
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYBRID 3D-4D GAUSSIAN SPLATTING FOR FAST DY-
NAMIC SCENE REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in dynamic 3D scene reconstruction have shown promising
results, enabling high-fidelity 3D novel view synthesis with improved temporal
consistency. Among these, 4D Gaussian Splatting (4DGS) has emerged as an
appealing approach due to its ability to model high-fidelity spatial and temporal
variations. However, existing methods suffer from substantial computational and
memory overhead due to the redundant allocation of 4D Gaussians to static re-
gions, which can also degrade image quality. In this work, we introduce hybrid
3D–4D Gaussian Splatting (3D-4DGS), a novel framework that adaptively repre-
sents static regions with 3D Gaussians while reserving 4D Gaussians for dynamic
elements. Our method begins with a fully 4D Gaussian representation and itera-
tively converts temporally invariant Gaussians into 3D, significantly reducing the
number of parameters and improving computational efficiency. Meanwhile, dy-
namic Gaussians retain their full 4D representation, capturing complex motions
with high fidelity. Our approach achieves significantly faster training times com-
pared to baseline 4D Gaussian Splatting methods while maintaining or improving
the visual quality.

1 INTRODUCTION

Accurately representing and rendering complex dynamic 3D scenes is fundamental to a wide range
of applications, including immersive media for virtual and augmented reality. For example, in com-
mercial and industrial domains such as sports broadcasting, film production, and live performances,
the demand for high-quality dynamic scene reconstruction continues to grow, driven by the need for
enhanced viewer engagement. While significant progress has been made, achieving high-fidelity,
computationally efficient, and temporally coherent modeling of dynamic scenes remains a challeng-
ing problem.

Recent advances in neural rendering, particularly Neural Radiance Fields (NeRF) (Mildenhall et al.,
2021; Barron et al., 2022; 2023; Fridovich-Keil et al., 2022; Sun et al., 2022a; Müller et al., 2022),
have emerged as a powerful representation for novel view synthesis and 3D scene reconstruction,
leveraging neural networks, grid-based data structures, and volumetric rendering (Brebin et al.,
1998). Extensions of NeRF to dynamic 3D scene modeling (Song et al., 2023; Lombardi et al.,
2019; Pumarola et al., 2021; Park et al., 2021a;b; Fridovich-Keil et al., 2023; Cao & Johnson, 2023;
Wang et al., 2023; Mihajlovic et al., 2023; 2024; Kim et al., 2024) have shown promising results, en-
abling the reconstruction of time-varying environments with improved fidelity. However, real-time
and high-fidelity rendering of complex dynamic scenes continues to be an open problem due to the
computational cost of volume rendering and the complexity of spatio-temporal modeling.

More recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has become a promising alter-
native to NeRF-based approaches for 3D scene reconstruction and novel view synthesis , offering
improved quality and real-time rendering capabilities. Unlike NeRF, which relies on implicit repre-
sentation and computationally expensive volumetric rendering, 3DGS represents scenes as a collec-
tion of Gaussian primitives and leverages a fast rasterization. Several extensions have been proposed
to adapt 3DGS for dynamic 3D scene reconstruction, incorporating motion modeling and temporal
consistency to handle time-varying environments.

Two primary paradigms have been developed for applying 3DGS to dynamic 3D capture. The first
approach extends 3D Gaussians to dynamic 3D scenes by tracking Gaussians over time (Li et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2024; Wu et al., 2024; Lee et al., 2025a; Huang et al., 2024; Zhu et al., 2024; Kratimenos et al.,
2024), using techniques such as multi-layer perceptrons (Li et al., 2024), temporal residuals (Wu
et al., 2024), or interpolation functions (Lee et al., 2025a). These methods leverage temporal redun-
dancy across frames to improve the representation efficiency and accelerate training, but they often
struggle with fast-moving objects. The second paradigm, directly optimizing 4D Gaussians, repre-
sents the entire spatio-temporal volume as a set of splatted 4D Gaussians (Yang et al., 2023a; Duan
et al., 2024; Lu et al., 2024a). While this approach enables high-quality reconstructions, it incurs
significant memory and computational overhead. Furthermore, allocating 4D Gaussians to inher-
ently static regions is inefficient, as these areas do not benefit from time-varying parameters (Cho
et al., 2024).

In this work, we propose a hybrid 3D-4D Gaussian Splatting (3D-4DGS) framework that addresses
the inefficiencies of conventional 4DGS pipelines. A key limitation of 4DGS (Yang et al., 2023a)
is their treatment of static regions, which often requires multiple 4D Gaussians across different
timesteps. While an optimal solution would involve assigning large scales along the temporal axis
to represent static regions more effectively, this rarely occurs in practice. We propose a hybrid
approach that models static regions with 3D Gaussians while reserving 4D Gaussians for dynamic
elements. The proposed approach significantly reduces the number of Gaussians, leading to lower
memory consumption and faster training speed.

Our approach begins by modeling all Gaussians as 4D and then adaptively identifying those with
minimal temporal variation across the sequence. These Gaussians are classified as static and con-
verted into a purely 3D representation by discarding the time dimension, effectively freezing their
position, rotation, and color parameters. Meanwhile, fully dynamic Gaussians retain their 4D na-
ture to capture complex motion. Importantly, this classification is not a one-time process but is
performed iteratively at each densification stage, progressively refining the regions that truly require
4D modeling. The final rendering pipeline seamlessly integrates both 3D and 4D Gaussians, pro-
jecting them into screen space for alpha compositing. This design ensures that temporal modeling
is applied where necessary, capturing motion effectively while eliminating redundant overhead in
static regions.

We demonstrate the effectiveness of the proposed 3D-4DGS on two standard challenging datasets:
Neural 3D Video (N3V) (Li et al., 2022), which primarily comprises 10-second multi-view videos
(plus one 40-second long sequence), and Technicolor (Sabater et al., 2017), featuring 16-camera
light field captures of short but complex scenes. Our method consistently achieves competitive or
superior PSNR and SSIM scores while significantly reducing training times. Additionally, we con-
duct ablation studies to reveal how key design choices—such as the scale threshold and opacity reset
strategies—impact final quality and efficiency. We summarize our main contributions as follows:

• Hybrid 3D–4D representation. We introduce a novel approach, 3D-4DGS, that dynami-
cally classifies Gaussians as either static (3D) or dynamic (4D), enabling an adaptive strat-
egy that optimizes storage and computation.

• Significantly reduced training time. By removing redundant temporal parameters for
static Gaussians, our approach converges about 3–5× faster than baseline 4DGS methods
while preserving fidelity.

• Memory efficiency. Converting large static regions to 3D Gaussians lowers memory re-
quirements, allowing longer sequences or more detailed scenes given the same hardware
specification.

• High-fidelity dynamic modeling. Focusing time-variant parameters on genuinely dynamic
content achieves comparable or superior visual quality to 4DGS only representations across
various challenging scenes.

2 RELATED WORK

2.1 NOVEL VIEW SYNTHESIS

The field of novel view synthesis has transitioned from fully implicit neural fields to more explicit
representations that enable faster training and rendering. Neural Radiance Fields (NeRF) (Milden-
hall et al., 2021) introduced the foundational approach by modeling scenes as continuous volumet-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ric functions from multi-view images. However, its reliance on deep MLP weights results in slow
training and rendering times, motivating extensive research into more efficient alternatives. A key
development in this direction involves replacing fully implicit representations with voxel grids, hash-
encodings, or compact tensor-based structures (Müller et al., 2022; Sun et al., 2022b; Fridovich-Keil
et al., 2022; Chen et al., 2022; Nam et al., 2023; Sun et al., 2022a; Fridovich-Keil et al., 2023; Bar-
ron et al., 2021). These approaches significantly reduce computational overhead by using spatially
structured representations, enabling near-real-time rendering while maintaining high reconstruction
fidelity.

More recently, point-based approaches have emerged as a promising alternative, culminating in
3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), which represents a scene as a collection of
anisotropic Gaussian primitives.optimizing 3DGS for broader scalability presents challenges in
memory efficiency and training speed. In terms of compact representations, several methods have
explored utilizing vector quantization (Lee et al., 2024; Navaneet et al., 2023; Wang et al., 2024;
Niedermayr et al., 2024; Papantonakis et al., 2024), entropy coding (Chen et al., 2024), and im-
age or video codes (Morgenstern et al., 2024; Lee et al., 2025b). Regarding fast training, Mini-
Splatting2 (Fang & Wang, 2024) and Turbo-GS (Lu et al., 2024b) demonstrate that near-minute
training times are feasible via aggressive densification and careful tuning, suggesting that 3DGS can
be optimized far more quickly with the right strategies.

2.2 DYNAMIC SCENE REPRESENTATION

Dynamic scene reconstruction extends static modeling techniques to time-varying objects and en-
vironments. Early works, such as D-NeRF (Pumarola et al., 2021) and Neural Volumes (Lombardi
et al., 2019), used time-conditioned radiance fields to track temporal changes, enabling the represen-
tation of dynamic objects and their interactions over time. More recent methods based on explicit
representations (Fridovich-Keil et al., 2023; Cao & Johnson, 2023; Fang et al., 2022; Shao et al.,
2023; Song et al., 2023) decompose 4D scenes into lower-dimensional spaces, providing efficient
ways to capture spatial and temporal dynamics both while improving scalability and rendering per-
formance.

Building upon 3DGS, extended methods (Yang et al., 2023a; Duan et al., 2024; Li et al., 2024; Lee
et al., 2025a) represent scenes with 4D Gaussian primitives, incorporating space-time geometry and
corresponding features for real-time dynamic content rendering. Other approaches (Luiten et al.,
2024; Yang et al., 2023b) model motion through 6-DoF trajectories or deformation fields, learning
to transform Gaussians between frames. However, treating every scene component as dynamic can
be inefficient, especially when the background remains static while only certain components move.

Our approach leverages the insight that modeling the entire scene with dynamic components is inef-
ficient. We distinguish between static and dynamic content by introducing a novel scale-based clas-
sification method to automatically identify static regions, improving training and rendering speed,
memory efficiency, and achieving performance on par with existing state-of-the-art methods for
dynamic novel view synthesis.

3 PRELIMINARY

In this section, we provide an overview of 3D Gaussian Splatting (3DGS) and its extension to dy-
namic scenes, 4D Gaussian Splatting (4DGS), which serve as the foundation for our approach.

3.1 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) represents a scene by optimizing a collection of anisotropic 3D
Gaussian ellipsoids, each defined by its center position µ, and covariance matrix Σ, which encodes
spatial extent and orientation:

G(x) = exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where x denotes a point in 3D space. To impose a structured representation, the covariance matrix
Σ is reparameterized using a rotation matrix R and a scaling matrix S:

Σ = RS S⊤ R⊤, (2)

where, S controls the scaling along the principal axes, and R defines the orientation. Rendering is
performed via alpha compositing, aggregating Gaussian contributions per pixel:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) , (3)

where ci and αi denote the color and opacity of the i-th Gaussian, and N denotes a set of Gaus-
sians affecting a pixel to be rendered. This approach ensures a smooth and realistic blending of
overlapping Gaussian contributions.

3.2 4D GAUSSIAN SPLATTING

Dynamic scene modeling requires extending the 3D formulation to model the temporal variations.
4D Gaussian Splatting (4DGS) (Yang et al., 2023a) achieves this by incorporating an additional
temporal dimension into the 3D Gaussian representation, enabling the capture of motion and scene
changes over time.

In the 4DGS framework, the spatial and temporal components are jointly modeled, resulting in
four-dimensional rotation matrix, formulated as follows,

R = Rl Rr =

a −b −c −d
b a −d c
c d a −b
d −c b a


p −q −r −s
q p s −r
r −s p q
s r −q p

 (4)

where Rl and Rr are left and right rotation matrix, each constructed by a quaternion vector,
(a, b, c, d) and (p, q, r, s).

The temporally conditioned mean and covariance for a given time t is computed as,

µxyz|t = µ1:3 +Σ1:3,4Σ
−1
4,4(t− µt), (5)

Σxyz|t = Σ1:3,1:3 − Σ1:3,4Σ
−1
4,4Σ4,1:3. (6)

For further details, please refer to the original 4DGS paper (Yang et al., 2023a).

4 HYBRID 3D-4D GAUSSIAN SPLATTING

Figure 1: Overview of our hybrid 3D–4D Gaussian Splatting framework. (a) 4D Gaussians are
optimized over time, and those exceeding a temporal scale threshold (τ) are converted into 3D
Gaussians. (b) Both 3D and 4D Gaussians are projected into screen space, assigned tile and depth
keys, and sorted for rasterization. The rendered image is generated by blending static (3D) and
dynamic (4D) Gaussians.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 STATIC AND DYNAMIC REGION IDENTIFICATION

The prior works (Lee et al., 2025a; Liu et al., 2024) often identify static and dynamic content by
analyzing the flow of Gaussians. Since our approach does not explicitly model the flows of 3D
Gaussians, we leverage a 4D coordinate system, where each Gaussian has a scale parameter along
the time axis. Concretely, each Gaussian is initially modeled as a 4D Gaussian, and for i-th Gaus-
sian, its effective time-axis scale is given by exp(st,i), where exp(·) is an exponential activation
function and st,i ∈ R denotes the time-axis scale parameter for i-th Gaussian. If exp(st,i) exceeds
a predefined threshold τ , the Gaussian is classified as static Gaussian.

Intuitively, a larger temporal scale indicates that the Gaussian covers a static part of the scene with-
out high-frequency temporal changes. Once a Gaussian’s scale surpasses τ , it is converted from a
4D (spatio-temporal) Gaussian to a 3D (spatial only) Gaussian. Importantly, this classification is
performed dynamically at each densification stage rather than in a one-off preprocessing step. In
other words, a Gaussian can remain 4D during early iterations and later transition to 3D once it
expands to a larger temporal size. By continuously applying this process, our method adaptively
separates static background elements from dynamic elements throughout the optimization process.

4.2 3D–4D GAUSSIAN CONVERSION

We convert each 4D Gaussian to a 3D Gaussian by discarding its temporal component and preserving
its spatial components. More specifically, a 4D Gaussian is characterized by a mean

µ4D = (µx, µt), (7)

where µx ∈ R3 represents the spatial center and µt ∈ R encodes the temporal coordinate. In
addition, each Gaussian maintains a 4× 4 rotation matrix R4D, which determines how the Gaussian
is oriented in the joint spatio-temporal domain. In principle, R4D can mix spatial and temporal axes,
allowing the Gaussian to “tilt” across time.

For static Gaussians (those spanning the entire sequence without localized time variation), R4D

effectively operates as a block-diagonal transform: the top-left 3 × 3 sub-block is a pure spatial
rotation, and the time dimension remains separate. Formally,

R4D =

(
R3D 0
0⊤ 1

)
(ideal static case), (8)

where R3D ∈ SO(3) is an orthonormal 3 × 3 rotation matrix and 0 is a three-dimensional zero
vector. While this ideal case rarely happens in practice, we observe that by retaining only R3D

information does not significantly affect the training process.

The corresponding unit quaternion for R3D matrix, q3D = (w, x, y, z), is derived as follows:

w = 1
2

√
1 + tr(R3D),

x =
R3D(3, 2) − R3D(2, 3)

4w
,

y =
R3D(1, 3) − R3D(3, 1)

4w
,

z =
R3D(2, 1) − R3D(1, 2)

4w
,

(9)

where tr(·) is a trace operator, and R3D(·, ·) denotes an element of the R3D matrix given an index.

Next, the temporal component of the mean, µt, is discarded, and the spatial mean µx is retained as
the 3D position of the Gaussian. Since the Gaussian is static, its position no longer changes over
time; it remains fixed at µx in every time step. Also, its appearance attributes–including opacity
σ and spherical harmonic (SH) color coefficients–remain unchanged since static content does not
require time-dependent updates. Consequently, each converted 3D Gaussian is fully specified by
(µx, q3D, sx, sy, sz, σ,SH), where q3D provides the orientation and sx, sy, sz specify the ellipsoid’s
principal scales. By converting all time-invariant Gaussians in this manner, we eliminate their de-
pendence on temporal variable t and reduce the dimensionality of the model. Meanwhile, dynamic

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison on the N3V dataset (Li et al., 2022), with PSNR as the primary
evaluation metric. The best and second-best results are highlighted in bold and underlined, re-
spectively. For training time, (*): measured on our machine equipped with an RTX 4090 GPU, †:
from Lee et al. (2025a), and other numbers are adopted from the original papers.

Method coffee
martini

cook
spinach

cut roasted
beef

flame
salmon

flame
steak

sear
steak

Average Training Time FPS Storage

HyperReel (Attal et al., 2023) 28.37 32.3 32.92 28.26 32.2 32.57 31.1 9 h† 2 360 MB
NeRFPlayer (Song et al., 2023) 31.53 30.56 29.35 31.65 31.93 29.13 30.69 6 h 0.05 5.1 GB
K-Planes (Fridovich-Keil et al., 2023) 29.99 32.6 31.82 30.44 32.38 32.52 31.63 1.8 h 0.3 311 MB
MixVoxel-L (Wang et al., 2023) 29.63 32.25 32.4 29.81 31.83 32.1 31.34 1.3 h 38 500 MB

4DGS (Yang et al., 2023a) 28.33 32.93 33.85 29.38 34.03 33.51 32.01 (5.5 h)∗ 114 2.1 GB
4DGaussian (Wu et al., 2024) 27.93 32.87 30.96 29.33 32.84 32.44 31.06 (30 m)∗ 137 34 MB
STG (Li et al., 2024) 28.61 33.18 33.52 29.48 33.64 33.89 32.05 1.3 h† 140 200 MB
4D-RotorGS (Duan et al., 2024) 28.6 32.9 31.39 28.82 32.9 32.65 31.21 1 h 277 144 MB
Ex4DGS (Lee et al., 2025a) 28.79 33.23 33.73 29.29 33.91 33.69 32.11 36 m (1 h 8 m)∗ 121 115 MB
Ours 28.86 33.3 33.73 29.38 33.79 34.45 32.25 (11 m 53 s)∗ 208 273 MB

Gaussians retain their full 4D parameterization (including time-based transformations). At runtime,
each static Gaussian remains identical across frames, whereas each dynamic Gaussian is computed
conditioned on the current timestamp.

4.3 OPTIMIZATION AND RENDERING PIPELINE

Table 2: Quantitative comparison on the 40-
second sequence. The best and second-best
results are highlighted in bold and under-
lined, respectively. All metric scores are
taken from Xu et al. (2024b). ‡: Initializes
point clouds using sparse COLMAP from
each frame, **: split all 300 frames for train-
ing.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Training Time VRAM FPS Storage

ENeRF (Lin et al., 2022) 23.48 0.8944 0.2599 4.6 h 23 GB 5 0.83 GB

4K4D∗∗ (Xu et al., 2024a) 21.29 0.8266 0.3715 26.6 h 84 GB 290 2.46 GB

Dy3DGS (Luiten et al., 2024) 25.91 0.8809 0.2555 37.1 h 5 GB 610 19.5 GB

4DGS∗∗ (Yang et al., 2023a) 28.89 0.9521 0.1968 10.4 h 84 GB 90 2.68 GB

Xu ‡ (Xu et al., 2024b) 29.44 0.945 0.2144 2.1 h 6.1 GB 550 0.09 GB

Ours 29.2 0.9175 0.1173 52 m 12 GB 111 0.96 GB

We perform a short initial training phase (up to
500 iterations) with the full 4DGS model, allow-
ing the 4D Gaussians to stabilize. We then apply
the proposed static/dynamic identification scheme to
split 4DGS into two groups: 3D and 4D Gaussians.
Alongside this process, we apply adaptive densifi-
cation and pruning separately to 3D and 4D Gaus-
sians (also every 100 iteration), ensuring continu-
ous refinement within their respective optimization
pipelines.

This split mechanism and separate optimization sub-
stantially accelerate the training. In the original
4DGS training, only a small subset of 4D Gaussians
is updated per training iteration, as many are culled

when they do not contribute significantly to the rendering of training image timesteps. On the other
hand, our approach updates static 3D Gaussians in every training iteration, leading to much faster
convergence. As a result, our model typically converges in approximately 6K iterations for 10-
second dynamic scenes, whereas standard 4DGS methods often require 20K to 30K iterations to
achieve comparable visual quality.

Additionally, we eliminate opacity resets during training, a technique commonly used in 3D Gaus-
sian splatting piplines to remove floaters in static scenes. While effective for static reconstructions,
we found that periodic opacity reinitialization disrupts joint spatial-temporal optimization in dy-
namic scenes, particularly when training time is limited. Instead, we opt for a straightforward con-
tinuous optimization in which both static and dynamic Gaussians retain their opacities throughout
the training procedure, achieving more stable convergence. Furthermore, since our hybrid model
inherently reduces the number of Gaussians, it mitigates opacity saturation issues without requiring
resets, unlike standard static scene reconstruction methods.

Finally, we integrate both 3D and 4D Gaussians into a unified CUDA rasterization pipeline. Our
method builds upon the original 3DGS implementation (Kerbl et al., 2023), extending it to support
4D Gaussians at arbitrary timestamps alongside static ones. As illustrated in Fig. 1, each 4D Gaus-
sian is sliced at time t to generate a transient 3D Gaussian with mean µxyz|t and covariance Σxyz|t.
We then aggregate all Gaussians (both 3D and 4D) into a single list, project them into screen space,
assign tile and depth keys, and sort them for back-to-front alpha compositing. By rendering both
types of Gaussians in a single pass, our approach maintains the efficiency of 3D splatting while
preserving the flexibility of 4D temporal modeling.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Qualitative comparison on the N3V dataset. While most methods yield comparable re-
sults, our approach can preserve subtle motion cues and slightly more consistent colors in some
challenging regions. Zoom in for best viewing.

5 EXPERIMENTS

5.1 DATASETS

Neural 3D Video (N3V). We evaluate our method on the N3V dataset (Li et al., 2022), which
comprises six multi-view video sequences captured using 18-21 cameras at a native resolution of
2704 × 2028. Five sequences last 10 seconds each, while one sequence spans 40 seconds. In most
experiments, we follow standard practice by using 10-second segments for fair comparisons, specif-
ically extracting a 10-second clip from the 40-second video (flame salmon). In line with prior
work, we hold out cam00 as the test camera for each scene and use the remaining cameras for train-
ing. Additionally, we experiment with the full 40-second sequence to demonstrate the scalability
and robustness of our method on longer dynamic content. For all experiments, we downsample the
videos by a factor of two (both training and evaluation), following the protocol used in previous
works.

Table 3: Quantitative results on the Tech-
nicolor dataset. Training times (including
COLMAP) are measured on the Painter
scene with an RTX 3090 GPU. For train-
ing time, (*): measured on our machine,
†: from Bae et al. (2024), ‡: uses sparse
COLMAP initialization.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Training Time Storage

HyperReel (Attal et al., 2023) 33.32 0.899 0.118 2 h 45 m† 289 MB

4DGaussian (Wu et al., 2024) 29.62 0.844 0.176 32 m† 51 MB

E-D3DGS (Bae et al., 2024) 33.24 0.907 0.100 3 h 02 m† 77 MB

4DGS (Yang et al., 2023a) 33.35 0.910 0.095 (4 h 20 m)∗ 1.07 GB

Ex4DGS‡ (Lee et al., 2025a) 33.62 0.9156 0.088 (1 h 5 m)∗ 88 MB

Ours‡ 33.22 0.911 0.149 (29 m)∗ 218 MB

Technicolor. We also evaluate our method on a
subset of the Technicolor dataset (Sabater et al.,
2017), which comprises video recordings from a
4 × 4 camera array (16 cameras) at a resolution of
2048×1088. Following the common practice, we se-
lect five scenes (Birthday, Fabien, Painter,
Theater, Trains), each limited to 50 frames. We
keep the original resolution and designate cam10 as
the held-out test view, using the remaining cameras
for training.

5.2 IMPLEMENTATION DETAILS

Following Yang et al. (2023a), we initialize our 4D Gaussian representation using dense COLMAP
reconstructions for the N3V dataset (about 300k points), providing robust geometric priors. For
Technicolor, which has only 50 frames per scene, we start from a sparse COLMAP reconstruction
instead. We adopt the densification pipeline from 3D Gaussian Splatting Kerbl et al. (2023), progres-
sively increasing the number of Gaussians by cloning and splitting operations. Unlike prior works,
however, we do not perform periodic opacity resets during training. For automatic classification of
Gaussians, we set the temporal scale threshold τ to 3 for the 10-second N3V sequences and 6 for
the 40-second sequence, while using a threshold of 1 for Technicolor. We train the 10-second N3V
clips for 6,000 iterations (batch size 4) and the 40-second clip for 20,000 iterations, applying the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

adaptive densification up to 15,000 iterations. For Technicolor, each scene is trained for 10,000 iter-
ations with a batch size of 2. Our implementation is built on the codebase of Yang et al. (2023a) and
further leverages the efficient backward pass from Taming-3DGS Mallick et al. (2024) to accelerate
optimization.

5.3 RESULTS

5.3.1 QUANTITATIVE RESULTS

Table 4: Ablation study on the N3V dataset,
comparing the 4DGS baseline, our approach
(Ours), the effect of opacity resets (w/ opa re-
set), and different temporal scale thresholds
(τ). #4D and #3D denote the number of 4D
and 3D Gaussians, respectively.

Method PSNR SSIM LPIPS #4D #3D
4DGS (Yang et al., 2023a) 32.01 0.9453 0.0974 3,315,333 –
Ours 32.25 0.9459 0.0970 843,175 229,707
w/ opa reset 31.52 0.9418 0.1016 683,437 243,051
τ = 2.5 31.37 0.9440 0.0979 670,807 276,265
τ = 3.5 31.98 0.9450 0.0986 913,927 184,548

N3V Dataset. We first evaluate our approach
on the N3V dataset, with results summarized in
Tab. 1. Our method achieves competitive perfor-
mance across all scenes, with an average PSNR of
32.25 dB, outperforming recent methods in both fi-
delity and rendering speed. Notably, we require only
12 minutes of training time for the 10-second clips,
which is significantly faster than 4DGS (Yang et al.,
2023a) (5.5 hours), while providing comparable or
superior visual quality. The combination of fast op-
timization, high FPS (208), and moderate storage
(273 MB) underscores the effectiveness of our hybrid 3D–4D Gaussian representation.

Long Sequence (40 seconds). Tab. 2 presents the results on the challenging 40-second clip from
the N3V dataset. Our method achieves the second-best PSNR (29.2 dB) and the lowest LPIPS
(0.1173), demonstrating strong perceptual quality. Remarkably, we complete training in only
52 minutes, an order of magnitude faster than other methods. Although Xu et al. (2024b) reports
a slightly higher PSNR (29.44 dB) by initializing point clouds from every frame (sparse COLMAP
for each frame takes approximately 1 second, additional 20 minutes for 1,200 frames to their re-
ported training time 2.1 hours), our approach relies solely on the single-frame initialization used for
10-second experiments. Despite this simpler setup, our method provides a more balanced trade-off
in terms of training speed, storage, and inference performance, highlighting its scalability to longer
sequences.

Figure 3: Visual comparison of different
scale thresholds τ .

Technicolor Dataset. We further validate our
method on the Technicolor dataset (Tab. 3). De-
spite using a sparse COLMAP initialization for the
50-frame sequences, our model achieves 33.22 dB
PSNR and 0.911 SSIM, with only 29 minutes of
training time on an RTX 3090 (measured on the
Painter scene). In contrast, 4DGS requires
over four hours to reach a comparable PSNR,
and Ex4DGS—while slightly more accurate—needs
more than twice of our training time. Our final stor-
age is 218 MB, which is lower than 4DGS (1.07 GB)
but slightly higher than some other methods. Over-
all, these results confirm that our framework ef-
fectively handles diverse camera setups and short
videos, balancing speed, memory efficiency, and
rendering fidelity.

5.3.2 QUALITATIVE RESULTS

Fig. 2 compares our method with several baselines on the N3V dataset. Overall, the visual qual-
ity among these methods is largely similar, reflecting the challenging nature of dynamic scenes.
However, our hybrid representation shows sharper details in some dynamic regions and more con-
sistent color transitions in backgrounds, reducing minor flickers across frames. These observations
align with our quantitative findings, suggesting that our approach remains competitive for complex,
real-world scenarios.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 ABLATION STUDIES AND ANALYSIS

Scale Threshold τ . We investigate how varying the temporal scale threshold τ affects both recon-
struction quality and storage (see Tab. 4). As shown in Fig. 3, a lower threshold (e.g., τ = 2.5)
aggressively converts 4D Gaussians into 3D, which can inadvertently merge dynamic content into
the static representation, reducing motion detail despite simplifying the final geometry. Conversely,
a higher threshold (τ = 3.5) is more lenient about switching Gaussians to 3D, preserving sub-
tle dynamics at the cost of slower convergence and higher memory usage. The mid-range setting
(τ = 3.0) strikes a balanced trade-off, maintaining near-optimal quality while avoiding excessive
storage overhead.

Figure 4: Influence of opacity resets on a dy-
namic scene.

Opacity Reset. Many 3D/4D Gaussian methods
periodically reinitialize opacities to a small constant
to remove floaters or spurious elements (Kerbl et al.,
2023; Yang et al., 2023a). However, such resets are
heuristic and can inadvertently disrupt optimization
in dynamic regions. As shown in Tab. 4 and Fig.
4, forcibly lowering the opacities of both 3D and 4D
Gaussians can erase previously learned motion cues,
leading to flicker or lower final PSNR. By avoiding
opacity resets, our pipeline continuously refines all
Gaussians in a single pass, preserving subtle tempo-
ral details and stabilizing motion boundaries. This
simpler, reset-free approach also reduces hyperparameter tuning overhead and prevents abrupt rep-
resentation changes that might otherwise degrade performance.

Figure 5: Visualization of spatially dis-
tributed Gaussians.

Visualization of spatially distributed Gaussians
Fig. 5 visualizes the spatially distributed Gaussians,
comparing our model to 4DGS (Yang et al., 2023a).
To visualize, we first project all 3D and 4D Gaus-
sians (for 4DGS, only 4D Gaussians) on the image
plane given a specific view point. Then, we color-
coded based on the number of projected Gaussians
in each spatial location (the darker color, the more
Gaussians). This shows how each approach allo-
cates Gaussians differently to different spatial re-
gions, and the original 4DGS introduces many Gaus-
sians in static areas (highlighted as red boxes), im-
plying that numerous 4D Gaussians with small time
scales are used to represent static parts of the scene.
On the other hand, our approach uses 3D Gaussians
for static areas, resulting in evenly distributed Gaus-
sians across the scene. This result supports our ex-
perimental results that our method significantly reduces redundancy, lowers memory usage, and
accelerates optimization. By contrast, the baseline model places dense clusters of Gaussians in
static regions, leading to unnecessary computations, inflating memory costs, and often degrading
the rendering quality.

6 CONCLUSION

We have presented a novel hybrid 3D-4D Gaussian Splatting framework for dynamic scene recon-
struction. By distinguishing static regions and selectively assigning 4D parameters only to dynamic
elements, our method substantially reduces redundancy while preserving high-fidelity motion cues.
Extensive experiments on the N3V and Technicolor datasets demonstrate that our approach con-
sistently achieves competitive or superior quality and faster training compared to state-of-the-art
baselines.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Benjamin Attal, Jia-Bin Huang, Christian Richardt, Michael Zollhoefer, Johannes Kopf, Matthew
O’Toole, and Changil Kim. Hyperreel: High-fidelity 6-dof video with ray-conditioned sampling.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16610–16620, 2023.

Jeongmin Bae, Seoha Kim, Youngsik Yun, Hahyun Lee, Gun Bang, and Youngjung Uh. Per-
gaussian embedding-based deformation for deformable 3d gaussian splatting. In European Con-
ference on Computer Vision, pp. 321–335. Springer, 2024.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 5855–5864,
2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5470–5479, 2022.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 19697–19705, 2023.

Robert A Brebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. In Seminal graphics:
pioneering efforts that shaped the field, pp. 363–372. 1998.

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In European conference on computer vision, pp. 333–350. Springer, 2022.

Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac: Hash-grid assisted
context for 3d gaussian splatting compression. In European Conference on Computer Vision, pp.
422–438. Springer, 2024.

Woong Oh Cho, In Cho, Seoha Kim, Jeongmin Bae, Youngjung Uh, and Seon Joo Kim. 4d
scaffold gaussian splatting for memory efficient dynamic scene reconstruction. arXiv preprint
arXiv:2411.17044, 2024.

Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan Chen. 4d-
rotor gaussian splatting: towards efficient novel view synthesis for dynamic scenes. In ACM
SIGGRAPH 2024 Conference Papers, pp. 1–11, 2024.

Guangchi Fang and Bing Wang. Mini-splatting2: Building 360 scenes within minutes via aggressive
gaussian densification. arXiv preprint arXiv:2411.12788, 2024.

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias
Nießner, and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH
Asia 2022 Conference Papers, pp. 1–9, 2022.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5501–5510, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-
gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4220–4230, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Seoha Kim, Jeongmin Bae, Youngsik Yun, Hahyun Lee, Gun Bang, and Youngjung Uh. Sync-nerf:
Generalizing dynamic nerfs to unsynchronized videos. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 2777–2785, 2024.

Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis. Dynmf: Neural motion factorization for real-
time dynamic view synthesis with 3d gaussian splatting. In European Conference on Computer
Vision, pp. 252–269. Springer, 2024.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21719–21728, 2024.

Junoh Lee, Changyeon Won, Hyunjun Jung, Inhwan Bae, and Hae-Gon Jeon. Fully explicit dynamic
gaussian splatting. Advances in Neural Information Processing Systems, 37:5384–5409, 2025a.

Soonbin Lee, Fangwen Shu, Yago Sanchez, Thomas Schierl, and Cornelius Hellge. Compression
of 3d gaussian splatting with optimized feature planes and standard video codecs. arXiv preprint
arXiv:2501.03399, 2025b.

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim,
Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3d video
synthesis from multi-view video. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 5521–5531, 2022.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8508–8520, 2024.

Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai, Hujun Bao, and Xiaowei Zhou. Effi-
cient neural radiance fields for interactive free-viewpoint video. In SIGGRAPH Asia Conference
Proceedings, 2022.

Zhening Liu, Yingdong Hu, Xinjie Zhang, Jiawei Shao, Zehong Lin, and Jun Zhang. Dynamics-
aware gaussian splatting streaming towards fast on-the-fly training for 4d reconstruction. arXiv
preprint arXiv:2411.14847, 2024.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann, and Yaser
Sheikh. Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint
arXiv:1906.07751, 2019.

Jiahao Lu, Jiacheng Deng, Ruijie Zhu, Yanzhe Liang, Wenfei Yang, Tianzhu Zhang, and Xu Zhou.
Dn-4dgs: Denoised deformable network with temporal-spatial aggregation for dynamic scene
rendering. arXiv preprint arXiv:2410.13607, 2024a.

Tao Lu, Ankit Dhiman, R Srinath, Emre Arslan, Angela Xing, Yuanbo Xiangli, R Venkatesh Babu,
and Srinath Sridhar. Turbo-gs: Accelerating 3d gaussian fitting for high-quality radiance fields.
arXiv preprint arXiv:2412.13547, 2024b.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. In 3DV, 2024.

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Markus Steinberger, Francisco Vicente
Carrasco, and Fernando De La Torre. Taming 3dgs: High-quality radiance fields with limited
resources. In SIGGRAPH Asia 2024 Conference Papers, pp. 1–11, 2024.

Marko Mihajlovic, Sergey Prokudin, Marc Pollefeys, and Siyu Tang. Resfields: Residual neural
fields for spatiotemporal signals. arXiv preprint arXiv:2309.03160, 2023.

Marko Mihajlovic, Sergey Prokudin, Siyu Tang, Robert Maier, Federica Bogo, Tony Tung, and
Edmond Boyer. Splatfields: Neural gaussian splats for sparse 3d and 4d reconstruction. In
European Conference on Computer Vision, pp. 313–332. Springer, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. Compact 3d scene rep-
resentation via self-organizing gaussian grids. In European Conference on Computer Vision, pp.
18–34. Springer, 2024.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1–15,
2022.

Seungtae Nam, Daniel Rho, Jong Hwan Ko, and Eunbyung Park. Mip-grid: Anti-aliased grid rep-
resentations for neural radiance fields. Advances in Neural Information Processing Systems, 36:
2837–2849, 2023.

K Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compact3d: Compressing gaussian splat radiance field models with vector quantization. arXiv
preprint arXiv:2311.18159, 4, 2023.

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting
for accelerated novel view synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10349–10358, 2024.

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and George Dret-
takis. Reducing the memory footprint of 3d gaussian splatting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 7(1):1–17, 2024.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 5865–5874, 2021a.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021b.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10318–10327, 2021.

Neus Sabater, Guillaume Boisson, Benoit Vandame, Paul Kerbiriou, Frederic Babon, Matthieu Hog,
Remy Gendrot, Tristan Langlois, Olivier Bureller, Arno Schubert, et al. Dataset and pipeline
for multi-view light-field video. In Proceedings of the IEEE conference on computer vision and
pattern recognition Workshops, pp. 30–40, 2017.

Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning Liu, Hongwen Zhang, and Yebin Liu. Ten-
sor4d: Efficient neural 4d decomposition for high-fidelity dynamic reconstruction and rendering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16632–16642, 2023.

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu, and An-
dreas Geiger. Nerfplayer: A streamable dynamic scene representation with decomposed neural
radiance fields. IEEE Transactions on Visualization and Computer Graphics, 29(5):2732–2742,
2023.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5459–5469, 2022a.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Improved direct voxel grid optimization for radiance
fields reconstruction. arXiv preprint arXiv:2206.05085, 2022b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, and Huaping Liu. Mixed neural vox-
els for fast multi-view video synthesis. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 19706–19716, 2023.

Henan Wang, Hanxin Zhu, Tianyu He, Runsen Feng, Jiajun Deng, Jiang Bian, and Zhibo Chen.
End-to-end rate-distortion optimized 3d gaussian representation. In European Conference on
Computer Vision, pp. 76–92. Springer, 2024.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 20310–20320, 2024.

Zhen Xu, Sida Peng, Haotong Lin, Guangzhao He, Jiaming Sun, Yujun Shen, Hujun Bao, and Xi-
aowei Zhou. 4k4d: Real-time 4d view synthesis at 4k resolution. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 20029–20040, 2024a.

Zhen Xu, Yinghao Xu, Zhiyuan Yu, Sida Peng, Jiaming Sun, Hujun Bao, and Xiaowei Zhou. Repre-
senting long volumetric video with temporal gaussian hierarchy. ACM Transactions on Graphics
(TOG), 43(6):1–18, 2024b.

Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene repre-
sentation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642, 2023a.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. De-
formable 3d gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint
arXiv:2309.13101, 2023b.

Ruijie Zhu, Yanzhe Liang, Hanzhi Chang, Jiacheng Deng, Jiahao Lu, Wenfei Yang, Tianzhu Zhang,
and Yongdong Zhang. Motiongs: Exploring explicit motion guidance for deformable 3d gaussian
splatting. arXiv preprint arXiv:2410.07707, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Supplementary materials

Figure 6: Left: Rendering results on the coffee martini scene. Right: PSNR vs. training time.
The proposed method converges in 12 minutes while maintaining competitive rendering quality. All
methods were evaluated under the same machine equipped with the NVIDIA RTX4090 GPU, except
for 4D-Rotor GS Duan et al. (2024)—whose results were estimated from iteration counts since the
code is not publicly available.

A ANALYSIS OF TEMPORAL SCALE ON 4DGS

As shown in Fig. 7, the majority of Gaussians in a fully trained 4DGS (Yang et al., 2023a) model
have small temporal scales (typically below 0.5), which results in redundant memory consumption
and increased computational cost. We empirically set the threshold τ by analyzing the distribution
of temporal scales in 4DGS and considering the characteristics of our target datasets. Specifically, τ
is selected to fall within the “valley” that separates lower (more dynamic) and higher (more static)
scale values.

B CUDA RASTERIZATION PIPELINE

Algorithm 1 represents our rasterization process. Compared to the original pipeline in the
3DGS (Kerbl et al., 2023), lines 4–6 are newly introduced to seamlessly integrate static (3D) Gaus-
sians with dynamic (4D) Gaussians. In particular, the size of M ′ is allocated to accommodate both
3D and 4D points. The conditional check at line 4 verifies whether any 3D Gaussians exist; if so,
it projects them into screen space via ProjGaussian3D, and stores tile, depth, and screen-space
position data jointly with the 4D Gaussians.

C ADDITIONAL RESULTS

As shown in Fig. 6, we achieved near state-of-the-art reconstruction fidelity while substantially
reducing training time compared to prior 4DGS baselines. We also provide further quantitative and
qualitative evaluations to supplement our main paper in this section.

C.1 SSIM AND LPIPS COMPARISONS

We present additional metrics on SSIM and LPIPS for the N3V dataset. As summarized in Table 5,
our method consistently maintains strong perceptual quality across these metrics, corroborating the
PSNR improvements reported in the main text. In particular, our SSIM and LPIPS scores remain
on par with, or exceed, those of baseline methods, indicating sharper details and fewer artifacts in
dynamic regions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 7: Distribution of the t-axis scale for Gaussians in the coffee martini scene. Most
Gaussians cluster at smaller scales, indicating dynamic content, while a minority have larger scales
that suggest static regions.

Algorithm 1 GPU Rasterization of 3D&4D Gaussians
Require: w, h: image dimensions
Require: M4D, S4D: 4D Gaussian means and covariances
Require: M3D, S3D: 3D Gaussian means and covariances
Require: A: 3D/4D Gaussian attributes
Require: V : camera/view configuration
Require: s: time
1: function RASTERIZE(w, h,M4D, S4D,M3D, S3D, A, V, s)
2: CullGaussian(p, V)
3: (M ′, S′

4D)← ProjGaussian4D(M4d, S4d, V, s)
4: if len(M3D) > 0 then
5: (M ′, S′

3d)← ProjGaussian3D(M ′,M3d, S3d, V)
6: end if
7: T ← CreateTiles(w, h)
8: (L,K)← DuplicateWithKeys(M ′, T)
9: SortByKeys(K,L)

10: R← IdentifyTileRanges(T,K)
11: I ← 0
12: for all Tiles t ∈ I do
13: for all pixels i ∈ t do
14: r ← GetTileRange(R,t)
15: I[i]← BlendInOrder(i, L, r,K,M ′, S′

4D, S′
3D, A)

16: end for
17: end for
18: return I
19: end function

C.2 PER-SCENE GRAPHS ON N3V

Fig. 8 shows the per-scene PSNR curves over training iterations for three different scale thresholds.
While τ = 2.5 can converge quickly in the early iterations, it sometimes saturates at a slightly lower
peak PSNR (e.g., cook spinach) or collapse after few iteration(e.g. flame steak), possibly
merging subtle dynamics into static representation. In contrast, τ = 3.5 tends to retain more 4D
Gaussians longer, occasionally surpassing τ = 2.5 in later stages (e.g., sear steak), but it also
requires more training to reach its final quality. The mid-range threshold (τ = 3.0) typically offers
a balanced trade-off between these extremes, achieving stable and competitive performance across
scenes with moderate or complex motion.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Additional SSIM and LPIPS results on the N3V dataset. Higher SSIM and lower LPIPS
indicate better perceptual quality.

Method SSIM ↑ LPIPS ↓

HyperReel Attal et al. (2023) 0.927 0.096
NeRFPlayer Song et al. (2023) 0.931 0.111
K-Planes Fridovich-Keil et al. (2023) 0.947 0.090
MixVoxel-L Wang et al. (2023) 0.933 0.095

4DGS Yang et al. (2023a) 0.9453 0.0974
STG Li et al. (2024) 0.948 0.046
4DGaussian Wu et al. (2024) 0.935 0.074
4D-RotorGS Duan et al. (2024) 0.939 0.106
Ex4DGS Lee et al. (2025a) 0.940 0.048

Ours 0.9459 0.097

C.3 ADDITIONAL QUALITATIVE RESULTS

Finally, we present further visual comparisons, highlighting subtle differences in dynamic objects,
complex lighting, and motion boundaries. Our hybrid 3D–4D representation consistently captures
both static and moving elements with minimal artifacts, reinforcing the quantitative gains reported
in the main paper.

Long-Sequence Comparison. In Fig. 9, we compare our reconstructions to ground-truth frames
from the 40-second N3V sequence. Despite the longer duration and more complex motion, our
method maintains coherent geometry and color transitions, demonstrating robust performance for
extended temporal dynamics without significant artifacts.

Multi-Dataset Visuals. Fig. 10 showcases additional results on both N3V and Technicolor scenes.
We observe that our method preserves fine-grained details under challenging lighting conditions,
while effectively modeling diverse motion patterns. These qualitative improvements align with our
quantitative gains in PSNR and SSIM.

Dynamic and Static Visuals. In Fig. 11, we visualize dynamic and static Gaussians side by side,
with dynamic regions rendered on a white background to highlight the separation from static areas.
Our method adaptively assigns 4D Gaussians to genuinely moving objects while converting large,
motionless regions to 3D Gaussians. This selective allocation preserves subtle motion cues, reduces
memory overhead, and accelerates the optimization process. The final rendered results confirm
that our representation remains faithful to the original scenes, even under challenging lighting and
motion conditions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: Per-scene PSNR curves on the N3V dataset for different temporal scale thresholds (τ =
2.5, 3.0, 3.5). Each plot corresponds to one scene, showing how PSNR evolves over 6000 iterations
of training. The mid-range setting (τ = 3.0) often strikes a balance, maintaining competitive final
quality across a range of motion complexities.

Figure 9: Comparison with Ground Truth on the 40-second sequence. We sample frames at
different timestamps (top: GT, bottom: ours) to illustrate that our approach preserves both global
structure and subtle motion details over extended temporal ranges.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 10: Additional results on N3V and Technicolor scenes. Despite challenging lighting con-
ditions and fast motion, our hybrid 3D-4D approach maintains crisp object boundaries and more
consistent textures across frames.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 11: Dynamic vs. Static Visualization. Each row shows (left) the dynamic portion on a
white background, (middle) the static region, and (right) the fully rendered result. By converting
most static elements into 3D Gaussians, our approach effectively handles dynamic scenes while
reducing redundant computations and preserving high-fidelity details.

19

	Introduction
	Related Work
	Novel View Synthesis
	Dynamic Scene Representation

	Preliminary
	3D Gaussian Splatting
	4D Gaussian Splatting

	Hybrid 3D-4D Gaussian Splatting
	Static and Dynamic Region Identification
	3D–4D Gaussian Conversion
	Optimization and Rendering Pipeline

	Experiments
	Datasets
	Implementation Details
	Results
	Quantitative Results
	Qualitative Results

	Ablation Studies and Analysis

	Conclusion
	Analysis of Temporal scale on 4DGS
	CUDA Rasterization Pipeline
	Additional Results
	SSIM and LPIPS Comparisons
	Per-Scene Graphs on N3V
	Additional Qualitative Results

