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ABSTRACT

Efficient deployment of deep neural networks increasingly relies on Post-Training
Quantization (PTQ). Logarithmic PTQ, in particular, promises multiplier-free
hardware efficiency, but its performance is often limited by the nonlinear and
symmetric quantization grid and standard rounding-to-nearest (RTN) approach.
While learnable rounding has significantly advanced linear PTQ, its application to
the non-linear and often discrete nature of logarithmic domain remains unexplored.
This paper introduces learnable Logarithmic Adaptive Rounding Techniques (Log-
ART) that pioneer task-aware learnable rounding specifically for the logarithmic
domain. LogART further extends the learnable rounding strategy to flexibly sup-
port outlier-aware, asymmetric, and hardware-friendly dynamic logarithmic bases,
determined in a distribution-aware manner using an efficient search strategy. Ex-
tensive experiments demonstrate that LogART achieves state-of-the-art accuracy
while maintaining efficiency in quantizing models across various architectures
and ultra-low bitwidths, outperforming existing logarithmic PTQ methods and
paving the way for more effective hardware deployment. The code is available at
https://github.com/logart-lab/logart.

1 INTRODUCTION

Artificial intelligence (AI) has entered the era of large-scale models, with large language models
(LLMs) Touvron et al. (2023); Biderman et al. (2023) reaching billions to trillions of parameters and
straining existing infrastructure. Their deployment requires significant computational and memory
resources, posing challenges for scalability and practical adoption. This necessitates effective model
compression and efficient inference techniques, particularly for deploying these models on edge
devices with tight constraints on computation, memory, and power consumption.

Quantization is a widely adopted technique for compressing deep neural networks and accelerating
inference, facilitating deployment on resource-constrained edge devices. Two main quantization
approaches are commonly used: Quantization-Aware Training (QAT) Liu et al. (2023); Chen et al.
(2024) and Post-Training Quantization (PTQ) Nagel et al. (2020); Li et al. (2021). QAT introduces
quantization during training or re-training, allowing the model to adapt to quantization noises and
typically yielding higher accuracy. However, QAT requires access to the original training data
and involves training phases, which is often impractical for large-scale models due to data privacy
concerns, proprietary constraints, and the substantial computational resources required. In contrast,
PTQ applies quantization to a pre-trained model using only a small calibration set Nagel et al. (2020);
Li et al. (2021); Kim et al. (2024a); Wu et al. (2024), or in some cases no data at all Lee et al. (2017);
Xu et al. (2020), offering advantages in compact model production speed and efficiency.

PTQ techniques are broadly categorized into linear Fang et al. (2020); Kwon et al. (2024); Gong
et al. (2025) and non-linear Lee et al. (2017); Xu et al. (2020); Lin et al. (2022); Li et al. (2023); Wu
et al. (2024) methods. Linear PTQ simplifies hardware implementation but struggles with bell-shaped
distributions often observed. Logarithmic PTQ, a representative non-linear method, offers two key
advantages: 1) its non-uniform levels align better with bell-shaped and long-tailed distributions, often
outperforming linear PTQ at low bitwidths Lin et al. (2022); 2) base-2 logarithmic PTQ can boost
hardware efficiency by replacing bulky multipliers with shifters or adders Xu et al. (2018; 2023). To
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further improve performance, various optimization strategies have been proposed, including base√
2 Li et al. (2023) and distribution-aware flexible bases Wu et al. (2024). However, logarithmic

PTQ still faces key challenges, including performance bottlenecks at ultra-low bitwidths due to
inherent symmetry and lack of outlier awareness, as well as limited adaptability to emerging models.
Critically, most logarithmic PTQ methods use rounding-to-nearest (RTN), which is known to be
suboptimal compared to task-aware learnable rounding Li et al. (2021); Kim et al. (2024a). Integrating
it with logarithmic PTQ remains a challenge due to the non-linearity of logarithmic mapping, the
non-differentiability of rounding in the logarithmic domain, and the discrete nature of mixed bases.

In this paper, we propose Logarithmic Adaptive Rounding Techniques (LogART) for PTQ. The key
idea is to enable fast learnable logarithmic rounding with outlier-resilient, asymmetric, dynamic and
hardware-friendly bases, optimizing both accuracy and efficiency. Main contributions are:

• We propose LogART, a novel PTQ method that learns the optimal rounding for logarithmic
quantization using a small set of unlabeled calibration data. LogART addresses both the
non-learnability of logarithmic rounding and the non-differentiability in dynamic bases.

• We extend LogART with a novel quantizer that enables outlier-aware, asymmetric, multi-
base, and hardware-friendly logarithmic quantization, using an efficient search strategy to
rapidly identify optimal hyperparameters.

• From extensive experiments on LLMs, covolutional neural networks (CNNs), and vision
transformers, we demonstrate that LogART outperforms state-of-the-art approaches in
balancing accuracy, quantization runtime and hardware efficiency.

2 RELATED WORK

2.1 PTQ FOR NNS

The key goal of PTQ is to convert the weights and/or activations of a pre-trained NN model from
floating-point to low-bitwidth fixed-point representations. Weights are static parameters determined
after training, whereas activations are dynamic, input-dependent values generated during inference.
While weight distributions remain fixed, activation distributions can vary significantly across layers
and inputs. Prior studies have shown that activation PTQ can benefit from techniques such as LSQ
Esser et al. (2020), whereas weight PTQ can leverage learnable rounding schemes Nagel et al. (2020);
Li et al. (2021); Kim et al. (2024a). Focusing on learnable logarithmic adaptive rounding techniques
for PTQ, this work specifically targets weight quantization.

PTQ techniques have been successfully applied across a variety of NN architectures. For CNNs, meth-
ods like BRECQ Li et al. (2021) leverage block-wise reconstruction to achieve high accuracy even at
ultra-low bitwidths by minimizing quantization error locally through learnable weight rounding. As
Transformer-based models Vaswani et al. (2017); Touvron et al. (2023); Dosovitskiy et al. (2021)
have become increasingly prominent in vision and natural language processing, specialized PTQ
methods have been developed to address the unique challenges posed by self-attention mechanisms
Lin et al. (2022); Li et al. (2023); Wu et al. (2024; 2025). More recently, with the rise of LLMs, PTQ
has become indispensable. Techniques such as GPTQ Frantar et al. (2023), aespa Kim et al. (2024a),
and AWQ Lin et al. (2024) address the challenges of quantizing massive models while maintaining
performance and enabling cost-effective quantization.

Learnable weight rounding schemes offer an effective way to significantly improve PTQ accuracy
compared to standard RTN, especially at low bitwidths. First introduced by AdaRound Nagel et al.
(2020), learnable weight rounding has pushed the limit of linear quantization into 4-bit PTQ regime.
Techniques such as FlexRound Lee et al. (2023), aespa Kim et al. (2024a) and APHQ Wu et al. (2025)
have further adapted and extended learnable optimization principles for linear PTQ. However, while
highly effective for linear PTQ, learnable weight rounding schemes are not directly applicable to the
inherently non-linear nature of logarithmic PTQ. Existing logarithmic PTQ methods have instead
focused on optimizing other quantization parameters, such as adaptive bases or scaling factors, often
relying on complex hyperparameter search strategies Xu et al. (2023); Wu et al. (2024).
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Figure 1: Illustration of (a) Log2, (b) Log
√
2, and (c) DLog quantization applied to a sample weight

distribution (in orange) from OPT-125M model.

2.2 LOGARITHMIC PTQ

Logarithmic PTQ employs quantization levels that are exponentially spaced, corresponding to uniform
steps in the logarithmic domain. Key variants within this family primarily differ by their chosen base,
including Log2 Lee et al. (2017); Lin et al. (2022), Log

√
2 Xu et al. (2018); Li et al. (2023), dynamic

log (DLog) Xu et al. (2020; 2023).

Log2 Quantization utilizes powers-of-two as the discrete quantization levels Lee et al. (2017):

Quant : QW = clamp

(⌊
− log2

(
|W|
s

)⌉
, 0, 2N−1 − 1

)
, s = 2⌊log2(max(|W|))⌉, (1)

Dequant : Ŵ = s · sgn(W)⊙ 2−QW , (2)

where | · | generates the element-wise absolute value, loga(·) is the base-a logarithm function,
⌊·⌉ denotes the RTN function, sgn(·) is the sign function, ⊙ denotes the Hadamard product, and
clamp(R, a, b) limits the value R to a closed interval [a, b]. Here, the floating-point weight matrix
W is quantized into an N -bit (sign bit included) integer-form QW, from which the dequantized
approximation Ŵ is derived. A key advantage of Log2 quantization is its hardware efficiency
through the use of shifters instead of multipliers. However, the power-of-two scale results in coarse
quantization steps especially at important large values, limiting the achievable accuracy.

Log
√
2 Quantization addresses this limitation by employing powers of

√
2 to provide finer granularity

and improve the achievable accuracy ceiling Xu et al. (2018); Li et al. (2023):

Quant : QW = clamp

(⌊
− log√2

(
|W|
s

)⌉
, 0, 2N−1 − 1

)
, s =

√
2
⌊log√

2(max(|W|))⌉
,

(3)

Dequant : Ŵ = s · sgn(W)⊙
√
2
−QW

. (4)

A notable drawback of Log
√
2 is its reduced hardware-friendliness as multiplication by

√
2 cannot

be implemented using simple shifters. Hardware acceleration strategies have been explored to
compensate, such as the combined look-up table (LUT) and shifter approach Wu et al. (2024).
Furthermore, it suffers from severe truncation errors that degrade accuracy, especially at low bitwidths.

DLog Quantization preserves fine-grained representation for large values while reducing the quan-
tization gap near zero by combining base 2 and

√
2 (Figure 1). Optimizing the adaptive base

allocation, which is critical for achieving high accuracy at low bitwidths, often relies on complex
and time-consuming hyperparameter search strategies. Current logarithmic PTQ techniques face
three key limitations: 1) Inherent symmetric quantization grid struggles with the asymmetric
data distributions common in LLMs. 2) High sensitivity to outliers, which often leads to severe
performance degradation. 3) Reliance on the simple ⌊·⌉ function, which underperforms compared
to task-aware learnable rounding methods proven effective in linear PTQ Nagel et al. (2020); Li et al.
(2021); Kim et al. (2024a). Effectively integrating learnable rounding into logarithmic PTQ remains
a significant challenge. Key difficulties include the non-linearity of the logarithmic mapping, the
non-differentiability of rounding in the logarithmic domain, and the discrete nature of dynamic bases,
all of which hinder gradient-based optimization.
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Figure 2: The overall LogART framework consists of two key components: OHS and LLR. OHS
searches for optimal hyperparameter configurations in an asymmetry-aware, outlier-resilient, and
multi-base manner. LLR replaces RTN with learnable element-wise rounding that minimizes local
reconstruction loss while absorbing hardware approximation noise during calibration.

3 METHODOLOGY

LogART (Figure 2) starts by formulating an efficient learnable rounding algorithm for base-2
logarithmic PTQ to optimize the quantization-induced task loss. We then extend LogART to support
outlier-aware, asymmetric, multi-base, and hardware-friendly dynamic logarithmic bases, enhancing
practical performance. The searching strategy for hyperparameters and the hardware implementation
of

√
2-based computation are also analyzed.

3.1 LEARNABLE LOGARITHMIC ROUNDING (LLR)

Inspired by AdaRound Nagel et al. (2020), LogART is the first to enable learnable rounding in
the base-2 logarithmic domain by replacing the RTN operation in Eq. (1) with a floor operation
⌊·⌋, while a learnable variable R determines whether each weight is rounded down or up to get the
soft-quantized W̃:

Quant : QW = clamp

(⌊
− log2

(
|W|
s

)⌋
+ σ (R) , 0, 2N−1 − 1

)
, (5)

Dequant : W̃ = s · sgn(W)⊙ 2−QW . (6)

The variable R are optimized by minimizing a task-aware reconstruction error with a regularization
term that encourages the sigmoid-like function σ (R) towards either 0 or 1:

argmin
R

E [L (∆W)] + λ
∑
i,j

(
1− |2σ(Rij)− 1|β

)
, (7)

here, L (·) denotes the task loss function, which can be flexibly configured based on the reconstruction
granularity, such as layer-wise reconstruction Frantar et al. (2023):

E [L (∆W)] = E
[
∥∆WX∥2F

]
= tr(∆W · E

[
XX⊤] ·∆W⊤), ∆W = W − W̃, (8)

where ∥·∥2F denotes the Frobenius norm, and tr(·) denotes the trace of a square matrix. Block-wise
reconstruction is also supported, and the gradient of LLR is analyzed and compared with linear
learnable rounding in Appendix A.

3.2 EXTENDING LOGART FOR NOVEL LOGARITHMIC QUANTIZER

To overcome the limitations of the fixed Log2 quantization, LogART is extended to support novel
multi-base, outlier-resilient, and asymmetric logarithmic quantizer.
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Dynamic Base Quantizer uses base
√
2 for large values and base 2 to smaller values, with the

ratio between them adapted in a distribution-aware manner. Given a selected base configuration, the
resulting N -bit integer-form quantization codebook contains n1 base-

√
2 codes and n2 base-2 codes:

n1 + n2 = 2N−1 − 1, n1, n2 ∈ Z ∩ [0, 2N−1 − 1]. (9)

The threshold t is then calculated to separate the input values into regions where either base-2 or
base-

√
2 quantization is applied, from which the element-wise scaling factor S, upper bound U, and

base selector B are constructed:

t =
√
2

m−n1+1
2 +⌊m−n1

2 ⌋
, m =

⌊
log√2 (max(|W|))

⌉
, (10)

Bij =

{√
2, |Wij | ≥ t

2, |Wij | < t
, Sij =

{√
2
m
, |Wij | ≥ t

2⌊
m−n1

2 ⌋, |Wij | < t
, Uij =

{
n1 − 1, |Wij | ≥ t

n2 − 1, |Wij | < t
.

(11)

Dynamic quantization applies an element-wise conversion to the logarithmic domain:

Quant : QW = clamp

(⌊
− logB

(
|W|
S

)⌋
+ σ (R) , 0,U

)
, (12)

Dequant : W̃ = S · sgn(W)⊙B−QW . (13)

Asymmetric Quantizer addresses the inherent symmetry of existing logarithmic quantization with a
simple yet effective adaptive bound la. As shown in Figure 3, most logarithmic quantization methods
begin by taking the absolute value of the weight tensor and then applying logarithmic quantization
symmetrically, which fails to capture the naturally asymmetric weight distributions, particularly
prominent in LLMs. Furthermore, in contrast to linear quantization, logarithmic quantization cannot
rely on a simple zero-point to shift bounds for asymmetry due to its non-uniform spacing near zero.
To overcome these challenges, LogART introduces the first asymmetric logarithmic quantizer that
allocates different numbers of codes to positive and negative weights, based on the maximum wmax

and minimum wmin weight values:

wh = max(wmax,−wmin), wl = min(wmax,−wmin), la = ⌊da/2⌋, (14)

da =

{⌊
log√2 (wh)

⌉
−
⌊
log√2 (wl)

⌉
, wl ≥ t

n1 +
⌊
m−n1

2

⌋
− ⌊log2 (wl)⌉ , wl < t

, Uij =

{
n1 − 1, |Wij | ≥ t

n2 − 1 + la, |Wij | < t
, (15)

Quant : QW = clamp

(⌊
− logB

(
|W|
S

)⌋
+ σ (R) , 0,U

)
. (16)
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Outlier-Resilient Quantizer addresses the strong outlier sensitivity of logarithmic PTQ by introduc-
ing a searchable hyperparameter sof . Instead of determining the quantization range from the absolute
maximum value, which is easily skewed by outliers, sof enables adaptive clipping of extreme values:

Quant : QW = clamp

(⌊
− logB

(
|W|
sof · S

)⌋
+ σ (R) , la,U

)
. (17)

3.3 OPTIMIZED HYPERPARAMETER SEARCH (OHS)

While element-wise LLR helps reduce local quantization error, the overall performance of PTQ
critically depends on the choice of quantizer hyperparameters. This motivates the exploration of
an efficient search strategy to identify optimal hyperparameters. Our proposed OHS solution is a
multi-level search strategy composed of three components:

• Tensor-Wise Asymmetric Bound Search (ABS): A calibration-free step that determines
the per-channel la based solely on the minimum and maximum weight values, as previously
defined in Eq. (14-16), making it both simple and efficient.

• Block-Wise Scaling Factor Search (SFS): Searches for the optimal per-channel scaling
factor sof by minimizing the reconstruction error at the block level (e.g., a residual bottleneck
in ResNet or an attention module in a Transformer).

• Block-Wise Dynamic Base Search (DBS): Adaptively assigns different n1:n2 logarithmic
base configurations across weight channels, guided by block-level reconstruction error.

ABS requires no calibration, while SFS and DBS are jointly optimized using a small calibration set
by minimizing the Frobenius norm of the block-wise reconstruction error:

arg min
sof ,n1,n2

E
[
∥L(∆W,X)∥2F

]
. (18)

The granularity of OHS can vary from tensor-wise to block-wise, to align with different reconstruction
levels. We analyze the impact of these search granularities, both with and without LLR, in Appendix
B. Our findings reveal a strong synergy between the multi-level OHS and LLR, leading to higher
quantized model accuracy and significantly faster convergence.

3.4 HARDWARE APPROXIMATION FUNCTION (HAF)

Beyond model accuracy, hardware efficiency is a critical consideration for the practical deployment
of quantized models. LogART, particularly when employing dynamic logarithmic bases, necessitates
a careful analysis of the associated hardware implementation complexity and efficiency.

To ensure a hardware-friendly design for the Arithmetic Element (AE) that handles computations
involving

√
2 in LogART, we introduce a HAF module. HAF is incorporated into the quantized

forward pass during the OHS and LLR process, allowing the induced error to be absorbed as noise
during the learning process. The core principle of HAF is to replace multiplications involving

√
2

with simple shift-add operations through the hardware approximation:

√
2 ≈ SDE(

√
2,K) =

K∑
k=1

ak · 1

2dk
, where ak ∈ {−1,+1}, dk ∈ N, d1 < d2 < · · · . (19)
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Table 1: Ablation results of LogART key components on LLMs with 3-bit per-channel weight
quantization, evaluated in terms of calibration data (from WikiText-2) dependency, PPL on WikiText-
2 dataset, time cost, and GPU memory cost.

DBS SFS ABS LLR Calib. Data OPT-125M LLaMA2-7B

PPL Time Memory PPL Time Memory

× × × × - 170.64 0.7 s 0.40 GB 60.16 13.0 s 9.8 GB
✓ × × × 32 66.63 3.8 s 0.75 GB 18.49 83.2 s 20.9 GB
✓ ✓ × × 32 36.10 16.8 s 0.75 GB 6.56 17.9 min 20.9 GB
✓ ✓ ✓ × 32 34.29 17.0 s 0.75 GB 6.45 17.9 min 20.9 GB
✓ ✓ ✓ ✓ 32 31.15 75.1 s 0.75 GB 6.14 74.2 min 20.9 GB

Table 2: Ablation results of LogART key components on CNN and vision transformer models with
4-bit per-channel weight quantization, evaluated in terms of top-1 accuracy and GPU runtime.

DBS SFS ABS LLR ResNet18 MobileNetV2 ViT-Base DeiT-Tiny

Acc(%) Time Acc(%) Time Acc(%) Time Acc(%) Time

× × × × 31.53 0.9 s 1.22 1.9 s 79.55 0.0 min 57.25 0.0 min
✓ × × × 68.45 1.0 s 66.91 2.3 s 84.24 0.1 min 69.17 0.0 min
✓ ✓ × × 69.69 10.8 s 69.47 22.0 s 84.61 2.8 min 70.29 1.4 min
✓ ✓ ✓ × 69.89 11.6 s 69.86 24.4 s 84.67 2.8 min 70.40 1.4 min
✓ ✓ ✓ ✓ 70.79 72.3 s 71.62 156.6 s 85.02 10.9 min 71.62 5.6 min

Here, SDE(
√
2,K) denotes the K-term Signed Dyadic Expansion of the real number

√
2. For

example, a 2-term (K = 2) approximation is
√
2 ≈ 20 + 2−1.

In Appendix C, we provide a detailed analysis of the hardware complexity of the AE designs in
Figure 4 for different PTQ methods. Our evaluation demonstrates that the multiplier-free LogART
AE consistently achieves a favorable balance between accuracy and hardware efficiency.

4 EXPERIMENT

To evaluate the effectiveness of LogART, we conduct experiments across various models. An ablation
study is performed to analyze the contribution of key components. LogART is benchmarked against
state-of-the-art (SOTA) PTQ methods in terms of accuracy, GPU memory, runtime, data dependency,
and AE hardware efficiency. Additional experiments and results are provided in the Appendix.

4.1 EXPERIMENTAL SETUP

Datasets and Models. We quantize publicly available pre-trained full-precision models, including
LLMs: OPT Zhang et al. (2022) and LLaMA Touvron et al. (2023) series on the WikiText-2 Merity
et al. (2017) and C4 Raffel et al. (2020) dataset; CNNs: ResNet He et al. (2016) and MobileNetV2
Sandler et al. (2018) on the ImageNet Russakovsky et al. (2015) dataset; and vision transformers:
ViT Dosovitskiy et al. (2021) and DeiT Touvron et al. (2021) on ImageNet.

Quantization Details. Our evaluation focuses on 3-bit and 4-bit weight-only quantization, a common
setting that significantly accelerates large models by reducing memory movement overhead Kim
et al. (2024b). While our experiments focus on weights, LogART is fully compatible with various
existing activation quantization methods, such as SmoothQuant Xiao et al. (2023), AdaLog Wu et al.
(2024), QuaRot Ashkboos et al. (2024), ERQ Zhong et al. (2024), and APHQ Wu et al. (2025). For
the calibration dataset, we randomly sample 32 segments of 2048 tokens each from the WikiText-2
or C4 dataset for language tasks, and 2048 unlabeled images from ImageNet for vision tasks. The
primary evaluation metrics are perplexity (PPL) for language modeling and top-1 accuracy for image
classification. All experiments are conducted on a single NVIDIA RTX 5090D GPU (32 GB).
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Table 3: Performance (PPL), GPU runtime, and memory usage of 3-bit weight quantization of
LogART and existing PTQ methods on LLM models. (Calibration data from C4)

Model Method FP16 GPTQ BRECQ AffineQuant aespa LogART

Domain - Linear Linear Linear Linear Log

OPT-125M PPL (WikiText-2) 27.65 52.95 34.07 36.15 34.53 31.52
PPL (C4) 26.56 42.88 31.44 32.78 31.41 29.98
Runtime - 19.8 s 1.06 hr 16.7 min 2.81 min 1.25 min
Memory (GB) - 1.05 3.07 3.14 1.52 0.75

OPT-1.3B PPL (WikiText-2) 14.63 20.36 16.09 17.26 16.07 15.53
PPL (C4) 16.07 20.53 17.46 18.27 17.40 17.29
Runtime - 2.44 min 4.57 hr 1.10 hr 31.8 min 11.0 min
Memory (GB) - 4.08 15.4 9.23 5.07 4.18

OPT-6.7B PPL (WikiText-2) 10.86 13.01 OOM* 12.30 11.35 11.11
PPL (C4) 12.71 14.61 OOM* 13.80 13.42 13.37
Runtime - 12.2 min OOM* 4.54 hr 4.42 hr 1.45 hr
Memory (GB) - 12.3 OOM* 23.4 14.3 17.1

LLaMA2-7B PPL (WikiText-2) 5.47 8.66 OOM* 6.80 6.45 6.31
PPL (C4) 7.26 11.24 OOM* 9.06 8.51 8.38
Runtime - 10.4 min OOM* 5.01 hr 3.39 hr 1.24 hr
Memory (GB) - 8.28 OOM* 23.7 21.2 20.8

LLaMA3-8B PPL (WikiText-2) 6.14 11.14 OOM* - 8.95 8.19
PPL (C4) 9.45 13.86 OOM* - 12.59 12.44
Runtime - 12.5 min OOM* - 3.68 hr 1.46 hr
Memory (GB) - 10.6 OOM* - 20.0 21.6

* OOM indicates that an out-of-memory (OOM) error occurred during quantization.

4.2 COMPARISON WITH SOTA APPROACHES

Ablation Study. Our ablation study, detailed in Table 1, Table 2 and Appendix D, validates the
distinct and complementary contributions of each LogART component: DBS, SFS, ABS and LLR.
The results identify SFS and LLR as the most impactful modules. SFS delivers a significant reduction
in perplexity with a moderate time overhead. Specifically, it lowers PPL on LLaMA2-7B from 9.74
to 6.24 when added to the LLR baseline at the cost of extra 4.5 minutes. The benefits of LLR are
demonstrated by the significant accuracy boost it provides over the RTN counterpart. The advantage
of DBS is clearly evident when applied alone. Compared to a fixed Log2 base, DBS reduces PPL by
more than half, owing to its enhanced flexibility in capturing diverse weight characteristics. ABS
is highly efficient, providing consistent accuracy gains without calibration data and with negligible
overhead. Its impact depends on model weight distributions, with larger improvements observed on
LLaMA2-7B than on OPT-125M. Ultimately, the study reveals a powerful synergistic effect, as the
full LogART with all components enabled consistently achieves the best performance. This confirms
that each module is a vital and complementary contributor to the final result.

Comparison on LLMs. We benchmark the proposed LogART against several SOTA PTQ methods
on LLMs, with per-channel weight quantization results presented in Table 3. For our method, we
enable the full OHS and LLR, performing optimization for 500 iterations using the Adam optimizer.
We employ a CosineAnnealingLR scheduler with a learning rate decaying from 0.05 to 0.015
and a rounding loss weight of 1. We compare against strong baselines: the backpropagation-free
GPTQ Frantar et al. (2023), the classic optimization-based BRECQ Li et al. (2021), and its efficient
successors AffineQuant Ma et al. (2024) and aespa Kim et al. (2024a). For BRECQ, we employ the
hyperparameter settings provided in Li et al. (2021). For AffineQuant and aespa, we use their official
implementations1 and reported settings. For a fair comparison, we use the calibration dataset from
C4, and additional results using the WikiText-2 dataset are available in Appendix E.

LogART is the first logarithmic PTQ method to scale effectively to LLMs at 3-bit, and it consistently
achieves SOTA accuracy across all tested LLMs. While GPTQ is the fastest method due to its RTN-

1https://github.com/bytedance/AffineQuant, https://github.com/SamsungLabs/aespa
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Table 4: Comparison of top-1 accuracy on ImageNet and GPU runtime (in minutes) for different
per-channel 4-bit weight PTQ methods on CNN models.

Model Method FP16 AdaRound BRECQ FlexRound LogNet SLogII LogART

Domain - Linear Linear Linear Log Log Log

ResNet18 Acc (%) 71.00 70.18 70.47 70.28 31.53 67.52 70.79
Runtime - 8.0 9.3 -* 0.0 0.4 1.2

ResNet50 Acc (%) 76.63 75.86 76.43 75.95 42.76 74.14 76.57
Runtime - 19.4 22.7 -* 0.0 2.1 3.1

MobileNetV2 Acc (%) 72.62 69.46 71.52 70.82 1.22 31.20 71.62
Runtime - 17.6 19.5 -* 0.0 1.3 2.6

* The GPU runtime is not reported and cannot be measured, as its code is not publicly available.

Table 5: Comparison of top-1 accuracy on ImageNet and GPU runtime (in minutes) for different
per-channel 4-bit weight PTQ methods on vision transformer models.

Model Method FP16 BRECQ APHQ AdaLog LogNet SLogII LogART

Domain - Linear Linear Linear Log Log Log

ViT-Small Acc (%) 81.39 80.52 80.72 80.65 70.14 78.54 81.06
Runtime - 35.6 32.1 32.2 0.0 3.1 6.7

ViT-Base Acc (%) 85.10 84.83 84.79 84.77 79.55 83.54 85.02
Runtime - 91.8 88.9 91.6 0.0 6.2 10.9

DeiT-Tiny Acc (%) 72.16 71.34 71.46 71.14 57.25 68.36 71.62
Runtime - 21.9 22.2 22.1 0.0 1.6 5.6

DeiT-Base Acc (%) 81.98 81.77 81.71 81.85 79.53 81.01 81.92
Runtime - 92.5 89.0 91.7 0.0 6.2 10.9

based, learning-free design, LogART surpasses it with a significant accuracy advantage. Compared
to optimization-based linear PTQ methods like BRECQ, AffineQuant, and aespa, LogART not only
achieves lower perplexity but is also substantially faster, reducing runtime by over 24.9×, 3.1×
and 2.2×, respectively, with similar or lower GPU memory usage. The outstanding performance of
LogART is attributed to the inherent advantages of logarithmic quantization, which better captures
the data distribution in LLMs, and the synergistic effect of the proposed OHS and LLR techniques.

Comparison on CNNs and Vision Transformers. We compare LogART with SOTA PTQ methods
on CNNs and vision transformers, with per-channel weight quantization results reported in Table
4, Table 5 and Appendix F. Baselines include linear-domain weight-rounding methods (AdaRound,
BRECQ, FlexRound, APHQ, AdaLog) and logarithmic schemes (LogNet, SLogII). Although AdaLog
applies logarithmic quantization to activations and linear quantization to weights, we categorize it
under the linear domain in this comparison, as our primary focus is weight quantization. For BRECQ
Li et al. (2021) and SLogII Xu et al. (2023), we use the official implementations with their reported
settings. AdaRound Nagel et al. (2020) is re-implemented following BRECQ, and LogNet Lee et al.
(2017) is re-implemented following SLogII. Results for FlexRound Lee et al. (2023) are directly
quoted from the original publication. For vision transformer experiments, we implement APHQ and
AdaLog with official code2. Since the original BRECQ does not support vision transformers, we
re-implement it within the APHQ framework. For LogART, we use the same settings as in LLMs but
increase LLR iterations to 2000 to ensure convergence on these architectures.

LogART consistently achieves SOTA accuracy across all evaluated CNN and vision transformer
models. It significantly outperforms the logarithmic PTQ baselines, with particularly notable im-
provements on MobileNetV2, where it achieves >40% higher top-1 accuracy. These gains stem
from the proposed OHS and LLR techniques, whereas prior logarithmic PTQ methods are limited
by symmetric quantizers, tensor-wise hyperparameter search, and naive RTN policies. Compared to
advanced linear PTQ methods with learnable rounding, LogART remains competitive in accuracy

2https://github.com/GoatWu/APHQ-ViT, https://github.com/GoatWu/AdaLog
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Table 6: HAF evaluation and AE comparison in terms of top-1 accuracy and hardware efficiency.

Method W/A Domain Hardware Evaluation Accuracy (%) Evaluation

Area(µm2) Power(µW) ViT-S ViT-B DeiT-T DeiT-B

BRECQ Linear/Linear 95.8 6.28 80.47 84.69 71.05 81.36
AdaLog Linear/Log 76.2 5.56 77.37 83.15 67.18 80.14
LogART w/o HAF Log/Linear 53.2 3.45 80.12 84.36 70.14 81.51
LogART w/ HAF 81.02 84.99 71.59 81.88

while offering substantially higher efficiency, achieving speedups of over 6.3×, 3.9×, 4.0×, and
3.9× against AdaRound, BRECQ, APHQ, and AdaLog, respectively. The acceleration is primarily
driven by the faster convergence enabled through the synergy of OHS and LLR.

HAF and AE Hardware Efficiency Evaluation. The proposed HAF is highly effective, incurring
minimal accuracy degradation (<0.2% on vision models and <0.2 PPL on LLMs) compared to ideal
LogART, while significantly outperforming a naive hardware approximation (e.g., +8.81% accuracy
on MobileNetV2). See Appendix C for experimental results. For AE hardware efficiency, we simulate
LogART AE in Figure 4 under a 4-bit weight and 8-bit activation setting, with results presented in
Table 6 and Appendix G. Here, activation quantization is performed in the linear domain. Power
and area consumption are synthesized in a 28-nm UMC process using Synopsys Design Compiler,
operating at 250 MHz and 0.9 V. BRECQ applies asymmetric linear quantization to weights and
activations, requiring 8/8-bit multipliers and consuming 80.08% more area and 82.03% more power
than LogART. Since AdaLog uses linear quantization for weights and logarithmic quantization for
activations, we adopt 8-bit weights and 4-bit activations for a fair comparison. Compared to the
LUT/multiplier/shifter-based AdaLog AE, LogART AE achieves a 43.23% area and 61.16% power
advantage, confirming its superiority in both accuracy and hardware efficiency.

Computational Overhead in Practical Deployment. LogART achieves a dual advantage in com-
putational overhead: low one-off offline model production cost and reduced recurring inference
hardware cost. The one-off cost is incurred only during the model production phase, not during
practical inference after deployment. The reported GPU runtime corresponds exactly to this produc-
tion time and explicitly includes the learning iterations. For practical usage, the learned rounding
parameters are frozen into the model weights. Therefore, the recurring inference cost is determined
by the AE. As discussed above, the LogART AE achieves significant hardware savings. From a
long-term perspective, the extra learning time is a one-off setup cost amortized over millions of
inference runs, resulting in a negligible marginal cost. Overall, LogART achieves a competitive
balance, offering both fast offline quantized model production and superior online inference hardware
efficiency.

5 CONCLUSION

We propose LogART, the first PTQ scheme that integrates learnable rounding into the logarithmic
domain. By combining this with the novel multi-base, outlier-resilient, and asymmetric quantizer
through an efficient search strategy, LogART pushes the limit of logarithmic weight PTQ to ultra-low
bitwidths on LLMs, CNNs, and vision transformers. Furthermore, LogART achieves a superior trade-
off between accuracy and hardware efficiency by incorporating a practical hardware approximation
directly into optimization. Extensive experiments validate that LogART not only consistently reaches
SOTA accuracy but also achieves over 40% reduction in AE area and power consumption. By
providing a robust and hardware-aware solution, LogART paves the way for the efficient deployment
of large models on resource-constrained hardware. Future work will extend LogART to joint weight-
activation quantization and explore its integration with other compression techniques.
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A GRADIENT OF TASK-AWARE LLR LOSS

The total loss function for LLR combines a task-aware reconstruction error with a regularization term.
For example, under layer-wise reconstruction granularity, the loss is defined according to Eq. (8) as:

L = Lrecon + Lreg, Lrecon = E
[
∥∆WX∥2F

]
, Lreg = λ · freg(R), (20)

freg(R) =
∑
i,j

(
1− |2σ(Rij)− 1|β

)
, (21)

For block-wise reconstruction granularity, the reconstruction loss for attention module is defined as:

Lrecon = E
[∥∥∥SA(Q̃, K̃, Ṽ)− SA(Q,K,V)

∥∥∥2
F

]
. (22)

Here SA(Q,K,V) generates the output of the attention module, and ∆WQ, ∆WK, ∆WV denote
the quantization error of query, key, and value projections respectively. To reduce computational
overhead, Lrecon is further optimized in a divide-and-conquer manner Kim et al. (2024a):

LQ
recon = E

[∥∥∥SA(Q̃,K,V)− SA(Q,K,V)
∥∥∥2
F

]
≈ E

[
∥K∆WQX∥2F

]
= tr

(
E
[
K⊤K

]
·∆WQ · E

[
XX⊤] ·∆WQ

⊤
)
,

(23)

LK
recon = E

[∥∥∥SA(Q, K̃,V)− SA(Q,K,V)
∥∥∥2
F

]
≈ E

[
∥Q∆WKX∥2F

]
= tr

(
E
[
Q⊤Q

]
·∆WK · E

[
XX⊤] ·∆WK

⊤
)
,

(24)

LV
recon = E

[∥∥∥SA(Q,K, Ṽ)− SA(Q,K,V)
∥∥∥2
F

]
= E

[∥∥∆WVXA⊤∥∥2
F

]
= tr

(
∆WV · E

[
XA⊤AX⊤] ·∆WV

⊤
)
.

(25)

The aim of the LLR process is to minimize the loss function L by optimizing the learnable variable
R using stochastic gradient descent. The gradient of L with respect to R is derived through the
following steps. The gradient of the layer-wise reconstruction error term is computed by propagating
derivatives through the quantization chain. First, the derivative of the loss L with respect to W̃ is:

∂L
∂W̃

= −2 · (WX− W̃X) ·X⊤, (26)

which captures the sensitivity of the Frobenius norm to deviations between the original and quantized
weights. The quantized weights W̃ depend on the integer form QW during logarithmic quantization
as shown in Eq. (6), leading to:

∂W̃

∂QW
= −s ln 2 · sgn(W)⊙ 2−QW . (27)

The QW are clamped within [0, 2N−1 − 1] to enforce bit-width constraints, introducing a binary
mask Mc:

Mc = I(QW ∈ [0, 2N−1 − 1]), (28)
that truncates gradients outside the valid range. Combined with the derivative of the sigmoid function
σ(R), the reconstruction gradient becomes:

∂Lrecon

∂R
= 2s ln 2 ·Mc ⊙ 2−QW ⊙ sgn(W)⊙

[
(WX− W̃X)X⊤

]
⊙ ∂σ(R)

∂R
. (29)

For the regularization term freg, its gradient is expressed directly in differential form without
expanding the chain rule:

∂Lreg

∂R
= λ · ∂freg(R)

∂R
. (30)
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The total gradient of the loss with respect to R combines both components:

∂L
∂R

=
∂Lrecon

∂R
+

∂Lreg

∂R
. (31)

That is the gradient for LLR, and we will next compare it to the gradient used in the learnable
rounding process for symmetric linear quantization counterpart. While the loss function remains the
same, the soft-quantized weights in the linear quantization setting are defined as:

Quant : QW
′ = clamp

(⌈
(2N−1 − 1) · |W|

s′

⌉
− σ (R′) , 0, 2N−1 − 1

)
, s′ = max(|W|),

(32)

Dequant : W̃′ =
s′

2N−1 − 1
· sgn(W)⊙QW

′. (33)

The gradient of L′ with respect to R′ is derived as:

∂L′
recon

∂R′ =
2s′

2N−1 − 1
·M′

c ⊙ sgn(W)⊙
[
(WX− W̃′X)X⊤

]
⊙ ∂σ(R′)

∂R′ , (34)

∂L′
reg

∂R′ = λ · ∂freg(R
′)

∂R′ , (35)

∂L′

∂R′ =
∂L′

recon

∂R′ +
∂L′

reg

∂R′ . (36)

The key difference between the gradients of logarithmic and linear learnable rounding lies in the term
∂Lrecon/∂R, which originates from their distinct quantization strategies. In logarithmic quantization,
the reconstruction gradient derived in Eq. (29) includes an exponential term 2−QW and a logarithmic
scaling factor s ln 2. In contrast, linear quantization uses a constant scaling factor of s′

2N−1−1
in Eq.

(34). The presence of the exponential term 2−QW in LLR results in smaller gradients for weights with
small magnitudes, while the constant scaling in linear quantization provides more uniform gradient
flow across all weight magnitudes. Assuming s′ ≈ s, the ratio between the gradient scaling factors
in logarithmic and linear quantization becomes ln 2 · 2−QW to 1

2N−1−1
. This ratio is particularly

useful when considering the appropriate choice of the regularization coefficient λ, which governs the
trade-off between reconstruction fidelity and rounding determinism. A larger λ encourages harder
rounding behavior, while a smaller λ allows softer updates during optimization.
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B SYNERGISTIC EFFECTS OF MULTI-LEVEL OHS AND LLR

We conduct a detailed analysis of the synergistic relationship between the proposed OHS and LLR
techniques, drawing insights from the comprehensive ablation results in Table 11. Our findings
reveal that their integration is a key driver of LogART effectiveness: beyond being merely additive
in quantization performance, the synergy between OHS and LLR also accelerates convergence and
substantially enhances overall optimization.

B.1 OHS AS AN ENABLER FOR EFFECTIVE LEARNABLE ROUNDING

The effectiveness of LLR is ultimately bounded by the quality of the underlying quantization grid.
While LLR can optimize how values are mapped to existing quantization points, it cannot compensate
for a poorly chosen grid. The final accuracy will remain limited regardless of rounding quality. This
is where synergy with OHS becomes critical. The multi-level OHS (comprising tensor-wise ABS,
block-wise SFS, and block-wise DBS) first establishes an optimal quantization grid, which then
enables LLR to fully exploit its rounding optimization.

ABS corrects for asymmetry based on the original weight distribution and therefore requires only
tensor-wise search. SFS improves robustness to outliers, while DBS selects the most appropriate
base. Both SFS and DBS operate in an activation-aware manner through block-wise search. This
multi-level search strategy also avoids the vast search space that would otherwise prolong OHS
runtime. By constructing a better-structured grid, OHS enables LLR to converge to a superior final
solution with lower overall quantization error. This is validated by the consistent and cumulative
performance gains in Table 11, where each OHS component added on top of the LLR baseline further
improves results, resulting in the best performance when all components are active.

B.2 LLR AS A FINER-GRAINED OPTIMIZATION BUILT ON EFFECTIVE SEARCH

Compared to the coarse-grained OHS, which focuses on optimizing quantization hyperparameters
for an entire weight tensor, LLR operates at the element level. Specifically, LLR learns the optimal
rounding decision for each weight element to minimize the task-aware loss. The additive benefit of
LLR is clearly demonstrated in Table 11, where, under every configuration of DBS, SFS, and ABS,
the inclusion of LLR consistently leads to higher accuracy than the corresponding setting without it.

This is because a naive RTN policy produces a highly suboptimal and rugged loss landscape. LLR
fundamentally changes this dynamic by introducing a task-aware, learnable rounding mechanism. A
drawback of LLR is that it requires backpropagation at the layer or block level, making the gradient
descent process resource-intensive and time-consuming, particularly for large models such as LLMs.
Therefore, improving the convergence speed of LLR has become a critical topic.

B.3 THEORETICAL ANALYSIS OF COMPONENT SYNERGY

We mathematically justify the synergy between OHS and LLR by decomposing the quantization
error in the task-aware metric space. The LogART optimization objective minimizes the task-aware
reconstruction loss. Let W̃ denote the soft-quantized weight matrix and ∆W = W − W̃ be the
quantization error. The loss function can be expressed as a Frobenius norm by incorporating the
matrix square root of the Hessian H = E[XX⊤] directly into the norm:

L = tr
(
∆WH∆W⊤) = ∥∥∥∆WH

1
2

∥∥∥2
F
. (37)

The triangle inequality establishes an upper limit on the quantization error norm, separating it into
two distinct geometric terms:∥∥∥∆WH

1
2

∥∥∥2
F
≤

(∥∥∥(W −ΠH
C(θ)(W))H

1
2

∥∥∥
F︸ ︷︷ ︸

E1 (OHS)

+
∥∥∥(ΠH

C(θ)(W)− W̃)H
1
2

∥∥∥
F︸ ︷︷ ︸

E2 (LLR)

)2

. (38)

Here, C(θ) denotes the quantization codebook characterized by OHS hyperparameters θ =
{sof , n1, la}, and ΠH

C(θ)(W) represents the ideal projection of W onto C(θ) under the Hessian-
weighted metric. Since minimizing a non-negative norm E1/E2 is equivalent to minimizing its square
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E2
1/E2

2 , we formulate the following optimization objectives in the squared domain for mathematical
convenience and consistency with the loss definition. The term E1 defines the intrinsic discretization
error determined purely by the geometry of the codebook. OHS explicitly minimizes this term to
identify the optimal θ∗:

θ∗ = argmin
θ

∑
i,j

min
c∈C(θ)

(
(Wij − c)2 ·Hjj

)
, (39)

where θ∗ denotes the optimal set of hyperparameters found by OHS, c denotes a codebook value,
and Hjj refers to the diagonal elements of the Hessian. Specifically, SFS aligns the global scale
through sof , DBS optimizes local density using n1, and ABS adjusts support bounds by la. The term
E2 represents the optimization gap between the ideal projection ΠH

C(θ) and the result W̃ determined
by LLR. LLR learns the optimal rounding variable R∗:

R∗ = argmin
R

∥∥∥(ΠH
C(θ∗)(W)− W̃)H

1
2

∥∥∥2
F

s.t. W̃ ∈ C(θ∗). (40)

This mathematical decomposition proves the synergistic relationship. OHS searches for the optimal
quantization grid that minimizes the intrinsic discretization error, while LLR learns the optimal
rounding decision to minimize the residual error on that established grid. Consequently, the full
integration of all proposed components yields the theoretically optimal configuration.

B.4 ACCELERATED CONVERGENCE

The synergy between OHS and LLR also accelerates convergence during the learnable rounding
phase. When LLR operates on a poorly configured grid, its optimization must compensate for the
inherent flaws of that grid. By using OHS to establish a more suitable quantization grid, the rounding
problem becomes simpler and better-posed, allowing the optimizer to reach a high-quality solution in
fewer iterations.

Table 7: Performance (PPL) and runtime comparison of LLR convergence with and without OHS.

ABS SFS DBS LLR iters Runtime (min) PPL

OHS LLR Total WikiText-2 C4

× × × 2000 0.05 3.95 4.00 36.27 34.60
✓ ✓ ✓ 500 0.28 0.97 1.25 31.15 30.44

Figure 5: LLR combined with multi-level OHS converges faster and achieves higher accuracy.

To validate the accelerated convergence, we conducted a comparative experiment on the OPT-125M
model using the WikiText-2 calibration dataset. We compare two configurations, both including LLR.
The experimental group employs our full multi-level OHS with the same settings as our main LLM
experiments. The control group uses a simplified strategy where ABS, SFS, and DBS are all disabled,
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with the total number of iterations, learning rate and weight of the rounding loss to 2000, 0.015, and
1, respectively. The results, shown in Table 7 and Figure 5, indicate that while multi-level OHS itself
incurs longer runtime due to the required local forward computations, it enables LLR to converge
more efficiently to a better local minimum, resulting in superior overall accuracy and total runtime.
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C HAF MODULE AND HARDWARE-LEVEL ANALYSIS

We analyze the hardware complexity of the AE designs for the core ŴX computation resulting from
different PTQ methods applied to weights:

• Linear: Linear quantization schemes include symmetric and asymmetric approaches. Sym-
metric linear PTQ allows the AE to be implemented using low-bitwidth fixed-point signed
integer multipliers (INT SMUL). Asymmetric linear PTQ, due to the introduction of zero-
point offsets in quantized weights, typically requires INT SMUL in Figure 4(a) with higher
bitwidth or additional hardware to handle these offsets.

• Log2: Base-2 logarithmic PTQ offers significant hardware advantages by enabling the
replacement of multipliers with shifters, as shown in Figure 4(b). To accommodate the sign
of the weights, the AE incorporates signed operational logic to compute correctly.

• Log
√
2: Base-

√
2 quantization does not directly translate to multiplier-free operations.

However, hardware efficiency can be achieved by
√
2 ≈ 20 + 2−1 Xu et al. (2018; 2023).

This approximation allows multipliers to be replaced with shift-add operations, as shown in
Figure 4(c).

• AdaLog: It is important to note that AdaLog Wu et al. (2024) does not support logarithmic
quantization for weights. Instead, it applies logarithmic quantization to activations while
keeping weights linear. To enable flexible logarithmic bases, AdaLog adopts an AE design
that combines LUTs, a multiplier, and a shifter, as illustrated in Figure 4(d). This design
provides flexibility but at the cost of higher resource utilization.

• LogART: LogART adopts a multiplier-free AE design (Figure 4(e)) that facilitates DLog-
quantized ŴX computation through a shift-add approach enabled by HAF. Configured
with dynamic logarithmic bases, the AE takes in the quantized weight and input activation
codes, along with control signals such as n1 and chk even. The decoder, implementable
with simple combinational logic, generates the enable signal for the Approx module and the
shifting bits for the Shift module.

To effectively incorporate the hardware approximation into the LogART LLR process, allowing the
induced error to be absorbed as noise during the learning process, we introduce an add-on HAF
into the quantized forward pass. As described in Eq. (9)-(17), the floating-point weight matrix W
is first quantized into its integer-form representation QW, and subsequently dequantized back into
hard-quantized Ŵ. To model the hardware approximation, an element-wise mask M is generated,
which is used to modify the dequantized weights Ŵ, resulting in an approximated version Ŵ′:

M = (Q mod 2)⊙
[
B =

√
2
]
, Ŵ′ = Ŵ ⊙ (1+ (γ − 1)M) , (41)

where mod denotes the modulo operation that returns the remainder after division,
[
B =

√
2
]

is an
element-wise indicator function identifying which elements of B are equal to

√
2, and γ represents

the hardware approximation factor:

γ =
SDE(

√
2,K)√
2

. (42)

Here, SDE(
√
2,K) denotes the Signed Dyadic Expansion function, which takes the real number

√
2

and an integer K, and returns a signed dyadic expansion approximation with K terms:

SDE(
√
2,K) =

K∑
k=1

ak · 1

2dk
, where ak ∈ {−1,+1}, dk ∈ N, d1 < d2 < d3 < · · · . (43)

This expansion is useful for replacing the multipliers required in
√
2-involved computation with

shifters and adders, thereby enabling efficient hardware AE design. The construction of the SDE
function follows a greedy iterative approach. Starting with the initial residual r1 =

√
2, at each

iteration k, we search for the integer dk that meet the requirement:

1

2dk
≤ |rk| <

1

2dk−1
. (44)
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We then assign the sign ak to match the sign of the residual:

ak = sgn(rk) ∈ {−1,+1}. (45)

Next, the selected dyadic term is subtracted from the residual:

rk+1 = rk − ak · 1

2dk
(46)

This process is repeated to generate a sequence of signed dyadic terms that bring the residual closer
to zero. After K steps, the partial sum

∑K
k=1 ak · 1

2dk
provides an approximation of

√
2 with K

terms. By determining the number of terms K, we can generate the corresponding AE design and
obtain the SDE approximation of

√
2. The absolute error introduced to the approximation of

√
2 by

HAF is defined as:

ϵK =
∣∣∣√2− SDE(

√
2,K)

∣∣∣ = |rK+1| =
∣∣∣∣rK − aK · 1

2dK

∣∣∣∣ . (47)

From Eq. (44) and (45), we derive the theoretical upper bound of ϵK as:

ϵK = |rK | − 1

2dK
, (48)

<
1

2dK−1
− 1

2dK
=

1

2dK
. (49)

Utilizing this approximation to compute γ and Ŵ′, the error induced by HAF on the quantized
weights Ŵ is given by:

∆Ŵ = Ŵ′ − Ŵ = Ŵ ⊙ (γ − 1)M, (50)
where the hardware approximation factor γ relates to the final residual rK+1 as:

γ =
SDE(

√
2,K)√
2

=

√
2− rK+1√

2
= 1− rK+1√

2
. (51)

Applying the
√
2 error bound in Eq. (49) yields the theoretical upper bound of the weight error:∣∣∣∆Ŵ

∣∣∣ = ∣∣∣Ŵ∣∣∣⊙ |rK+1|√
2

⊙M (52)

<
∣∣∣Ŵ∣∣∣⊙ 1√

2 · 2dK
⊙M. (53)

This local weight error propagates through the quantized forward pass, affecting the task-aware
reconstruction loss L:

E
[
L
(
∆Ŵ

)]
= E

[∥∥∥∆ŴX
∥∥∥2
F

]
= tr(∆ŴH∆Ŵ⊤), H = E

[
XX⊤] , (54)

=
r2K+1

2
· tr

(
(Ŵ ⊙M) ·H · (Ŵ ⊙M)⊤

)
, (55)

<
1

21+2dK
· tr

(
(Ŵ ⊙M) ·H · (Ŵ ⊙M)⊤

)
. (56)

This derivation provides the theoretical upper bound for the HAF-induced error in the reconstruction
loss, which diminishes exponentially with respect to dK . While a larger K reduces reconstruction
loss and potentially improves accuracy, it incurs increasing hardware overhead. Specifically, as K
increases, the area and power consumption of the AE design grow sublinearly.

To resolve this trade-off, we integrate the HAF-induced error directly into the LLR learning pro-
cess, allowing the model to compensate via element-wise optimized rounding decisions. During
backpropagation, HAF introduces an additional gradient path from Ŵ′ to Ŵ:

∂Ŵ′

∂Ŵ
= 1+ (γ − 1)M. (57)

By incorporating this error into the gradient descent of LLR, the optimization theoretically learns
to absorb this deviation. This ensures a dual benefit. The final accuracy using HAF (K = 2) is
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Table 8: Evaluation of how K affects top-1 accuracy (%) and GPU runtime for 4-bit PTQ on CNNs.
Method HAF ResNet18 ResNet50 MobileNetV2

LogART - Acc 70.79 76.57 71.62

× Runtime (min) 1.2 3.1 2.6
K = 2 × Acc 68.75 74.41 62.64
K = 3 × Acc 70.68 76.36 70.94
K = 4 × Acc 70.59 76.48 71.49

✓ Runtime (min) 1.3 3.4 2.8
K = 2 ✓ Acc 70.71 76.48 71.45
K = 3 ✓ Acc 70.74 76.59 71.63
K = 4 ✓ Acc 70.79 76.53 71.64

Table 9: Evaluation of how K affects top-1 accuracy (%) and GPU runtime for 3/4-bit PTQ on vision
tranformers.

Method W HAF ViT-S ViT-B DeiT-T DeiT-B

LogART 4-bit - Acc 81.06 85.02 71.62 81.92

4-bit × Runtime (min) 6.7 10.9 5.6 10.9
K = 2 4-bit × Acc 80.12 84.36 70.14 81.51
K = 3 4-bit × Acc 80.81 84.89 71.35 81.79
K = 4 4-bit × Acc 80.97 84.96 71.50 81.84

4-bit ✓ Runtime (min) 6.8 11.4 5.7 11.2
K = 2 4-bit ✓ Acc 81.02 84.99 71.59 81.88
K = 3 4-bit ✓ Acc 80.98 85.01 71.70 81.94
K = 4 4-bit ✓ Acc 80.98 84.98 71.63 81.92

LogART 3-bit - Acc 79.56 84.54 70.21 81.51

3-bit × Runtime (min) 5.9 9.9 5.0 10.1
K = 2 3-bit × Acc 78.89 84.18 69.50 81.28
K = 3 3-bit × Acc 79.35 84.36 69.80 81.39
K = 4 3-bit × Acc 79.41 84.42 70.10 81.44

3-bit ✓ Runtime (min) 6.0 10.3 5.2 10.3
K = 2 3-bit ✓ Acc 79.67 84.58 70.14 81.45
K = 3 3-bit ✓ Acc 79.50 84.56 70.25 81.50
K = 4 3-bit ✓ Acc 79.46 84.51 70.26 81.52

negligibly different from an ideal
√
2 implementation, while the LogART AE maintains its most

efficient configuration. To assess the trade-off and the effect of K on final accuracy, we conduct 3-bit
and 4-bit per-channel weight quantization experiments on LLM, CNN and vision transformer models.

The experimental setup for LogART follows the configuration in Section 4.2, enabling full OHS in
combination with LLR. An ”ideal” LogART variant, which assumes a perfect representation of

√
2,

is used as the benchmark. To evaluate the impact of hardware approximation, we compare the top-1
accuracy when applying the approximation function with:

K = 2 :
√
2 ≈ 1 +

1

2
(58)

K = 3 :
√
2 ≈ 1 +

1

2
− 1

24
(59)

K = 4 :
√
2 ≈ 1 +

1

2
− 1

24
− 1

26
(60)

Experimental results in Tables 10, 8, and 9 confirm the effectiveness of the proposed HAF. A naive
hardware approximation presents a difficult trade-off: increasing the number of approximation
terms (K) improves accuracy by providing a better estimate of

√
2, but also significantly increases

the area and power consumption of the LogART AE. The proposed HAF resolves this dilemma.
Experimental results show that the accuracies with HAF are consistently higher than those under
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Table 10: Evaluation of how K affects 3-bit PTQ on OPT-125M. (Calibration data from WikiText-2)
Method HAF WikiText-2 C4

LogART - PPL 31.15 30.44

× Runtime (s) 75.1
K = 2 × PPL 31.94 30.66
K = 3 × PPL 31.62 30.58
K = 4 × PPL 31.48 30.54

✓ Runtime (s) 79.5
K = 2 ✓ PPL 31.30 30.40
K = 3 ✓ PPL 31.34 30.42
K = 4 ✓ PPL 31.30 30.44

naive hardware approximation. By incorporating the hardware approximation error into the OHS and
LLR optimization process, the chosen hyperparameters and element-wise rounding decisions become
robust to the hardware approximation error and the choice of K. The performance degradation is
negligible, and in some cases, the HAF-enabled model can even surpass the “ideal” LogART (e.g.,
with K = 2 for 3-bit quantization on the ViT-Small model). As HAF mitigates the accuracy impact of
a lower K, we select K = 2 for our final LogART AE design, achieving superior hardware efficiency
while maintaining performance.
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D FULL ABLATION STUDY

We provide comprehensive component-by-component results of the full ablation study, which are
excluded from the main text due to page limitations. The evaluation encompasses LLMs (OPT-125M,
LLaMA2-7B), CNNs (ResNet18, MobileNetV2), and vision transformers (DeiT-Tiny, ViT-Base).
These experiments validate the individual and synergistic contributions of the four key components
of LogART: DBS, SFS, ABS, and LLR.

To clarify the ablation study conditions in Table 11 and Table 12, the following settings are used when
components are disabled: without LLR, a standard RTN policy is applied; without ABS, a symmetric
quantizer is used; without SFS, the scaling factor is fixed to 1; and without DBS, a fixed Log2 base
is used. The absolute baseline (first row), with all components disabled, represents a symmetric,
single-base Log2 quantizer that uses a simple RTN policy and a fixed scaling factor of 1.

Table 11: Full ablation results of LogART key components on LLMs with 3-bit channel-wise
weight quantization, evaluated in terms of calibration data (from WikiText-2) dependency, PPL on
WikiText-2 dataset, time cost, and GPU memory cost.

DBS SFS ABS LLR Calib. Data OPT-125M LLaMA2-7B

PPL Time Memory PPL Time Memory

× × × × - 170.64 0.7 s 0.40 GB 60.16 13.0 s 9.8 GB
× × × ✓ 32 38.55 61.3 s 0.75 GB 9.74 58.6 min 20.9 GB
× × ✓ × - 79.70 0.7 s 0.40 GB 8.28 13.2 s 9.8 GB
× × ✓ ✓ 32 36.39 61.3 s 0.75 GB 6.44 58.2 min 20.9 GB
× ✓ × × 32 38.41 12.1 s 0.75 GB 6.66 6.6 min 20.9 GB
× ✓ × ✓ 32 33.21 64.6 s 0.75 GB 6.24 63.1 min 20.9 GB
× ✓ ✓ × 32 35.15 12.2 s 0.75 GB 6.55 6.6 min 20.9 GB
× ✓ ✓ ✓ 32 32.55 64.6 s 0.75 GB 6.23 63.5 min 20.9 GB
✓ × × × 32 66.63 3.8 s 0.75 GB 18.49 83.2 s 20.9 GB
✓ × × ✓ 32 35.46 62.7 s 0.75 GB 9.26 59.0 min 20.9 GB
✓ × ✓ × 32 47.92 3.8 s 0.75 GB 7.82 82.2 s 20.9 GB
✓ × ✓ ✓ 32 33.68 62.9 s 0.75 GB 6.38 59.1 min 20.9 GB
✓ ✓ × × 32 36.10 16.8 s 0.75 GB 6.56 17.9 min 20.9 GB
✓ ✓ × ✓ 32 32.37 75.0 s 0.75 GB 6.19 73.7 min 20.9 GB
✓ ✓ ✓ × 32 34.29 17.0 s 0.75 GB 6.45 17.9 min 20.9 GB
✓ ✓ ✓ ✓ 32 31.15 75.1 s 0.75 GB 6.14 74.2 min 20.9 GB

Table 12: Full ablation results of LogART key components on CNN and vision transformer models
with 4-bit channel-wise weight quantization, evaluated in terms of top-1 accuracy on the ImageNet
dataset, and GPU runtime.

DBS SFS ABS LLR ResNet18 MobileNetV2 ViT-B DeiT-T

Acc(%) Time Acc(%) Time Acc(%) Time Acc(%) Time

× × × × 31.53 0.9 s 1.22 1.9 s 79.55 0.0 min 57.25 0.0 min
× × × ✓ 69.75 60.8 s 68.58 133.0 s 84.43 8.1 min 69.58 4.2 min
× × ✓ × 32.04 1.0 s 1.25 1.9 s 79.63 0.0 min 57.37 0.0 min
× × ✓ ✓ 69.78 61.0 s 68.62 133.4 s 84.50 8.1 min 69.65 4.2 min
× ✓ × × 67.13 2.8 s 58.43 5.6 s 83.25 0.6 min 64.32 0.3 min
× ✓ × ✓ 69.82 62.7 s 68.96 138.8 s 84.59 8.9 min 69.81 4.5 min
× ✓ ✓ × 67.29 2.8 s 58.48 5.6 s 83.31 0.6 min 64.38 0.3 min
× ✓ ✓ ✓ 69.89 62.8 s 69.02 138.9 s 84.67 8.9 min 69.85 4.5 min
✓ × × × 68.45 1.0 s 66.91 2.3 s 84.24 0.1 min 69.17 0.0 min
✓ × × ✓ 70.50 61.7 s 71.24 134.4 s 84.91 8.3 min 71.44 4.2 min
✓ × ✓ × 69.04 1.0 s 67.00 2.3 s 84.28 0.1 min 69.32 0.0 min
✓ × ✓ ✓ 70.59 61.5 s 71.25 134.6 s 84.94 8.3 min 71.48 4.3 min
✓ ✓ × × 69.69 10.8 s 69.47 22.0 s 84.61 2.8 min 70.29 1.4 min
✓ ✓ × ✓ 70.69 71.1 s 71.55 153.4 s 84.99 10.9 min 71.56 5.6 min
✓ ✓ ✓ × 69.89 11.6 s 69.86 24.4 s 84.67 2.8 min 70.40 1.4 min
✓ ✓ ✓ ✓ 70.79 72.3 s 71.62 156.6 s 85.02 10.9 min 71.62 5.6 min
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The full ablation results clearly illustrate the synergistic and cumulative effects of the LogART
components. While each module provides a benefit in isolation, they are most effective when
combined. A clear observation from Table 11 and Table 12 is that regardless of the starting component
or any combination of components, adding an additional module always leads to further improvement
in accuracy (evidenced by lower PPL on LLMs or higher top-1 accuracy on ImageNet). This
phenomenon highlights the complementary nature of our proposed modules, with each one targeted
to address a distinct challenge in logarithmic PTQ.

We further analyze the trade-off between the performance contribution and computational efficiency
of each component. DBS serves as the critical foundation for logarithmic PTQ, offering the best
efficiency-to-performance ratio. SFS demonstrates strong standalone robustness, particularly for
LLMs, restoring LLaMA2-7B from 60.16 PPL to 6.66. ABS functions best as a complementary
refinement, yielding consistent accuracy improvements with negligible GPU runtime and memory
overhead. Finally, LLR, operating at the finest element-wise granularity, stands out as a high-precision
powerhouse but comes at the cost of computational time.

The effectiveness of each component varies across model architectures. Compact models like
MobileNetV2 are vulnerable to quantization noise (1.22% baseline), making DBS critical for restoring
usable accuracy (66.91%). In contrast, large-scale architectures like vision transformers and LLMs
exhibit greater resilience to initial quantization errors. Notably, SFS has a more significant impact
on LLMs compared to CNNs and vision transformers, likely due to the widely observed outliers in
language models. ABS yields the most substantial gains on LLaMA2-7B, effectively addressing its
asymmetric weight distribution. For all models to restore near full-precision performance, LLR is
necessary for fine-grained refinement.

In summary, the ablation study validates the design of LogART as a unified framework. The
lightweight components (DBS, SFS, ABS) ensure robust functionality and efficient basis construction,
while LLR provides the necessary precision refinement. Combined, they yield the best accuracy
performance.
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E IMPACT OF THE CALIBRATION DATASET ON PERFORMANCE

E.1 IMPACT OF CALIBRATION DATASET SOURCE

The main experiments on LLMs, detailed in Table 3, utilize the C4 dataset for calibration to ensure
a fair comparison with prior SOTA methods. This section evaluates the robustness of LogART by
measuring its sensitivity to the calibration data source. We conduct a parallel set of experiments
where models are calibrated using the WikiText-2 dataset instead of C4. All other experimental
conditions, including the models and experimental settings, remain identical to those in the main text
to isolate the effect of the calibration data. The results of this comparison are summarized in Table
13.

Table 13: Comparison of performance (PPL) for per-channel 3-bit LogART on LLM weights using
32 random 2048-token segments for calibration from the C4 and WikiText-2 datasets.
Calib. Dataset OPT-125M OPT-1.3B OPT-6.7B LLaMA2-7B LLaMA3-8B

C4 PPL (WikiText-2) 31.52 15.53 11.11 6.31 8.19
PPL (C4) 29.98 17.29 13.37 8.38 12.44

WikiText-2 PPL (WikiText-2) 31.15 15.61 11.37 6.14 7.83
PPL (C4) 30.44 17.60 13.54 8.55 13.27

Table 13 reveals a distinct in-domain alignment pattern. Models generally achieve lower PPL
when the calibration source matches the test domain. This indicates that the calibration set helps
the quantization parameters adapt to the specific linguistic distribution of the target domain. The
performance difference stems from domain alignment and outlier coverage. C4 provides high
linguistic diversity, covering a wider range of activation outliers, which ensures better generalization.
In contrast, WikiText-2 offers a highly consistent, formal distribution, leading to slightly lower PPL
due to in-domain overfitting when used for both calibration and test.

Crucially, despite these variations, LogART exhibits strong robustness. The performance variance
across different calibration sources is marginal, and the model maintains high accuracy regardless
of the source. For general-purpose deployment and fair SOTA comparison, we recommend using
a large-scale, diverse dataset like C4. However, for tasks targeting a specific domain, utilizing
in-domain calibration data yields the best fine-grained performance.

E.2 IMPACT OF CALIBRATION DATASET SIZE

In addition to the choice of calibration data source, the size of the calibration dataset is also a critical
factor for the practicality and efficiency of a PTQ method. A method that requires a large number of
samples can be costly and time-consuming. In this section, we evaluate the sensitivity of LogART
performance to the number of calibration samples. The study is conducted on the OPT-125M and
LLaMA2-7B models with 3-bit per-channel weight quantization, using the calibration data from the
WikiText-2 dataset. We vary the number of calibration segments, testing sizes of 32 and 128 samples
(each containing 2048 tokens), and measure the resulting PPL. The results for OHS alone and for the
full LogART (OHS+LLR) are presented in Table 14.

Table 14: Comparison of performance (PPL) for different calibration dataset sizes under 3-bit
per-channel weight quantization using LogART.

Config. Segments OPT-125M LLaMA2-7B

PPL (WT-2)* PPL (C4) Runtime PPL (WT-2)* PPL (C4) Runtime

OHS 32 34.29 32.17 17.0 s 6.45 8.72 17.9 min
128 34.26 32.14 22.6 s 6.42 8.67 20.6 min

OHS+LLR 32 31.15 30.44 75.1 s 6.14 8.55 1.24 hr
128 31.17 30.38 79.9 s 6.09 8.52 1.30 hr

* WT-2 refers to the WikiText-2 dataset.
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F 3-BIT PTQ PERFORMANCE OF LOGART ON VISION TRANSFORMERS

In the main body of the paper (Table 5), we present the 4-bit weight quantization performance of
LogART on various vision transformer models. To further evaluate the robustness and effectiveness
of our method under more aggressive compression settings, this section provides the corresponding
results for 3-bit per-channel weight quantization. The experimental setup follows that of 4-bit
experiments in the main text, with only the target bitwidth changed. The comparison results are
presented in Table 15.

Table 15: Comparison of top-1 accuracy and GPU runtime (in minutes) for 3-bit and 4-bit per-channel
weight quantization with LogART on vision transformers.

W ViT-Small ViT-Base DeiT-Tiny DeiT-Base

Acc(%) Runtime Accc(%) Runtime Accc(%) Runtime Accc(%) Runtime

FP16 81.39 - 85.10 - 72.16 - 81.98 -
4-bit 81.06 6.7 85.02 10.9 71.62 5.6 81.92 10.9
3-bit 79.56 5.9 84.54 9.9 70.21 5.0 81.51 10.1
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G DETAILS OF LOGART AE

G.1 LOGART AE DESIGN

While our proposed multi-base logarithmic quantizer enhances accuracy compared with fixed Log2
quantizer, it indeed introduces implementation challenges for the AE. Our LogART AE, shown in
Figure 4, is customized to overcome these issues. It handles the computation involving

√
2 through

the integrated HAF, and also performs efficient on-chip decoding of the dynamic multi-base values
through a novel encoding and decoding scheme. The functionality is realized through a design
consisting of four primary modules: decoder, signed arithmetic logic, approximate computing logic,
and shifter.

The decoder and its associated encoding scheme efficiently manage the complexity introduced by
the multi-base logarithmic quantizer. In a 4-bit example, each weight is encoded with a 1-bit sign
and a 3-bit value code (w code) that maps to one of the n1 base-

√
2 larger-valued codes and n2

smaller-valued base-2 codes. This is accompanied by 4-bit per-channel metadata that stores n2 and a
parity flag (chk even). The chk even is decided by the parity of the maximum base-

√
2 exponent.

During computation, the decoder uses simple combinational logic to process this information and
output control signals for the multiplier-free AE: a 1-bit sign, 3 shift bits (Shift bits), and a 1-bit
approximation flag (Approx flag). Table 16 provides concrete examples of this process.

Table 16: Encoding and decoding scheme examples.
Weight Base After Scaling w code Shift bits Approx flag

Example 1: n2=4, chk even=1, Scaling Factor=2−8

2−8 2 20

Encoding ->

000

Decoding->

0 0
2−7 2 21 001 1 0
2−6 2 22 010 2 0
2−5 2 23 011 3 0

2−4.5
√
2 23.5 100 3 1

2−4
√
2 24 101 4 0

2−3.5
√
2 24.5 110 4 1

2−3
√
2 25 111 5 0

Example 2: n2=5, chk even=0, Scaling Factor=2−8

2−8 2 20

Encoding ->

000

Decoding->

0 0
2−7 2 21 001 1 0
2−6 2 22 010 2 0

2−5.5
√
2 22.5 011 2 1

2−5
√
2 23 100 3 0

2−4.5
√
2 23.5 101 3 1

2−4
√
2 24 110 4 0

2−3.5
√
2 24.5 111 4 1

The signed arithmetic logic operates based on the sign bit of the weight. For a positive weight, the
activation is used directly. For a negative weight, the module computes the two’s complement of the
activation to perform the negation. This module is a crucial part of the arithmetic logic that ensures
calculations involving negative weights are performed correctly and efficiently in hardware. The
output of the signed arithmetic logic is then passed to the approximate computing logic.

The approximate computing logic and the shifter operate together to execute the final stage of
the multiplier-free computation, supporting the multi-base feature of the LogART quantizer. The
approximate computing logic is specifically designed to handle computations involving the

√
2 base.

With K = 2 selected for our HAF due to its strong balance between hardware efficiency and accuracy,
the multiplication by

√
2 ≈ 1.5 is implemented as X + X/2. The approximate computing logic

takes an enabling signal, Approx flag, from the decoder. If disabled, the activation passes through
unchanged; otherwise, it adds the activation to half of its value. The shifter then performs the final
multiplication-like step. It takes the output from the approximate computing logic and applies a left
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bit-shift, with the number of shift positions determined by Shift bits from the decoder. This single
shift operation is equivalent to a multiplication by a power of 2, completing the computation and
producing the final output value.

G.2 LOGART AE BREAKDOWN

With all four modules working in concert, the LogART AE correctly computes the product for
any weight in its multi-base system, thereby realizing a fully multiplier-free design. The overall
area and power consumption for this complete AE are presented in Table 6. To provide a more
granular analysis, Table 17 further breaks down the hardware cost into the key functional modules, as
illustrated in the block diagram in Figure 4(e).

Table 17: Area and power breakdown of the LogART AE.
LogART AE Signed Decoder Approx(Add) Shift

Area (µm2) 53.2 (100%) 19.6% 17.5% 25.6% 37.3%
Power (µW) 3.45 (100%) 20.7% 21.1% 20.0% 38.2%

The hardware breakdown reveals that the shifter is the dominant contributor to hardware cost,
accounting for 37.3% of the total area and 38.2% of the power. This result is expected, as the variable
shifter serves as the core computational unit in a LogART AE. The next largest contributors are the
modules that enable our multi-base scheme: the approximate computing logic, which implements
the hardware-friendly operation for the

√
2 base, is the second-largest by area (25.6%), while the

decoder is the second-largest consumer of power (21.1%). Together, these two modules represent the
necessary hardware investment to support the flexibility and high accuracy of our multi-base design.
This breakdown validates our design choices, showing that even with this essential overhead, the
LogART AE remains compact and power-efficient overall.
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H THE USE OF LLMS

During the preparation of this manuscript, the authors utilized an AI language model to assist with
improving the grammar, clarity, and overall readability of the text. The role of LLMs was strictly
limited to that of a writing assistant for language polishing.
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