) 5.0% 9.4% 7.0%
SymmCD (10 SGs) 7.9% 11.7% 9.9%

For each method, we randomly sub-sample 1000
crystals of the 10,000 generated samples and
predict their stability. We also use CHGNet
to compute relaxed structures for each crystal,
which results in higher stability. Finally, we
check whether the stable relaxed crystals are
also unique and novel. Details of this procedure
are included in Miller et al. (2024). Note that we
use a machine learning potential instead of a full
Density Functional Theory (DFT) calculation,
as DFT relaxation would be orders of magnitude
slower to compute.

The results are shown in Table 3. SymmCD (all
SGs) performs slightly better than FlowMM in generating stable structures, but worse than DiffCSP
and DiffCSP++. The version sampling from a smaller number of space groups however obtains a
larger proportion of S.U.N. structures than all baselines. Note that, while DiffCSP++ has a larger
proportion of relaxed stable structures, filtering for unique and novel structures gives SymmCD the
advantage, providing more evidence that it generates more diverse structures.

Conclusion

In this paper, we introduced a novel approach for generating crystals with precise symmetry properties.
We proposed to leverage asymmetric units and site-symmetry representations within a diffusion model
framework. This approach ensures that the generated crystals inherently preserve desired symmetries
while allowing greater diversity, computational efficiency and flexibility in the generation process.
To encode crystal and site symmetries we introduced a new representation of crystal symmetries
that enables information sharing across space groups, improving generalization when learning with
a diverse set of crystal symmetries. Our results indicate that this method efficiently produces valid,
stable, novel, and structurally diverse crystals, and shows promise for discovery in materials science.

One limitation of our framework is that it makes it more challenging to perform crystal structure
prediction given a composition, since it relies on sampling a space group first, and then a composition
conditioned on the space group. An important area of future work in generative models for crystals
is also to go beyond single crystals, and consider generation multi-component crystals and alloys.
These types of materials are common in applications, yet not suited to generation using single unit
cells or asymmetric units.
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A Replication

We define the replication operator as R : G×P×R3 → 2R
3

. This operation is defined by considering
the group Sx⋉TS, with TS being the group of translations defined by the lattice. Sx⋉TS is the set of
operations that preserve the position of x within the unit cell as opposed to within the crystal. We can
then consider the coset decomposition of the space group with respect to that group G/ (Sx ⋉ TS).
Then, we denote by [G/ (Sx ⋉ TS)]0 a system of coset representatives where the translation parts
are chosen to move only within the unit cell. This defines the set of operations that move a position x
within its orbit and the unit cell. The replication operation then simply consists of applying all these
operations:

R (G,Sx,x) = ((O, t)x | (O, t) ∈ [G/ (Sx ⋉ TS)]0)

The representation in terms of individual atoms is then:

X =

M⊕
i

R
(
G,Sx′

i
,x′

i

)
(2)

A =

M⊕
i

repeat (ai, [G : (Sx ⋉ TS)]) (3)

where repeat (a, n) repeats the vector a n times and [G : (Sx ⋉ TS)] is the multiplicity of the orbit.

In our diffusion model, our predicted site symmetries Ŝ do not always necessarily correspond to
a valid crystallographic point group. To get around this, we project Ŝ to the nearest point group
that is a subgroup of the given space group, as measured by the Frobenius Norm of their difference.
Once a point group is chosen, the PyXtal search_closest_wp function is used to get the nearest
coordinates to X′ that correspond to a Wyckoff position with the given site symmetry, and X′ is
updated to be placed on those coordinates (Fredericks et al., 2021). Finally, the representative atoms
at the Wyckoff position are replicated, using operations implemented in PyXtal.

B Lattice Representation

We use the lattice representations derived by Jiao et al. (2024), as they are useful for constraining
lattices to respect the symmetries of a given space group. The authors found that any lattice matrix
L can be written as L = Q exp(S) for some orthogonal Q (which we can ignore, as orthogonal
transformations do not change the lattice), and symmetric S. The matrix S can then be decomposed
into a sum of the following basis lattices:

B1 =

(
0 1 0
1 0 0
0 0 0

)
, B2 =

(
0 0 1
0 0 0
1 0 0

)
, B3 =

(
0 0 0
0 0 1
0 1 0

)
,

B4 =

(
1 0 0
0 −1 0
0 0 0

)
, B5 =

(
1 0 0
0 1 0
0 0 −2

)
, B6 =

(
1 0 0
0 1 0
0 0 1

)
.

with S =
∑6

i=1 kiBi. They derive constraints on ki depending on the space groups that a crystal
belongs to:

• Triclinic: k = (k1, k2, k3, k4, k5, k6)

• Monoclinic: k = (0, k2, 0, k4, k5, k6)

• Orthorhombic: k = (0, 0, 0, k4, k5, k6)

• Tetragonal: k = (0, 0, 0, 0, k5, k6)

• Hexagonal: k = (− log(3)/4, 0, 0, 0, k5, k6)

• Cubic: k = (0, 0, 0, 0, 0, k6)
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Figure 4: Crystal symmetry axes. The different axes describe the directions along which symmetry
operations can occur. For each of the 15 axes, there are 13 possible symmetry operations.

C Site Symmetry Representation

The 15 possible symmetry axes of crystals are: [001], [010], [100], [111], [11̄1], [1̄11], [1̄1̄1], [110],
[11̄0], [101], [101̄], [011], [011̄], [210], [120], [11̄0]. These axes are written in short form: for
example, [11̄0] denotes the direction of the vector (1,−1, 0). The axes depend on the symmetries of
the crystal system: for example, in an orthorhombic crystal (a rectangular prism whose side lengths
are not necessarily equal), a crystal may have different site-symmetries oriented around the x, y, or
z-axes. Conversely, in a tetragonal crystal (a rectangular prism with a square base), any site-symmetry
oriented along the x-axis must also be along the y-axis, there may be additional symmetries along the
diagonal of the x-y plane. The axes are visualized in Figure 4.

The possible set of symmetry elements along each axis for a site symmetry group correspond to the
identity 1; an inversion 1̄; rotations of different orders 2, 3, 4, and 6; rotoinversions 2̄ (equivalent
to a mirror symmetry m across a plane perpendicular to the axis), 3̄, 4̄, and 6̄; and combinations of
rotations and mirror reflections 2/m, 4/m, and 6/m. This enumeration yields 13 possible symmetries
along each axis.

The possible symmetry elements along each axis for a space group correspond to the identity 1;
an inversion 1̄; rotations of different orders 2, 3, 4, and 6; rotoinversions 2̄ (equivalent to a mirror
symmetry m across a plane perpendicular to the axis), 3̄, 4̄, and 6̄; screws 21, 31, 32, 41, 42, 43, 61,
62, 63, 64, 65, and glides a, b, c, n, d, e.

To encode a space group, an additional 7-dimensional one-hot encoding is used to denote the Bravais
lattice to which the space group belongs. This yields a (26 × 15) + 7 = 397 dimensional binary
representation of space group.

D Diffusion and denoising process details

Diffusion on lattice parameters k Inspired by Jiao et al. (2024), we perform diffusion over
k, the O(3)-invariant lattice representation. The forward noising process is given by q(kt|k0) ∼
N (kt|

√
ᾱtk0, (1− ᾱt)I), where kt is the noised version of k0 at timestep t. Here, similar to Nichol

and Dhariwal (2021), ᾱt = Πt
j=1(1 − βj), where βj ∈ (0, 1) determines variance in each step

controlled by the cosine scheduler. During the generation process, we start with kT ∼ N (0, I) and
use learned denoising network to generate kt−1 from kt:

pθ(kt−1|C′t) = N
(
kt−1|µk(t), σ(t)I

)
,

µk(t) =
1√
ᾱt

(
kt −

βt√
1− ᾱt

ϵ̂k(C′t, t)
)
, σ(t) = βt

1− ᾱt−1

1− ᾱt
.

Here, C′t is the noised crystal and ϵ̂k(C′t, t) is the predicted denoising term predicted from a denoising
network ϕ(C′t, t). We also use a mask m to only implement diffusion over unconstrained dimensions
of kt, since depending upon space groups, certain dimensions have fixed values (Appendix B). The
mask can be represented as m ∈ {0, 1}6 and mi = 1 indicates that ith index of k is unconstrained.
The corresponding loss used to train the denoising network is:

Lk = Eϵk∼N (0,I),t∼U(1,T )[||m⊙ ϵk − ϵ̂k(C′t, t)||22]

where ⊙ is the elementwise product and U(1, T ) is a uniform distribution over timesteps.
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Diffusion over representative fractional coordinates X′ We perform diffusion over the fractional
coordinates using the same method as (Jiao et al., 2023). Due to the periodicity of fractional
coordinates, the noising process q(Xt|X0) is determined by a Wrapped Normal distribution rather
than a Gaussian distribution, and we initialize the fractional coordinates XT with the uniform
distribution U(0, 1) when sampling.

Diffusion on atom types A′ We use discrete diffusion from Austin et al. (2021) to sample the
atom types of each representative. If a0 ∈ {0, 1}Z is the one-hot encoding of atom types for a single
representative, then we can noise it as: q(at|a0) = Cat(at;p = a⊤0 Q̄t), where Q̄t =

∏t
i=1 Qi ∈

RZ×Z is the cumulative product of transition matrices between timesteps. Inspired by Vignac et al.
(2023), the transition matrix can be parametrized quite simply as Qt = αtI+ βtma, where ma are
the marginals over the atom types in the data, and αt and βt are scheduling parameters. The effect of
this noising scheme is that regardless of a0, the fully noised aT = a⊤0 QT = ma, so we can sample
from the prior distribution ma, which is close to the data distribution. The discrete diffusion model is
trained using a cross-entropy loss:

LA′ = Eat∼Cat(a⊤
0 Q̄t),t∼U(1,T )

M∑
i=1

CrossEntropy(a′i, â
′
i), (4)

where âi are the probabilities predicted by the model ϕ(C′t, t). To sample from the discrete diffusion
model, we sample from the marginal distribution over atom types ma, then progressively denoise
using:

q(at−1|at,a0) = Cat

(
at−1;p =

a⊤t Q
⊤
t ⊙ a⊤0 Q̄t−1

a⊤0 Q̄tat

)
(5)

More details of this implementation can be seen in Vignac et al. (2023).

Diffusion for site-symmetries S The site-symmetry representation matrices described in Section
4.2 can be thought of as 15 separate 13-dimensional categorical variables: one site-symmetry
operation per axis. Our diffusion model over site-symmetries is almost identical to the method for
atom types, applying discrete diffusion separately over each of the axes. Because the site-symmetries
depend strongly on the space group, we use transition matrices that are different for each space group:
Qt,i,G = αtI+ βtmSα,G, where mSu,G denotes the marginals over site-symmetry operations for
axis Su given space group G. For each representative node, we average the cross-entropy loss over
each of the axes.

Algorithm 1 Training the Crystal Generation Diffusion Model

1: Input: Dataset of crystals D
2: while not converged do
3: Sample a crystal C = (L,X,A) from dataset D, and a timestep t ∼ Uniform(1, T )
4: Derive the asymmetric representation C′ = (G,k,X′,A′,S) from C
5: Add noise to k, X′, A′, and S′:
6: kt =

√
ᾱtk0 +

√
1− ᾱtϵk, ϵk ∼ N (0, I)

7: X′
t =
√
ᾱtX

′
0 +
√
1− ᾱtϵX′ , ϵX′ ∼ WN (0, I)

8: A′
t ∼ Cat(AQ̄a,t)

9: Su,t ∼ Cat(SQ̄u,G,t)

10: Use denoising network ϕ to predict ϵ̂k, ϵ̂X′ , Â′, Ŝ from noisy Ct = (G,kt,X
′
t,A

′
t,St), t

11: Compute losses Lk,LX′ ,LA′ ,LS′

12: Update the denoising network ϕ using total loss:
13: L = λkLk + λX′LX′ + λA′LA′ + λSLS′

14: end while

E Architecture Details

E.1 Denoising Model

We use a graph neural network based on the architecture of Jiao et al. (2023). We embed the timestep
t using sinusoidal embeddings, ψt(t). We embed our space group representation from Section 4.2
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Algorithm 2 Sampling from Crystal Generation Diffusion Model

1: Input: Target space group G, Number of representatives M
2: Initialize:
3: Sample kT ∼ N (0, I)
4: Sample X′

T ∼ U(0, 1)3×M

5: Sample A′
T ∼ pmarginal(A

′)
6: Sample S′

T ∼ pmarginal(S
′|G)

7: for t = T to 1 do
8: Compute ϵ̂k, ϵ̂X′ , Â′, Ŝ using denoising network ϕ(·)
9: Sample kt−1, X′

t−1, A′
t−1, S′

t−1 using ϵ̂k, ϵ̂X′ , Â′, Ŝ.
10: end for
11: Project S′

0 onto nearest valid point group
12: Project X′

0 onto nearest Wyckoff position with that site symmetry
13: Replicate representative atoms X′

0 using site symmetries S′
0 to generate full crystal X0

14: Output: Crystal structure X0, Atom types A0, lattice L0

using an MLP, ϕG(G). We embed our site symmetries by separately embedding each axis using the
same network, and feeding the resulting embeddings into a secondary MLP: ϕS(

⊕15
u=1 ϕU (Su)).

These are all used to initialize the node embeddings hi.

hi ← ϕh(ai,xi, ϕS

(
15⊕
u=1

ϕU (Su)

)
, ϕG(G), ψt(t)).

As noted earlier, we directly use coordinates x, because we are working a conventional or canonical
lattice, and so Euclidean symmetries are not necessarily useful here.

At each layer we compute messages and use them to update node embeddings:

mij ← ϕm(hi,hj ,k, ψ(xi − xj))

hi ← hi + ϕh(hi,

M∑
j

mij)

Here, ψ is a Fourier embedding, ϕm and ϕh are MLPs acting on edges and nodes respectively. Finally,
we output predicted ϵ̂X′ , Â′ and Ŝ using the node embeddings hi, and ϵ̂k using

∑M
i hi.

E.2 Model Hyperparameters

The graph neural network has 8 layers, and we use a representation dimension of 1024 for hi. We
encode distances between nodes using a sinusoidal embedding, with 128 different frequencies. The
loss coefficients selected were λk = 5, λX′ = 1, λA′ = 0.1 and λS = 10. These hyperparameters
were chosen using a sweep.

F Additional Results

F.1 Computational efficiency

Finally, we demonstrate significant computational efficiency gains and reduced memory footprint
due to using a more compact representation based on crystallographic orbits. We compare our model
to an equivalent model that looks at a full unit cell, rather than just the asymmetric unit. It also
uses a fully connected graph to represent the atoms in the unit cell, but unlike SymmCD, it does
not use site symmetry representations as they are not necessary. This makes the model essentially
similar to DiffCSP, but with the same architecture and hyperparameters as SymmCD for consistent
comparison. We compare the two representations for an epoch of training using 40GB of RAM
and a single NVIDIA MIG A100 instance and report the results in Table 4. These results highlight
SymmCD’s memory efficiency and faster training capabilities.
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Table 4: Computational efficiency of our compact representation with a 40 GB NVIDIA MIG A100
instance.

Asymmetric Conventional
Unit (ours) Unit Cell

Maximum batch size (↑) 8192 512
Memory for 512 batch size (↓) 3.6 GB 31 GB
Time for one training epoch (↓) 27 sec. 52 sec.

Figure 5: Histogram of number of atoms in crystals from MP-20 and generated by SymmCD.

F.2 Number of atoms

To demonstrate that SymmCD is able to correctly predict reasonable site symmetries, we show here
that the distribution of number of atoms per crystal matches the dataset it is trained on. This is not a
trivial task, as the model needs to learn the multiplicity of different possible site symmetries, which
depends on both the different symmetry elements of the site symmetry and the space group that it
belongs to.

F.3 Property Prediction task

Table 5: Mean average error when pre-
dicting crystal formation energy. The
input could be the asymmetric unit or a
multi-graph, and the site symmetry in-
formation can be encoded or ignored.
We observe that our encoding of site
symmetry helps predict the target prop-
erty.

Multigraph Asymm. Unit

W/out S 0.0214 0.0711
With S 0.0212 0.0490

We test the usefulness of our site symmetry representation
using a regression experiment. We selected formation en-
ergy per atom as the target property to predict. We use
DimeNet++ (Gasteiger et al., 2020a,b) as a base model to
perform ablation over the type of input graph and encoding
site symmetry information per node.

One input format is a multi-graph (Xie et al., 2022), which
describes the unit cell as a graph with nodes as atoms and
edges between them according to a cutoff radius. These
edges could potentially span to neighbouring unit cells. the
other input format is the asymmetric unit that we use in
SymmCD. Under these two inputs, we test the effects of
including a site symmetry encoding for each node. We
report the Mean Absolute Error (MAE) for the test set in
Table 5. We see that the effect of including site symmetry
information is minimal when we have access to the full
graph. However, we see that when we are restricted to only using the asymmetric unit, having access
to the site symmetry info greatly helps, showing that we can recover some geometric information lost
when using just an asymmetric unit by also including symmetry.

F.4 Examples

In Figure 6, we include 6 randomly sampled crystals generated by SymmCD along with their
respective space groups.
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(a) PaTi3 Pm3̄m (b) CeSiGe2Os I4mm (c) Cs2CuO4 I4mmm

(d) SrYO3 I4mcm (e) Ta2Nb4V4CoMo2C Pmmm (f) TbInAu2 Fm3̄

Figure 6: Example materials generated by SymmCD, along with their chemical formulate and space
groups symmetries.
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