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Abstract
We study causal representation learning, the task of inferring latent causal variables
and their causal relations from high-dimensional functions (“mixtures”) of the vari-
ables. Prior work relies on weak supervision, in the form of counterfactual pre- and
post-intervention views or temporal structure; places restrictive assumptions, such
as linearity, on the mixing function or latent causal model; or requires partial knowl-
edge of the generative process, such as the causal graph or intervention targets. We
instead consider the general setting in which both the causal model and the mixing
function are nonparametric. The learning signal takes the form of multiple datasets,
or environments, arising from unknown interventions in the underlying causal
model. Our goal is to identify both the ground truth latents and their causal graph
up to a set of ambiguities which we show to be irresolvable from interventional data.
We study the fundamental setting of two causal variables and prove that the obser-
vational distribution and one perfect intervention per node suffice for identifiability,
subject to a genericity condition. This condition rules out spurious solutions that
involve fine-tuning of the intervened and observational distributions, mirroring sim-
ilar conditions for nonlinear cause-effect inference. For an arbitrary number of vari-
ables, we show that at least one pair of distinct perfect interventional domains per
node guarantees identifiability. Further, we demonstrate that the strengths of causal
influences among the latent variables are preserved by all equivalent solutions,
rendering the inferred representation appropriate for drawing causal conclusions
from new data. Our study provides the first identifiability results for the general
nonparametric setting with unknown interventions, and elucidates what is possible
and impossible for causal representation learning without more direct supervision.

1 Introduction
Causal representation learning (CRL) seeks to describe high-dimensional, low-level observations
through a small number of interpretable, causally-related latent variables [108, 110]. In doing so, its
goal is to combine the strengths of classical causal inference with those of modern machine learning.
A causal model represents an entire family of distributions arising from interventions on a system of
variables [10, 95, 100]. This provides a principled way for reasoning about distribution shifts, which
facilitates out-of-distribution generalization and planning [9, 64, 96, 102]. However, causal models
require that most (or at least some) relevant causal variables are directly observed. While reasonable
in domains such as economics [7], social [91] or biomedical science [48, 57], this assumption
has challenged the application of causal methodology to complex and high-dimensional data [85].
Machine learning, on the other hand, has proven successful at learning useful “representations”—
latent vectors generating the observables via some nonlinear map—of high-dimensional data such as
images, video, or text [16, 20, 77, 106]. However, most methods rely on independent and identically
distributed (i.i.d.) data and only extract associational information. As a consequence, they often fail
under distribution shifts and do not generalize beyond the training distribution [107], as exhibited by
their reliance on spurious correlations [13, 87] or their vulnerability to adversarial examples [40, 119].
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Figure 1: (Left) Data-Generating Process for Causal Representation Learning (CRL). Observations X are
generated by applying a nonlinear mixing function f to a set of causal latent variables V = {V1, ..., Vn}, which
are related through a structural causal model (SCM) with independent exogenous variables U = {U1, ..., Un};
illustration by Ana Martín Larrañaga. (Right) Comparison to Structure Learning. The causal direction between
two unconfounded observed variables (top) is uniquely identified from a single intervention [37]; for CRL (bot-
tom), this is not the case, as the nonlinear mixing introduces additional ambiguity due to spurious representations.
Shaded nodes are observed, white ones unoberved, and interventions highlighted as red diamonds.

Identifiability. It has been argued that to address these shortcomings, we ought to learn
representations endowed with causal model semantics. However, a major challenge to this
goal is that different representations can explain the same data equally well. Strictly simpler
representation learning tasks, such as disentanglement [14] or independent component analysis
(ICA) [53], are already non-identifiable in general [54, 83]. Identifiability studies are thus required to
characterize additional assumptions under which the desired latent variables can be provably recov-
ered [4, 17, 21, 31, 42, 43, 45, 46, 51, 52, 55, 56, 66, 69, 70, 75, 76, 84, 90, 101, 112, 114, 127, 141].
In CRL, we need not only identify the latents, but also the causal graph encoding their relations. Even
in the fully observed case, this task of causal discovery, or structure learning, is very challenging:
the graph can only be recovered up to Markov equivalence [115] based only on (observational) i.i.d.
data [116], meaning that the direction of some edges cannot be determined. For CRL, the task gets
strictly harder. For instance, if the causal latents Vi in Fig. 1 (Left) form a valid representation, then
replacing them by the independent exogeneous Ui might be considered an equally valid alternative.

What sets causal representations apart? A crucial feature of causal variables is that they are
the ones on which interventions are defined and whose relations we are interested in [95]. Causal
discovery and CRL thus often rely on non-i.i.d. data linked to interventions on the underlying causal
variables [59, 72]. Unless all variables are subject to intervention, however, some fundamental
differences between the fully observed and representation learning settings in the level of ambiguity
in the graph remain [117], as illustrated in Fig. 1 (Right). In a sense, the non-identifiabilities of
representation and structure learning combine, and both need to be addressed in conjunction.

Problem Setting. We study the general nonparametric CRL problem (§ 2.1) in which both the
causal mechanisms and the mixing function are completely unconstrained. Our goal (§ 2.2) is to
identify the latent causal variables up to element-wise nonlinear rescaling and their graph up to
isomorphism (Defn. 2.6). As motivated above, doing so without further supervision requires access to
interventional data. To this end, we consider learning from heterogeneous data from multiple related
domains, or environments, that arise from interventions in a shared underlying causal model (§ 2.3).

Contributions. Our main contributions are theoretical in nature (§ 3). First, we establish the mini-
mality of the targeted equivalence class (Prop. 3.1) in the sense that its ambiguities cannot be resolved
from interventional data. We then present our main identifiability results. For the case of two latent
causal variables, we show that an observational environment and one for each perfect intervention on
either variable suffice (Thm. 3.2)—provided that the intervened and unintervened mechanisms are not
“fine-tuned” to each other, which we formalize in the form of a genericity condition (3.2). For any
number of latent causal variables, we prove that access to pairs of environments corresponding to two
distinct perfect interventions on each node guarantees identifiability (Thm. 3.4). We then question
how to use or interpret causal representations (§ 4), and show that certain quantities, such as the
strengths of causal influences among variables, are preserved by all equivalent solutions (Thm. 4.2).
We sketch possible learning objectives (§ 5), and empirically investigate training different generative
models (§ 6), finding that only those based on the correct causal structure attain the best fit and
identify the ground truth. We conclude by discussing limitations and extensions of our work (§ 7).
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Related Work on Multi-Environment CRL. Most closely related are recent identifiability studies
which also leverage multiple environments arising from single node interventions [5, 22, 117, 122],
thus mirroring in different interventional setups the result of Brehmer et al. [18] based on
counterfactual, multi-view data, which is harder to obtain. Squires et al. [117] provide results
for linear causal models and linear mixing; Ahuja et al. [5] consider nonlinear causal models and
polynomial mixings, subject to additional constraints on the latent support [125]; and Varici et al.
[122] employ a score-based approach for nonlinear causal models and linear mixing. The concurrent
work of Buchholz et al. [22] extends the results of Squires et al. [117] to general nonlinear mixings
and linear Gaussian causal models. Liu et al. [82] leverage recent advances in nonlinear ICA [55, 65]
to identify a linear Gaussian causal model with context-dependent weights and nonlinear mixing
from sufficiently diverse environments. A more extensive discussion of other related works and a
detailed comparison of existing results with the present study are provided in Appx. A and Tab. 1.

2 Nonparametric Causal Representation Learning
In this section, we describe the considered problem setting and state our main assumptions. First,
we specify the assumed data generating process (§ 2.1) and learning task in the form of a target
identifiability class (§ 2.2). We then demonstrate the hardness of our task from i.i.d. data or imperfect
interventions and use this to motivate a multi-environment approach with perfect interventions (§ 2.3).

Notation. We use upper-case X for random variables and lower-case x for their realizations. Bold
uppercase X denotes random vectors and lowercase x their realizations. We assume throughout that
all distributions PX possess densities p(x) with respect to (w.r.t.) the Lebesgue measure. We denote
the pushforward of PX through a measurable function f by f∗(PX), and write [n] = {1, ..., n}.

2.1 Data Generating Process

The assumed data generating process consists of a latent causal model and a mixing function,
see Fig. 1 (left). For the former, we build on the structural causal model (SCM) framework [95, 100].
Definition 2.1 (Latent SCM). Let V = {V1, ..., Vn} denote a set of causal “endogenous” variables,
with each Vi taking values in R, and let U = {U1, ..., Un} denote a set of mutually independent
“exogenous” random variables. The latent SCM consists of a set of structural equations

{Vi := fi(Vpa(i), Ui)}ni=1. (2.1)

where Vpa(i) ⊆ V \ {Vi} are the direct causes, or causal parents, of Vi, and fi are deterministic func-
tions; and a fully factorized joint distribution PU over the exogenous variables. The associated causal
diagram G, a directed graph with vertices V and edges Vj → Vi iff. Vj ∈ Vpa(i), is assumed acyclic.

By acyclicity, recursive substitution of the assignments in (2.1) yields the reduced form V =fRF(U).
The SCM thus induces a unique distribution PV over the endogenous variables, given by the
pushforward of PU via (2.1), that is, PV = fRF*(PU ). By construction, PV is Markovian w.r.t. the
causal graph G [95, 100], meaning that its density obeys the causal Markov factorization:

p(v1, . . . , vn) =
∏n
i=1 pi(vi | vpa(i)). (2.2)

We place the following additional assumption on the distribution PV induced by the SCM.
Assumption 2.2 (Faithfulness). The only conditional independence relations satisfied by PV are
those implied by {Vi ⊥⊥ Vnd(i) | Vpa(i)}i∈[n], where Vnd(i) denotes the non-descendants of Vi in G.

Asm. 2.2 ensures a one-to-one correspondence between (conditional) independence in PV and
graphical separation in G and is a standard assumption in causal discovery [115]. Faithfulness rules
out cancellations of influences along different paths, which occurs with probability zero for random
path-coefficients [121]. It can thus also be viewed as a minimality or genericity assumption.

In contrast to classical causal inference, we assume that both the exogenous variables U and the
endogenous causal variables V are unobserved. Instead, we will only have access to d-dimensional
nonlinear mixtures X of V . We therefore make the following additional assumption.
Assumption 2.3 (Known n). The number n of latent causal variables is known.

Next, we specify the relationship between the unobserved causal variables V and the observed X .
Definition 2.4 (Mixing function). The observations X are deterministically generated from V by
applying a mixing function f : Rn → Rd to V , that is, X := f(V ).

3



The terminology and setting of a deterministic mixing is rooted in the nonlinear ICA literature [56].
In deep generative models, it is commonly relaxed by considering additive noise in Defn. 2.4 [65, 90].
For representation learning scenarios, we are particularly interested in the case n≪ d. To allow for re-
covery of V from X , we assume that f is invertible, which is a standard assumption for identifiability.
Assumption 2.5 (Diffeomorphic mixing). f is a diffeomorphism1 onto its image Im(f) = X ⊆ Rd.

2.2 Learning Target: The CRL Identifiability Class ∼CRL

Our goal is to infer the underlying latent causal variables V = f−1(X) and their causal relations. We
therefore consider the true unmixing function f−1 and the causal graph G our joint learning target:
f−1 informs us how to map observations X to causal variables V , and G tells us how to factorise
the implied joint p(v) into the causal mechanisms pi(vi | vpa(i)) from (2.2). Given only observations
of X , this is a challenging task since neither V nor G are directly observed or known a priori.

When is a candidate solution (h,G′) that satisfies a given learning objective (such as maximizing the
likelihood, possibly subject to additional constraints) guaranteed to match the ground truth (f−1, G)?
This is the subject of identifiability studies and the main focus of our work. A statistical model
P = {pθ : θ ∈ Θ} with parameter space Θ is identifiable if the mapping θ 7→ pθ is injective [78]. For
representation learning tasks, full identifiability is often not attainable, as there are some fundamental
ambiguities that cannot be resolved. One therefore typically instead considers identifiability up to an
appropriately chosen equivalence class in the model space [2, 65, 127].

For the assumed data generating process (§ 2.1), the order of the causal variables is arbitrary, since V is
unobserved. We can therefore assume without loss of generality (w.l.o.g.) that the Vi’s are partially or-
dered w.r.t. G, that is, Vi → Vj =⇒ i < j.2 Learning G thus reduces to inferring whether the edges
{V1, . . . , Vi−1} → Vi exist for i = 2, . . . , n. The only remaining permutation ambiguity arises from
permutations π that preserve the partial order: for example, ifG is given by V1 → V3 ← V2, the order
of V1 and V2 cannot be uniquely determined without further assumptions. Moreover, the scaling of
the causal variables is also arbitrary: any invertible element-wise transformation can be undone as part
of f . We therefore define the desired identifiability class through the following equivalence relation.3

Definition 2.6 (∼CRL-identifiability). LetH be a space of unmixing functions h : X → Rn and let G
be the space of DAGs over n vertices. Let ∼CRL be the equivalence relation onH× G defined as

(h1, G1) ∼CRL (h2, G2) ⇐⇒ (h2, G2) = (Pπ−1 ◦ ϕ ◦ h1, π(G1)) (2.3)

for some element-wise diffeomorphism ϕ(v) = (ϕ1(v1), . . . , ϕn(vn)) of Rn and a permutation π
of [n] such that π : G1 7→ G2 is a graph isomorphism and Pπ the corresponding permutation matrix.
Remark 2.7. When G has no edges, any permutation is admissible and ∼CRL reduces to the standard
notion of identifiability up to permutation and element-wise reparametrisation of nonlinear ICA [56].
The ground truth (f−1, G) is identified up to∼CRL by a given learning objective if any candidate solu-
tion (h,G′) satisfies (h,G′) ∼CRL (f−1, G). We seek to discover suitable conditions that ensure this.

2.3 Multi-Environment Data

Given only a single dataset of i.i.d. observations from PX , there is no hope for ∼CRL-identifiability.
Even for observed V (i.e., with n = d and known f = id), G can only be identified up to Markov
equivalence [115]. With unknown mixing f , the degree of observational non-identifiability gets even
worse: for example, by using the reduced form of the SCM (§ 2.1) we can express X in terms of the
latent exogenous variables U via X = f(V ) = f ◦ fRF(U) [108]. This gives rise to a “spurious ICA
solution” (f−1

RF ◦f−1, GICA) where GICA denotes the empty graph with independent components. Due
to the non-identifiability of nonlinear ICA [54, 83], however, we cannot even learn the composition
f◦fRF, let alone separate it into its constituents f and fRF to isolate the intermediate causal variables V .

Motivated by these challenges to identifiability from i.i.d. data, we instead consider learning from
multiple environments e ∈ E . That is, we assume access to heterogenous data from multiple distinct
distributions P eX . Environments can arise, for example, from different experimental settings or

1A diffeomorphism is a bijective function f such that both f and f−1 are continuously differentiable.
2If they were not in such order to begin with, we could apply an appropriate permutation π̃ to V and incorpo-

rate the inverse permutation into the unknown mixing f without affecting X = f(V ) = (f◦π̃−1)(π̃(V )) [117].
3∼CRL satisfies symmetry and transitivity because permutations and element-wise functions commute.
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Figure 2: Multi-Environment Setup with Single-Node Perfect Interventions and Shared Mixing Function.
Illustration of the considered multi-environment setup for n = 2 causal variables V = {V1, V2} with graph G
given by V1 → V2, shared mixing function f , and environments E = {e0, e1, e2}, corresponding to the
observational setting (e0) and perfect stochastic interventions on V1 (in e1) and V2 (in e2). The learnt unmixing
function, or encoder, is denoted by h, and the inferred latent representation by Z = h(X). The corresponding
inferred latent distributions Qei

Z = h∗(P
ei
X ) are Markovian w.r.t. the candidate graph G′ (here, equal to G).

Since the intervention targets are not known, they may in principle differ in Qe
Z as shown here. However, as

we prove in Thm. 3.2, such misalignment is only possible if a certain genericity condition (3.2) is violated.

correspond to broader contexts such as climate or time. Previous work has shown that this setting can,
in principle, provide useful causal learning signals [5, 8, 19, 32, 34, 47, 50, 59, 71–73, 82, 89, 98, 99,
102, 104, 109, 117, 120, 122]. However, multi-environment data is not necessarily useful if the corre-
sponding distributions P eX are allowed to differ in arbitrary ways. What makes this setting interesting
is the assumption that certain parts of the causal generative process are shared across environments.

Here, we assume that all environments share the same invariant mixing function and underlying
SCM, and that any distribution shifts arise from interventions on some of the causal mechanisms.4
General interventions can be modelled in SCMs by replacing some of the equations in (2.1) by new
assignments Vi := f̃i(Vpa(i), Ũi), resulting in “intervened” mechanisms p̃i(vi | vpa(i)) replacing
the corresponding conditionals pi(vi | vpa(i)) in (2.2) [29, 36, 95]. We summarise this as follows.
Assumption 2.8 (Shared mixing and mechanisms). Each environment e shares the same mixing f ,

P eX = f∗(P
e
V )

and each P eV results from the same SCM through an intervention on a subset of mechanisms Ie ⊆ [n]:

pe(v) = pe(v1, ..., vn) =
∏
i∈Ie

pei

(
vi | vpa(i)

) ∏
j∈[n]\Ie

pj

(
vj | vpa(j)

)
.

Importantly, the intervention targets Ie are not assumed to be known.

An intervention on some Vi that fully removes the influence from its parents Vpa(i) is referred to
as perfect, otherwise as imperfect. It has been shown that imperfect interventions are generally
insufficient for full identifiability [18], even in the linear case [117]. This is intuitive: if arbitrary
imperfect interventions were allowed, including ones which preserve fi(Vpa(i), ·) and only replace Ui
with some new Ũi, then the spurious ICA solution (f−1

RF ◦f−1, GICA) should be indistinguishable from
the ground truth. In line with prior work [5, 18, 117, 122], we therefore assume perfect interventions.
Assumption 2.9 (Perfect interventions). For all e ∈ E and i ∈ Ie, we have pe(vi | vpa(i)) = pe(vi).

Based on the principle of independent causal mechanisms [100, 109], the sparse mechanism shift
hypothesis [98, 110] posits that distribution changes tend to manifest themselves in a sparse or local
way in the causal factorization. In this spirit, we will assume single-node (“atomic”) interventions,
|Ie| = 1, for our main results, as also required for existing results [5, 18, 117, 122].

As motivated in § 2.2, given data from {P eX}e∈E we consider candidate solutions of the form
(h,G′) where h is an unmixing function, or encoder, which maps observations X to the inferred
latents Z = h(X), and G′ is causal graph capturing the relations among the Zi. The corresponding
distributions of the inferred latents are thus given by the push-forward

QeZ = h∗(P
e
X) = (h ◦ f)∗P eV

The multi-environment setup with unknown single-node perfect interventions is illustrated in Fig. 2.
4One could also say that there exists only one environment and each dataset corresponds to an intervention.
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3 Identifiability Theory
We start by showing that identifiability up to ∼CRL is, in fact, the best we can hope for when learning
from interventional data, without any more direct forms of supervision. To this end, we state the
following result, which is presented more formally and proven in Appx. B.
Proposition 3.1 (Minimality of ∼CRL; informal). Let Z be any representation that is ∼CRL equivalent
to V , with G′ = π(G) the associated DAG. Then for any intervention on VI ⊆ V in G, there exists
an equally sparse intervention on Zπ(I) ⊆ Z in G′ inducing the same observed distribution on X .

We now present our identifiability results. We first study the most fundamental bivariate case with
two latent causal variables V1 and V2. This can loosely be seen as the CRL analogue of the widely
studied cause-effect problem (X→Y or Y→X?) in classical structure learning [88, 100].
Theorem 3.2 (Bivariate identifiability up to ∼CRL from one perfect stochastic intervention per node).
Suppose that we have access to multiple environments {P eX}e∈E generated as described in § 2
under Asms. 2.2, 2.5, 2.8 and 2.9 with n = 2. Let (h,G′) be any candidate solution such that the
inferred latent distributions QeZ = h∗(P

e
X) of Z = h(X) and the inferred mixing function h−1

satisfy the above assumptions w.r.t. the candidate causal graph G′. Assume additionally that

(A1) all densities pe and qe are continuously differentiable and fully supported on Rn;

(A2) we have access to a known observational environment e0 and one single node perfect interven-
tion for each node, with unknown targets: there exist n+1 environments E = {ei}ni=0 such that
Ie0 = ∅ and for each i ∈ [n] we have Iei = {π(i)} for an unknown permutation π of [n];

(A3) for all i ∈ [n], the intervened mechanisms p̃i(vi) differ from the corresponding base
mechanisms pi(vi | vpa(i)) everywhere, in the sense that

∀v :
∂

∂vi

p̃i(vi)

pi(vi | vpa(i))
̸= 0 ; (3.1)

(A4) (“genericity”) the base and intervened mechanisms are not fine-tuned to each other, in the
sense that there exists a continuous function φ : R+ → R for which

Ev∼P e0
V

[
φ

(
p̃2(v2)

p2(v2 | v1)

)]
̸= Ev∼P e1

V

[
φ

(
p̃2(v2)

p2(v2 | v1)

)]
(3.2)

Then the ground truth is identified in the sense of Defn. 2.6, that is, (f−1, G) ∼CRL (h,G′).

Proof sketch (full proof in Appx. C.2). Consider V1 → V2 (the proof for V1 ̸→ V2 is similar). Let
ψ = f−1 ◦ h−1 : Rn → Rn such that V = ψ(Z).5 By the change of variable formula, for all z

qe(z) = pe(ψ(z))
∣∣detJψ(z)∣∣ (3.3)

where (Jψ(z))ij = ∂ψi

∂zj
(z) denotes the Jacobian of ψ. We consider two separate cases, depending on

whether the intervention targets in qei for ei ∈ {e1, e2} match those in pei (Case 1) or not (Case 2).

Case 1: Aligned Intervention Targets. According to Asm. 2.8 and (A2), (3.3) applied to the known ob-
servational environment e0 and the interventional environments e1, e2 leads to the system of equations:

q1(z1)q2(z2 | zpa(2;G′)) = p1
(
ψ1(z)

)
p2
(
ψ2(z) | ψ1(z)

) ∣∣detJψ(z)∣∣ (3.4)

q̃1(z1)q2(z2 | zpa(2;G′)) = p̃1
(
ψ1(z)

)
p2
(
ψ2(z) | ψ1(z)

) ∣∣detJψ(z)∣∣ (3.5)

q1(z1)q̃2(z2) = p1
(
ψ1(z)

)
p̃2
(
ψ2(z)

) ∣∣detJψ(z)∣∣ (3.6)

where zpa(2;G′) denotes the parents of z2 in G′. Taking quotients of (3.5) and (3.4) yields

q̃1
q1

(z1) =
p̃1
p1

(ψ1(z))
∂

∂z2=⇒ 0 =

(
p̃1
p1

)′ (
ψ1(z)

) ∂ψ1

∂z2
(z)

(A3)
=⇒ ∂ψ1

∂z2
(z) = 0 . (3.7)

Thus V1 = ψ1(Z1) and q1(z1) = p1(ψ1(z1))
∣∣∣∂ψ1

∂z1
(z1)

∣∣∣. Substitution into (3.6) yields

q̃2(z2) = p̃2
(
ψ2(z1, z2)

) ∣∣∣∣∂ψ2

∂z2
(z1, z2)

∣∣∣∣ (3.8)

5By Asm. 2.5, f , h, and thus also h◦f are diffeomorphisms. Hence, ψ is well-defined and also diffeomorphic.
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where we have used that, according to (3.7), Jψ is triangular. According to (3.8), for all z1, the
mapping z2 7→ ψ2(z1, z2) is measure preserving for q̃2 and p̃2. By Lemma C.1 [18, § A.2, Lemma 2],
it follows that ψ2 must be constant in z1.6 Hence, ψ is an element-wise function. Finally, G = G′ fol-
lows from faithfulness (Asm. 2.2), for otherwise (V1, V2) = (ψ1(Z1), ψ2(Z2)) would be independent.

Case 2: Misaligned Intervention Targets. If G′ ̸= G, a similar argument to Case 1 (with the roles
of z1 and z2 interchanged) also yields a contradiction to faithfulness. This leaves G = G′. Writing
down the system of equations similar to (3.4)–(3.6), and then taking ratios of e1 and e2 with e0 yields

q̃1
q1

(z1) =
p̃2
(
ψ2(z)

)
p2
(
ψ2(z) | ψ1(z)

) and
q̃2(z2)

q2(z2 | z1)
=
p̃1
p1

(
ψ1(z)

)
. (3.9)

These conditions highlight the misalignment in intervention targets (see Fig. 2). Unlike in Case 1,
they do not directly imply that some elements of Jψ need to be zero, that is Z can be arbitrarily mixed
w.r.t. V . However, (3.9) imposes constraints on the form of ψ that, by exploiting the invariance of
q1 across e0 and e1 while p1 changes to p̃1, can ultimately be shown to only be satisfied if the two ex-
pectations in (3.2) are equal for all continuous φ. However, such fine-tuning is ruled out by (A4).

Remark 3.3. The main difficulty of the proof is that (3.9) may, in principle, hold when (p, p̃, q, q̃)
and ψ are completely unconstrained. This does not arise in prior work if the intervention targets are
known [80, 81, 126] (Case 1), or the densities or mixing are parametrically constrained [3, 117, 122].

On the Genericity Condition (A4). The condition in (3.2) contrasts expectations of the same quantity
w.r.t. the observational distribution P e0V and the interventional distribution P e1V corresponding to an
intervention on V1 that turns p1 into p̃1. The shared argument, on the other hand, is a function of the
ratio between the intervened mechanism p̃2 and its base mechanism p2. While the two expectations are
always equal for linear φ, other choices imply non-trivial constraints. For instance, φ(y) = y2 yields∫ (

p̃1(v1)− p1(v1)
) ∫ p̃2(v2)

2

p2(v2 | v1)
dv2 dv1 ̸= 0 .

Since p1 ̸= p̃1 by assumption (A3), we argue that (A4) should generally hold for randomly chosen
(p1, p2, p̃1, p̃2) and can only be violated if they are fine-tuned to each other. It can thus be viewed
as encoding some notion of genericity—in line with the principle of independent causal mecha-
nisms [15, 43, 61, 100, 109], but also involving the intervened mechanisms. Interestingly, related
genericity conditions also arise in the study of nonlinear cause-effect inference from observational
data, where identifiability is often obtained up to a set of pathological (“fine-tuned”) spurious so-
lutions satisfying a partial differential equation involving the original mechanisms [49, 58, 118, 137].
Further, we note that φ in (3.2) can also be thought of as a witness function of genericity, similar
to witness functions in kernel-based two sample and independence testing [44].

Next, we provide our identifiability result for an arbitrary number of causal variables.

Theorem 3.4 (Identifiability up to ∼CRL from two paired perfect stochastic interventions per node).
Suppose that we have access to multiple environments {P eX}e∈E generated as described in § 2
under Asms. 2.2, 2.3, 2.5, 2.8 and 2.9. Let (h,G′) be any candidate solution such that the inferred
latent distributions QeZ = h∗(P

e
X) of Z = h(X) and the inferred mixing function h−1 satisfy the

above assumptions w.r.t. the candidate causal graph G′. Assume additionally that

(A1) all densities pe and qe are continuously differentiable and fully supported on Rn;

(A2’) we have access to at least one pair of single-node perfect interventions per node, with unknown
targets: there exist m ≥ n known pairs of environments E = {(ej , e′j)}mj=1 such that for each
i ∈ [n] there exists some unknown j ∈ [m] for which Iej = Ie

′
j = {i};

(A3’) for all i ∈ [n], the intervened mechanisms p̃i(vi) and ˜̃pi(vi) differ everywhere, in the sense that

∀vi :
(
˜̃pi
p̃i

)′

(vi) ̸= 0 ; (3.10)

Then the ground truth is identified in the sense of Defn. 2.6, that is, (f−1, G) ∼CRL (h,G′).
6This step is where the assumption of perfect interventions (Asm. 2.9) is leveraged: the conclusion would not

hold for arbitrary imperfect interventions for which (3.8) would involve q̃2(z2 | z1) and p2
(
ψ2(z1, z2) | ψ1(z1)

)
.
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Proof sketch (full proof in Appx. C.3). By considering ratios between ej and e′j , taking partial
derivatives w.r.t. zl, and using assumptions (A3’), we can identify a subset En ⊆ E of exactly n
pairs of environments corresponding to distinct intervention targets in p (for otherwise ψ cannot be
invertible). For (ei, e′i) ∈ En, w.l.o.g. fix the intervention targets in p to Iei = Ie′i = {i} and let π be
a permutation of [n] such that π(i) denotes the inferred intervention target in q that by (A2’) is shared
across (ei, e′i). By the same argument as before, we must have Vi = ψi(Zπ(i)), that is, ψ is a per-
mutation composed with an element-wise function. It remains to show that π is a graph isomorphism,
that is, Vi → Vj in G ⇐⇒ Zπ(i) → Zπ(j) in G′. We prove =⇒ ; the other direction is analogous.
Suppose for a contradiction that there exist (i, j) such that Vi → Vj in G, but Zπ(i) ̸→ Zπ(j) in G′.
Consider ei in which there are perfect interventions on Zπ(i) and Vi. For Zπ(k) ∈ Zpa(π(j);G′), let
Ṽk = ψk(Zπ(k)) and denote Ṽ = ∪kṼk ⊂ V \ {Vi, Vj}. Since Zπ(i) and Zπ(j) are d-separated by
Zpa(π(j);G′) in the post-intervention graph G′

Zπ(i)
with arrows pointing into Zπ(i) removed [95],

it follows by Markovianity of q w.r.t. G′ that Zπ(i) ⊥⊥ Zπ(j) | Zpa(π(j);G′) in QeiZ . By applying the
corresponding diffeomorphic functions ψi, it follows from Lemma C.2 in Appx. C.1 that Vi ⊥⊥ Vj | Ṽ
in P eiV . This violates faithfulness (Asm. 2.2) of PV to G since Vi and Vj are d-connected in GV i

.

(A2’) states that we know that a pair of datasets corresponds to two distinct interventions on the same
underlying variable, even though we may not know the exact target of the intervention. This situation
could arise, for example, if both datasets are collected under the same experimental setup but with
varying experimental parameters. We stress that this is different from data consisting of pairs of
views (x, x̃) sharing the values of some variables, which is counterfactual in nature [4, 18, 123].
One of the main challenges for our analysis (compared to a counterfactual multi-view setting) thus
stems from the lack of correspondences across observations from different datasets. We also stress
that a purely observational environment is not needed in this case, cf. (A2) in Thm. 3.2.

(A3’) states that the intervention mechanisms are distinct in that their ratio is strictly monotonic, simi-
lar to (3.1) in (A3). This is a slightly stronger version of the assumption of interventional discrepancy
proposed by Wendong et al. [126],7 which has been shown to be necessary for identifiability even if
the graph G is known. For Gaussian p̃i, ˜̃pi, (A3’) is satisfied, for example, by a shift in mean. In the
proofs, this is used to show that ψ must be an element-wise function, see (3.7). Intuitively, if p̃i = ˜̃pi
in some open set for more than one i, then the underlying variables can be nonlinearly mixed by a
measure-preserving automorphism within this set without affecting the observed distributions [126].

4 Interpreting Causal Representations
Suppose that we succeed in identifying V and G up to ∼CRL (Defn. 2.6). How can we use or interpret
such a causal representation? Since the scale of the variables is arbitrary (§ 2.2), we clearly cannot
predict the exact outcomes of interventions. We therefore seek causal quantities that are preserved by
the irresolvable ambiguities of ∼CRL. A prime candidate for this are interventional causal notions
defined in terms of information theoretic quantities [28] and in particular the KL divergence DKL.
Definition 4.1 (Causal influence; based on Defn. 2 of Janzing et al. [62]). Let PV be Markovian
w.r.t. a DAG G with vertices V . For any Vi → Vj in G, the causal influence of Vi on Vj is given by

CPV
i→j := DKL

(
PV

∥∥ P i→j
V

)
, where pi→j

j

(
vj | vpa(j)\{i}

)
=

∫
pj
(
vj | vpa(j)

)
pi(vi) dvi

and P i→j
V is the interventional distribution arising from replacing the jth mechanism by pi→j

j .8

The following result, proven in Appx. C.4, states that the causal influences are invariant to reparametri-
sation and equivariant to permutations, the two irresolvable ambiguities of the∼CRL equivalence class.
Theorem 4.2 (Preservation of causal influences under ∼CRL). Let PV be Markovian w.r.t. G, let π be
a graph isomorphism of G, and let ϕ be an element-wise diffeomorphism. Let Z = Pπ−1 ◦ϕ(V ) and
denote its induced distribution by QZ . Then for any Vi → Vj in G we have CPV

i→j = CQZ

π(i)→π(j).

Thm. 4.2 implies that the strength of causal relations among variables in the inferred graph carry mean-
ing. They can thus be used to uncover changes to the latent causal mechanisms underlying different
experimental datasets, for example, to gain scientific insights when combined with domain knowledge.

7Cf. the interventional regularity assumption of Varici et al. [122, Asm. 2] which instead considers partial
derivatives w.r.t. the parents and is related to c-faithfulness [59, Defn. 7].

8Intuitively, this intervention captures the process of removing the arrow Vi → Vj inG and “feeding” the con-
ditional p(vj | vpa(j)) with an independent copy of Vi, distributed according to its marginal, see [62] for details.
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Figure 3: Empirical Comparison of Correctly and Incorrectly Specified Normalizing Flow-Based Models.
For n = 2 latent causal variables with graph G given by V1 → V2, we compare a generative model based on
the correct causal graph G′ = G and intervention targets (blue) to other generative models assuming the wrong
graph G′ ̸= G or misaligned intervention targets (yellow, red, purple). We show mean correlation coefficients
(MCCs) between the learned and ground truth latents (Left) and the difference in validation model log-likelihood
between the well-specified and misspecified models (Right). Each violin plot is based on 50 different ground
truth data generating processes; the horizontal lines indicate the minimum, median and maximum values.

5 Learning Objectives
While our main focus is on studying identifiability, our theoretical insights also suggest approaches to
learning causal representations from finite interventional datasets sampled from {P eX}e∈E . The main
idea is to fit the data in a way that preserves the sparsity of interventions [98, 110] by employing the
same (un)mixing function and sharing mechanisms across environments (Asm. 2.8). We sketch two
approaches, which, according to our theory, should both asymptotically identify the ground truth up
to ∼CRL if the set of available environments E is sufficiently diverse (and the other assumptions hold).
• Autoencoder Framework: Jointly learn an encoder h, a graph G′, and intervention targets Ie

such that the encoded latents Z = h(X) can be used to reconstruct the observed X across
all environments, while ensuring all but the intervened mechanisms are shared. Using E as an
environment indicator, the latter corresponds to the constraint Zi ⊥⊥ E | Zpa(i;G′) for i ̸∈ Ie,
implementable, for example, through a suitable conditional independence test [39, 94, 138].

• Generative Modelling Approach: Fit a base generative model (G′, p, f) and intervention models
(Ie, {pei}i∈Ie)e∈E by maximizing the likelihood of the multi-environment data. For example, given
a candidate graph G′ and candidate intervention targets {Ie}e∈E , learn the base and intervened
mechanisms and mixing; then pick the graph and intervention targets that achieve the best fit.

6 Experiments
Setup. We experimentally pursue the second, generative approach. Specifically, we model the mixing
function generating X from Z as a normalizing flow [30, 93] with different environment-specific
base distributions, determined by the underlying causal graph, intervention targets, and (learnt) base
and intervened mechanisms. Here, we focus on the bivariate case with two ground-truth causal
latent variables V1 → V2. According to Thm. 3.2, this setting should be identifiable from three
environments: an observational one and one perfect intervention on each of V1 and V2. Our goal is to
verify this empirically in light of finite data and optimization issues. We fix the observation dimension
to d = 2 to facilitate exact likelihood training of the normalizing flows, and fit a separate generative
model for each choice of graph and intervention targets.9 The base and intervened mechanisms are
linear Gaussian and the mixing function a three-layer MLP, see Appx. D.1 for implementation details.

Results. The results are summarized in Fig. 3. Our main findings are two-fold: First, we observe that,
in the majority of cases, the well-specified model attains the highest held-out log-likelihood, as shown
in Fig. 3 (Right). This suggests that the likelihood of otherwise comparable generative models can
act as a reliable criterion to select the correct causal graph and intervention targets. Second, we find
that the ground truth latent causal variables are approximately identified up to element-wise rescaling
(MCC values close to one) by the correctly specified model and not by any other model, as shown
in Fig. 3 (Left). This indicates that recovering the correct graph and targets is not only sufficient but
also necessary for reliable identification of the causal representation. Taken together, these findings
are consistent with our notion of ∼CRL-identifiability (Defn. 2.6) and Thm. 3.2.

9This can be viewed as a nested approach in which the inner loop corresponds to the method for Causal
Component Analysis (CauCA) of Wendong et al. [126], and the outer loop to a search over G′ and {Ie}e∈E .
Code to reproduce our experiments is available at: https://github.com/akekic/causal-component-analysis.
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In Appx. D.2, we perform an additional experiment with n = 3 variables, nonlinear latent SCMs,
fixed causal order without graph search, and one interventional environment per node, thus assaying
violations of assumption (A2’) in the context of Thm. 3.4. Generally, we find that a correct choice of
intervention targets can be selected based on model likelihood, leading to approximate identification
of the causal variables, even when only the causal order is given, see Fig. 4 and Appx. D.2 for details.

7 Conclusions and Discussion

The world is full of domain shifts and different environments. Often, we cannot pin down what exactly
differs between two domains, but it may reasonably be modelled as a change in some causal mech-
anisms. While prior work relied on harder-to-obtain counterfactual data or parametric constraints for
identifiability, our study demonstrates that interventional data can be sufficient—even in the nonpara-
metric case where the spaces of mixing functions and mechanisms are infinite dimensional. Our results
can be considered a step towards justifying the use of expressive machine learning methods for learn-
ing interpretable causal representations from high-dimensional experimental data in situations where
parametric assumptions are undesirable, e.g., for complex systems in physics, biology, or medicine.

Weaker Notions of Identifiability. In this work, we have focused on the strongest notion of identifia-
bility that is achievable in a nonparametric setting (Defn. 2.6). However, subject to the available data
and assumptions, identifiability up to ∼CRL is not always possible. In this case, weaker notions of
identifiability are of interest. For example, we may not be able to uniquely recover variables that are
not targeted by interventions [5, 80, 123], or only recover groups of variables up to (non-)linear mix-
ing [5, 122, 123] and the graph up to transitive closure if interventions are imperfect, or soft [117, 136].
A precise characterization of weaker notions of nonparametric identifiability from different types of in-
terventions (cf. [74] for a temporal, semi-parametric setting) is an interesting direction for future work.

Known vs. Unknown Intervention Targets. When intervention targets can be considered known
appears to be a more nuanced concept in CRL than in a fully observed setting, see also [126, §E] for
an extended discussion. Recall that we assume w.l.o.g. that V1 ⪯ ... ⪯ Vn and only consider graphs
respecting this ordering (§ 2.2), see also [117, Remark 1]. The intervention targets are then unknown
w.r.t. the pre-imposed causal ordering. This is a key aspect that makes our setting more realistic, but
also substantially complicates the analysis (see (3.9) and Remark 3.3). Similar to [122], for Thm. 3.2
we require a set of exactly n environments (one intervention on each node).10 However, we relax this
requirement to mere coverage (“at least 1”) in Thm. 3.4 as shown for linear causal models in [22, 117].

Identifiability From One Intervention per Node for Any n. We conjecture that Thm. 3.2 can be
generalized to n > 2, subject to a suitably adjusted set of genericity conditions involving several
intervened and base mechanisms, akin to (3.2) in the bivariate case. The main challenge to such
a generalization appears to be combinatorial, as there are n!− 1 ways of misaligning intervention
targets across p and q. In Thm. 3.4, we sidestep this issue by assuming pairs of environments. Thus,
while two single-node perfect interventions are sufficient, we do not believe this to be necessary.

On the Assumption of Known n and Its Relation to Markovianity. Asm. 2.3 relates to causal suf-
ficiency or Markovianity in classical causal inference, which correspond to the assumption of indepen-
dent Ui in Defn. 2.1, implying the causal Markov factorization (2.2) [95, 100, 115]. With unobserved
V and unknown n, the notion of “unobserved confounders” gets blurred, since one can, in principle,
always construct a causally sufficient system by increasing n and adding any causes of two or more en-
dogenous variables to V . Asm. 2.3 then states that the minimum number of variables required to do so
is known.11 However, this can lead to very large systems, which may in turn challenge the assumption
of an invertible mixing (Asm. 2.5). Extensions of our analysis to unknown n [63, 68], non-Markovian,
or non-invertible [131] models constitute an interesting direction for future investigations.

Practicality. The method explored in § 6 requires searching over graphs and intervention targets,
which gets intractable even for moderate n. Simultaneously learning an (un)mixing function, causal
graph, intervention targets, and mechanisms is challenging. Further work is needed to make methods
for nonparametric CRL from multi-environment data more practical, e.g., by exploring the proposed
autoencoder framework with a continuous parametrisation of graph [139, 140] and targets [60].

10By dropping the assumption of a fixed ordering and considering all DAGs, in this case one could also call
Vi the variable intervened upon in environment i, and then consider the targets “known” in this sense.

11Techniques for estimating the intrinsic dimensionality n of the observation manifold X ⊆ Rd or methods
rooted in Bayesian nonparametrics could provide a means of relaxing this assumption.
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A Extended Discussion of Related Work

Prior work on causal representation learning with general nonlinear relationships (both among latents
and between latents and observations) and without an explicit task or label typically relies on some
form of weak supervision. One example of weak supervision is “multi-view” data consisting of
tuples of related observations. von Kügelgen et al. [123] consider counterfactual pairs of observations
arising from imperfect interventions through data augmentation, and prove identifiability for the
invariant non-descendants of intervened-upon variables. Brehmer et al. [18] also use counterfactual
pre- and post-intervention views and show that the latent SCM can be identified given all single-node
perfect stochastic interventions. Another type of weak-supervision is temporal structure [2], possibly
combined with nonstationarity [132, 133], interventions on known targets [80, 81], or observed
actions inducing sparse mechanism shifts [74, 75, 110]. Other works use more explicit supervision in
the form of annotations of the ground truth causal variables or a known causal graph [111, 126, 130].

A different line of work instead approaches causal representation learning from the perspective
of causal discovery in the presence of latent variables [115]. Doing so from purely observational
i.i.d. data requires additional constraints on the generative process, such as restrictions on the
graph structure or particular parametric and distributional assumptions, and typically leverages the
identifiability of linear ICA [27, 38, 79]. For linear, non-Gaussian models, Silva et al. [113] show
that the causal DAG can be recovered up to Markov equivalence if all observed variables are “pure” in
that they have a unique latent causal parent. Cai et al. [23] and Xie et al. [128, 129] extend this result
to identify the full graph given two pure observed children per latent, and Adams et al. [1] provide
sufficient and necessary graphical conditions for full identification. For discrete causal variables,
Kivva et al. [68] introduce a similar “no twins” condition to reduce the task of learning the number
and cardinality of latents and the Markov-equivalence class of the graph to mixture identifiability.

Other lines of work have investigated the relationship between causal models at different levels of
coarse-graining or abstraction [6, 11, 12, 24–26, 35, 105, 134, 135], or learning invariant represen-
tations in a supervised setting [3, 8, 32, 33, 73, 86, 92, 124, 125], often for domain generalization.

Other concurrent works address, e.g., learning from soft interventions with polynomial mixing [136],
or inferring both causal graph and the number of latents subject to graphical constraints [63].

A.1 Comparison of Related Identifiability Results

To complement the presentation of related multienvironment CRL works in § 1, we provide a
structured overview of and comparison with existing identifiability results for causal representation
learning in Tab. 1. The table categorizes work along different dimensions. First, we make a distinction
based on the type of data (observational, interventional, or counterfactual) results rely on (colour
coded in green, yellow, and red, respectively). These are also referred to as different rungs in the
“ladder of causation” [97] or layers in the Pearl Causal Hierarchy [10]. Second, we categorize work
depending on the assumptions placed on the latent causal model and the mixing function. As can be
seen, works relying solely on observational data often require restrictive graphical assumptions on the
mixing function. On the other hand, access to much more informative counterfactual data has allowed
identification even for nonparametric causal models and mixing functions. Our work can be viewed as
a step towards addressing the lack of nonparametric identifiability results in the interventional regime.

We emphasize that Tab. 1 is not exhaustive: certain relevant works did not easily fit into our catego-
rization or the causal representation learning framework adopted in the present work. For example,
not listed are works that leverage temporal structure [2, 74, 75, 80, 81], rely on heterogenous data and
distribution shifts which are not directly expressed in terms of or linked to interventions [82, 132, 133],
allow for edges from observed to latent variables [1], or require more direct supervision [111, 130].
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Table 1: Comparison of Existing Identifiability Results for Causal Reresentation Learning. All of the listed
works assume invertibility (or injectivity) of the mixing function, as well as causal sufficiency (Markovianity)
for the causal latent variables. Most or all of the listed results require additional technical assumptions, and
may provide additional results, which we omit for sake of readability; see the references for more details.

Work Layer Causal Model Mixing Function Main Identifiability Result

Cai et al. [23], Xie
et al. [128, 129] observational linear, non-Gaussian

linear with non-Gaussian
noise s.t. each Vi has 2 pure
(obs. or unobs.) children

number of latents + G

Kivva et al. [68] observational discrete, nonparametric
indentifiable mixture model
s.t. obs. children of Vi ̸⊆ obs.
children of Vj

number, cardinality & dist. of dis-
crete latents + G up to Markov
equivalence

Ahuja et al. [5,
Thm. 4] observational nonlinear w. indepen-

dent support [103, 125] finite-degree polynomial V up to permutation, shift, & linear
scaling

Squires et al. [117,
Thms. 1 & 2] interventional linear linear

G and V up to partial-order preserv-
ing permutations from obs. dist. &
all single-node perfect interventions

Squires et al. [117,
Thm. 1] interventional linear linear

G up to transitive closure from obs.
dist. & all single-node imperfect in-
terventions

Varici et al. [122,
Thm. 16] interventional nonparametric linear

G and V up to partial-order preserv-
ing permutations from obs. dist. &
all single-node perfect interventions

Ahuja et al. [5,
Thm. 2] interventional nonparametric finite-degree polynomial

V up to permutation, shift, and lin-
ear scaling from all single-node per-
fect hard interventions

Buchholz et al.
[22] interventional linear Gaussian nonparametric

G and V up to permutation from
obs. dist. & all single-node perfect
interventions

This
Work (Thm. 3.2) interventional nonparametric nonparametric

for n = 2: G and V up to ∼CRL

from all single-node perfect inter-
ventions, subject to genericity (3.2)

This
Work (Thm. 3.4) interventional nonparametric nonparametric

G and V up to ∼CRL from two dis-
tinct, paired single-node perfect in-
terventions per node

von Kügelgen et al.
[123] counterfactual nonparametric nonparametric

block of non-descendants Vnd(I) up
to invertible function from fat-hand
imperfect interventions on VI

Brehmer et al. [18] counterfactual nonparametric nonparametric G and V up to ∼CRL from all single-
node perfect interventions
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B Proof of Minimality of the CRL Equivalence Class ∼CRL

First, let us recall the main statements from § 2.2.
Definition 2.6 (∼CRL-identifiability). LetH be a space of unmixing functions h : X → Rn and let G
be the space of DAGs over n vertices. Let ∼CRL be the equivalence relation onH× G defined as

(h1, G1) ∼CRL (h2, G2) ⇐⇒ (h2, G2) = (Pπ−1 ◦ ϕ ◦ h1, π(G1)) (2.3)

for some element-wise diffeomorphism ϕ(v) = (ϕ1(v1), . . . , ϕn(vn)) of Rn and a permutation π
of [n] such that π : G1 7→ G2 is a graph isomorphism and Pπ the corresponding permutation matrix.
Proposition 3.1 (Minimality of ∼CRL; informal). Let Z be any representation that is ∼CRL equivalent
to V , with G′ = π(G) the associated DAG. Then for any intervention on VI ⊆ V in G, there exists
an equally sparse intervention on Zπ(I) ⊆ Z in G′ inducing the same observed distribution on X .

We now restate this result more formally.
Proposition B.1 (Minimality of ∼CRL). Let (h,G′) ∼CRL (f−1, G) with π denoting the graph
isomorphism mapping G to G′ (i.e., a permutation that preserves the partial topological order of G).
Let Z = h(X) be the inferred representation with distribution QZ = h∗(PX) Markov w.r.t. G′ and
associated density q. Let Ie ⊆ [n] denote a set of intervention targets, and consider an intervention
that changes pi(vi | vpa(i)) to some intervened mechanism p̃i(vi | vpa(i)) for all i ∈ Ie, giving rise
to the interventional distributions P eV and P eX = f∗(P

e
V ). Then there exist appropriately chosen

q̃π(i)(zπ(i) | zpa(π(i),G′)) for i ∈ Ie such that the resulting interventional distribution QeZ gives rise
to the same observed distributions, that is, P eX = h−1

∗ (QeZ).

Proof. Since (h,G′) ∼CRL (f−1, G), by Defn. 2.6 we have

Z = Pπ−1 ◦ ϕ(V ) (B.1)

for some element-wise diffeomorphism ϕ with inverse ψ = ϕ−1. Then (B.1) implies that for all
i ∈ [n]

Vi = ψi(Zπ(i)) (B.2)

According to (B.2), each conditional in the Markov factorization of QZ is given in terms of p by

qπ(i)

(
zπ(i) | zpa(π(i);G′)

)
= pi

(
ψi

(
zπ(i)

)
| ψpa(i)

(
zpa(π(i);G′)

)) ∣∣∣∣∣ dψi
dzπ(i)

(
zπ(i)

)∣∣∣∣∣ (B.3)

where we have used the change of variables in (B.2) and the fact that π(pa(i)) = pa(π(i);G′) since
π : G 7→ G′ is a graph isomorphism.

Consider an intervention that changes pi(vi | vpa(i)) to some intervened mechanism p̃i(vi | vpa(i))
for all i ∈ Ie. Denote the corresponding intervened joint distribution by P eV with joint density pe
given by

pe(v) =
∏
i∈Ie

p̃i

(
vi | vpa(i)

) ∏
j∈[n]\Ie

pj

(
vj | vpa(j)

)
. (B.4)

Denote by QeZ = (Pπ−1 ◦ ϕ)∗(P eV ) the corresponding distribution over Z with joint density given
by qe

qe(z) = pe(ψ ◦ Pπ(z))
∣∣detJψ◦Pπ

(z)
∣∣ (B.5)

=
∏
i∈Ie

p̃i

(
ψi

(
zπ(i)

)
| ψpa(i)

(
zpa(π(i);G′)

)) ∣∣∣∣∣ dψi
dzπ(i)

(
zπ(i)

)∣∣∣∣∣ ∏
j∈[n]\Ie

qπ(j)

(
zπ(j) | zpa(π(j);G′)

)
,

(B.6)

where we have used (B.3), (B.4), and the fact that Jψ is diagonal.

By defining

q̃π(i)

(
zπ(i) | zpa(π(i);G′)

)
:= p̃i

(
ψi

(
zπ(i)

)
| ψpa(i)

(
zpa(π(i);G′)

)) ∣∣∣∣∣ dψi
dzπ(i)

(
zπ(i)

)∣∣∣∣∣ (B.7)

22



we finally arrive at

qe(z) =
∏
i∈Ie

q̃π(i)

(
zπ(i) | zpa(π(i);G′)

) ∏
j∈[n]\Ie

qπ(j)

(
zπ(j) | zpa(π(j);G′)

)
. (B.8)

This shows that any intervention on {Vi}i∈Ie ⊆ V which replaces{
pi(vi | vpa(i))

}
i∈Ie

7→
{
p̃i(vi | vpa(i))

}
i∈Ie

, (B.9)

can equivalently be captured by an intervention on {Zπ(i)}i∈Ie ⊆ Z which replaces{
qπ(i)

(
zπ(i) | zpa(π(i);G′)

)}
i∈Ie

7→
{
q̃π(i)

(
zπ(i) | zpa(π(i);G′)

)}
i∈Ie

. (B.10)

with q̃i defined according to (B.7).

C Identifiability Proofs

C.1 Auxiliary Lemmata

Lemma C.1 (Lemma 2 of Brehmer et al. [18]). Let A = C = R and B = Rn. Let f : A×B → C
be differentiable. Define two differentiable measures pA on A and pC on C. Let ∀b ∈ B,
f(·, b) : A→ C be measure-preserving, in the sense that the pushforward of pA is always pC . Then
f(·, b) is constant in b on B.

Proof. See Appendix A.2 of Brehmer et al. [18].

Lemma C.2 (Preservation of conditional independence under invertible transformation.). Let X and
Y be continuous real-valued random variables, and let Z be a continuous random vector taking
values in Rn. Suppose that (X,Y,Z) have a joint density w.r.t. the Lebesgue measure. Let f : R→ R,
g : R→ R, and h : Rn → Rn be diffeomorphisms. Then X ⊥⊥ Y | Z =⇒ f(X) ⊥⊥ g(Y ) | h(Z).

Proof. Denote by p(x, y,z) the density of (X,Y,Z). Then X ⊥⊥ Y | Z implies that for all (x, y,z),
p can be factorized as follows:

p(x, y,z) = pz(z)px(x | z)py(y | z) . (C.1)

Let (A,B,C) = (f(X), g(Y ), h(Z)), and write f̃ = f−1, g̃ = g−1, and h̃ = h−1.

Then (A,B,C) also has a density q(a, b, c), which for all (a, b, c) is given by the change of variable
formula:

q(a, b, c) = p
(
f̃(a), g̃(b), h̃(c)

) ∣∣∣∣∣df̃da (a)dg̃db (b) detJh̃(c)
∣∣∣∣∣ (C.2)

= pz

(
h̃(c)

) ∣∣detJh̃(c)∣∣ px (f̃(a) | h̃(c))
∣∣∣∣∣df̃da (a)

∣∣∣∣∣ py (g̃(b) | h̃(c))
∣∣∣∣dg̃db (b)

∣∣∣∣ (C.3)

where in (C.2) we have used the fact that (X,Y,Z) 7→ (f(X), g(Y ), h(Z)) has block-diagonal
Jacobian, and in (C.3) that p factorises as in (C.1). Next, define

qc(c) := pz

(
h̃(c)

) ∣∣detJh̃(c)∣∣ , (C.4)

qa(a | c) := px

(
f̃(a) | h̃(c)

) ∣∣∣∣∣df̃da (a)
∣∣∣∣∣ , (C.5)

qb(b | c) := py

(
g̃(b) | h̃(c)

) ∣∣∣∣dg̃db (b)
∣∣∣∣ . (C.6)

Since pz , px, and py are valid densities (non-negative and integrating to one), so are qc, qa, and qb.
Substitution into (C.3) yields for all (a, b, c),

q(a, b, c) = qc(c)qa(a | c)qb(b | c) , (C.7)
which implies that A ⊥⊥ B | C, concluding the proof.
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C.2 Proof of Thm. 3.2

Theorem 3.2 (Bivariate identifiability up to ∼CRL from one perfect stochastic intervention per node).
Suppose that we have access to multiple environments {P eX}e∈E generated as described in § 2
under Asms. 2.2, 2.5, 2.8 and 2.9 with n = 2. Let (h,G′) be any candidate solution such that the
inferred latent distributions QeZ = h∗(P

e
X) of Z = h(X) and the inferred mixing function h−1

satisfy the above assumptions w.r.t. the candidate causal graph G′. Assume additionally that

(A1) all densities pe and qe are continuously differentiable and fully supported on Rn;

(A2) we have access to a known observational environment e0 and one single node perfect interven-
tion for each node, with unknown targets: there exist n+1 environments E = {ei}ni=0 such that
Ie0 = ∅ and for each i ∈ [n] we have Iei = {π(i)} for an unknown permutation π of [n];

(A3) for all i ∈ [n], the intervened mechanisms p̃i(vi) differ from the corresponding base
mechanisms pi(vi | vpa(i)) everywhere, in the sense that

∀v :
∂

∂vi

p̃i(vi)

pi(vi | vpa(i))
̸= 0 ; (3.1)

(A4) (“genericity”) the base and intervened mechanisms are not fine-tuned to each other, in the
sense that there exists a continuous function φ : R+ → R for which

Ev∼P e0
V

[
φ

(
p̃2(v2)

p2(v2 | v1)

)]
̸= Ev∼P e1

V

[
φ

(
p̃2(v2)

p2(v2 | v1)

)]
(3.2)

Then the ground truth is identified in the sense of Defn. 2.6, that is, (f−1, G) ∼CRL (h,G′).

Proof. From the assumption of a shared mixing f and shared encoder h across all environments, we
have that

Z = h(X) = h(f(V )) = h ◦ f(V ) . (C.8)

Let ψ = f−1 ◦ h−1 : Rn → Rn such that

V = ψ(Z) .

By Asm. 2.5, f , h, and thus also h ◦ f are diffeomorphisms. Hence, ψ is well-defined and also
diffeomorphic.

By the change of variable formula, for all e and all z the density qe(z) is given by

qe(z) = pe(ψ(z))
∣∣detJψ(z)∣∣ (C.9)

where (Jψ(z))ij =
∂ψi

∂zj
(z) denotes the Jacobian of ψ.

We now consider two separate cases, depending on whether the intervention targets in qei for
ei ∈ {e1, e2} match those in pei (Case 1) or not (Case 2).

Case 1: Aligned Intervention Targets. According to Asm. 2.8 and (A2), (C.9) applied to the
known observational environment e0 and the interventional environments e1, e2 leads to the system
of equations:

q1(z1)q2(z2 | zpa(2;G′)) = p1
(
ψ1(z)

)
p2

(
ψ2(z) | ψpa(2)(z)

) ∣∣detJψ(z)∣∣ (C.10)

q̃1(z1)q2(z2 | zpa(2;G′)) = p̃1
(
ψ1(z)

)
p2

(
ψ2(z) | ψpa(2)(z)

) ∣∣detJψ(z)∣∣ (C.11)

q1(z1)q̃2(z2) = p1
(
ψ1(z)

)
p̃2
(
ψ2(z)

) ∣∣detJψ(z)∣∣ (C.12)

where zpa(2;G′) denotes the parents of z2 in G′, and pa(2) denotes the parents of V2 in G.

Note that neither side of the previous equations can be zero due to the full support assumption12

(A1) and ψ being diffeomorphic implying the determinant is non-zero.

12This can also be relaxed to fully supported on a Cartesian product of intervals.
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Taking quotients of (C.11) and (C.10), yields

q̃1
q1

(z1) =
p̃1
p1

(ψ1(z)) . (C.13)

Next, we take the partial derivative w.r.t. z2 on both sides and use the chain rule to obtain:

0 =

(
p̃1
p1

)′ (
ψ1(z)

) ∂ψ1

∂z2
(z) . (C.14)

Now, by assumption (A3), the first term on the RHS of (C.14) is non-zero everywhere. Hence,

∀z :
∂ψ1

∂z2
(z) = 0 . (C.15)

It follows that ψ1 is, in fact, a scalar function, and

V1 = ψ1(Z1) . (C.16)

Since ψ is a diffeomorphism, ψ1 must also be diffeomorphic. Hence, by the change of variable
formula applied to (C.16), the marginal density q1(z1) is given by

q1(z1) = p1(ψ1(z1))

∣∣∣∣∂ψ1

∂z1
(z1)

∣∣∣∣ . (C.17)

Further, since Jψ is triangular due to (C.15), its determinant is given by∣∣detJψ(z)∣∣ = ∣∣∣∣∂ψ1

∂z1
(z1)

∂ψ2

∂z2
(z1, z2)

∣∣∣∣ . (C.18)

Substituting (C.17) and (C.18) into (C.12) yields (after cancellation of equal terms):

q̃2(z2) = p̃2
(
ψ2(z1, z2)

) ∣∣∣∣∂ψ2

∂z2
(z1, z2)

∣∣∣∣ . (C.19)

The expression in (C.19) implies that, for all z1, the mapping ψ2(z1, ·) : R → R is measure
preserving for the differentiable q̃2 and p̃2. By Lemma C.1 (Lemma 2 of Brehmer et al. [18, § A.2]),
it then follows that ψ2 must, in fact, be constant in z1, that is

∀z :
∂ψ2

∂z1
(z) = 0 . (C.20)

Note that this last step is where the assumption of perfect interventions (Asm. 2.9) is leveraged:
the conclusion would not hold for arbitrary imperfect interventions for which (3.8) would involve
q̃2(z2 | z1) and p2

(
ψ2(z1, z2) | ψ1(z1)

)
.

Hence, we have shown that ψ is an element-wise function:

V = (V1, V2) = ψ(Z) = (ψ1(Z1), ψ2(Z2)) . (C.21)

Finally, since ψ is a diffeomorphism, (C.21) implies that

V1 ⊥⊥ V2 ⇐⇒ Z1 ⊥⊥ Z2 . (C.22)

It then follows from the faithfulness assumption (Asm. 2.2) that we also must have G = G′.

This concludes the proof of Case 1, as we have shown that (h,G′) ∼CRL (f−1, G) withG′ = π(G) =
G (π being the identity permutation) and h ◦ f = ψ−1 =: ϕ an element-wise diffeomorphism.

Case 2: Misaligned Intervention Targets. Writing down the system of equations similar
to (C.10)–(C.12), but for the case with misaligned intervention targets across p and q yields:

q1(z1)q2(z2 | zpa(2;G′)) = p1
(
ψ1(z)

)
p2

(
ψ2(z) | ψpa(2)(z)

) ∣∣detJψ(z)∣∣ (C.23)

q̃1(z1)q2(z2 | zpa(2;G′)) = p1
(
ψ1(z)

)
p̃2
(
ψ2(z)

) ∣∣detJψ(z)∣∣ (C.24)

q1(z1)q̃2(z2) = p̃1
(
ψ1(z)

)
p2

(
ψ2(z) | ψpa(2)(z)

) ∣∣detJψ(z)∣∣ . (C.25)
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Taking ratios of e1 and e2 with e0 yields

q̃1
q1

(z1) =
p̃2
(
ψ2(z)

)
p2

(
ψ2(z) | ψpa(2)(z)

) (C.26)

q̃2(z2)

q2(z2 | zpa(2;G′))
=
p̃1
p1

(
ψ1(z)

)
. (C.27)

We separate the remainder of the proof of Case 2 into different subcases depending on G and G′:
as we will see, we can use a similar reasoning as in Case 1, except for the case where both G and
G′ are missing no edge.

Case 2a: V1 ̸→ V2 in G, that is pa(2) = ∅. Then we can proceed similarly to Case 1. First, we
take the partial derivative of (C.26) w.r.t. z2 to arrive at:

0 =

(
p̃2
p2

)′ (
ψ2(z)

) ∂ψ2

∂z2
(z) . (C.28)

Using (A3), this implies that ψ2 does not depend on Z2, that is, V2 = ψ2(Z1).

Next, we again write q(z1) in terms of p2(ψ2(z1)) using the univariate change of variable formula,
substitute into (C.25), cancel the corresponding terms, and arrive at:

q̃2(z2) = p̃1
(
ψ1(z1, z2)

) ∣∣∣∣∂ψ1

∂z2
(z1, z2)

∣∣∣∣ (C.29)

Lemma C.1 applied to ψ1(z1, ·) which preserves q̃2 and p̃1 for all z1 shows that ψ1 is constant in
Z1, that is

V = (V1, V2) = ψ(Z) = (ψ1(Z2), ψ2(Z1)) . (C.30)

Since V1 ⊥⊥ V2 by the assumption of Case 2a, it follows from the invertible element-wise
reparametrisation above that Z1 ⊥⊥ Z2 and hence, by faithfulness, Z1 ̸→ Z2 in G′.

Finally, note that there is no partial order on the empty graph and so G′ = π(G) = G and
Z = Pπ−1 · ψ−1(V ) where π is the nontrivial permutation of {1, 2}.
Case 2b: V1 → V2 in G, that is pa(2) = {1}. If G′ ̸= G, that is Z1 ̸→ Z2 in G′, then the same
argument as in Case 2a, this time starting by taking the partial derivative of (C.27) w.r.t. z1, can be used
to reach the same conclusion in (C.30). However, this contradicts faithfulness since V1 ̸⊥⊥ V2 in G.

Hence, we must have G′ = G, and the following two equations must hold for all z:

q̃1(z1)

q1(z1)
=

p̃2
(
ψ2(z)

)
p2
(
ψ2(z) | ψ1(z)

) (C.31)

q̃2(z2)

q2(z2 | z1)
=
p̃1
(
ψ1(z)

)
p1
(
ψ1(z)

) (C.32)

The remainder of the proof consists of exploring the implications of (C.32) and (C.31), ultimately
resulting in a violation of the genericity condition (A4).

To ease notation, define the following auxiliary functions:

a(z1) :=
q̃1(z1)

q1(z1)
, (C.33)

b(v) :=
p̃2(v2)

p2(v2 | v1)
, (C.34)

c(z) :=
q̃2(z2)

q2|1(z2 | z1)
, (C.35)

d(v1) :=
p̃1 (v1)

p1 (v1)
. (C.36)
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With this, (C.31) and (C.32) take the following form:

a(z1) = b(ψ(z)) . (C.37)
c(z) = d(ψ1(z)) , (C.38)

Next, define the following maps:

κ : z 7→
[
a(z1)
c(z)

]
(C.39)

ρ : v 7→
[
b(v)
d(v1)

]
(C.40)

Then, (C.37) and (C.38) together imply that

κ = ρ ◦ ψ . (C.41)

Recalling that by (A1) all densities are continuously differentiable, the Jacobians of κ and ρ are given
by:

Jκ(z) =

[
a′(z1) 0
∂c
∂z1

(z) ∂c
∂z2

(z)

]
, (C.42)

Jρ(v) =

[
∂b
∂v1

(v) ∂b
∂v2

(v)
d′(v1) 0

]
, (C.43)

and the corresponding determinants are given by∣∣detJκ(z)∣∣ = ∣∣∣∣a′(z1) ∂c∂z2 (z)
∣∣∣∣ ̸= 0 (C.44)

∣∣detJρ(v)∣∣ = ∣∣∣∣d′(v1) ∂b∂v2 (v)
∣∣∣∣ ̸= 0 (C.45)

where the inequalities for all z follow since, by assumption (A3), the derivatives of ratios of
intervened and original mechanisms are non-vanishing everywhere:

a′(z1) ̸= 0 ̸= ∂c

∂z2
(z) and d′(v1) ̸= 0 ̸= ∂b

∂v2
(v) , (C.46)

This implies that the following families of maps are continuously differentiable, monotonic, and
invertible,

a : z1 7→ a(z1) , (C.47)
bv1 : v2 7→ b(v1, v2) , (C.48)
cz1 : z2 7→ c(z1, z2) , (C.49)
d : v1 7→ d(v1) , (C.50)

with continuously differentiable inverses

a−1 : w1 7→ a−1(w1) , (C.51)

b−1
v1 : w1 7→ b−1

v1 (w1) , (C.52)

c−1
z1 : w2 7→ c−1

z1 (w2) , (C.53)

d−1 : w2 7→ d−1(w2) . (C.54)

This implies that ρ and κ are valid diffeomorphisms onto their image and their inverses are given by:

κ−1 : w 7→

[
a−1(w1)

c−1
a−1(w1)

(w2)

]
, (C.55)

ρ−1 : w 7→

[
d−1(w2)

b−1
d−1(w2)

(w1)

]
. (C.56)
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Since V = ψ(Z), by (C.41) we have

W := ρ(V ) = ρ ◦ ψ(Z) = κ(Z) . (C.57)

Denote the distributions of W by RW and its density by r(w). Since for all e, we have

P eV = ψ∗(Q
e
Z) (C.58)

it follows from (C.57) that
ReW = ρ∗(P

e
V ) = κ∗(Q

e
Z) . (C.59)

This provides two different ways of applying the change of variable formula to compute r(w).

First, we consider the pushforward of Qe0Z by κ:

r(w) = q
(
κ−1(w)

) ∣∣detJκ−1(w)
∣∣ (C.60)

= q1

(
a−1(w1)

)
q2

(
c−1
a−1(w1)

(w2) | a−1(w1)
) ∣∣∣∣ d

dw1
a−1(w1)

d

dw2
c−1
a−1(w1)

(w2)

∣∣∣∣ (C.61)

By integrating this joint density with respect to w2, we obtain the following expression for the
marginal r1(w1):

r1(w1) =

∣∣∣∣ d

dw1
a−1(w1)

∣∣∣∣ q1 (a−1(w1)
)∫

q2

(
c−1
a−1(w1)

(w2) | a−1(w1)
) ∣∣∣∣ d

dw2
c−1
a−1(w1)

(w2)

∣∣∣∣dw2 .

(C.62)

By the diffeomorphic change of variable z2 = c−1
a−1(w1)

(w2), 13 this can be written as

r1(w1) =

∣∣∣∣ d

dw1
a−1(w1)

∣∣∣∣ q1 (a−1(w1)
)∫

q2

(
z2 | a−1(w1)

)
dz2 (C.63)

=

∣∣∣∣ d

dw1
a−1(w1)

∣∣∣∣ q1 (a−1(w1)
)

(C.64)

Next, we carry out the same calculation for the pushforward of P e0V by ρ:

r(w) = p
(
ρ−1(w)

) ∣∣detJρ−1(w)
∣∣ (C.65)

= p1

(
d−1(w2)

)
p2

(
b−1
d−1(w2)

(w1) | d−1(w2)
) ∣∣∣∣ d

dw2
d−1(w2)

d

dw1
b−1
d−1(w2)

(w1)

∣∣∣∣ ,
(C.66)

leading to the marginal

r1(w1) =

∫
p1

(
d−1(w2)

)
p2

(
b−1
d−1(w2)

(w1) | d−1(w2)
) ∣∣∣∣ d

dw1
b−1
d−1(w2)

(w1)

∣∣∣∣ ∣∣∣∣ d

dw2
d−1(w2)

∣∣∣∣dw2

(C.67)

=

∫
p1(v1)p2

(
b−1
v1 (w1) | v1

) ∣∣∣∣ d

dw1
b−1
v1 (w1)

∣∣∣∣ dv1 , (C.68)

where the second line is obtained by the diffeomorphic change of variable v1 = d−1(w2).

Equating the two expressions for r(w1) in e0 in (C.68) and (C.64), we obtain for all w1:∣∣∣∣ d

dw1
a−1(w1)

∣∣∣∣ q1 (a−1(w1)
)
=

∫
p1(v1)p2

(
b−1
v1 (w1) | v1

) ∣∣∣∣ d

dw1
b−1
v1 (w1)

∣∣∣∣dv1 . (C.69)

Applying the same approach to the environment in which V1 is intervened upon changing p1 to p̃1
while Z2 is intervened upon leaving q1 invariant, yields for all w1:∣∣∣∣ d

dw1
a−1(w1)

∣∣∣∣ q1 (a−1(w1)
)
=

∫
p̃1(v1)p2

(
b−1
v1 (w1) | v1

) ∣∣∣∣ d

dw1
b−1
v1 (w1)

∣∣∣∣dv1 . (C.70)

13Note that:
∫
q2(z2(w2))

∣∣∣ dz2
dw2

∣∣∣ dw2 =
∫
q2(z2) dz2 .
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Finally, by equating (C.69) and (C.70), we arrive at the following expression which must hold for
all w1:∫
p1(v1)p2

(
b−1
v1 (w1) | v1

) ∣∣∣∣ d

dw1
b−1
v1 (w1)

∣∣∣∣ dv1 =

∫
p̃1(v1)p2

(
b−1
v1 (w1) | v1

) ∣∣∣∣ d

dw1
b−1
v1 (w1)

∣∣∣∣dv1
(C.71)

which we can rewrite as∫ (
p̃1(v1)− p1(v1)

)
p2

(
b−1
v1 (w1) | v1

) ∣∣∣∣ d

dw1
b−1
v1 (w1)

∣∣∣∣ dv1 = 0 . (C.72)

Multiplying by any continuous function φ(w1), integrating w.r.t. w1 and applying the diffeomorphic
change of variable v2 = b−1

v1 (w1), this can be expressed as:

0 =

∫
φ(w1)

∫ (
p̃1(v1)− p1(v1)

)
p2

(
b−1
v1 (w1) | v1

) ∣∣∣∣ d

dw1
b−1
v1 (w1)

∣∣∣∣ dv1 dw1 (C.73)

=

∫ ∫
φ
(
bv1(v2)

) (
p̃1(v1)− p1(v1)

)
p2(v2 | v1) dv2 dv1 (C.74)

=

∫ ∫
φ

(
p̃2(v2)

p2(v2 | v1)

)(
p̃1(v1)− p1(v1)

)
p2(v2 | v1) dv2 dv1 (C.75)

where we have resubstituted the expression for bv1(v2) in the last line.

Equivalently, this can be written as: for any continuous function φ,

Ev∼P e0
V

[
φ

(
p̃2(v2)

p2(v2 | v1)

)]
= Ev∼P e1

V

[
φ

(
p̃2(v2)

p2(v2 | v1)

)]
. (C.76)

However, the genericity condition (A4) precisely rules this out, since the above equality must be
violated for at least one φ, concluding this last case.

To sum up, all cases either lead to a contradiction, or imply the conclusion that (f−1, G) ∼CRL (h,G′),
concluding the proof.

C.3 Proof of Thm. 3.4

Theorem 3.4 (Identifiability up to ∼CRL from two paired perfect stochastic interventions per node).
Suppose that we have access to multiple environments {P eX}e∈E generated as described in § 2
under Asms. 2.2, 2.3, 2.5, 2.8 and 2.9. Let (h,G′) be any candidate solution such that the inferred
latent distributions QeZ = h∗(P

e
X) of Z = h(X) and the inferred mixing function h−1 satisfy the

above assumptions w.r.t. the candidate causal graph G′. Assume additionally that

(A1) all densities pe and qe are continuously differentiable and fully supported on Rn;

(A2’) we have access to at least one pair of single-node perfect interventions per node, with unknown
targets: there exist m ≥ n known pairs of environments E = {(ej , e′j)}mj=1 such that for each
i ∈ [n] there exists some unknown j ∈ [m] for which Iej = Ie

′
j = {i};

(A3’) for all i ∈ [n], the intervened mechanisms p̃i(vi) and ˜̃pi(vi) differ everywhere, in the sense that

∀vi :
(
˜̃pi
p̃i

)′

(vi) ̸= 0 ; (3.10)

Then the ground truth is identified in the sense of Defn. 2.6, that is, (f−1, G) ∼CRL (h,G′).

Proof. First, we show that we can extract from the m ≥ n available pairs of environments a suitable
subset En of exactly n pairs, containing one pair of interventional environments for each node.

Let En ⊆ E be a subset of n pairs of environments which are assumed to correspond to distinct
targets in the model q, and suppose for a contradiction that this is not actually the case for the ground
truth p (i.e., there are duplicate and missing interventions w.r.t. p). Then there must be two pairs of
environments (ea, e′a), (eb, e

′
b) ∈ En, both corresponding to interventions on some Vi in p, but which
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are modelled as interventions on distinct nodes Zj and Zk with j ̸= k in q. We show that this implies
that Vi must simultaneously be a deterministic function of only Zj and only Zk. Similar to the proof
of Thm. 3.2, we obtain the following equations,

˜̃qj
q̃j

(
zj
)
=

˜̃pi
p̃i

(
ψi(z)

)
, (C.77)

˜̃qk
q̃k

(zk) =
ˆ̂pi
p̂i

(
ψi(z)

)
. (C.78)

By taking partial derivatives w.r.t. zl and applying assumption (A3’), we find that

∂ψi
∂zl

= 0 ∀l ̸= j , (C.79)

∂ψi
∂zl

= 0 ∀l ̸= k . (C.80)

Since j ̸= k, this implies that ∂ψi/∂zl = 0 for all l which contradicts invertibility of ψ. Thus, by
contradiction, we find that En must contain exactly one pair of intervention per node also w.r.t. p. For
the remainder of the proof, we only consider En.

W.l.o.g., for any (ei, e
′
i) ∈ En we now fix the intervention targets in p to Iei = Ie′i = {i} and let π

be a permutation of [n] such that π(i) denotes the inferred intervention target in q that by (A2’) is
shared across (ei, e′i). (We will show later that not all permutations are admissible, but only ones that
preserve the partial order of G.)

The first part of the proof is similar to Case 1 in the proof of Thm. 3.2. Consider the densities in
environments ei and e′i, which are related through the change of variable formula by:

q̃π(i)

(
zπ(i)

) ∏
j∈[n]\{π(i)}

qj

(
zj | zpa(j;G′)

)
= p̃i

(
ψi(z)

) ∏
j∈[n]\{i}

pj

(
ψj(z) | ψpa(j)(z)

) ∣∣detJψ(z)∣∣ ,
(C.81)

˜̃qπ(i)

(
zπ(i)

) ∏
j∈[n]\{π(i)}

qj

(
zj | zpa(j;G′)

)
= ˜̃pi

(
ψi(z)

) ∏
j∈[n]\{i}

pj

(
ψj(z) | ψpa(j)(z)

) ∣∣detJψ(z)∣∣ ,
(C.82)

where Zpa(j;G′) ⊆ Z \ {Zj} denotes the parents of Zj in G′.

Taking the quotient of the two equations yields

˜̃qπ(i)

q̃π(i)

(
zπ(i)

)
=

˜̃pi
p̃i

(
ψi(z)

)
. (C.83)

Next, for any j ̸= π(i), taking partial derivatives w.r.t. zj on both sides yields

0 =

(
˜̃pi
p̃i

)′ (
ψi(z)

) ∂ψi
∂zj

(z) . (C.84)

By assumption (A3’), the first term on the RHS is non-zero everywhere. Hence, (C.84) implies

∀j ̸= π(i), ∀z :
∂ψi
∂zj

(z) = 0 (C.85)

from which we can conclude that

Vi = ψi

(
Zπ(i)

)
(C.86)

for all i ∈ [n]. That is, ψ is the composition of the permutation π with an element-wise reparametri-
sation.

It remains to show that π must, in fact, be a graph isomorphism, which is equivalent to the statement

Vi → Vj in G ⇐⇒ Zπ(i) → Zπ(j) in G′. (C.87)
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( =⇒ ) Suppose for a contradiction that there exist (i, j) such that Vi → Vj in G, but Zπ(i) ̸→ Zπ(j)
in G′.

The main idea is to demonstrate that the lack of such direct arrow implies a certain conditional
independence which, by faithfulness, would contradict the unconditional dependence of Vi and Vj .

Consider environment ei in which there are perfect interventions on Zπ(i) and Vi, which has the
effect of removing all incoming arrows to Zπ(i) and Vi in the respective post-intervention graphs
G′
Zπ(i)

and GV i
.

As a result of this and the lack of direct arrow by assumption, any d-connecting path between Zπ(i)
and Zπ(j) must enter the latter via Zpa(π(j);G′) [95].

It then follows from Markovianity of q w.r.t. G′ that the following holds in QeiZ :

Zπ(i) ⊥⊥ Zπ(j) | Zpa(π(j);G′) . (C.88)

We now consider the corresponding implication for P eiV . Define

Ṽ =

{
Vk = ψk

(
Zπ(k)

)
: Zπ(k) ∈ Zpa(π(j);G′)

}
⊆ V \ {Vi, Vj} , (C.89)

and note that by assumption, Zπ(i) ̸∈ Zpa(π(j);G′) and hence Vi ̸∈ Ṽ .

By applying the corresponding diffeomorphic functions ψi from (C.86) to (C.88), it follows
from Lemma C.2 that

Vi ⊥⊥ Vj | Ṽ (C.90)

in P eiV . However, this violates faithfulness (Asm. 2.2) of PV to G since Vi and Vj are d-connected in
GV i

.

Thus, by contradiction, we must have Zπ(i) → Zπ(j) in G′.

(⇐=) Now, suppose for a contradiction that there exist (i, j) such that Zπ(i) → Zπ(j) in G′, but
Vi ̸→ Vj in G.

By the same argument as before, we find that

Vi ⊥⊥ Vj | Vpa(j) (C.91)

in P eiV , and thus by Lemma C.2
Zπ(i) ⊥⊥ Zπ(j) | Z̃ (C.92)

in QeiZ where

Z̃ =
{
Zπ(k) : Vk ∈ Vpa(j)

}
⊆ Z \ {Zπ(i), Zπ(j)} .

However, this contradicts faithfulness of QZ to G′. Hence, we must have that Vi → Vj in G.

This shows that π must be a graph isomorphism, thus concluding the proof.

C.4 Proof of Thm. 4.2

Theorem 4.2 (Preservation of causal influences under ∼CRL). Let PV be Markovian w.r.t. G, let π be
a graph isomorphism of G, and let ϕ be an element-wise diffeomorphism. Let Z = Pπ−1 ◦ϕ(V ) and
denote its induced distribution by QZ . Then for any Vi → Vj in G we have CPV

i→j = CQZ

π(i)→π(j).

Proof. First, recall that according to Defn. 4.1,

CPV
i→j := DKL

(
PV

∥∥ P i→j
V

)
, (C.93)

where P i→j
V denotes the interventional distribution obtained by replacing pj

(
vj | vpa(j)

)
with

pi→j
j

(
vj | vpa(j)\{i}

)
=

∫
Vi

pj
(
vj | vpa(j)

)
pi(vi) dvi . (C.94)
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Writing out the KL divergence and noting that all terms except the interved mechanism j cancel
inside the log, we obtain

CPV
i→j =

∫
V
log

 pj

(
vj | vpa(j)

)
∫
Vi
pj
(
vj | vpa(j)

)
pi(vi) dvi

 p(v) dv . (C.95)

and similarly

CQZ

π(i)→π(j) =

∫
Z
log

 qπ(j)

(
zπ(j) | zpa(π(j);G′)

)
∫
Zπ(i)

qπ(j)

(
zπ(j) | zpa(π(j);G′)

)
qπ(i)(zπ(i)) dzπ(i)

 q(z) dz . (C.96)

Since Z = Pπ−1 ◦ ϕ(V ), we have Vi = ψi(Zπ(i)) for all i ∈ [n] where ψ = ϕ−1.

Thus, by the change of variable formula, and using the fact that π(pa(i)) = pa(π(i);G′) since
π : G 7→ G′ is a graph isomorphism, we have for all i ∈ [n]:

qπ(i)

(
zπ(i) | zpa(π(i);G′)

)
= pi

(
ψi

(
zπ(i)

)
| ψpa(i)

(
zpa(π(i);G′)

)) ∣∣∣∣∣ dψi
dzπ(i)

(
zπ(i)

)∣∣∣∣∣ , (C.97)

as well as for the marginal density

qπ(i)

(
zπ(i)

)
= pi

(
ψi

(
zπ(i)

)) ∣∣∣∣∣ dψi
dzπ(i)

(
zπ(i)

)∣∣∣∣∣ , (C.98)

and

q(z) = p(ψ ◦ Pπ(z))
∣∣detJψ(z)∣∣ . (C.99)

Substitution into the expression for CQZ

π(i)→π(j) yields:

CQZ

π(i)→π(j) =

∫
Z
log

 pj

(
ψj(zπ(j)) | ψpa(j)(zpa(π(j);G′))

)
∫
Zπ(i)

pj

(
ψj(zπ(j)) | ψpa(j)(zpa(π(j);G′))

)
pi(ψi(zπ(i)))

∣∣∣ dψi

dzπ(i)
(zπ(i))

∣∣∣ dzπ(i)


(C.100)

p(ψ ◦ Pπ(z))
∣∣detJψ(z)∣∣dz . (C.101)

=

∫
V
log

 pj

(
vj | vpa(j)

)
∫
Vi
pj
(
vj | vpa(j)

)
pi(vi) dvi

 p(v) dv (C.102)

= CPV
i→j . (C.103)

where the second to last line follows by integration by substitution, applied to both integrals.
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D Experimental Details and Additional Results

In this appemndix, we describe the experiments presented in § 6 in more details (Appx. D.1), and
present additional results (Appx. D.2).

D.1 Experimental Details for § 6

Synthetic Data Generating Process. We consider linear Gaussian latent SCMs of the form

V1 := U1, V2 := αV1 + U2, (D.1)

with standard normal U1 and U2. As a mixing function, we use a three-layer multilayer perceptron
(MLP),

f = σ ◦W3 ◦ σ ◦W2 ◦ σ ◦W1 (D.2)

where W1,W2,W3 ∈ R2×2 are invertible weight matrices, and σ is an element-wise invertible
nonlinear leaky-tanh activation function used in [41]:

σ(x) = tanh(x) + 0.1x . (D.3)

To compute averages of our results over multiple runs, we construct different ground truth data
generating processes as follows. We generate different latent SCMs by drawing α uniformly from
[−10,−2] ∪ [2, 10]. (We exclude (−2, 2) to avoid sampling near unfaithful models.) We generate
the corresponding mixing functions by uniformly sampling each element of the weight matrices,
(Wk)ij ∼ U(0, 1). (To avoid the sampled weight matrices being too close to singular, we reject and
resample if |detWk| < 0.1.)

Interventional Environments. In line with Thm. 3.2, for each choice of latent SCM and mixing
function, we generate three environments: one observational environment and one interventional
environment for each perfect single-node intervention. For i = 1, 2, we model a perfect intervention
on Vi by removing the influence of the parent variables and changing the exogenous noise by shifting
its mean up or down. Specifically, we replace the corresponding assignment in (D.1) by

Vi := Ũi , where Ũi ∼ N (mi, 1) (D.4)

where the mean mi of the shifted Gaussian noise is fixed per environment and sampled uniformly
from {±2}.
We label the observational environment as e = 0 and the environment arising from intervention on Vi
by e = i for i = 1, 2. Samples from pe are then generated by sampling latents v from the respective
(un)intervened SCM and then applying the mixing function.

Model Architecture. We use normalizing flows [93] to model observations x as the result of an
invertible, differentiable transformation g of some latent (noise) variable z,

x = g(z) . (D.5)

We apply a series of L such transformations gl : R2 → R2 such that g = gL ◦ . . . ◦ g1 which we
refer to as flow layers. We use Neural Spline Flows [30] for the invertible transformation, with a
3-layer feedforward neural network with hidden dimension 128 and permutation in each flow layer
and L = 12 layers. The transformations g, g1, . . . , gL have learnable parameters (the weights and
biases of the neural networks), which we omit to simplify notation.

Typically, simple distributions such as a uniform or isotropic Gaussian are used as base distribution
q(z) in normalizing flows. Here, we instead choose a base distribution that encodes information
about the latent SCM. Specifically, we model the base mechanism as

q1(z1) = N
(
µ1, σ

2
1

)
, q2(z2 | z1) = N

(
α̂z1, σ

2
2

)
, q2(z2) = N

(
µ2, σ̂

2
2

)
(D.6)

and the intervened mechanism as

q̃1(z1) = N (µ̃1, σ̃
2
1) , q̃2(z2) = N (µ̃2, σ̃

2
2) . (D.7)
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Candidate Graphs and Intervention Targets. We train a separate normalizing-flow based model
for each choice of candidate graphG′ and inferred intervention targets. For the bivariate case with n =
2, this gives rise to four models, depending on whetherG′ matchesG or not, and whether the interven-
tion targets are aligned or misaligned w.r.t. the ground truth intervention targets. To model the setting
G′ ̸= G in which Z1 and Z2 are assumed independent, we use q2(z2) in place of q2(z2 | z1) in (D.6).
If the intervention targets are aligned, we use q̃i instead of qi in e = i for i = 1, 2. Else, if they are mis-
aligned, we use q̃2 instead of q2 in e = 1 and q̃1 instead of q1 in e = 2. By multiplying the respective
mechanisms, we thus obtain three environment-specific joint base distributions qe(z) for e = 0, 1, 2.

Learning Objective. Given multi-environment data, the parameters µ1, σ1, α̂, σ2, µ2, σ̂2, µ̃2, σ̃2,
µ̃1 and σ̃1 are jointly learned with the parameters of the invertible transformations gl by maximising
the log-likelihood of the data under our model, which is given by:∑

e∈E
Ex∼pe(x)

[
log pemodel(x)

]
=
∑
e∈E

Ex∼pe(x)

[
log qe(h(x)) + log

∣∣detJh(x)∣∣] (D.8)

where the encoder h := g−1 is the inverse of the normalizing flow which is readily available by con-
struction; and where the expectations are empirical averages over the respective datasets in practice.

Training and Model Selection Details. Each environment comprises a total of 200k data points.
We use the ADAM optimizer [67] with cosine annealing learning rate scheduling, starting with a
learning rate of 5× 10−3 and ending with 1× 10−7. We train the model for 200 epochs with a batch
size of 4096. We split the dataset into 70% for training, and 15% for validation and held-out test data,
each sampled randomly across all environments. For each drawn data generating process, we train
three versions of each model with different random initializations and select the one with the highest
validation log likelihood at the end of training for evaluation.

Evaluation Metrics. We evaluate the trained models w.r.t. mean correlation coefficient (MCC) on
held-out data and log-likelihood on validation data (for model selection).

• The MCC measures the extent to which there is a one-to-one correspondence between the
ground truth latents Vi and (a permuted version of) the inferred latents Zi = hi(X). Its
maximum value of one indicates a perfect correlation between the two. MCC is thus a proxy
measure for the level of identifiability up to permutation and invertible reparametrisation.
We report MCC based on Pearson (linear) correlation, though we found the results based on
Spearman (nonlinear monotonic) correlation to be almost identical.

• The log-likelihood, on the other hand, measures how well a model explains or fits the data.
Since the ground truth is typically unknown, a reasonable procedure when training multiple
models is to select the one that attains the highest likelihood. For this reason, we report the
difference in log-likelihood between misspecified models (ones assuming a wrong graph
or intervention targets) to the correctly specified model. Whenever this difference is larger
than zero, the correct model fits the data better and would thus be selected.

D.2 Additional Results: Learning Nonlinear Latent SCMs from Partial Causal Order

In this subsection, we present an additional experiment, in which we extend the setting investigated
in § 6 and Appx. D.1 along the following axes.

• We fit generative models over three instead of two variables, corresponding to the setting
of Thm. 3.4.

• The ground-truth SCM is now given by nonlinear mechanisms with non-additive, non-Gaussian
noise.

• The generative model, including the learnt mechanisms, is now fully nonlinear.
• Despite Thm. 3.4 formally requiring two environments per single-node intervention, we only

provide one interventional environment per node.
• Rather than searching over candidate graphs, we only fix the causal order and fit the reduced form

of the SCM (see § 2.1) with a second normalizing flow.

Below, we describe these differences in more detail.
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Figure 4: Comparison of Correctly and Incorrectly Specified Models for V2 ← V1 → V3 with
Fixed Causal Order and Nonlinear SCM. Each violinplot corresponds to one setting where the
intervention target labels are permuted. The blue plot (123∗) is the setting with correct intervention
target labels. The yellow plot (132(∗)) has the targets for the two children V2 and V3 permuted, which
also corresponds to a correct causal ordering and should thus be considered equivalent. We show
mean correlation coefficients (MCCs) between the learned and ground truth latents (Left) and the
difference in validation model log-likelihood between the well-specified (blue) and misspecified
models (Right). Each violin plot is based on 20 different ground truth data generating processes;
the horizontal lines indicate the minimum, median and maximum values.

Three-Variable Graph. The unknown ground truth graph is given by

V2 ← V1 → V3 . (D.9)

This is consistent with the partial ordering V1 ⪯ V2 ⪯ V3, which is assumed for all models a priori
w.l.o.g., see § 2.2. Note that, due to the encoding of causal structure in the nonparametric model
explained below, we only iterate over different permutations of the intervention targets and not over
latent graph configurations. Due to the causal order implied by the graph (D.9), the permutations
(1, 2, 3) (no permutaion) and (1, 3, 2) (permutation of the two effects) are equivalent since the latter
also implies the correct causal ordering.

Nonlinear, Non-Gaussian SCM. The mechanisms in the ground-truth SCM are now given by

Vi := βf loci (Vpa(i)) + f scalei (Vpa(i))Ui (D.10)

for all i, where the location and scale functions f loci , f scalei : R|pa(i)| → R are parameterized by
random 3-layer neural networks (sampled as the random mixing function in (D.2)) and the noise
variables are Gaussian, Ui ∼ N (0, 1). The factor β controls the influence of the parent variables
relative to the exogenous noise. As β increases, variables tend to become more dependent, as also the
mean shifts as a function of the parent variables. We set β = 10 for the experiments shown in Fig. 4.

Nonparametric Latent SCM. We use a second normalizing flow to learn a reduced form of the
latent SCM via the transformation gSCM : R3 → R3 mapping an exogenous noise variable ϵ to the
latent variable z,

z = gSCM(ϵ) . (D.11)

The distribution of the exogenous noise variable ϵ as well as the distribution of the intervened
mechanisms q̃i(zi) for i = 1, 2, 3 is fixed and standard (isotropic) Gaussian. The flow layers in
gSCM have an upper triangular Jacobian and thus allow us to encode assumptions about the causal
graph: by passing the variables in topological order, which we can assume w.l.o.g., we ensure that
an exogenous noise variable ϵi can only influence endogenous variables in z that are descendants
of zi. The learned weights of the flow layers then implicitly encode which endogenous variables
are connected. Therefore, only different choices of the permutations of the intervention targets need
to be considered as candidate models. We use a similar architecture based on Neural Spline Flows.
However, we omit permutation layers, which would violate the topological order of the variables.
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Results. In Fig. 4, we present identifiability scores and model fits for both well-specified and
misspecified models (corresponding to different intervention target choices). Notably, we observe
that the well-specified model (in blue) or its equivalent (in yellow) yield the highest log-likelihood in
the majority of cases, as depicted in Fig. 4 (Right). This demonstrates that, even in this nonparametric
setting without fully specified graph, the log-likelihood remains a reliable criterion for selecting
the correct intervention targets. Fig. 4 (Left) shows that the selected models (blue or yellow)
approximately identify the ground-truth latent variables up to element-wise rescaling, whereas other
choices lead to much lower MCCs.

It is worth noting that, compared to the parametric setting investigated in § 6 and Fig. 3, the
nonparametric setting appears to be more challenging (as expected), as there is a less pronounced
distinction between well-specified and misspecified models, both in terms of identifiability scores
and model fits. Moreover, future work is needed to parse the implicitly learned causal relationships in
the transformation gSCM in (D.11): since only the (pre-imposed) causal order is specified, in practice,
gSCM may learn to use additional or fewer edges than in the true graph G.

E Discussion of the Role of Our Assumptions

Below, we summarize the rationale and intuition behind each assumption:

• Asm. 2.2 helps rule out degenerate cases (cancellation along different paths) in which variables are
(conditionally) independent despite being causally related. It is a standard assumption in classical
causal discovery from observational data, and therefore also helps in CRL to recover the true causal
graph.

• Asm. 2.3 is required to know how many latent variables we are looking for. It is a standard
assumption in identifiable representation learning (that is often made implicitly). However, it
may be dropped when suitable techniques for estimating the intrinsic dimensionality of X can be
employed.

• Asm. 2.5 is needed for the mapping between latents and observations to be invertible in the first
place. Without it, full recovery of the causal variables (up to CRL equivalence) is infeasible. This
assumption is also standard for the simpler problem of nonlinear ICA.

• Asm. 2.8 is a characterisation of our generative setup. Sharing of some mechanisms and the mixing
function is needed for the multi-environment setting to provide useful additional information: if
everything may change across environments, the datasets can only be analysed in isolation, running
into the non-identifiability of CRL from iid data.

• Asm. 2.9 and (A2) / (A2’) are needed since with imperfect interventions or interventions not on all
nodes, identifiability is not achievable even in the linear setting as shown by Squires et al. [117].

• Asm. (A1) is a technical assumption needed for our analysis. It is not strictly necessary (it can
also be relaxed to fully supported on a Cartesian product of intervals) but substantially eases the
readability and accessibility of the proof, without a major impact on the main causal aspects of the
problem setup.

• Asm. (A3) / (A3’) is needed to avoid spurious solutions based on applying a measure preserving
transformation on a part of the domain unaffected by the intervention.

• Asm. (A4) is needed to rule out a fine-tuning of the ground-truth generating process that are
possible due to fully non-parametric nature of the setup, see also Remark 4.2 and the following
paragraph.
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