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Abstract
Implicit representations like neural radiance fields (NeRF) showed impressive results for photorealistic rendering of complex
scenes with fine details. However, ideal or near-perfectly specular reflecting objects such as mirrors, which are often encountered
in various indoor scenes, impose ambiguities and inconsistencies in the representation of the re-constructed scene leading to
severe artifacts in the synthesized renderings. In this paper, we present a novel reflection tracing method tailored for the involved
volume rendering within NeRF that takes these mirror-like objects into account while avoiding the cost of straightforward but
expensive extensions through standard path tracing. By explicitly modelling the reflection behaviour using physically plausible
materials and estimating the reflected radiance with Monte-Carlo methods within the volume rendering formulation, we derive
efficient strategies for importance sampling and the transmittance computation along rays from only few samples. We show that
our novel method enables the training of consistent representations of such challenging scenes and achieves superior results in
comparison to previous state-of-the-art approaches.
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1. Introduction

3D re-construction and modelling of real-world scenes has been a
major research field for decades and plays a crucial role in a diverse
range of applications such as video gaming, movies, advertisement,
education as well as AR and VR scenarios. With the recent emer-
gence of neural scene representations and, especially, neural radi-
ance fields (NeRF) [MST*21], a compelling degree of photoreal-
ism and immersion of the rendered views has been achieved which
inspired many further developments [ZRSK20, RPLG21, BMT*21,
MESK22, WWG*22, CZL*22]. By combining graphics-based vol-
ume rendering with an efficient representation of scene density and
radiance using neural networks in terms of multi-layer perceptrons
(MLP), NeRF enables capturing various effects including view-
dependent changes of object appearances or volumetric phenom-
ena like clouds. However, objects with ideal and near-perfect spec-
ular reflection behaviour which are often encountered in various
scenarios and, in particular, many indoor scenes impose a signifi-
cant challenge to the representation capabilities of radiance fields
as they induce a very specific pattern in the light transport. For the

case of a planar mirror, a symmetric version of the visible scene
parts can be observed which appears to be located behind the mir-
ror and gives the illusion of viewing the respective content through
a window. While, a priori, this ambiguity results into two plausi-
ble and consistent interpretations of the structure of the surrounding
environment, additional views directly from behind the mirror ob-
ject allows resolving the scenario as the representation of the virtual
mirrored scene collides with the observations. As a consequence, se-
vere artifacts will be introduced in the scene representation of NeRF
as the underlying volume rendering approach for rendering traces
the primary viewing rays and, in turn, implicitly always prefers the
inconsistent interpretation. Several approaches addressed this issue
by decomposing the scene into two or more individually consistent
radiance fields [GKB*22, YQCR23] or employ standard path trac-
ing [ZXY*23, MVKFK23] in combination with an extended volu-
metric field to infer normal directions and specular reflection proba-
bilities [ZBC*23]. However, this significantly increases the compu-
tational burden both in terms of training performance and rendering
speed and limits their application into other sophisticated and ad-
vanced NeRF approaches.
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Figure 1: Examples of novel views rendered with our proposed approach on scenes with mirror surfaces (left, centre) and near-perfect
specular surfaces (right).

In this paper, we direct our attention towards an efficient formu-
lation of reflection tracing within the volume rendering procedure
of NeRF that can be easily adopted in several NeRF variants to en-
hance their capabilities in handling mirror-like objects. To this end,
we extend the single-ray absorption volume integration by consid-
ering the contributions of reflected radiance towards the observed
radiance by the camera, effectively moving our model closer to full
physically interpretable light transport in the process. Our proposed
method, referred to as TraM-NeRF, explicitly integrates reflected ra-
diance based on sparsely annotated near-specular surfaces. Combin-
ing NeRF volume rendering and ray-tracing with physically plausi-
ble materials at intersection points introduces an inductive bias into
the training of TraM-NeRF that enables it to learn a single coher-
ent scene representation, even when geometry has only been ob-
served in a reflection. Our combined radiance estimator allows us to
reduce its variance compared to a standard Monte-Carlo approach
with only little computational overhead by increasing the number of
observed reflection directions independently of the number of net-
work queries. Some of our results are shown in Figure 1.

In summary, the key contributions of this work are given below:

• We present TraM-NeRF, an extension of NeRF that efficiently
represents scenes with mirror-like surfaces, modelling high-
frequency reflections in a physically plausible manner within a
single coherent scene representation.

• We derive a transmittance-aware formulation of the rendering
equation to explicitly model reflected radiance at mirror-like sur-
faces. Additionally, we introduce efficient strategies for impor-
tance sampling and transmittance computation, resulting in a
reduction in the number of network evaluations compared to
Monte-Carlo estimation.

• We demonstrate the benefits of our formulation in comparison
to previous state-of-the-art methods on a variety of challenging
synthetic and real-world scenes, some of which include multiple
planar and non-planar mirror-like surfaces.

The source code of our implementation is available at https://github.
com/Rubikalubi/TraM-NeRF.

2. Related Work

2.1. Neural scene representations

Synthesizing novel views of complex scenes has gained increasing
interest due to the promising results achieved with neural scene rep-
resentations [LSS*19, SZW19, NMOG20, BXS*20a, BXS*20b].
Among these, especially the work on NeRF [MST*21] excels in
terms of the quality and degree of photorealism of the rendered im-
ages and has become very popular, also due to its simple but effec-
tive formulation. In particular, NeRF leverages volume rendering
to accumulate the scattered lighting contributions along the traced
viewing rays, which are represented using volumetric density and
view-dependent radiance and parametrized usingMLPs. Various ex-
tensions have been developed to further enhance the performance
and quality of the original approach such as accelerating the train-
ing [MESK22, CXG*22, FKYT*22] as well as the rendering pro-
cesses [RPLG21, GKJ*21], reducing aliasing artifacts by replacing
ray-based marching with an integration of 3D frustums [BMT*21,
BMV*22, BMV*23, IMWB23], rendering fine details at very high
resolution [WWG*22, WLS*22, LLGG23] or lifting its capabilities
to also handle unbounded scenes [ZRSK20, BMV*22] and to re-
construct from in-the-wild image collections [MBRS*21, CZL*22,
FKMW*23] or low dynamic range images with low or varying ex-
posure [HZF*22, MHMB*22].

Besides these advances, the underlying representation given by
volumetrically baked radiance and density does not account for
manipulation tasks like exchanging the environment illumination,
so significant effort has been spent into more plausible, physics-
inspired scene representations. Thus, various methods [ZSD*21,
BBJ*21, SDZ*21, BEK*22, JLX*23] considered factorizing the ra-
diance field into shape with normals, surface material parameters
in terms of a bidirectional reflectance distribution function (BRDF)
as well as environment illumination. Further approaches [ZLW*21,
FSV*23, LCL*23, WHL*23, GHZ*23] replaced the density-based
shape representation by implicit surfaces via signed distance func-
tions (SDF) for a more accurate estimation of the object geometry
and normals.
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Figure 2: Overview of our proposed method TraM-NeRF. Our approach to parameterize nearly specular surfaces using only sparse annota-
tions. We introduce a radiance estimator, a crucial component of TraM-NeRF, which combines volume and reflected radiance integration for
training and rendering the model. TraM-NeRF learns to represent the observed radiance in a single coherent network.

2.2. Specular reflections in neural representations

Objects with highly reflective materials often exhibited in captured
scenes impose are challenging to re-construct in decomposed rep-
resentations of NeRF and have, in turn, attracted increasing atten-
tion. Ref-NeRF [VHM*22] re-parametrizes the observed radiance
based on the local normal vector and its angle to the view direc-
tion to a simpler model that shares common structures across mul-
tiple views. PhySG [ZLW*21] employs Spherical Gaussians to rep-
resent specular reflections in the BRDF which has been later ex-
tended by splitting the illumination into a direct and indirect com-
ponent, each modelling an individual specular reflection [ZSH*22].
Ref-NeuS [GHZ*23] detects anomalies in the rendered images
caused by reflections and incorporate a respective reflection score
into the photometric loss as a guidance. NeRO [LWL*23] uses
a split-sum approximation to estimate the shape of an reflective
object in a first stage and then optimize its BRDF in a second
stage. Other works instead directly trace reflections either only
in the ideal reflection direction assuming a low material rough-
ness [LCL*23] or using path tracing evaluated via Monte-Carlo
estimators [WHL*23]. Recently, volumetric microflake [ZXY*23]
and microfacet [MVKFK23] fields presented a hybrid rendering ap-
proach by combining the ray marching of volume rendering with
importance-sampled path tracing according to the distribution of the
micro structures.

Most closely related to our work are techniques that explicitly
model mirror reflections within the scene. NeRFReN [GKB*22] de-
composes the scene into two independently traversed and rendered
radiance fields, consisting of an ordinary NeRF for the transmit-
ted radiance as well as an additional NeRF that only covers the re-
flected radiance. The final synthesized image is then obtained by
blending the results for the transmitted and reflected fields. MS-
NeRF [YQCR23] learns radiance and weights into multiple fea-
ture fields that are decoded by small MLPs for rendering and then
blended together. Mirror-NeRF [ZBC*23] follows a different direc-

tion by representing the scene in a single radiance field and instead
further tracing the rays in the ideal reflection direction after hitting a
mirror. The respective normal directions and reflection probabilities
used for reflecting the rays are additionally learned in the volumet-
ric neural field using additional regularization terms that constrains
the solution to follow the assumption of planar mirrors.

In contrast to the aforementioned approaches, the primary focus
of this work lies in the efficient rendering of unified radiance fields
of scenes with not necessarily planar but instead polygonial-shaped
mirror and near-perfect specular reflecting objects. Here, we partic-
ularly consider using only a low number of network evaluations for
each importance-sampled reflection ray while achieving a signifi-
cantly lower variance than standard Monte-Carlo estimators.

3. Method

We start with a brief overview of NeRF and then introduce our ra-
diance estimator, a key component of TraM-NeRF. This estimator
combines volume and reflected radiance integration for rendering
and model training. We then discuss our approach to parameterize
nearly specular surfaces using sparse annotations. Finally, we pro-
vide implementation and training details for transparency and re-
producibility. An overview of our approach is shown in Figure 2.

3.1. Neural radiance fields

We build upon the neural implicit scene representation proposed by
Mildenhall et al. [MST*21] which uses a simple MLP F� to infer
a RGB colour value c ∈ R

3 and a density σ ∈ R for a given spatial
location x ∈ R

3 and viewing direction d ∈ R
3. In order to also cap-

ture high-frequency details, x is first lifted into a higher-dimensional
space using a positional encoding

γ (x) = (
sin

(
2lπx

)
, cos

(
2lπx

))L−1
l=0 . (1)
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To render an image using F�, we define a camera and consider
rays starting at the camera centre o ∈ R

3 with direction d ∈ R
3, such

that r(t ) = o+ t d represents a point on the ray. In the original NeRF
formulation, the observed radiance

Ce(r) =
∫ t f

tn

T (tn → t ) σ (r(t )) c(r(t ), d) dt (2)

corresponding to ray r is given by the volume integration through an
absorbing medium where T (tn → t ) = exp(− ∫ t

tn
σ (r(s)) ds) repre-

sents the accumulated transmittance up to distance t, and tn, t f ∈ R

are hyperparameters that determine the nearest and farthest distance
for points along any ray r. To be able to compute Equation 2 in
practice, the integral is numerically approximated using a quadra-
ture [Max95] with K samples at locations tk along the ray, yielding
the following discrete sum:

Ce(r) ≈ Ĉe(r) =
K∑
k=1

Tk
(
1− e−σkδk

)
ck. (3)

Here, δk = tk − tk−1 is the distance between successive locations and
T (tn → tk ) ≈ Tk = e− ∑k−1

j=1 σ jδ j approximates the accumulated trans-
mittance. To avoid relying solely on a discrete subset of locations,
we employ stratified sampling to select tk, as proposed by Milden-
hall et al. [MST*21].

During training, the parameters � of the MLP are optimized via
gradient descent using a photometric loss L defined as the mean
squared error between the ground-truth colours C∗(r) and the ren-
dered images Ĉe(r) over a batch of rays R:

L = 1

|R|
∑
r∈R

∥∥C∗(r)− Ĉe(r)
∥∥2
2
. (4)

3.2. Radiance integration at near-perfect specular surfaces

Assume that the camera ray r(t ) = o+ t d intersects in a point x
with a known near-specular surface, whose parameterization will
be discussed in Section 3.3. To allow a model to learn a consistent
representation of observed radiance in a single radiance field, we
drop the assumption of NeRF that the ray terminates (i.e. the trans-
mittance vanishes) at an opaque surface. Instead, TraM-NeRF relies
on the rendering equation [Kaj86] to compute its predicted radiance
at intersection points, which states that the radiance C(x, ωo) at a
point x when observed from direction ωo is the sum of the emitted
radiance Ce(x, ωo) and the reflected radiance Cr(x, ωo):

C(x, ωo) = Ce(x, ωo)+Cr(x, ωo). (5)

Here, the reflected radiance is obtained by evaluating the transport
integral

Cr(x, ωo) =
∫

�

f (x, ωi, ωo)C(x, ωi) cos θi dωi (6)

over the visible hemisphere�where f (x, ωi, ωo) denotes the BRDF
and θi is the angle between the surface normal at x and the incident
direction ωi.

We assume light travels from a source toward the camera. Follow-
ing established literature [Hei18, DB23], incident and outgoing light
directions extend outward from x. Thus, the incident direction faces

toward the light source, while the outgoing direction faces toward
the camera. Accordingly, we set the outgoing direction as ωo = −d,
where d represents the camera direction.

Combining surface rendering and volume integration. In order
to combine the radiance integration and volume integration, TraM-
NeRF assumes that a primary ray scatters into multiple reflected
rays at the intersecting point. Since this ray has passed through an
absorbingmedium, the combined radiance of the out-branching rays
should be attenuated by the transmittance along the intersecting ray.
Whereas NeRF integrates the density along a ray from a starting
point close to the camera position up to a point which is chosen a
priori based on the extent of the scene, TraM-NeRFmodifies the up-
per integration bound to stop at the intersection point. We formalize
this concept by introducing a ray length function τ (x, ω) which re-
turns the length from the ray origin to the point where it intersects
with the detected geometry. Therefore, we obtain a transmittance-
aware version of the rendering equation

C(x, ωo) = Ce(x, ωo)+ Tωo (tn → τ (x, ωo)) ·Cr(x, ωo). (7)

which takes the attenuation from the absorbing medium into ac-
count by multiplying the reflected radiance with the transmittance
Tωo (tn → τ (x, ωo)). The emitted radiance observed at point x from
direction ωo is computed following [MST*21] by raymarching
through the emissive volume until the intersection point is reached:

Ce(x, ωo) =
∫ τ (x,ωo)

tn

Tωo (tn → t ) σωo (t ) cωo (t ) dt (8)

where cωo (t ) represents the direction-dependent colour estimated by
the model at a point located t units along the ray (x, ωo). Note that
our modified version retains the offset tn to prevent double-counting
the intersection point in emitted and reflected radiance calculations.

Monte-Carlo estimator of reflected radiance. Our efficient re-
flected radiance estimator builds upon an established approximation
method for the transport integral, employing importance sampling
to evaluate aMonte-Carlo estimator. This estimator is then modified
to reduce additional variance introduced when importance sampling
a BRDF function, all while keeping the number of network evalu-
ations constant. These adjustments enhance the computational effi-
ciency in determining the reflected radiance.

Considering the transport integral in Equation 6, the respective
estimator, which samples N incident light directions ωi from a can-
didate distribution p(·), is given by

Cr(x, ωo) ≈ 1

N

N∑
i=1

f (x, ωo, ωi)

p(ωi)
C(x, ωi). (9)

Note how the subscript i inωi not only denotes the incident direction
but also serves as an index indicating the ith (incident) direction
sample drawn from the hemisphere � with probability p(ωi).

In order to obtain a suitable candidate distribution derived from
the BRDF f , we utilize the well-established microfacet theory to
model f at the intersection point, assuming that roughness arises
from a height field of tiny facets distributed according to a distri-
bution Dα (·) with roughness parameter α [CT82]. In particular, we
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use the widely used GGX reflection model [WMLT07] which de-
fines the BRDF to be

f (x, ωo, ωi) = F (ωi, h)G(ωo, ωi, h)Dα (h)

4 cos θi cos θo
(10)

where h is the half-vector between the incident and outgoing di-
rection, θo the angle between ωo and the surface normal, F is the
Fresnel term, and G(·) a coefficient describing the average attenua-
tion that results from shadowing and masking between microfacets.
For formal definitions of Dα , F and G, please refer to Walter et al.
[WMLT07]. Utilizing an optics-based analytical GGX reflectance
model ensures physical consistency in the learned radiance function
and comes with the additional benefit of a well-studied importance
sampling technique [Hei18, DB23].We use visible normal sampling
(VNDF) which defines a candidate distribution

p(h) = max{0, 〈ωo|h〉}G1(ωo)Dα (h)

4 cos θi cos θo
(11)

that takes the average attenuation due to microfacet maskingG1 into
consideration and has a closed-form sampling routine [Hei18]. Note
that VNDF is a distribution over the half-vectors h instead of inci-
dent light directions. However, the incident light direction can be
computed via a reflection of the outgoing direction about the half-
vector. Thus, the resulting estimator for the reflected radiance is

Cr(x, ωo) ≈ 1

N

N∑
i=1

F (ωi, h)G(ωo, ωi, h)

G1(ωo)︸ ︷︷ ︸
=: f ′ (ωo,ωi )

C(x, ωi). (12)

Efficient reflected radiance approximation. To contextualize our
efficient radiance approximation, we initially examine the number
of network evaluations needed when the estimator from Equation 12
is used in the combined surface rendering and volume integration.
This analysis follows the assumption made in NeRF [MST*21],
where the volume integral is discretized under the assumption of
piece-wise constant radiance along the ray direction. For simplic-
ity, the analysis focuses on a scenario where the camera ray incurs
no absorption before intersecting with the surface and the reflected
rays do not intersect with any detected surface. In this setting, the
radiance observed for a camera ray would be

C(o, ωo) = 1

N

N∑
i=1

f ′(ωo, ωi)
K∑
k=1

Tωi (tn → tk )
(
1− e−σωi ,k

δωi ,k
)
cωi,k.

(13)

Figure 3a provides a visualization of the network evaluation pattern
for each directional sample. A crucial observation is that comput-
ing this equation entails K network evaluations for each direction
sampled using VNDF. To achieve a radiance estimate with minimal
noise, a large number of directional samples are required, necessi-
tating a significant number of costly network evaluations.

In light of the aforementioned challenges, we aim to improve the
computational efficiency of this procedure in TraM-NeRF.Our strat-
egy involves increasing the number of directional samples without
the need for additional network evaluations. This optimization lever-
ages the observation that scenes with diffuse or low frequency sur-
faces reflections can be adequately handled by the standard NeRF
model. However, it encounters difficulties in representing scenes

Rough Surface

ωo ω*

ωi

ωn

x
x

xx

x
x

x

x

x

x

x

x

x

x

x
x

(a) Standard Monte-Carlo estimator – Sparse BRDF sampling
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(b) Our estimator – Dense BRDF sampling

Figure 3: Patterns for BRDF sampling and network evaluation, re-
sulting in different radiance estimators. (a) In the standard Monte-
Carlo approach, the network is evaluated at positions (indicated by
cross markers) chosen using stratified sampling for each sampled
direction ωi. (b) Our estimator draws directional samples within
segments (dashed lines) along the ideal reflection direction ω∗, re-
sulting in a higher angular coverage of the specular lobe with the
same number of network evaluations.

with surfaces which display high-frequency reflections that vary sig-
nificantly with the viewing direction. In TraM-NeRF, we combine
this observation with the assumptions of scene boundedness and lo-
cally smooth network-predicted density. These assumptions allow
our estimator to focus primarily on estimating reflected radiance
for near-specular surfaces. Consequently, our estimator can assume
a narrow spread of light directions in the samples. By combining
these insights, we expect that the transmittance remains nearly con-
stant with respect to the sampled directions. In particular, we ap-
proximate the transmittance along all sampled directions ωi with
the transmittance along the ideal reflection direction ω∗:

Tωi (tn → tk ) ≈ Tω∗ (tn → tk ). (14)

This way, we can interchange the order of the Monte-Carlo inte-
gration and the NeRF volume integration:

Cr(x, ωo) = 1

N

N∑
i=1

f ′(ωo, ωi)
K∑
k=1

Tωi (tn → tk )
(
1− e−σωi ,k

δωi ,k
)
cωi,k

≈
K∑
k=1

Tω∗ (tn → tk )
1

N

N∑
i=1

f ′(ωo, ωi)
(
1− e−σωi,k

δωi ,k
)
cωi,k

(15)
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Figure 4: Transmittance approximation used by our estimator. (a)
The transmittance Tωi (tn → tk ) in direction ωi is approximated us-
ing the transmittance Tω∗ (tn → tk−1) along the ideal reflection direc-
tion ω∗ for near-perfect specular surfaces. (b) The transmittance in
the ideal reflection direction is computed using the BRDF-weighted
density of samples within each segment.

Intuitively, our estimator divides the ideal reflection ray into K
segments and traces transmittance solely along the ideal reflection
direction. Within each segment, we randomly select positions and
evaluate n directional samples, each contributing to the calculation
only once with their impact attenuated based on the transmittance
along the ideal reflection direction, which is depicted in Figure 4a.
These positions for evaluating the directional samples are uniformly
chosen from the interval [ tk−1+tk2 ,

tk+tk+1
2 ]. A visualization of this

sampling strategy and its resulting evaluation points is shown in
Figure 3b. For a more in-depth explanation and its adaptation to
a hierarchical optimization procedure, please refer to Section 3.4.

Our estimator computes transmittance once per segment, en-
abling us to increase the number of directional samples without re-
quiring additional network evaluations to accumulate transmittance.
This trade-off balances transmittance precision against directional
sample count, reducing noise in reflected radiance. To further reduce
the number of network evaluations, we use an average of BRDF-
weighted density predictions per segment to calculate the transmit-
tance

Tω∗ (tn → tk ) ≈ e− ∑k−1
j=1

[
1
n

∑n
i=1 f ′ (ωo,ωi ) σωi, j

]
δ j . (16)

which is visualized in Figure 4b.

3.3. Mirror parameterization and annotation

To compute the reflection of a ray at near-specular surfaces, TraM-
NeRF requires an intersection test function that returns both the in-
tersection location and the surface normal at that location.

In case of planar polygonal surfaces, we get sufficiently accu-
rate annotations using only a small number of annotated input im-
ages per scene. We represent these surfaces as triplets of triangle
vertices T = (v1, v2, v3), vi ∈ R

3 which allows for efficient inter-
section tests with rays in the rendering step [MT97]. Given the
screen space annotations of three corners in at least two images
and their camera poses, the annotations correspond to rays through
the scene. In particular, the jth annotation of vertex vi defines a ray
ri j(t ) = oj + t di j with camera origin oj and ray direction di j with∥∥di j∥∥2 = 1. The estimated 3D location v̂i of the vertex is then given
as the point minimizing the lengths of the orthogonal projection onto

each ray:

v̂i = min
v

∑
j

∥∥v − (oj + di j (v − oj ) di j )
∥∥2
2
. (17)

We can additionally exploit the property that all triangles of a planar
polygonal mirror lie on the same plane. To increase the robustness
against inaccuracies in the annotations, we compute the normal of
that plane using principal component analysis applied on the set of
annotated vertices of the planar surface.

In Section 4, we show how TraM-NeRF can be used to rep-
resent more complex, non-planar surfaces using a cylinder as an
example. We parameterize a cylindrical reflector using start and
endpoints p, p′ ∈ R

3 and radius R ∈ R. To infer these parameters,
we first create sparse annotations of the cylinder region in multi-
ple images and generate a binary segmentation mask for each of
these images [DM21]. Next, we generate a visual hull from the
masks [Lau94] and compute an oriented bounding box of its ver-
tices. The parameters are initialized as the maximal cylinder that
fits inside this bounding box, where the longitudinal axis is cho-
sen as the longest side of the box, assuming that the cylinder’s
length is larger than its radius. Then, the parameters are optimized
by rendering the silhouette of the cylinder from the views of the
mask images and minimizing a silhouette loss between the render-
ings and the segmentation masks using a differentiable rasterization
pipeline [LHK*20]. We were able to produce accurate estimates for
the cylinder geometry by sparsely annotating only 11 input images
for the real-world scene shown in the last row of Figure 5.

3.4. Implementation and training details

To assess and compare our estimator for reflected radiance, TraM-
NeRF leverages the NeRF framework [MST*21] and is imple-
mented using PyTorch [PGM*19]. We chose to use the standard
NeRF implementation to ensure a clear comparison of the improve-
ments resulting from our contributions and to avoid potential con-
fusion in the assessment of enhancements attributable specifically
to our estimator in comparison to those resulting from different un-
related improvements. Nevertheless, our estimator is adaptable to
various implementations of the radiance field networks, making it
compatible with methods that enhance parametrization [BMT*21,
BMV*22] or architecture [MESK22, CXG*22].

For training TraM-NeRF, we use a modified version of the NeRF
training protocol [MST*21], using the Adam optimizer with a learn-
ing rate of 10−3 without decay. The Adam hyperparameters re-
mained at their default values: β1 = 0.9, β2 = 0.999 and ε = 10−7.
The model underwent 1.2× 105 iterations of training on the syn-
thetic scenes, and 2.4× 105 iterations on the real-world scenes, with
a batch size of 214 pixels per iteration.

We apply the sampling process outlined in Section 3.2 to align
with NeRF’s hierarchical volume sampling approach [MST*21]
consisting of a coarse and a fine stage. In the coarse stage, we em-
ploy stratified sampling to select points along each ray for network
evaluation, which involves dividing the ray into Kc equal segments
and uniformly sampling a position from each segment. In the fine
stage, additional samples along each ray are generated using inverse
transform sampling based on density predictions from the coarse
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L. V. Holland et al. / TraM-NeRF 7 of 14

Figure 5: Comparison of different methods (a–e) compared to ours (f) on our synthetic dataset with multiple mirrors (rows 1 and 2), near-
perfect specular surfaces (rows 3 and 4) and real-world scenes (rows 5 and 6). The images shown are views from the test set of the respective
scenes. (g) Shows the ground truth test image.

stage, which results in an additional set of Kf samples. Given a set
of samples, denoted as t1, t2, . . . , tK , where K corresponds to the
number of coarse (Kc) or fine samples (Kc + Kf ), TraM-NeRF estab-
lishes non-uniformly spaced intervals based on them. These inter-
vals are defined as

[ tk−1+tk
2 ,

tk+tk+1
2

]
, ensuring that each sample point

tk serves as the centre of a specific section. We now generate direc-
tional samples by choosing a uniformly distributed length

tk,i ∼ U[ tk−1+tk
2 ,

tk+tk+1
2

] (18)

for each interval k and direction ωi. Subsequently, the radiance field
is queried for its density and colour predictions at specific points

xk,i = x+ tk,i
〈ω∗|ωi〉ωi (19)

where the dot product between the sampled direction and the ideal
reflection direction ensures that xk,i falls within the interval, as illus-
trated in Figure 3a.

During training, we used two directional samples per camera
ray to keep the number of network queries close to the original
NeRF formulation. For the final results, we increased this num-
ber to 50 directional samples to enable rendering high-quality
images.
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8 of 14 L. V. Holland et al. / TraM-NeRF

4. Experiments

We ran multiple experiments to evaluate different facets of our ap-
proach on scenes with multiple planar and non-planar mirrors, and
scenes containing near-specular surfaces, both generated syntheti-
cally and captured in the real world.

The synthetic scenes are created in the open-source 3D graphics
tool Blender to be able to retrieve ground-truth parameters from the
BRDF model. Matching the description in Section 3.2, the Blender
material we selected for mirror-like surface uses the GGX distribu-
tion. All 3D models and textures are provided by BlenderKit and
CGTrader as royalty-free assets. In total, we created 11 synthetic
scenes with mirrors and five scenes with near-specular surfaces. For
non-forward-facing scenes, we rendered 150 images per scene with
cameras sampled from the upper hemisphere around the scene cen-
tre, looking towards the centre. As less coverage is required for the
forward-facing scenes, we only rendered 100 images per scene for
these cases.

To show the performance of our approach on real-world data, we
captured three scenes using a DSLM camera and determined the
camera parameters using structure-from-motion [SF16]. The real-
world scenes have a varying amount of images, depending on the
complexity of the mirror setup. We further assume that the surfaces
in these scenes have zero roughness. For evaluation purposes, we
withheld 20% of the images for each synthetic and real-world scene
from the training process.

We compare our approach on our datasets, both qualitatively
and quantitatively, against multiple baseline methods [MST*21,
BMV*22] and recent methods that explicitly model reflections
[VHM*22, GKB*22, YQCR23, ZBC*23]. To quantify the re-
construction quality, we use the commonly used metrics peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM)
[WBSS04] and learned perceptual image patch similarity (LPIPS)
[ZIE*18].

In addition to evaluating these over the whole image, we report
a measurement of the quality restricted to the mirror regions. Here,
the distance to ground truth is computed by first setting all non-
mirror pixels to zero in both the result image and the corresponding
ground truth using the mirror mask we attain from the annotations
and then evaluating the metrics on the masked image pair. To reduce
the influence of large non-mirror regions, weweight the contribution
of each image to the overall score using the number of mirror pixels
in that image, thus yielding a weighted mean of the individual per-
image scores.

For the choice of hyperparameters, we followed the configura-
tion files provided alongside the implementations of the respec-
tive methods. In the case of Mirror-NeRF [ZBC*23], which re-
quires precise ground-truth mirror masks for each image, we gen-
erated these from the annotations that we use in our approach. Note
that this generation does not account for partial occlusions of the
mirrors, as determining these occlusions requires a priori knowl-
edge of the entire scene geometry and would in turn be a strong
prior. The usage of our annotations in NeRFReN is detailed in
Section 4.3.

4.1. Multi-mirror scenes

The first two rows of Figure 5 show results of various related ap-
proaches on scenes with multiple mirrors. It can be seen that both
baseline methods (a, b) and approaches that consider reflections
more explicitly (c, d, e) struggle to re-construct higher-order reflec-
tions with regard to overall quality (a, b, c) and high-frequency de-
tails (d), while our method (f) can by design represent these regions
with the same quality as the rest of the scene. This strength is also
reflected in the quantitative evaluation in Table 1, as our method
outperforms the other approaches consistently. Even though (e) fo-
cuses on modelling mirror effects using ray-tracing, we found that
the method does not robustly handle multi-view inconsistencies im-
posed by our dataset.

4.2. Reflections of near-specular surfaces

The lower two rows of Figure 5 show a similar comparison on scenes
with near-perfect specular surfaces. As before, (a) and (b) show a
lack of re-construction quality in regions close to the near-specular
surface due to multi-view inconsistencies. While (c) is able to re-
solve the inconsistencies, in the third row, it can be seen that it fails
to learn a clear reflection. In both the mirror reflections and near-
specular surface scenarios, we suppose that the lack of detail in the
results of MS-NeRF are due to two effects: First, Yin et al. reduced
the sizes of the individual radiance fields to roughly match the size
of approaches using a single radiance field. This leads to less capac-
ity per radiance field in the multi-space formulation. Second, the
previous approaches are unable to aggregate information in the re-
flections from different views consistently, as they are either trying
to resolve the multi-view consistencies directly, or move them into
a separate radiance field.

Yet, MS-NeRF is able to achieve best PSNR scores when only
considering mirror regions in scenes with near-specular surfaces.
This could be caused as a side-effect of the change in radiance field
sizes, as MS-NeRF is less prone to overfit on high-frequency details
due to the reduced capacity, which is advantageous for non-perfect
reflections. The low performance of Mirror-NeRF can be expected
on this subset of scenes, as the method does not model non-zero
surface roughness during training.

4.3. Forward-facing scenes

In order to compare our results with the approach of Guo et al.
[GKB*22], we additionally created three scenes where all camera
centres are located on a single plane. Two scenes contain mir-
rors, while the surface in the third scene is near-specular. The
default parameters for scenes without manual annotations that
are provided by the authors were used for comparison. We also
experimented with providing one or multiple ground-truth masks to
their approach, but we found that providing no masks consistently
produced the best results.

A qualitative comparison between NeRFReN and our approach
is shown in Figure 6. It can be seen that our approach is
able to better re-construct details in the near-specular region.
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L. V. Holland et al. / TraM-NeRF 9 of 14

Table 1: Quantitative comparison of our approach against NeRF baselines and recent works on both synthetic multi-mirror scenes and scenes with near-
specular surfaces. Metrics are averaged over all test images and across all scenes. Best and second-best results are highlighted.

Multi-mirror Near-specular surface

Full images PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF [MST*21] 26.01± 5.09 0.800± 0.099 0.374± 0.107 32.18± 3.01 0.883± 0.006 0.285± 0.045
Mip-NeRF 360 [BMV*22] 25.69± 6.28 0.774± 0.128 0.410± 0.115 32.33± 2.83 0.869± 0.004 0.342± 0.015
Ref-NeRF [VHM*22] 25.21± 6.00 0.778± 0.108 0.425± 0.099 31.75± 4.18 0.853± 0.010 0.379± 0.022
MS-NeRF [YQCR23] 28.27± 5.98 0.812± 0.121 0.379± 0.126 32.29± 2.79 0.857± 0.011 0.401± 0.028
Mirror-NeRF [ZBC*23] 21.83± 4.54 0.719± 0.082 0.515± 0.125 25.38± 1.30 0.799± 0.035 0.485± 0.052
Ours 31.38± 3.70 0.868± 0.051 0.295± 0.094 33.35± 0.70 0.892± 0.014 0.275± 0.014

Mirror regions

NeRF [MST*21] 29.49± 3.28 0.949± 0.018 0.065± 0.024 36.83± 4.96 0.986± 0.011 0.029± 0.010
Mip-NeRF 360 [BMV*22] 29.85± 3.39 0.950± 0.017 0.064± 0.023 37.29± 5.29 0.985± 0.013 0.036± 0.011
Ref-NeRF [VHM*22] 29.97± 3.67 0.954± 0.017 0.064± 0.024 39.89± 5.87 0.989± 0.011 0.026± 0.010
MS-NeRF [YQCR23] 33.81± 4.26 0.967± 0.017 0.056± 0.027 41.75± 7.68 0.988± 0.013 0.026± 0.017
Mirror-NeRF [ZBC*23] 26.58± 3.79 0.937± 0.023 0.075± 0.030 32.25± 1.32 0.977± 0.004 0.044± 0.004
Ours 38.97± 3.28 0.984± 0.008 0.031± 0.019 39.67± 1.67 0.992± 0.002 0.024± 0.002

Figure 6: Results of different methods (a–f) compared to ours (g)
on a test view of one of the forward facing scenes that contains a
near-specular surface. (h) Shows the ground truth test image.

The quantitative comparison in Table 2 additionally shows results
of other approaches. While our approach is not reaching the high-
est scores when evaluating on the whole images, the evaluation on
mirror regions shows that TraM-NeRF is on par with theNeRF base-

Table 2: Quantitative results on the three forward facing scenes. Best and
second-best results are highlighted.

Full images PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 36.33± 1.54 0.920± 0.013 0.213± 0.021
Mip-NeRF 360 35.60± 1.79 0.888± 0.022 0.325± 0.063
Ref-NeRF 35.51± 1.68 0.881± 0.022 0.344± 0.058
NeRFReN 27.38± 8.43 0.817± 0.062 0.492± 0.127
MS-NeRF 34.86± 1.30 0.868± 0.013 0.387± 0.013
Mirror-NeRF 27.50± 0.93 0.813± 0.010 0.535± 0.013
Ours 35.82± 1.24 0.911± 0.010 0.241± 0.019

Mirror regions

NeRF 44.28± 3.11 0.994± 0.004 0.018± 0.005
Mip-NeRF 360 44.01± 4.78 0.990± 0.006 0.031± 0.009
Ref-NeRF 44.67± 4.67 0.991± 0.006 0.031± 0.008
NeRFReN 33.25± 9.82 0.978± 0.018 0.054± 0.015
MS-NeRF 44.37± 4.93 0.992± 0.005 0.025± 0.012
Mirror-NeRF 30.83± 3.42 0.966± 0.006 0.066± 0.015
Ours 43.54± 2.06 0.994± 0.002 0.018± 0.003

line on perceptual image metrics. This excellent performance of the
baseline methods on the forward-facing scenes can be explained by
the fact that this scenario does not impose multi-view inconsisten-
cies, which are difficult to resolve using the original NeRF formu-
lation.

4.4. Real-world scenes

In addition to the synthetic results, we also tested the performance
on real-world scenes with both planar and cylindrical mirror sur-
faces. Quantitative results in Table 3 show that our method is able
to significantly improve the quality of the re-constructions in mir-
ror regions while still being competitive regarding the overall re-
construction quality. Rows 5 and 6 in Figure 5 also show a visible
improvement of the quality of mirror regions in real-world scenes,
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10 of 14 L. V. Holland et al. / TraM-NeRF

Table 3: Comparison of our method on real-world data of both planar and
non-planar mirror surfaces. Best and second-best results are highlighted.

Full images PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 25.67± 2.39 0.809± 0.016 0.406± 0.065
Mip-NeRF 360 26.98± 2.24 0.864± 0.018 0.286± 0.048
Ref-NeRF 26.15± 1.87 0.815± 0.015 0.390± 0.040
MS-NeRF 26.30± 2.80 0.818± 0.064 0.390± 0.110
Mirror-NeRF 18.06± 5.12 0.607± 0.167 0.533± 0.133
Ours 27.53± 1.56 0.845± 0.012 0.362± 0.055

Mirror regions

NeRF 29.54± 3.07 0.943± 0.029 0.077± 0.044
Mip-NeRF 360 29.85± 2.77 0.947± 0.028 0.070± 0.043
Ref-NeRF 29.57± 3.34 0.939± 0.034 0.081± 0.050
MS-NeRF 31.59± 2.02 0.952± 0.023 0.074± 0.045
Mirror-NeRF 24.50± 0.50 0.923± 0.023 0.086± 0.040
Ours 33.52± 2.28 0.962± 0.015 0.061± 0.035

both for planar (row 5) and cylindrical (row 6) mirrors. In the scene
with the cylindrical mirror surface, it can also be seen that our
method re-constructs more highlights of the glossy surface of the
plate (next to the peeler and between the candle and the small metal
rod), which could be due to the increased number of observations
our method intrinsically provides for these regions, as they are of-
ten only visible in the reflection and not by primary camera rays.
Even though we experimented with multiple hyperparameter con-
figurations and disabled the plane consistency loss for scenes with
non-planar mirror surfaces, Mirror-NeRF was not able to converge
to a plausible solution for the mirror regions.

4.5. Re-construction of indirectly observed regions

One of the advantages of our approach compared to works that
model reflections as separate radiance fields [GKB*22, YQCR23]
is that information contained in the reflection improves the re-
construction quality of the regions the reflected ray passes through.
To visualize and quantify this, we created an experiment where cer-
tain regions of the scene not visible to primary camera rays in any
of the training images. The cameras used to generate the test images
are then chosen to cover the regions not seen in the training. An ex-
ample of this setup and results are shown in Figure 7. Because the
other approaches do not model a change in ray directions, they only
extrapolate directly observed scene elements in the unseen regions.
The periodicity in the positional encoding seems to lead to a copy
of the observed scene in (b) and (d), while (c) produces noise in the
respective regions. Our approach (f) on the other hand re-constructs
high-frequency details that were observable in the reflection of the
mirror. While Mirror-NeRF (e) is also modelling the reflection ex-
plicitly, it struggled to place the textured region on the wall at the
correct location. One possibility for this erroneous result is that the
re-construction of that region is not constrained enough due to the
design of the experiment. Many choices for the mirror normal may
lead to a plausible re-construction of the training data and Mirror-
NeRF does not use additional cues to optimize towards the correct
normal. In our approach, the normal is explicitly given by the anno-
tation and thus automatically leads to a correct ray reflection.

Figure 7: Experiment with indirectly observed regions. (a)
Schematic top view of the scene. Training cameras (green) are
placed on a single plane, oriented towards a mirror (blue) that re-
flects light rays from an unseen region of interest (yellow) towards
the training cameras. The test cameras (orange) are placed on a
second plane and can directly observe the region of interest. (b)–(g)
show the resulting novel views from test cameras produced by pre-
vious approaches compared to ours. The captions also report the
PSNR averaged over all test views.

4.6. Ablation studies

We conducted additional experiments to validate some of the design
choices of our approach.

4.6.1. Annotation robustness

To validate our claim that annotations in a small subset of im-
ages are sufficient to accurately define the position of a rectangu-
lar planar mirror in 3D space, we perturbed the ideal annotation
locations extracted from Blender by different amounts in screen
space. More specifically, we projected the ground truth 3D corners
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L. V. Holland et al. / TraM-NeRF 11 of 14

Figure 8: PSNR in the mirror regions evaluated on one of the
scenes from our dataset after 10,000 training iterations, using two
(blue) and four (orange) perfectly annotated images to compute the
3D location of the mirror surface. Training is then performed 20
times with annotations perturbed in screen space by randomly sam-
pled errors of fixed magnitude. The boxes encompass lower and up-
per quartiles with the straight line showing the median value, lower
and upper fences, as well as outliers marked with circles.

of the mirror surface into the images and introduced a fixed error
ε ∈ {2, 4, 6, 8, 10} to the projected points by randomly sampling a
new screen space point on a circle around the ideal point with radius
ε. These perturbed annotations are then used to determine the 3D po-
sition of the mirror for the training, as described in Section 3.3. We
ran this process for the cases of annotating a subset of two and four
images, respectively, and repeated the experiment 20 times for each
choice of ε, amounting to 100 models in total with non-zero error.

Figure 8 shows the resulting PSNR of the re-construction with
pixel-exact annotations and different levels of noise on a single
scene in our dataset. Our method remains robust even under severe
noise, only dropping by around 1.5 dB in re-construction quality af-
ter 10,000 iterations when each annotation is perturbed by 10 px.
The experiments also exhibit some outliers that even exceed the
quality of the perfectly annotated case, which we assume to be ar-
tifacts from run-by-run variance in conjunction with stopping the
optimization and evaluating the models mid-training.

4.6.2. Modified ray sampling

As motivated in Section 3.2, we draw the microfacet normals in-
dependently for each sampling location along the main ray (dense)
instead of generating multiple rays at the surface intersection and
choosing sample points along these rays (sparse). We ran an ex-
periment to compare the re-construction quality of these variants.
Figure 9 shows that our proposed dense estimator variant is advanta-
geous when using the same or double the amount of rays compared
to the number of primary rays. Only when increasing the number
of secondary rays by significantly larger factors, the sparse sam-

Figure 9: Comparison of the effect of different sampling strate-
gies used during training on the final result. Experiments were per-
formed on one of the synthetic scenes with a near-perfect specu-
lar mirror. The PSNR is measured in the mirror regions of the test
dataset after training using our proposed dense sampling strategy
(blue) and the standard sparse sampling strategy (orange). Bars
without hatches indicate that the same number of secondary rays
was used as in the training, while hatched bars show the results
when using 50 secondary rays for the final renderings.

pling shows an increase in re-construction quality compared to the
dense sampling. However, this also comes at the cost of an increased
amount of network evaluations scaling linearly by this factor for
each pixel in the training data belonging to a mirror.

To reduce the variance in the re-construction results, we also show
the quality when the number of directional samples after training to
50 rays per surface intersection. This indicates that the lower quality
of the sparse variant is not due to high variance in the final rendering
but instead is caused by a lower quality scene model resulting from
the training.

4.6.3. Incorrect roughness values

Figure 10 visualizes the effect of different choices of the roughness
value α during training (a)–(e) and the corresponding ground truth
view (f). The correct roughness value of the surface is α = 0.017
and the resulting rendering of our method is shown in (c). While our
proposed sampling strategy introduces a bias in the final renderings,
our method produces plausible results for each of the choices of α

and remains stable during training, even in the presence of inconsis-
tent observations caused by deviations from the correct roughness.

4.7. Limitations

While TraM-NeRF achieves promising results for novel view syn-
thesis, it also has some limitations that require further attention. In
the context of generating novel views, our model inherits NeRF’s
limitations in extrapolating effectively in areas with insufficient in-
put image coverage, leading to reduced performance. We observed
these hallucinations in parts of the scene that are concealed be-
hind mirrors in a majority of training images. Additionally, our
estimator can overestimate density and transmittance when the
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12 of 14 L. V. Holland et al. / TraM-NeRF

Figure 10: Results produced by our method when trained with different choices for the surface roughness α used during training (a–e) on
one of the synthetic scenes. A rendering with correctly chosen roughness is shown in (c), whereas (f) shows the ground truth test image.

assumption of a narrow spread of light directions does not hold.
In this case, object reflections can appear larger than expected. Re-
garding this, it would be interesting to further investigate the effect
of NeRF formulations that consider the integration over a region
around the sampling point [BMT*21, IMWB23, BMV*23]. Here,
supporting rough reflections would require a non-trivial extension
of the idea proposed by Barron et al. [BMT*21], as the involved
cones will be additionally affected in an anisotropic manner by the
BRDF close to their boundaries. Moreover, the current estimator
implementation is limited to a single ray bounce in case of reflec-
tions with non-zero roughness, assumes that reflective surfaces have
no diffuse component and that the normal is close to the analytical
normal of the geometry model.

5. Conclusions

We presented TraM-NeRF, an extension of NeRF that effectively
models mirror-like surfaces, accurately capturing high-frequency
reflections within a single scene representation. By introducing a
transmittance-aware variant of the rendering equation for explicit
reflection modelling as well as efficient sampling techniques, we
are able to reduce the number of network evaluations during ray
tracing without increasing the variance. In a qualitative and quanti-
tative evaluation, we demonstrated that our techniques outperform
previous methods in challenging scenes with single and multiple
mirror-like surfaces on both synthetic and real-world data.
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