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ABSTRACT

Among the current global health challenges, tuberculosis, as a highly contagious
chronic disease, remains one of the major public health problems worldwide. De-
spite significant progress made in the past decades, new challenges, including
systematic and effective downscaling, accurate prediction of disease incidence,
and implementation of source reduction measures, have added to the difficulty of
tuberculosis control. In view of the limitations of the recently proposed EIGHT
prediction models in terms of prediction accuracy, this study adopts the Learnable
Decomposition and Dual Focus Module Model (Leddam) and then introduces a
novel mechanism-supported multivariate spatiotemporal series framework, termed
LCHHA-Leddam, to address the challenges in tuberculosis forecasting through an
investigation of coal power generation in China. This framework substantially sim-
plifies the complexity of tuberculosis prediction, enhances accurate dimensionality
reduction, and improves traceability. It also enhances the explanatory power and
accuracy of the Leddam model in the field of tuberculosis prediction. This study
provides a fresh perspective for enhancing epidemic forecasting and exploring
source reduction measures for industrial activities, demonstrating the feasibility of
AI-assisted public health strategies and green production.

1 INTRODUCTION

Climate change and environmental pollution have become one of the most important factors affecting
public health with the acceleration of urbanization, industrialization, and economic development. Re-
cent research has shown that environmental pollutants lead to approximately nine million premature
deaths per year worldwide (Landrigan et al., 2018; Stanaway et al., 2018), and climate change is
expected to cause approximately four million additional deaths per year (Zhao et al., 2021). Most
studies have explored the relationship between diseases and environmental factor with respect to
health risk (Asadgol et al., 2019, Danziger et al., 2022). Fewer studies comprehensively address
the concurrent effects of climate change and environmental pollution on disease occurrence and
implement source reduction measures. Risk factors for many human diseases and targets for preven-
tive healthcare strategies are commonly identified based on epidemiological analysis (Chowdhury et
al., 2018). However, a variety of factors/processes jointly affect the health outcome or its indicator,
suggesting the inability of epidemiological models to simultaneously and systematically consider,
and in many cases even impossible to solve hundreds of direct- and indirect environmental factors
and processes (Braun et al., 2016).

Life cycle human health assessment (LCHHA) is a systematic and internationally standardized
approach for simultaneously and efficiently quantifying the direct and indirect human health footprint
of a targeted product, process, or activity from the beginning to the final phase (ISO 14040, 2006; ISO
14044, 2006). In contrast to epidemiological studies, LCHHA quantifies the potential human risk of a
regional population via the dose-response curves derived from laboratory animal experiments and
extrapolation factors for interspecies differences (Huijbregts et al., 2010). As animal experiments data-
based LCHHA analysis has high uncertainty because of interspecies differences in physiology and
metabolism, the combination of methods to understand better the sources’ contribution to potential
human health impacts is highly needed. Systematically and effectively implementing source reduction
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measures and key factor identification to protect public health from environmental pollutants has
recently become possible. For instance, industrial activity-environmental pollution-carcinogenic
disease relationships calculated by LCHHA and epidemiological cancer incidences can now be further
explored (Chen et al., 2019; Jia et al., 2022). However, relevant research on infectious disease and its
prediction is extremely rare at the global level.

Interestingly, machine learning, as a popular approach for predictive modeling, has been extensively
used in disease prediction to achieve early warning and disease intervention because of its capacities
on analyzing large amounts of data, handling complex relationships, and learning and adapting over
time (Huang et al., 2022; Krittanawong et al., 2020). Multivariate time series are datasets with
multiple dimensions, where each dimension represents a separate univariate time series, e.g., climate
characteristics (Zhang & Yan, 2023). The prediction of infectious diseases is a multivariate time
series prediction as multiple factors/processes collectively influence infectious diseases. Predicting
these time series helps to improve decision-making in various application areas such as weather,
energy, and finance (Angryk et al., 2020; Demirel et al., 2012; Patton, 2013). Consequently, the
incidence of infectious diseases can now be predicted, and the reduction of sources for human health
protection can now be explored by integrating LCHHA, climate change, and multivariate time series
forecasting models. Tuberculosis (TB) is used as a target disease to achieve the aforementioned goal;
it is one of the world’s leading infectious disease killers (WHO, 2022) and is involved in the 2030
Agenda for the World’s Sustainable Development (United Nations, 2015). A quarter of the world’s
population is infected with Mycobacterium TB (Suárez et al., 2019). In 2021, the number of newly
diagnosed TB patients in China was 0.78 million, ranking third among countries and accounting for
7.4% of global TB cases (WHO, 2022). In China, the incidence and death of TB rank first within
the Class A and Class B notifiable infectious diseases. Two-thirds of the infected individuals are
concentrated in the age group (15-70) with solid production capacity. Hence, the issue is regarded as
a major public health problem in China.

TB transmission occurs almost exclusively because of aerosolized particles (Dinkele et al., 2022)
and climate conditions such as temperature through the influence on TB bacteria spread and survival,
human immune response, and climate patterns (Chong et al., 2022; Chormare and Kumar, 2022).
However, the joint effects of climate change and environmental pollution on TB are also rarely
assessed. As the world’s largest coal consumer and producer, China is confronted with the serious
environmental problem caused by coal burning (Ma et al., 2021), such as a global environmental issue
of haze over China. More than half of greenhouse gas and aerosolized particles are produced from coal
consumption in China (Ma et al., 2021; Shi et al., 2017). The coal power industry in China dominated
national coal consumption since 2000 (>40% ), although renewable energy has been encouraged by
the Chinese government (Chinese Energy Statistic Yearbook, 2001-2021). Approximately 5.3×105
premature deaths per year were recorded because of air pollution generated by coal burning in China
(Yun et al., 2021). This research thereby focuses on the environmental pollutants released by the coal
power industry in China and maps and predicts the incidence of TB caused by climate change and
environmental pollution. Worth noting, TB incidence caused by climate factors and environmental
pollutants is a complex and systematic phenomenon. Direct and indirect pollutants emitted from
the coal power industry during its whole life cycle stages for LCHHA analysis generally involve
hundreds of contaminants. Therefore, the intervention of low-dimensional feature engineering is
highly needed. Creating low-dimensional features is crucial for data scientists to develop models
and minimize model variance (Xuan et al., 2019; Rizgar et al., 2020). Domain experts typically
undertake this feature engineering task manually, guided by specific domain knowledge. This method
is known as mechanism-driven dimensionality reduction (MR) (Lan & Susan, 2019; Ting et al.,
2010). Data-driven dimensionality reduction (DR), however, selects feature engineering methods
based solely on available data. DR effectively extracts relevant features without relying on domain
expertise, serving as a form of automated data cleaning (Neoklis et al., 2017). Despite this, MR
remains essential since numerous parameters can significantly influence the performance of DR
algorithms and modelling techniques, while MR can scientifically manage the relationships between
parameters. This study compares MR and DR in terms of interpretability and accuracy, with LCHHA
as a representative of MR. It also introduces a novel mechanism-enabled multivariate spatiotemporal
sequence framework that effectively improves the accuracy and interpretability of infectious disease
prediction and helps public health managers identify effective management and source reduction
strategies.
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Figure 1: The prediction and source reduction approach of TB incidence caused by climate change
and environmental pollution released by coal power generation.

2 METHODOLOGY

2.1 LCHHA OF COAL POWER GENERATION IN CHINA

The LCHHA of coal power generation in China was estimated based on ISO 14040 series standards
(ISO 14040, 2006). Six subcategories (i.e., particulates formation, ozone formation, ozone layer
depletion, global warming, carcinogens, and non-carcinogens) are involved for direct and indirect
LCHHA (Fig.1). The selection of subcategories in this study is consistent with the commonly
used LCHHA models established in Europe (Sala et al., 2012), North America (Bare, 2011), and
World (Bulle et al., 2019). Regarding the global scale impact categories of ozone depletion and
climate change, the characterization factors published by the World Meteorological Organization
(WMO, 2011) and Intergovernmental Panel on Climate Change (IPCC, Arias et al., 2021) are used
for quantification. For the rest subcategories, the SDU model, a life cycle impact assessment model
developed for China’s life cycle assessment analysis (Yang et al., 2019; Ren et al., 2022), is applied.
The life cycle inventories of coal power generation at industry level are taken from previously
published reference reported by our research group (Li et al., 2024 a, b). The system boundary is
set to cradle-to-gate, and 1 kWh coal power generation is used as the functional unit. All inputs
and outputs for each life cycle stage of coal power generation are utilized in this study except for
infrastructure because of data limitations and their negligible impact (Ecoinvent Centre, 2016). The
uses of LCHHA in this study are: 1) to evaluate the human health footprint of coal-fueled power
industry initiatives at the national level; 2) to identify the key factors for MR and environmental
improvement in China; 3) to provide a training set for predicting the TB incidence caused by direct
environmental pollution released by the coal power industry in China; and 4) to enhance the precision
and intelligibility of spatio-temporal sequence models. The formula of LCHHA is as follows,

LCHHA =

n∑
i=1

Pqi × αi (1)
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× 0.5

365× LT × BW × ED50
× DFNC/C,i

+
EFPF,i

EFPM2.5
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+
EFOF,i

EFNOx
× DFOF

+ EESCi × UVBi × EFOD,i × DFOD

+
GWPGW,i

GWPCO2

× DFGW (3)

where Pqi and are the life cycle emission inventory (kgemission) and health damage (Daly/kgemission) of
substance i. The meanings of rest symbols are listed in Table 3.

2.2 LCHHA-LEDDAM FRAMEWORK

The Learnable Decomposition and Dual Focus Module (Leddam) was selected for this investigation
due to its notable enhancement in predictive precision compared to the recently identified EIGHT
predictive models (Yu et al., 2024). Fig.1 presents the prediction and source reduction approach
of TB incidence caused by climate change and environmental pollution released from coal power
generation in China. The monthly spatiotemporal meteorological elements, the LCHHA of direct
66pollutants from coal power generation, and the epidemiological TB incidence in the 2004–2018
period are used for training the Leddam model. Spatiotemporal meteorological elements, including
wind speed, rainfall, sunshine duration, temperature, and humidity data are selected as the indicators
of climate change because these factors are measurable and easier to track changes over time.

Percentagei =
Pqi × αi

LCHHAAll
× 100% (4)

XSeasonal = XSeasonal[i1, i2, i3, i4, i5] (5)
The analysis of the impact of LCHHA on Leddam begins with a comprehensive examination of the
LCHHA effects associated with 34 categories of pollutants. The impact of each pollutant on LCHHA
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Figure 2: Flow chart of experiment

is quantified. The overall impact, designated as LCHHAAll , is determined by the summation of all
pollutants’ LCHHA impact. Index i represents a distinct pollutant. Subsequently, the percentage
contribution of each pollutant to the total is evaluated. These calculations are instrumental in
developing an enhanced version of XSeasonal, where XSeasonal of the top 5 contributed pollutants are
indexed as i1, i2, i3, i4, and i5.

2.3 DATA SOURCES

Climate data from 699 meteorological stations in China were obtained from the Meteorological
Observation Information Centre of China to assess the relationship among various Meteorological
elements (CMA, 2021). The spatiotemporal and annual average life cycle inventory of coal power
generation was obtained from the CPLCID® (Zhang et al., 2016). For coal power generation in the
CPLCID®, the data on spatiotemporal coal consumption for coal power generation, import and export
coal amount, direct air emission amount of SO2, NOx, and particulates, desulfurization gypsum and
coal ash utilization rate, hospital beds, medical technicians, GDP per capita, population density, water
consumption, and technological transformation were obtained from various reference documents
(Annual Statistic Report on Environment in China, 2004-2021; China Electric Power Industry Annual
Development Report, 2006-2020; China Statistical Yearbook, 2001-2021; Chinese Energy Statistic
Yearbook, 2001-2021). The study by Hong et al. (2019) was also used to derive the data on national
average methane and carbon dioxide emitted from low-, high-, outburst-, and open-pit coal mining
sites and the life cycle inventory of coal-seam gas utilization. The data on coal quality at the national
level were taken from Liu et al. (2015). The data on the primary inventory of coal-based electricity
generation were taken from references (Cui et al., 2012; Xu et al., 2015; Zhao et al., 2015), and
further combined with spatiotemporal regional statistical data according to the research of Hong et al.
(2015). The data collection mentioned above were allowed for the building of a macro-level life cycle
inventory of coal power generation in China (Li et al., 2024 a, b). Spatiotemporal TB incidence in
China was obtained from China Health Statistical Yearbook (2004-2021) and Public Health Science
Data Center (2023), whereas annual TB incidence and burden in China were taken from the Global
Burden of Disease Study (IHME, 2020).

3 EXPERIMENT

Five downscaling algorithms were chosen based on the fact that dimensionality reduction can be
categorized into two main types: linear mapping and nonlinear mapping. In this context, linear
mapping was represented by Principal Component Analysis (PCA), while nonlinear mapping included
kernel methods such as Kernel Principal Component Analysis (KPCA) and Kernel Fisher Discriminant
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Figure 3: Contribution of dominant substances and processes to the annual LCHHA in China: a)
substance; b) process

Analysis (KFDA), as well as manifold learning techniques like Isometric Mapping (ISOMAP) and
Locally Linear Embedding (LLE). The training sets include spatiotemporal annual epidemiological
TB incidence, LCHHA values, and meteorological elements at China’s provincial level in the
2004–2018 period (n=5580). Epidemiological TB data involve spatiotemporal reported incidence
rate, incidence cases, and disease burden. Spatiotemporal meteorological elements including wind
speed, rainfall, sunshine duration, temperature, and humidity data are selected as the indicators of
climate change because these factors are measurable and easier to track changes over time. Spatial
average monthly meteorological elements at the province level integrated by daily surface climate data
of 699 meteorological stations in China since 2004 are used as original database. Data are randomly
split and set into a training, validating and testing set with a ratio of 7:1:2. The mean squared error loss
(MSE), mean absolute error (MAE), and coefficient of determination (i.e., R-squared) are used for
aforementioned models screening. Fig.2 illustrates the process of our experiment. The LEADDM was
initially trained with a database containing all pollutants and meteorological variables. KPCA, PCA,
KFDA, LLE, and Isomap were applied to the pollutant data, creating a feature set Z. A new database,
combining meteorological data and Z, was then used to retrain the LEADDM. The best algorithm,
determined by R², MSE, and MAE, identified the top five pollutant contributors, results shown in
Table 1. These, along with meteorological data, formed the RK+M[DM1] database. Similarly, LK+M
was created using LCHHA analysis. Both databases were used for further Leddam training.

4 RESULTS

4.1 ANALYSIS OF KEY CONTRIBUTORS THROUGH LCHHA

Fig.3 presents the most significant substances and processes contributing to the LCHHA. Mercury,
carbon dioxide, nitrogen oxides, sulfur dioxide, and particulates generated by coal power generation
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Table 1: Selection of dimensionality reduction method based on the database (P=All pollutants,
M=Meteorological)

P+M+PCA M+KPCA M+LLE M+ISOMAP M+KFDA
Test-R2 0.753 0.767 0.560 0.612 0.650
Test-MSE 0.142 0.264 0.273 0.119 0.261
Test-MAE 0.266 0.143 0.266 0.228 0.337

Figure 4: Each pollutant proportion in KPCA component

site appear to be the main contributors to the overall impact on human health. The potential impact
generated by the rest of the substances (e.g., PAHs, lead, arsenic, zinc, and VOCs) and processes
(e.g., wastewater and solid waste disposal, limestone, oil, hydrochloric acid, sulphuric acid, sodium
hydroxide, coal washing, transportation, and raw materials consumed during coal mining stage) is
low. Consequently, the pollutants emitted directly from the coal power generation stage are utilized
for subsequent study. The overall LCHHA of coal power generation across China over 30 years has
significantly decreased in the LCHHA of nitrogen oxides, sulfur dioxide, and particulates for the
last decade, whereas an increasing tendency is observed for the other key substances (Fig.3a). Strict
air pollution demands by the Chinese government (GB 13223-2011) and the annual increase in coal
power generation can explain the variations.

4.2 ANALYSIS OF KEY CONTRIBUTORS THROUGH ML DIMENSIONALITY REDUCTION
METHODS

Table 1 presents the performance of various dimensional reduction techniques applied to the pollutant
meteorology dataset. The results indicate that Kernel PCA (P+M+KPCA) achieved the highest Test
R² of 0.767, a lowest Test MAE of 0.266 and not the highest Test MSE of 0.264, demonstrating
strong capability in capturing different pollutants relationships. KPCA is selected to do the analysis
of key contributors. Fig.4 demonstrates the proportion of different pollutants in the KPCA component.
Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)pyrene, and Benzo(k)fluoranthene are the
top five contributors to KPCA component, which is different from the analysis through LCHHA.
Table 4 and Fig.8-11 in the appendix show the proportion of the various contaminants present in
the alternative downscaling techniques. It is notable that no two of the five downscaling techniques
yield an identical ranking of the first five key contributors, which suggests that the data-driven
method lack sufficient interpretability. This phenomenon also demonstrates the limitations of existing
dimensionality reduction methods in the field of AI for science.

4.3 COMPARISON BETWEEN MR AND DR

The results in Table 2 highlight the comparative performance of the different mechanisms in Leddam.
The model that incorporates all pollutants along with meteorological data (P+M) exhibits the lowest
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Table 2: Comparison between MR and DR (P=All pollutants, M=Meteorological, LK=Key factor
selected by LCHHA, RK=Key factor selected by KPCA)

P+M KPCA+M LK+M RK+M
Test-R2 -50.624 0.767 0.882 0.794
Test-MSE 0.083 0.264 0.096 0.146
Test-MAE 0.150 0.143 0.185 0.253

test R2 of -50.624, suggesting the need to select key pollutants. In contrast, the model based on
meteorology and LCHHA selection on pollutants (LK+M), has the highest test R2 of 0.882. It also
has the lowest Test MSE of 0.096 and lower Test MAE of 0.185 compared with KPCA selection
(RK+M) and KPCA reduction (KPCA+M). Notably, TB incidence caused by climate factors and
environmental pollutants is a complex and systematic phenomenon. LCHHA quantifies all the inputs
and outputs of coal power generation during its life cycle stages. Every single input has its life
cycle and interacts as a part of the coal power generation system. Therefore, LCHHA analysis can
significantly reduce the complexity of the integrated assessment model applied in this study. The
performance of LK+M underscores the effectiveness of the mechanism in enhancing Leddam model
accuracy. Compared to data-driven methods, the higher accuracy of key factor locking via mechanism
models highlights deficiencies of data-driven methods in exploring feature interrelationships. It also
reveals that the data-driven downscaling algorithms still face multiple limitations, such as challenges
in handling high-dimensional sparse data, the the effectiveness of feature extraction, and the inherent
complexity of scientific problems. These limitations not only affect the depth and breadth of data
analysis but may also restrict the process of scientific discovery.

4.4 SOURCE REDUCTION

Fig. 3 shows that carbon, mercury, and particulate matter (e.g., nitrogen dioxide, sulfur dioxide.
particulates) emitted from coal burning for power generation are the main contributors of the direct
LCHHA, which is the key contributor to TB prediction (Fig.1 and Table 2). The uptrend of life cycle
carbon emissions from China’s coal power industry and actual annual average temperature (Appendix
A.1) are consistent with the IPCC opinion that global warming is mainly caused by greenhouse gas
emissions (Arias et al., 2021). As the annual average temperature increase in China correlates with
the annual humidity, rainfall, and sunshine duration changes (Fig. 5b), source reduction measures on
TB become possible through pollutants control, specifically on mercury, carbon dioxide, nitrogen
oxides, sulfur dioxide, and particulate emissions control. China continues to be the largest carbon
(IEA, 2022) and mercury (Hu et al., 2018) emitter in the world because of its high gross national
coal consumption. However, significant environmental control achievements have been attained in
recent years (Fig. 3 a). Approximately 2.2 Mt of NOx, 0.8 Mt of SO2 and 643.1 t of atmospheric Hg
were emitted by the entire coal power generation chain in 2021. For the same year, in the entire coal
power generation chain, approximately 40.1% of NOx, 69.9% of SO2, and 98.0% of Hg were emitted
from the coal power generation stage; the direct emissions of the aforementioned key substances
by coal power generation sites in China in 2013 and the extensive haze episodes in China were
nearly 89.8%, 96.6%, and 97.8%. The results indicate significant environmental control achievements
in national SO2, PM, and NOx control after setting a strict emission standard for thermal power
plants (GB 13223-2011) and increasing the efficiency of coal consumption year by year (Chinese
Energy Statistic Yearbook, 2001-2021). A similar trend of carbon control through coal consumption
efficiency improvement can also be seen in Appendix Fig.12. However, mercury control is weak,
and the current mercury mitigation policy in China’s coal power industry remains unsystematic and
ineffective. The USEPA (1977) reported that 60% of mercury could be removed using coal-washing
technology, while the United Nations Environment Programme reported it to be 78% (UNEPA,
2002). Thus, the proper selection of coal-washing technology can significantly reduce the key factors
and overall environmental burden. In 2020, the coal-washing rate in China was approximately
74.1%, lower than that in the United States (90%) (Ghosh, 2013). Clearly, increasing the national
coal-washing rate and the efficiency of coal consumption is another key factor for protecting human
health.
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5 CONCLUSION

This study employs a novel LCHHA-Leddam model framework to predict the incidence of TB in
China, taking into account spatiotemporal climate change and environmental pollution caused by the
country’s coal power industry. The LCHHA model can identify the connections between industrial
activities, direct and indirect environmental pollution, associated risks, and their impact on human
health, thereby facilitating the identification of source control measures. The results demonstrate
that the LCHHA-Leddam model outperforms the traditional Leddam model due to its superior
accuracy in identifying key factors through mechanism models. This suggests that a combination of
mechanistic and data-driven models can significantly enhance the scientific accuracy of TB disease
predictions. Given that the LCHHA of coal power generation in China is primarily characterized
by direct emissions of atmospheric mercury, nitrogen oxides, sulfur dioxide, and particulate matter
during the coal combustion stage for power generation, it becomes feasible to implement source
reduction measures for TB disease control. These measures include controlling the aforementioned
pollutants, improving coal consumption efficiency, and increasing the national coal washing rate.

In summary, this study’s novelty lies not only in providing scientific data for early TB warning but
also in its potential to facilitate effective management and source reduction. To improve the accuracy
of predicted outcomes and the efficacy of public health protection measures, it is necessary to consider
other factors that may influence epidemic diseases, such as high spatial-temporal resolution, genetics,
diet, lifestyle regularity, and population distribution characteristics. Furthermore, incorporating
interpretable machine learning algorithms, such as SHAP (SHapley Additive exPlanations), into our
framework could enhance interpretability and provide a more comprehensive understanding of the
factors influencing epidemic predictions. This holistic approach will better equip us to address the
environmental and health challenges of the future.

6 REPRODUCIBILITY STATEMENT

To foster reproducibility, we will make our code available in supplementary materials and will make
it public online after acceptance. We give details on our experimental protocol in Appendix
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A APPENDIX

Table 3: LCHHA formula explanation

Parameter Meaning
XFi Exposure factor of substance i
EFi Effect factor of substance i
NC Human health damage (DLAY) caused by carcinogenicity
C Human health damage (DLAY) caused by non-carcinogenicity
PF Human health damage (DLAY) caused by particulate formation
OF Human health damage (DLAY) caused by ozone formation
OD Human health damage (DLAY) caused by ozone depletion
GW Human health damage (DLAY) caused by global warming
BAF Bioconcentration factor
PROD Intake per unit time
MASS Total mass of pollutants in the exposure area
INH Average respiratory rate per person
Vair Total air volume in the region
LT Average life expectancy of the population
BW Average body weight of the population
ED50 Median effective dose: the dose that elicits the desired effect in 50% of subjects
EFPF,i Health impact per kilogram of inhaled substance i
EFPM2.5 Health impact per kilogram of inhaled PM2.5
DFPF Human health damage caused by per unit intake of PM2.5
EFOF,i Health impact per kilogram of inhaled substance i
EFNOx Health impact per kilogram of inhaled NOx
DFNOx Human health damage caused by per unit intake of NOx
UVB Increase in radiation in the area
EFOD Additional disease incidence rate due to increased UV radiation in the area
DFOD Human health damage caused by disease incidence due to UV radiation
GWPGW,i Global warming potential of greenhouse gas i as reported by the latest IPCC
GWPCO2

Global warming potential of CO2 as reported by the latest IPCC
AGWP Absolute global warming potential in yr·W·m−2·kg−1

TF Temperature factor in C·m2·W−1

RR Relative health risks from rising temperatures
DFGW,i Damage factor for health damage caused by emissions of greenhouse gas i,

calculated through AGWP, TF, RR, and DALY·yr−1·◦C−1

A.1 CLIMATE CHANGE IN CHINA

Carbon dioxide, the main driver of climate change, has Carbon dioxide, the main driver of climate
change, has attracted global attention. In China, carbon dioxide emitted from the whole country
(Friedlingstein et al., 2022) and its life cycle emissions from the coal power industry show a significant
uptrend during the last seven decades. The life cycle carbon emissions of the coal power industry
currently account for half of the national carbon emission in China. Meanwhile, the annual average
temperature in China shows a sharp rise (Fig.5a), with a warming rate of 0.25 °C/10 years, which
is higher than the global average level for the same period (0.15°C to 0.20 °C/10 years; NASA,
2022). Spatiotemporal average humidity and rainfall show an uptrend with increasing average
temperature and a downtrend with increasing sunshine duration, whereas annual average wind speed
with temperature below -2.5 °C presents a downtrend (Fig.5b). For spatiotemporal wind speed
beyond -2.5 °C, no significant changes are observed with increasing annual average temperature. The
average rainfall distribution in China shows a decreasing tendency from the southeast coast to the
northwest inland (Fig.5c). A similar tendency can be observed in the average humidity distribution,
as the humidity distribution is closely related to the precipitation distribution. By contrast, the annual
average sunshine duration shows an increasing tendency from the southeast coast to the northwest
inland. The average temperature distribution is high in the south and low in the north, whereas a
contrasting phenomenon is observed in the average wind speed distribution.
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Figure 5: Spatiotemporal meteorological element changes: a) annual average variation since 1951; b)
relationship among meteorological elements since 1951 (color represents different region); c) spatial
variation in 2019 (white color means no data).
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Figure 6: Relationship between age and tuberculosis incidence in China a) incidence rate; b) incidence
cases
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Figure 7: Secular variation of China’s coal supply, coal production, and coal consumption in coal
power industry.

Figure 8: Each pollutant proportion in PCA component

Figure 9: Each pollutant proportion in LLE component

Figure 10: Each pollutant proportion in KFDA component
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Figure 11: Each pollutant proportion in ISOMAP component

Figure 12: Carbon footprint of coal power generation in China during last three decades.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Top 5 Key Contributors for 5 Different DR Methods

PCA LLE KPCA KFDA ISOMAP
Feature Feature Feature Feature Feature

NMVOC Benzo(g,h,i)perylene Anthracene Benzo(ghi)perylene Chromium
Anthracene Cadmium Benzo(k)fluoranthene Benzo(b)fluoranthene Pyrene
Benzo(k)fluoranthene Carbon dioxide Acenaphthylene Benzo(a)anthracene Particulates
Acenaphthylene Arsenic Acenaphthene Benzo(a)pyrene Zinc
Acenaphthene Methane Benzo(a)pyrene Acenaphthene Carbon monoxide

Table 5: Parameter values

Parameter Value
seq_len 96
pred_len 1
d_model 256
n_layers 3
learning_rate 1.00E-04
kernel_size 25
features MS
target OT
freq m
label_len 48
enc_in 11
dec_in 11
c_out 11
pe_type no
dropout 0
revin TRUE
num_workers 0
itr 1
train_epochs 100
batch_size 32
patience 6
lradj constant
use_amp TRUE
use_gpu TRUE
gpu 0
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