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ABSTRACT

Recent advancements in dynamic 3D scene reconstruction have shown promising
results, enabling high-fidelity 3D novel view synthesis with improved temporal
consistency. Among these, 4D Gaussian Splatting (4DGS) has emerged as an
appealing approach due to its ability to model high-fidelity spatial and temporal
variations. However, existing methods suffer from substantial computational and
memory overhead due to the redundant allocation of 4D Gaussians to static re-
gions, which can also degrade image quality. In this work, we introduce hybrid
3D-4D Gaussian Splatting (3D-4DGS), a novel framework that adaptively repre-
sents static regions with 3D Gaussians while reserving 4D Gaussians for dynamic
elements. Our method begins with a fully 4D Gaussian representation and itera-
tively converts temporally invariant Gaussians into 3D, significantly reducing the
number of parameters and improving computational efficiency. Meanwhile, dy-
namic Gaussians retain their full 4D representation, capturing complex motions
with high fidelity. Our approach achieves significantly faster training times com-
pared to baseline 4D Gaussian Splatting methods while maintaining or improving
the visual quality.

1 INTRODUCTION

Accurately representing and rendering complex dynamic 3D scenes is fundamental to a wide range
of applications, including immersive media for virtual and augmented reality. For example, in com-
mercial and industrial domains such as sports broadcasting, film production, and live performances,
the demand for high-quality dynamic scene reconstruction continues to grow, driven by the need for
enhanced viewer engagement. While significant progress has been made, achieving high-fidelity,
computationally efficient, and temporally coherent modeling of dynamic scenes remains a challeng-
ing problem.

Recent advances in neural rendering, particularly Neural Radiance Fields (NeRF) (Mildenhall et al.},
2021; Barron et al., 2022; 2023}, [Fridovich-Keil et al., 20225 Sun et al., 2022a; [Miiller et al., 2022),
have emerged as a powerful representation for novel view synthesis and 3D scene reconstruction,
leveraging neural networks, grid-based data structures, and volumetric rendering (Brebin et al.,
1998). Extensions of NeRF to dynamic 3D scene modeling (Song et al.l [2023; |Lombardi et al.,
2019; |[Pumarola et al., 2021} [Park et al., 2021agb; [Fridovich-Kelil et al., [2023}; |Cao & Johnson, 2023}
Wang et al., 2023 [Mihajlovic et al., [2023}2024; |Kim et al.,2024) have shown promising results, en-
abling the reconstruction of time-varying environments with improved fidelity. However, real-time
and high-fidelity rendering of complex dynamic scenes continues to be an open problem due to the
computational cost of volume rendering and the complexity of spatio-temporal modeling.

More recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has become a promising alter-
native to NeRF-based approaches for 3D scene reconstruction and novel view synthesis , offering
improved quality and real-time rendering capabilities. Unlike NeRF, which relies on implicit repre-
sentation and computationally expensive volumetric rendering, 3DGS represents scenes as a collec-
tion of Gaussian primitives and leverages a fast rasterization. Several extensions have been proposed
to adapt 3DGS for dynamic 3D scene reconstruction, incorporating motion modeling and temporal
consistency to handle time-varying environments.

Two primary paradigms have been developed for applying 3DGS to dynamic 3D capture. The first
approach extends 3D Gaussians to dynamic 3D scenes by tracking Gaussians over time (Li et al.,
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2024; |Wu et al.| [2024; Lee et al, 2025a; Huang et al.l 2024} Zhu et al.| [2024; [Kratimenos et al.,
2024])), using techniques such as multi-layer perceptrons (Li et al., [2024), temporal residuals (Wu
et al.,2024), or interpolation functions (Lee et al.,|2025a)). These methods leverage temporal redun-
dancy across frames to improve the representation efficiency and accelerate training, but they often
struggle with fast-moving objects. The second paradigm, directly optimizing 4D Gaussians, repre-
sents the entire spatio-temporal volume as a set of splatted 4D Gaussians (Yang et al.| |2023a; [Duan
et al., |2024; [Lu et al.l [2024a). While this approach enables high-quality reconstructions, it incurs
significant memory and computational overhead. Furthermore, allocating 4D Gaussians to inher-
ently static regions is inefficient, as these areas do not benefit from time-varying parameters (Cho
et al.l [2024).

In this work, we propose a hybrid 3D-4D Gaussian Splatting (3D-4DGS) framework that addresses
the inefficiencies of conventional 4DGS pipelines. A key limitation of 4DGS (Yang et al. [2023a)
is their treatment of static regions, which often requires multiple 4D Gaussians across different
timesteps. While an optimal solution would involve assigning large scales along the temporal axis
to represent static regions more effectively, this rarely occurs in practice. We propose a hybrid
approach that models static regions with 3D Gaussians while reserving 4D Gaussians for dynamic
elements. The proposed approach significantly reduces the number of Gaussians, leading to lower
memory consumption and faster training speed.

Our approach begins by modeling all Gaussians as 4D and then adaptively identifying those with
minimal temporal variation across the sequence. These Gaussians are classified as static and con-
verted into a purely 3D representation by discarding the time dimension, effectively freezing their
position, rotation, and color parameters. Meanwhile, fully dynamic Gaussians retain their 4D na-
ture to capture complex motion. Importantly, this classification is not a one-time process but is
performed iteratively at each densification stage, progressively refining the regions that truly require
4D modeling. The final rendering pipeline seamlessly integrates both 3D and 4D Gaussians, pro-
jecting them into screen space for alpha compositing. This design ensures that temporal modeling
is applied where necessary, capturing motion effectively while eliminating redundant overhead in
static regions.

We demonstrate the effectiveness of the proposed 3D-4DGS on two standard challenging datasets:
Neural 3D Video (N3V) (Li et al.| [2022), which primarily comprises 10-second multi-view videos
(plus one 40-second long sequence), and Technicolor (Sabater et al., 2017), featuring 16-camera
light field captures of short but complex scenes. Our method consistently achieves competitive or
superior PSNR and SSIM scores while significantly reducing training times. Additionally, we con-
duct ablation studies to reveal how key design choices—such as the scale threshold and opacity reset
strategies—impact final quality and efficiency. We summarize our main contributions as follows:

* Hybrid 3D—4D representation. We introduce a novel approach, 3D-4DGS, that dynami-
cally classifies Gaussians as either static (3D) or dynamic (4D), enabling an adaptive strat-
egy that optimizes storage and computation.

* Significantly reduced training time. By removing redundant temporal parameters for
static Gaussians, our approach converges about 3—-5x faster than baseline 4DGS methods
while preserving fidelity.

* Memory efficiency. Converting large static regions to 3D Gaussians lowers memory re-
quirements, allowing longer sequences or more detailed scenes given the same hardware
specification.

* High-fidelity dynamic modeling. Focusing time-variant parameters on genuinely dynamic
content achieves comparable or superior visual quality to 4DGS only representations across
various challenging scenes.

2 RELATED WORK

2.1 NOVEL VIEW SYNTHESIS

The field of novel view synthesis has transitioned from fully implicit neural fields to more explicit
representations that enable faster training and rendering. Neural Radiance Fields (NeRF) (Milden-
hall et al., [2021)) introduced the foundational approach by modeling scenes as continuous volumet-
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ric functions from multi-view images. However, its reliance on deep MLP weights results in slow
training and rendering times, motivating extensive research into more efficient alternatives. A key
development in this direction involves replacing fully implicit representations with voxel grids, hash-
encodings, or compact tensor-based structures (Miiller et al.|[2022;Sun et al., |2022bj [Fridovich-Keil
et al., 2022; |Chen et al., |2022; Nam et al., 2023} \Sun et al.,[2022a}; [Fridovich-Keil et al., 2023 [Bar-
ron et al.| |2021). These approaches significantly reduce computational overhead by using spatially
structured representations, enabling near-real-time rendering while maintaining high reconstruction
fidelity.

More recently, point-based approaches have emerged as a promising alternative, culminating in
3D Gaussian Splatting (3DGS) (Kerbl et al.l 2023)), which represents a scene as a collection of
anisotropic Gaussian primitives.optimizing 3DGS for broader scalability presents challenges in
memory efficiency and training speed. In terms of compact representations, several methods have
explored utilizing vector quantization (Lee et al.| [2024; Navaneet et al., 2023 Wang et al., 2024;
Niedermayr et al., 2024} [Papantonakis et al., [2024), entropy coding (Chen et al., 2024)), and im-
age or video codes (Morgenstern et al., [2024; [Lee et al.l 2025b). Regarding fast training, Mini-
Splatting2 (Fang & Wang, |2024) and Turbo-GS (Lu et al., [2024b) demonstrate that near-minute
training times are feasible via aggressive densification and careful tuning, suggesting that 3DGS can
be optimized far more quickly with the right strategies.

2.2 DYNAMIC SCENE REPRESENTATION

Dynamic scene reconstruction extends static modeling techniques to time-varying objects and en-
vironments. Early works, such as D-NeRF (Pumarola et al., 2021) and Neural Volumes (Lombardi
et al.,2019)), used time-conditioned radiance fields to track temporal changes, enabling the represen-
tation of dynamic objects and their interactions over time. More recent methods based on explicit
representations (Fridovich-Keil et al.| 2023} |Cao & Johnson, 2023} |[Fang et al., 2022; [Shao et al.,
2023} |Song et al., 2023)) decompose 4D scenes into lower-dimensional spaces, providing efficient
ways to capture spatial and temporal dynamics both while improving scalability and rendering per-
formance.

Building upon 3DGS, extended methods (Yang et al.,2023a; |Duan et al., [2024; |L1 et al., |2024; |Lee
et al.| [2025a) represent scenes with 4D Gaussian primitives, incorporating space-time geometry and
corresponding features for real-time dynamic content rendering. Other approaches (Luiten et al.,
2024; Yang et al., 2023b) model motion through 6-DoF trajectories or deformation fields, learning
to transform Gaussians between frames. However, treating every scene component as dynamic can
be inefficient, especially when the background remains static while only certain components move.

Our approach leverages the insight that modeling the entire scene with dynamic components is inef-
ficient. We distinguish between static and dynamic content by introducing a novel scale-based clas-
sification method to automatically identify static regions, improving training and rendering speed,
memory efficiency, and achieving performance on par with existing state-of-the-art methods for
dynamic novel view synthesis.

3 PRELIMINARY

In this section, we provide an overview of 3D Gaussian Splatting (3DGS) and its extension to dy-
namic scenes, 4D Gaussian Splatting (4DGS), which serve as the foundation for our approach.

3.1 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) represents a scene by optimizing a collection of anisotropic 3D
Gaussian ellipsoids, each defined by its center position p, and covariance matrix 3, which encodes
spatial extent and orientation:

6le) = e (~3(e - 05w ). 1)
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where x denotes a point in 3D space. To impose a structured representation, the covariance matrix
3} is reparameterized using a rotation matrix R and a scaling matrix S:

Y=RSS'R', (2)

where, S controls the scaling along the principal axes, and R defines the orientation. Rendering is
performed via alpha compositing, aggregating Gaussian contributions per pixel:

i1
C’=ZciaiH(1—aj), (3)
ieN j=1

where ¢; and «; denote the color and opacity of the i-th Gaussian, and N denotes a set of Gaus-
sians affecting a pixel to be rendered. This approach ensures a smooth and realistic blending of
overlapping Gaussian contributions.

3.2 4D GAUSSIAN SPLATTING

Dynamic scene modeling requires extending the 3D formulation to model the temporal variations.
4D Gaussian Splatting (4DGS) (Yang et al., 2023a) achieves this by incorporating an additional
temporal dimension into the 3D Gaussian representation, enabling the capture of motion and scene
changes over time.

In the 4DGS framework, the spatial and temporal components are jointly modeled, resulting in
four-dimensional rotation matrix, formulated as follows,

a —b —c —-d][p —q —-r -—s

B b a —-d ¢ qg p s -—r
R=R R, = c d a —=b|l|r —s p q @
d —c b a s r —q p

where R; and R, are left and right rotation matrix, each constructed by a quaternion vector,
(a7 b7 c? d) and (p’ Q7 r? S)'

The temporally conditioned mean and covariance for a given time ¢ is computed as,
Hayzlt = H1:3 + 21:3,422,411(?5 — 1), )
Yipyelt = 21:3,1:3 — 21:3,424;}124,1:& (6)
For further details, please refer to the original 4DGS paper (Yang et al.| 2023a).

4 HYBRID 3D-4D GAUSSIAN SPLATTING
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Figure 1: Overview of our hybrid 3D—4D Gaussian Splatting framework. (a) 4D Gaussians are
optimized over time, and those exceeding a temporal scale threshold (7) are converted into 3D
Gaussians. (b) Both 3D and 4D Gaussians are projected into screen space, assigned tile and depth
keys, and sorted for rasterization. The rendered image is generated by blending static (3D) and
dynamic (4D) Gaussians.
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4.1 STATIC AND DYNAMIC REGION IDENTIFICATION

The prior works (Lee et al.l [2025a; |Liu et al., 2024) often identify static and dynamic content by
analyzing the flow of Gaussians. Since our approach does not explicitly model the flows of 3D
Gaussians, we leverage a 4D coordinate system, where each Gaussian has a scale parameter along
the time axis. Concretely, each Gaussian is initially modeled as a 4D Gaussian, and for ¢-th Gaus-
sian, its effective time-axis scale is given by exp(s; ;), where exp(-) is an exponential activation
function and s; ; € R denotes the time-axis scale parameter for i-th Gaussian. If exp(s; ;) exceeds
a predefined threshold 7, the Gaussian is classified as static Gaussian.

Intuitively, a larger temporal scale indicates that the Gaussian covers a static part of the scene with-
out high-frequency temporal changes. Once a Gaussian’s scale surpasses 7, it is converted from a
4D (spatio-temporal) Gaussian to a 3D (spatial only) Gaussian. Importantly, this classification is
performed dynamically at each densification stage rather than in a one-off preprocessing step. In
other words, a Gaussian can remain 4D during early iterations and later transition to 3D once it
expands to a larger temporal size. By continuously applying this process, our method adaptively
separates static background elements from dynamic elements throughout the optimization process.

4.2 3D-4D GAUSSIAN CONVERSION

We convert each 4D Gaussian to a 3D Gaussian by discarding its temporal component and preserving
its spatial components. More specifically, a 4D Gaussian is characterized by a mean

pap = (K, pit), (7

where u, € R3 represents the spatial center and u; € R encodes the temporal coordinate. In
addition, each Gaussian maintains a 4 X 4 rotation matrix R4 p, which determines how the Gaussian
is oriented in the joint spatio-temporal domain. In principle, R4p can mix spatial and temporal axes,
allowing the Gaussian to “tilt” across time.

For static Gaussians (those spanning the entire sequence without localized time variation), R4p
effectively operates as a block-diagonal transform: the top-left 3 x 3 sub-block is a pure spatial
rotation, and the time dimension remains separate. Formally,

Ryp = (](%):STD (1)> (ideal static case), ®)

where R3p € SO(3) is an orthonormal 3 x 3 rotation matrix and O is a three-dimensional zero
vector. While this ideal case rarely happens in practice, we observe that by retaining only Rsp
information does not significantly affect the training process.

The corresponding unit quaternion for R3p matrix, gsp = (w, z,y, z), is derived as follows:

w = % v 1 +t1‘(R3D),

_ R3p(3,2) — R3p(2,3)

4w ’
_ R3p(1,3) — Rsp(3,1) ©)
y_ 4 I
w
__ Rsp(21) = Rsp(1,2)
4w ’

where tr(-) is a trace operator, and R3p (-, -) denotes an element of the R3p matrix given an index.

Next, the temporal component of the mean, p,, is discarded, and the spatial mean i, is retained as
the 3D position of the Gaussian. Since the Gaussian is static, its position no longer changes over
time; it remains fixed at u, in every time step. Also, its appearance attributes—including opacity
o and spherical harmonic (SH) color coefficients—remain unchanged since static content does not
require time-dependent updates. Consequently, each converted 3D Gaussian is fully specified by
(ta, 3D, Sz, Sy, Sz, 0, SH), where g3 p provides the orientation and s, s, s, specify the ellipsoid’s
principal scales. By converting all time-invariant Gaussians in this manner, we eliminate their de-
pendence on temporal variable ¢ and reduce the dimensionality of the model. Meanwhile, dynamic
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Table 1: Quantitative comparison on the N3V dataset (Li et al.l [2022)), with PSNR as the primary
evaluation metric. The best and second-best results are highlighted in bold and underlined, re-
spectively. For training time, (*): measured on our machine equipped with an RTX 4090 GPU, 7:
from Lee et al.|(2025a), and other numbers are adopted from the original papers.

coffee. cook- cut_roasted flame.  flame. sear_

Method Average Training Time FPS Storage

martini spinach _beef salmon steak steak
HyperReel (Attal et al.|[2023] 28.37 323 32.92 28.26 322 32.57 31.1 9ht 2 360 MB
NeRFPlayer (Song et al.|[2023] 31.53 30.56 29.35 31.65 31.93 29.13 30.69 6h 0.05 5.1GB
K-Planes (Fridovich-Keil et al.[2023] 29.99 32.6 31.82 30.44 32.38 32.52 31.63 1.8h 03 311MB
MixVoxel-L (Wang et al.;2023] 29.63 3225 324 29.81 31.83 32.1 31.34 1.3h 38  500MB
4DGS (Yang et al.{|2023a} 28.33 32.93 33.85 29.38 34.03 3351 32.01 (5.5m* 114 21GB
4DGaussian (Wu et al.}[[2024) 27.93 32.87 30.96 29.33 32.84 3244 31.06 (30m)* 137 34MB
STG (Li et al.|2024} 28.61 33.18 33.52 29.48 33.64 33.89 32.05 1.3hf 140  200MB
4D-RotorGS (Duan et al.{2024) 28.6 329 31.39 28.82 329 32.65 31.21 1h 277 144MB
Ex4DGS (Lee et al.|[2025a} 28.79 33.23 3373 29.29 3391 33.69 32.11 36m(1h8m)* 121 115MB
Ours 28.86 333 33.73 29.38 33.79 34.45 32.25 (11m 53s)" 208 273MB

Gaussians retain their full 4D parameterization (including time-based transformations). At runtime,
each static Gaussian remains identical across frames, whereas each dynamic Gaussian is computed
conditioned on the current timestamp.

4.3  OPTIMIZATION AND RENDERING PIPELINE

Table 2: Quantitative comparison on the 40- We perform a short initial training phase (up to
second sequence. The best and second-best 500 iterations) with the full 4DGS model, allow-

results are highlighted in bold and under- ing the 4D Gaussians to stabilize. We then apply
lined, respectively. All metric scores are the proposed static/dynamic identification scheme to
taken from [Xu et al| (2024b). i: Initializes split 4DGS into two groups: 3D and 4D Gaussians.

point clouds using sparse COLMAP from Alongside this process, we apply adaptive densifi-

each frame, **: split all 300 frames for train- cation and pruning separately to 3D and 4D Gaus-
ing. sians (also every 100 iteration), ensuring continu-

Method PSNR1 SSIM{ LPIPS| Training Time VRAM FPS Storage ous reﬁnement Wlthln thelr respeCtlve Optlmlzatlon
ENeRF {Lin et al. 12022 2348 08944 02599 4.6h 23GB 5 083GB plpellnes'

4K4D™* {Xu et al. [2024a 2129 08266 03715 26.6h 84GB 290 246GB

Dy3DGS (Luiten et al. 12024 2591 0.8809 0.2555 37.1h 5GB 610 195GB This split meChaniSm and separate Optimization sub_
wos fmgaa o 2859 os om0 wmas w 2ecs  Stantially accelerate the training. In the original
ot ot st paaws o2 e s ooeos - ADGS training, only a small subset of 4D Gaussians
i 2w wm . gn B W% s updated per training iteration, as many are culled
when they do not contribute significantly to the rendering of training image timesteps. On the other
hand, our approach updates static 3D Gaussians in every training iteration, leading to much faster
convergence. As a result, our model typically converges in approximately 6K iterations for 10-
second dynamic scenes, whereas standard 4DGS methods often require 20K to 30K iterations to
achieve comparable visual quality.

Additionally, we eliminate opacity resets during training, a technique commonly used in 3D Gaus-
sian splatting piplines to remove floaters in static scenes. While effective for static reconstructions,
we found that periodic opacity reinitialization disrupts joint spatial-temporal optimization in dy-
namic scenes, particularly when training time is limited. Instead, we opt for a straightforward con-
tinuous optimization in which both static and dynamic Gaussians retain their opacities throughout
the training procedure, achieving more stable convergence. Furthermore, since our hybrid model
inherently reduces the number of Gaussians, it mitigates opacity saturation issues without requiring
resets, unlike standard static scene reconstruction methods.

Finally, we integrate both 3D and 4D Gaussians into a unified CUDA rasterization pipeline. Our
method builds upon the original 3DGS implementation (Kerbl et al.l 2023), extending it to support
4D Gaussians at arbitrary timestamps alongside static ones. As illustrated in Fig. 1, each 4D Gaus-
sian is sliced at time ¢ to generate a transient 3D Gaussian with mean fi,,,.|; and covariance X, ;-
We then aggregate all Gaussians (both 3D and 4D) into a single list, project them into screen space,
assign tile and depth keys, and sort them for back-to-front alpha compositing. By rendering both
types of Gaussians in a single pass, our approach maintains the efficiency of 3D splatting while
preserving the flexibility of 4D temporal modeling.
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Full Image GT 7 4DGS ) Ex4DGS 4D-RotorGS ~ 4DGaussian Ours

Figure 2: Qualitative comparison on the N3V dataset. While most methods yield comparable re-
sults, our approach can preserve subtle motion cues and slightly more consistent colors in some
challenging regions. Zoom in for best viewing.

5 EXPERIMENTS

5.1 DATASETS

Neural 3D Video (N3V). We evaluate our method on the N3V dataset [2022), which
comprises six multi-view video sequences captured using 18-21 cameras at a native resolution of
2704 x 2028. Five sequences last 10 seconds each, while one sequence spans 40 seconds. In most
experiments, we follow standard practice by using 10-second segments for fair comparisons, specif-
ically extracting a 10-second clip from the 40-second video (flame_salmon). In line with prior
work, we hold out cam00 as the test camera for each scene and use the remaining cameras for train-
ing. Additionally, we experiment with the full 40-second sequence to demonstrate the scalability
and robustness of our method on longer dynamic content. For all experiments, we downsample the
videos by a factor of two (both training and evaluation), following the protocol used in previous

works.
Table 3: Quantitative results on the Tech-

. nicolor dataset. Training times (including
Technicolor. We also evaluate our method on a COLMAP) are measured on the Painter

subset of the Technicolor dataset (Sabater et al. . .
. . . - > scene with an RTX 3090 GPU. For train-
2017), which comprises video recordings from a ing time, (+): measured on our machine,

4 x 4 camera array (16 cameras) at a resolution of t: from 0024), t: uses sparse

2048x1088. Following the common practicel, Wese-  ~OLMAP initialization.
lect five scenes (Birthday, Fabien, Painter,
Theater, Trains), each limited to 50 frames. We
keep the original resolution and designate cam10 as
the held-out test view, using the remaining cameras ===

for training. 065 g ra oo

5.2 IMPLEMENTATION DETAILS Ours! B2 MW Pmr 2ISWR

Method PSNRT SSIM?T LPIPS| Training Time Storage

HyperReel lAuaI et al. 2023 33.32 0.899 0.118 2h45m’ 289MB

4DGaussian ‘Wu et al.;2024] 29.62 0.844 0.176 32mt 51MB

33.24 0.907 0.100 3h02mf 77TMB

33.35 0.910 0.095 (4h20m)* 1.07GB

Ex4DGS* 33.62 0.9156 0.088 (Ih5m)* 88 MB

Following [Yang et al| (2023al), we initialize our 4D Gaussian representation using dense COLMAP
reconstructions for the N3V dataset (about 300k points), providing robust geometric priors. For
Technicolor, which has only 50 frames per scene, we start from a sparse COLMAP reconstruction
instead. We adopt the densification pipeline from 3D Gaussian Splatting[Kerbl et al.| (2023), progres-
sively increasing the number of Gaussians by cloning and splitting operations. Unlike prior works,
however, we do not perform periodic opacity resets during training. For automatic classification of
Gaussians, we set the temporal scale threshold 7 to 3 for the 10-second N3V sequences and 6 for
the 40-second sequence, while using a threshold of 1 for Technicolor. We train the 10-second N3V
clips for 6,000 iterations (batch size 4) and the 40-second clip for 20,000 iterations, applying the
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adaptive densification up to 15,000 iterations. For Technicolor, each scene is trained for 10,000 iter-
ations with a batch size of 2. Our implementation is built on the codebase of (2023a)) and
further leverages the efficient backward pass from Taming-3DGS Mallick et al.|(2024) to accelerate
optimization.

5.3 RESULTS
5.3.1 QUANTITATIVE RESULTS

N3V Dataset. We first evaluate our approach Typle 4: Ablation study on the N3V dataset,
on the N3V dataset, with results summarized in  comparing the 4DGS baseline, our approach
Tab. 1. Our method achieves competitive perfor- (Qurs), the effect of opacity resets (w/ opa re-
mance across all scenes, with an average PSNR of  gef) and different temporal scale thresholds

32.25dB, outperforming recent methods in both fi- () #4D and #3D denote the number of 4D
delity and rendering speed. Notably, we require only  apd 3D Gaussians, respectively.

12 minutes of training time for the 10-second clips, Method PSNR_SSIM_LPIPS _ #4D __ #3D

i 1S sieni 4DGS (Yang ctal [2023a) 3201 09453 0.0974 3315333 -
which is significantly fE}StCI‘ thap é}DGS (Yang et al., 4pcs fang et O] 3201 09453 009 3 r
(5.5 hOllI’S), while pI’OVldlng Comparable or w/ opa reset 3152 09418 0.1016 683437 243,051
8 . . Lo T=25 3137 09440 0.0979 670,807 276,265
superior visual quallty. The combination of fast op- =35 31.98 09450 0.0986 913,927 184,548

timization, high FPS (208), and moderate storage
(273 MB) underscores the effectiveness of our hybrid 3D-4D Gaussian representation.

Long Sequence (40 seconds). Tab. [2] presents the results on the challenging 40-second clip from
the N3V dataset. Our method achieves the second-best PSNR (29.2dB) and the lowest LPIPS
(0.1173), demonstrating strong perceptual quality. Remarkably, we complete training in only
52 minutes, an order of magnitude faster than other methods. Although reports
a slightly higher PSNR (29.44 dB) by initializing point clouds from every frame (sparse COLMAP
for each frame takes approximately 1 second, additional 20 minutes for 1,200 frames to their re-
ported training time 2.1 hours), our approach relies solely on the single-frame initialization used for
10-second experiments. Despite this simpler setup, our method provides a more balanced trade-off
in terms of training speed, storage, and inference performance, highlighting its scalability to longer
sequences.

Technicolor Dataset. We further validate our
method on the Technicolor dataset (Tab. 3). De-
spite using a sparse COLMAP initialization for the
50-frame sequences, our model achieves 33.22 dB
PSNR and 0.911 SSIM, with only 29 minutes of
training time on an RTX 3090 (measured on the
Painter scene). In contrast, 4DGS requires
over four hours to reach a comparable PSNR,
and Ex4DGS—while slightly more accurate—needs
more than twice of our training time. Our final stor-
age is 218 MB, which is lower than 4DGS (1.07 GB)
but slightly higher than some other methods. Over-
all, these results confirm that our framework ef-
fectively handles diverse camera setups and short 0
videos, balancing speed, memory efficiency, and (a) static (b) dynamic
rendering fidelity.

Figure 3: Visual comparison of different
5.3.2 QUALITATIVE RESULTS scale thresholds .

Fig. 2 compares our method with several baselines on the N3V dataset. Overall, the visual qual-
ity among these methods is largely similar, reflecting the challenging nature of dynamic scenes.
However, our hybrid representation shows sharper details in some dynamic regions and more con-
sistent color transitions in backgrounds, reducing minor flickers across frames. These observations
align with our quantitative findings, suggesting that our approach remains competitive for complex,
real-world scenarios.
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5.4 ABLATION STUDIES AND ANALYSIS

Scale Threshold 7. We investigate how varying the temporal scale threshold 7 affects both recon-
struction quality and storage (see Tab. 4). As shown in Fig. 3, a lower threshold (e.g., 7 = 2.5)
aggressively converts 4D Gaussians into 3D, which can inadvertently merge dynamic content into
the static representation, reducing motion detail despite simplifying the final geometry. Conversely,
a higher threshold (7 = 3.5) is more lenient about switching Gaussians to 3D, preserving sub-
tle dynamics at the cost of slower convergence and higher memory usage. The mid-range setting
(t = 3.0) strikes a balanced trade-off, maintaining near-optimal quality while avoiding excessive
storage overhead.

Opacity Reset. Many 3D/4D Gaussian methods
periodically reinitialize opacities to a small constant

to remove floaters or spurious elements (Kerbl et al.|
2023|; Yang et a1.|, 2023a)). However, such resets are

heuristic and can inadvertently disrupt optimization
in dynamic regions. As shown in Tab. 4 and Fig.
4, forcibly lowering the opacities of both 3D and 4D
Gaussians can erase previously learned motion cues, :
leading to flicker or lower final PSNR. By avoiding (2) Ground Truth (b) w/ opacity reset
opacity resets, our pipeline continuously refines all
Gaussians in a single pass, preserving subtle tempo-
ral details and stabilizing motion boundaries. This
simpler, reset-free approach also reduces hyperparameter tuning overhead and prevents abrupt rep-
resentation changes that might otherwise degrade performance.

'J - =

(c) Ours

| oy

Figure 4: Influence of opacity resets on a dy-
namic scene.

Visualization of spatially distributed Gaussians
Fig. 5 visualizes the spatially distributed Gaussians,
comparing our model to 4DGS (Yang et al., 20234).
To visualize, we first project all 3D and 4D Gaus-
sians (for 4DGS, only 4D Gaussians) on the image ]
plane given a specific view point. Then, we color- ﬂ R
coded based on the number of projected Gaussians #Gaussian: 1,159,907 .
in each spatial location (the darker color, the more

Gaussians). This shows how each approach allo-
cates Gaussians differently to different spatial re- -y l i
r' "'
\

# Gaussian: 3,636,993

gions, and the original 4DGS introduces many Gaus-
sians in static areas (highlighted as red boxes), im-
plying that numerous 4D Gaussians with small time %4
scales are used to represent static parts of the scene. Ours 4DGS

On the other hand, our approach uses 3D Gaussians Figure 5: Visualization of spatially dis-
for static areas, resulting in evenly distributed Gaus- tributed Gaussians.

sians across the scene. This result supports our ex-

perimental results that our method significantly reduces redundancy, lowers memory usage, and
accelerates optimization. By contrast, the baseline model places dense clusters of Gaussians in
static regions, leading to unnecessary computations, inflating memory costs, and often degrading
the rendering quality.

#Gaussian: 1,040,241 # Gaussian: 4,5.1 0,785

6 CONCLUSION

We have presented a novel hybrid 3D-4D Gaussian Splatting framework for dynamic scene recon-
struction. By distinguishing static regions and selectively assigning 4D parameters only to dynamic
elements, our method substantially reduces redundancy while preserving high-fidelity motion cues.
Extensive experiments on the N3V and Technicolor datasets demonstrate that our approach con-
sistently achieves competitive or superior quality and faster training compared to state-of-the-art
baselines.
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Figure 6: Left: Rendering results on the cof fee_martini scene. Right: PSNR vs. training time.
The proposed method converges in 12 minutes while maintaining competitive rendering quality. All
methods were evaluated under the same machine equipped with the NVIDIA RTX4090 GPU, except
for 4D-Rotor GS (2024)—whose results were estimated from iteration counts since the
code is not publicly available.

A ANALYSIS OF TEMPORAL SCALE ON 4DGS

As shown in Fig. 7, the majority of Gaussians in a fully trained 4DGS (Yang et all, 2023a) model
have small temporal scales (typically below 0.5), which results in redundant memory consumption
and increased computational cost. We empirically set the threshold 7 by analyzing the distribution
of temporal scales in 4DGS and considering the characteristics of our target datasets. Specifically, 7
is selected to fall within the “valley” that separates lower (more dynamic) and higher (more static)
scale values.

B CUDA RASTERIZATION PIPELINE

Algorithm 1 represents our rasterization process. Compared to the original pipeline in the
3DGS 2023), lines 4-6 are newly introduced to seamlessly integrate static (3D) Gaus-
sians with dynamic (4D) Gaussians. In particular, the size of M’ is allocated to accommodate both
3D and 4D points. The conditional check at line 4 verifies whether any 3D Gaussians exist; if so,
it projects them into screen space via ProjGaussian3D, and stores tile, depth, and screen-space
position data jointly with the 4D Gaussians.

C ADDITIONAL RESULTS

As shown in Fig. 6, we achieved near state-of-the-art reconstruction fidelity while substantially
reducing training time compared to prior 4DGS baselines. We also provide further quantitative and
qualitative evaluations to supplement our main paper in this section.

C.1 SSIM AND LPIPS COMPARISONS

We present additional metrics on SSIM and LPIPS for the N3V dataset. As summarized in Table 5]
our method consistently maintains strong perceptual quality across these metrics, corroborating the
PSNR improvements reported in the main text. In particular, our SSIM and LPIPS scores remain
on par with, or exceed, those of baseline methods, indicating sharper details and fewer artifacts in
dynamic regions.
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Figure 7: Distribution of the t-axis scale for Gaussians in the coffee martini scene. Most
Gaussians cluster at smaller scales, indicating dynamic content, while a minority have larger scales
that suggest static regions.

Algorithm 1 GPU Rasterization of 3D&4D Gaussians
Require: w, h: image dimensions
Require: Myp, Sip: 4D Gaussian means and covariances
Require: Msp, Ssp: 3D Gaussian means and covariances
Require: A: 3D/4D Gaussian attributes
Require: V': camera/view configuration
Require: s: time
1: function RASTERIZE(w, h, M4p, Sap, Msp, Ssp, A, V, s)
2: CullGaussian(p, V')
3: (M', S4p) < ProjGaussiandD(Myq, Sa4, V, s)
4: if len(M3p) > 0 then
5: (M',85,) < ProjGaussian3D(M’, M3q, S34, V)
6‘
7
8

end if
T < CreateTiles(w, h)
(L, K) + DuplicateWithKeys(M', T')

9 SortByKeys(K, L)
10 R < IdentifyTileRanges(T’, K)
11 I1+0
12: for all Tiles t € I do
13: for all pixels ¢ € ¢ do
14: r < GetTileRange(R,t)
15 I[i] + BlendInOrder(i, L,r, K, M’ Sip, S4p, A)
16 end for
17: end for
18: return /

19: end function

C.2 PER-SCENE GRAPHS ON N3V

Fig. 8 shows the per-scene PSNR curves over training iterations for three different scale thresholds.
While 7 = 2.5 can converge quickly in the early iterations, it sometimes saturates at a slightly lower
peak PSNR (e.g., cook_spinach) or collapse after few iteration(e.g. £lame_steak), possibly
merging subtle dynamics into static representation. In contrast, 7 = 3.5 tends to retain more 4D
Gaussians longer, occasionally surpassing 7 = 2.5 in later stages (e.g., sear_steak), but it also
requires more training to reach its final quality. The mid-range threshold (7 = 3.0) typically offers
a balanced trade-off between these extremes, achieving stable and competitive performance across
scenes with moderate or complex motion.
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Table 5: Additional SSIM and LPIPS results on the N3V dataset. Higher SSIM and lower LPIPS
indicate better perceptual quality.

Method SSIM {1 LPIPS |
HyperReel |Attal et al.|(2023)) 0.927 0.096
NeRFPlayer|Song et al.| (2023) 0.931 0.111
K-Planes [Fridovich-Keil et al.|(2023)  0.947 0.090
MixVoxel-L |Wang et al.| (2023) 0.933 0.095
4DGS |Yang et al.[(2023a) 0.9453 0.0974
STGILi et al.| (2024) 0.948 0.046
4DGaussian |Wu et al.| (2024) 0.935 0.074
4D-RotorGS Duan et al.| (2024) 0.939 0.106
Ex4DGS |Lee et al.|(2025a) 0.940 0.048
Ours 0.9459 0.097

C.3 ADDITIONAL QUALITATIVE RESULTS

Finally, we present further visual comparisons, highlighting subtle differences in dynamic objects,
complex lighting, and motion boundaries. Our hybrid 3D—4D representation consistently captures
both static and moving elements with minimal artifacts, reinforcing the quantitative gains reported
in the main paper.

Long-Sequence Comparison. In Fig. 9, we compare our reconstructions to ground-truth frames
from the 40-second N3V sequence. Despite the longer duration and more complex motion, our
method maintains coherent geometry and color transitions, demonstrating robust performance for
extended temporal dynamics without significant artifacts.

Multi-Dataset Visuals. Fig. 10 showcases additional results on both N3V and Technicolor scenes.
We observe that our method preserves fine-grained details under challenging lighting conditions,
while effectively modeling diverse motion patterns. These qualitative improvements align with our
quantitative gains in PSNR and SSIM.

Dynamic and Static Visuals. In Fig. 11, we visualize dynamic and static Gaussians side by side,
with dynamic regions rendered on a white background to highlight the separation from static areas.
Our method adaptively assigns 4D Gaussians to genuinely moving objects while converting large,
motionless regions to 3D Gaussians. This selective allocation preserves subtle motion cues, reduces
memory overhead, and accelerates the optimization process. The final rendered results confirm
that our representation remains faithful to the original scenes, even under challenging lighting and
motion conditions.
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Figure 8: Per-scene PSNR curves on the N3V dataset for different temporal scale thresholds (7 =
2.5, 3.0, 3.5). Each plot corresponds to one scene, showing how PSNR evolves over 6000 iterations
of training. The mid-range setting (7 = 3.0) often strikes a balance, maintaining competitive final
quality across a range of motion complexities.
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Figure 9: Comparison with Ground Truth on the 40-second sequence. We sample frames at
different timestamps (top: GT, bottom: ours) to illustrate that our approach preserves both global
structure and subtle motion details over extended temporal ranges.
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Figure 10: Additional results on N3V and Technicolor scenes. Despite challenging lighting con-
ditions and fast motion, our hybrid 3D-4D approach maintains crisp object boundaries and more
consistent textures across frames.
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Figure 11: Dynamic vs. Static Visualization. Each row shows (left) the dynamic portion on a
white background, (middle) the static region, and (right) the fully rendered result. By converting
most static elements into 3D Gaussians, our approach effectively handles dynamic scenes while
reducing redundant computations and preserving high-fidelity details.
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