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Abstract

It is well known that Reinforcement Learning (RL) can be formulated as a convex
program with linear constraints. The dual form of this formulation is unconstrained,
which we refer to as dual RL, and can leverage preexisting tools from convex
optimization to improve the learning performance of RL agents. We show that
several state-of-the-art deep RL algorithms (in online, offline, and imitation
settings) can be viewed as dual RL approaches in a unified framework. This
unification calls for the methods to be studied on common ground, so as to identify
the components that actually contribute to the success of these methods. Our
unification also reveals that prior off-policy imitation learning methods in the
dual space are based on an unrealistic coverage assumption and are restricted to
matching a particular f -divergence. We propose a new method using a simple
modification to the dual framework that allows for imitation learning with arbitrary
off-policy data to obtain near-expert performance.

1 Introduction

Most of the modern deep Reinforcement Learning (RL) algorithms are built on the foundations of
the approximate dynamic programming (ADP) formulation [2]. This formulation led to a family of
temporal difference algorithms and to some of the most performant RL algorithms. Model-free deep
RL algorithms such as SAC [17], TD3 [12], DDPG [36] and model-based deep RL algorithms such
as Dreamer [18], TD-MPC [19], LOOP [48], MuZero [44] and MBPO [24] exemplify this class of
successful algorithms. These methods have accomplished various feats including solving challenging
games such as Starcraft, Chess, Go, and Shogi while also being very successful in robotics for
learning manipulation and locomotion policies.

In this work, we consider an alternate formulation for RL, which views RL as a convex objective with
linear constraints. This framework has been formalized before [40] and has been known in its linear
programming form since the work of [38, 5]. The convex program for RL can be converted into a dual
unconstrained form that admits the tools already present in convex optimization literature, making it
more suitable for stochastic optimization. The methods arising from the convex program formulation
of RL also have the benefit of being truly off-policy: they can use arbitrary off-policy data to better
estimate the on-policy policy gradient, i.e they can implicitly perform distribution correction. For
this reason, the methods in this space have often been referred to as DICE (DIstribution Correction
Estimation) methods in previous literature [41, 31, 35, 37, 56].
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Our first contribution is a demonstration that several recent algorithms in deep RL and imitation
learning can be viewed as dual RL methods in a unified framework. These algorithms represent
state-of-the-art methods [15, 57, 34, 14] in reinforcement and imitation learning, for both online and
offline settings. A number of these recent works have utilized differing tools to derive their method
(e.g Gumbel regression [15], change of variables [14, 57], lower bounded Q-function [34]) which
makes it difficult to study them on common ground. We hope that our presented unification provides
a framework for future methods to perform evaluation and analyze which factors actually make the
algorithm better or worse.

Second, building upon the dual framework, we propose a new algorithm for off-policy imitation
learning that is able to leverage arbitrary off-policy data to learn near-expert policies, relaxing
the coverage assumption of previous works [37, 7, 57, 29]. Our resulting algorithm, ReCOIL, is
simple, non-adversarial, and admits a single-player optimization in contrast to previous works in
imitation [16, 21, 10, 47]. We empirically demonstrate the failure of previous imitation learning
methods based on the coverage assumption in the dual setting. We also evaluate our methods for
learning to imitate in offline continuous control settings on a set of MuJoCo environments and show
competitive performance. Finally, we point out scope for future exploration in designing better
algorithms for deep RL and imitation learning methods utilizing the dual framework.
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Figure 1: We show that a number of prior methods are special cases of the dual RL framework. Based on this
framework, we also propose new methods addressing the shortcomings of previous works (boxed in green).

2 Preliminaries

A Markov Decision Process (MDP) is defined by the tuple (S,A, p, r, d0) with state-space S,
action-space A, transition probability p(st+1|st, at), reward function r(s, a), and initial state
distribution d0(s). In the infinite horizon discounted MDP, the goal of reinforcement learning
algorithms is to maximize the return for policy π given by Jπ = Eat∼π(st),s0∼d0

[
∑∞

t=0 γ
tr(st, at)].

Value functions: V π : S → R represents a state-value function which estimates the return from
the current state st and following policy π, defined as V π(s) = Eat∼π(st)[

∑∞
t=0 γ

tr(st, at)|s0 = s].
Similarly, Qπ : S × A → R represents an action-value function, usually referred as a Q-function,
defined as Qπ(s, a) = Eat∼π(st)[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]. Value functions corresponding
to the optimal policy π∗ are defined to be V ∗ and Q∗. The value function can be updated by
minimizing mean-squared error with the target given by Bellman operator T πQ in the ADP setting:

T πQQ(st, at) = r(st, at) + Est+1∼p,at+1∼πQ
[γ(Q(st+1, at+1)], (1)

where πQ is updated to be greedy with respect to Q, the current Q-function. We will use T V (s, a) to
denote r(s, a) + Est+1∼p(·|sT ,at)[V (st+1)]. Note the absence of an explicit policy in this operator.

State-action/State visitation distribution: The state-action visitation distribution (stationary
occupancies) dπ(s, a) : S ×A → [0,∞) of π is:

dπ(s, a) = (1− γ)

∞∑
t=0

γtP (st = s, at = a|s0 ∼ ρ0, at ∼ π(st), st+1 ∼ p(st, at)). (2)
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The state-visitation distribution marginalizes over actions on dπ(s, a) and will be overloaded by
the notation dπ(s) =

∑
a∈A dπ(s, a). In this work, we will use dO, dR, and dE to denote offline,

replay-buffer, and expert state-action visitation distribution respectively.

f -divergence: Let f : (0,∞) → R be a convex lower semi-continuous function with f(1) = 0. Let
P and Q be two probability distributions, then the f -divergence is defined as:

Df(P || Q) = Ez∼Q

[
f

(
P (z)

Q(z)

)]
. (3)

3 A Dual Unification for Reinforcement Learning Methods

A number of recently proposed algorithms for deep reinforcement learning and imitation learning
use different mathematical tools to derive their method (e.g Gumbel regression [15], change of
variables [14, 57], lower-bounded Q-function [34]) which makes it difficult to study them on common
ground. This paper aims to connect a number of algorithmic developments in deep reinforcement
learning as a special case in a simple unified framework of dual reinforcement learning. (True)
off-policy algorithms, that can leverage arbitrary off-policy data for policy improvement, are a simple
by-product of this previously known but mostly ignored in-practice framework [40] we consider. In
Section 3.1, we first describe the general framework for dual reinforcement learning and then proceed
to chalk out the connections for reinforcement learning and imitation learning in Section 3.2 and
Section 3.3 respectively. In Section 4, we proceed to propose a new method, ReCOIL, for imitation
learning from arbitrary experience.

3.1 Dual Reinforcement Learning

We will consider the regularized policy optimization setting in this work given below:

max
π

Edπ(s,a)[r(s, a)]− αDf(d
π(s, a) || dO(s, a)), (4)

where dO is a known state-action visitation distribution, α is the temperature parameter that allows
us to weigh policy improvement against conservatism by staying close to the state-action distribution
dO, and f denotes a particular f -divergence. We can rewrite the problem as a convex optimization
problem (CoP) by considering optimization over valid state-action visitations satisfying bellman-flow
constraints:

Q-CoP: max
π,d≥0

Ed(s,a)[r(s, a)]− αDf(d(s, a) || dO(s, a)) (5)

s.t d(s, a) = (1− γ)d0(s).π(a|s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′)π(a|s),

The above problem is overconstrained – the inner maximization w.r.t d is unnecessary as the (S ×A)
constraints uniquely determine the distribution. We can relax the constraints to get an equivalent but
different form for the problem:

V-CoP: max
d≥0

Ed(s,a)[r(s, a)]− αDf(d(s, a) || dO(s, a)) (6)

s.t
∑
a∈A

d(s, a) = (1− γ)d0(s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′).

We can leverage Lagrangian duality to convert the convex program above into its dual unconstrained
optimization form (see Appendix A.1 for derivation and review) since the objective is convex and the
constraints are linear.

In summary, we have two methods for policy optimization given by:

dual-Q : max
π

min
Q

(1− γ)Ed0(s),π(a|s)[Q(s, a)] + αEs,a∼dO [f∗ ([T πQ(s, a)−Q(s, a)] /α))]

(7)

dual-V : min
V (s)

(1− γ)Ed0(s)[V (s)] + αEs,a∼dO [f∗ ([T V (s, a)− V (s))] /α)]. (8)
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where Q and V are Lagrange variables in this framework and f∗ denotes the convex conjugate of
function f . We overload y(s, a) to denote r(s, a) + γ

∑
s′ p(s

′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a) or
r(s, a)+γ

∑
s′ p(s

′|s, a)V (s′)−V (s) for dual-Q and dual-V settings respectively for notational
simplicity. We note an important property of the dual RL formulation: at convergence, the distribution
ratio between the optimal policy and distribution used for regularization is captured in the first
derivative of the conjugate f -divergence. Formally,

d∗(s, a)

dO(s, a)
= f∗′

(
y(s, a)

α

)
. (9)

The dual formulation has two appealing properties: (a) The gradient of the objective (Eq 7 and 8)
w.r.t π as Q is optimized is the on-policy policy gradient using off-policy data1 (b) Allows us to
incorporate regularization of different forms such as w.r.t behavior data (pessimism [53]), data
generated by previous policy (trust region [26, 45, 46]), uniform distribution (max-entropy [17]) or
an online planner [48]. In the dual formulation above, we have ignored the constraints that imply
that the distribution d(s, a) should be always positive ∀ s, a. The closed-form solutions for the dual
formulation under the positivity constraint can be found in Appendix A.2. The positivity constraints
have the effect of changing the function f∗ in Equation 7 and 8 to f∗

p (refer Appendix A.2).

3.2 Connections to duality in reinforcement learning

Equations 5 and 6 provide a natural choice for both offline and online reinforcement learning
algorithms. Using the dual RL framework, we obtain a set of approaches that leverage dual-Q
and dual-V for policy improvement. In this section, our first result shows that Conservative
Q-learning [34], an offline RL method primarily understood to prevent overestimation by learning a
lower bounded Q function is actually a dual-Q method. Second, we show that Extreme Q-Learning
(X-QL) [15], a method for both online and offline RL based on the principle of implicit maximization
in the value function space using Gumbel regression, can be reduced to a dual-V problem with a
semi-gradient update rule (i.e stop-gradient (r(s, a) + γ

∑
s′ p(s

′|s, a)V (s′))) when f is set
to be the reverse-KL regularization. This insight obtained through duality, allows us to propose a
class of algorithms extending X-QL, by choosing different functions f which we show below to
result in a family of implicit maximizers. We defer the detailed discussion on unifying RL methods
using duality to Appendix A.3 with Lemmas 5, 6, 7 and focus on the imitation learning setting in the
main paper due to space constraints.

3.3 Connections to duality in imitation learning

In this section, we will first discuss the setting of offline imitation learning with expert data only –
where the agent has no access to the environment and is limited to a fixed amount of offline expert
transitions. In this direction, we consolidate prior work and also propose a new algorithm arising
from the dual-V formulation. Then, we discuss the off-policy imitation learning setting where the
agent has access to limited expert data that it is trying to imitate along with some suboptimal data
which is obtained offline or through agent online interactions. We discuss prior works from the
perspective of duality and show how they are limited by their assumption of coverage (off-policy
replay data covers expert data) or their reliance on a particular f -divergence. Finally, we propose
a new method for off-policy imitation learning that relaxes the coverage assumption and works for
arbitrary f -divergences.

3.3.1 Offline imitation learning with expert data only

We start with the dual-Q and dual-V equations and repurpose them for imitation by simply setting
the reward function to be uniformly 0 across the state-action space and setting the regularization
distribution to be the expert distribution dO(s, a) = dE(s, a). We use T π

0 and T0 to denote the
backup operator with zero rewards. dual-Q (offline imitation) takes the following form:

dual-Q (offline imitation with expert-only data):

max
π

min
Q

(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE [f∗ ([T π
0 Q(s, a)−Q(s, a)] /α)]. (10)

1Note that the on-policy policy gradient is with respect to the regularized Q-values
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Interestingly, this reduction directly leads us to the equivalence of an imitation learning method
IQLearn [14] derived using a change of variables in the form of an inverse backup operator. [14]
uses this method in the online imitation learning setting with an additional regularization which we
suggest is unprincipled, also pointed out by others [1] (as only expert data samples can be leveraged
in the above optimization) and provide a fix in the Section 4.
Lemma 1. dual-Q is equivalent to IQ-Learn when r(s, a) = 0 ∀ (S,A) and dO(s, a) = dE(s, a).

Utilizing Lemma 1 above, we also provide a new observation in the form of Corollary 1 below. We
find that Implicit Behavior Cloning [7], a method that performs behavior cloning using a contrastive
objective, is a special case of dual-Q for offline imitation learning.
Corollary 1. dual-Q is equivalent to Implicit Behavior Cloning [7] when r(s, a) = 0 ∀ (S,A)
and dO(s, a) = dE(s, a) and f is set to be the total variation divergence.

Leveraging the dual-V variant we analogously obtain a new method for offline imitation learning,
which we refer to as IVLearn that we leave for future work. (See Appendix A.4.1).

3.3.2 Off-policy imitation learning (under coverage assumption)

The dual-Q and dual-V framework does not naturally extend to off-policy imitation learning.
To remedy this, prior methods have relied on careful selection of an f -divergence and a coverage
assumption that allows them to arrive at an off-policy objective for imitation learning [57, 22, 37].
Under the assumption that the replay buffer visitation (denoted by dR) covers the expert visitation
(dR > 0 wherever dE>0) [37], which we refer to as the coverage assumption, and f set to be
the reverse KL divergence, we get the following dual-Q and dual-V forms for imitation (see
Appendix A.5 for derivation):

dual-Q for off-policy imitation (coverage assumption):
max
π(a|s)

min
Q(s,a)

(1− γ)Eρ0(s),π(a|s)[Q(s, a)] + Es,a∼dR [f∗(T π
rimitQ(s, a)−Q(s, a))], (11)

where T π
rimit denote backup operator under the reward function rimit = − log dR(s,a)

dE(s,a)
. This choice

of KL divergence leads us to a reduction of another method, OPOLO [57] for off-policy imitation
learning to dualQ which we formalize in the lemma below:
Lemma 2. dual-Q for off-policy imitation learning reduces to OPOLO [57], with the f -divergence
set to the reverse KL divergence when r(s, a) = 0 ∀S,A, dO = dE and under the assumption that
the replay data distribution covers the expert data distribution.

We note that the dual-V framework for off-policy imitation learning under coverage assumptions
was studied in the imitation learning work SMODICE [37].

4 A Method for Imitation Learning from Arbitrary Experience

In this section, we propose a new approach to relax the coverage assumption discussed above for
imitation as well as allow for arbitrary f -divergence matching in the dual framework. We refer to
our method as ReCOIL (RElaxed Coverage for Off-policy Imitation Learning). We consider an
alternate optimization objective that fits well in the dual RL framework by changing the regularization
to be between mixture distributions. Concretely, we are interested in the following f -divergence
regularization:

Df(βd(s, a) + (1− β)dR(s, a) || βdE(s, a) + (1− β)dR(s, a)). (12)

Minimizing this divergence alone is a valid imitation learning objective [16, 27, 43, 47] since the
global minimum for this objective is achieved at d = dE . Let dRmix := βd(s, a) + (1− β)dR(s, a)

and dE,R
mix := βdE(s, a) + (1− β)dR(s, a). The modified Q-CoP for imitation learning objective is

given by:

max
d(s,a)≥0,π(a|s)

−Df(d
R
mix(s, a) || d

E,R
mix(s, a))

s.t d(s, a) = (1− γ)ρ0(s).π(a|s) + γπ(a|s)
∑
s′,a′

d(s′, a′)p(s|s′, a′) (13)
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The V-CoP for this setting can be similarly specified and the dual results in two variants of ReCOIL
that can be leveraged for off-policy imitation learning with arbitrary data as formalized by Lemma 3
and Lemma 4 below.
Lemma 3. (dual-Q for off-policy imitation (relaxed coverage assumption)) Imitation learning
using off-policy data can be solved by optimizing the following modified dual objective for Q-CoP
with r(s, a) = 0 ∀S,A and f -divergence considered between distributions dRmix := βd(s, a) + (1−
β)dR(s, a) and dE,R

mix := βdE(s, a) + (1− β)dR(s, a), and is given by:

max
π(a|s)

min
Q(s,a)

β(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE,R
mix

[
f∗
p (T π

0 Q(s, a)−Q(s, a))
]

− (1− β)Es,a∼dR [T π
0 Q(s, a)−Q(s, a)] (14)

Analogously, we have the following result for off-policy imitation learning in the V-space.
Lemma 4. (dual-V for off-policy imitation (relaxed coverage assumption)) Imitation learning
using off-policy data can be solved by optimizing the following modified dual objective for V-CoP
with r(s, a) = 0 ∀S,A and f -divergence considered between distributions dRmix := βd(s, a) + (1−
β)dR(s, a) and dE,R

mix := βdE(s, a) + (1− β)dR(s, a), and is given by:

min
V (s)

β(1− γ)Ed0(s)[V (s)] + Es,a∼dE,R
mix

[
f∗
p (T0V (s, a)− V (s))

]
− (1− β)Es,a∼dR [T0V (s, a)− V (s)] (15)

In the above-proposed methods, we avoid the pitfalls of previous methods based on coverage
assumption that requires learning a reward function

(
log( d

R(s,a)
dE(s,a)

)
)

that is ill-defined in state-action
space with zero expert support. Our methods also implicitly learns a distribution ratio
βd(s,a)+(1−β)dR(s,a)
βdE(s,a)+(1−β)dR(s,a)

as f∗′
(y(s, a)) which is well-defined for all replay buffer and expert transitions

(dR > 0 or dE > 0) that the policy is trained on.

5 Experimental Analysis

Our experimental evaluation aims to answer the following questions: (a) Does the (true) off-policy
nature of dual RL framework allow it to fix the brittleness in traditional off-policy methods? (b) Does
ReCOIL allow for better estimation of agent visitation distribution? (c) How does ReCOIL compare
to baselines for learning to imitate from offline datasets of mixed quality?

5.1 The failure of ADP-based traditional off-policy algorithms

Our experiments with the popular off-policy method SAC [17] reveal its brittleness to off-policy data.
At the beginning of training, each learning agent is provided with expert or human-demonstrated
trajectories for completing the task. We add 1000 transitions from this dataset to the replay buffer for
the off-policy algorithm to bootstrap from. As the action dimension increases, the brittleness of SAC
becomes more apparent (see SAC+off policy data and SACfD plots in Figure 3). We hypothesize that
this failure in the online RL setting is primarily due to the training instabilities caused by TD-backups
resulting in overestimation in regions where the agent’s current policy does not visit. In Figure 4, we
observe that overestimation indeed happens in environments with larger action dimensions and these
overestimations take longer to get corrected and in the process destabilize the training. Figure 3 in
Appendix D.1 shows that the dual-Q method for RL (AlgaeDICE) is able to leverage off-policy
data to increase learning performance without any signs of destabilization. This can be attributed to
the distribution correction estimation property of dual RL methods which updates the current policy
using the corrected on-policy policy visitation [41]. Note, that we set the temperature α to a low value
(0.001) to disentangle the effect of pessimism which is an alternate way to avoid overestimation.

5.2 Does ReCOIL allow for better estimation of agent visitation distribution?

We consider the proposed ReCOIL method and investigate its ability to estimate distribution ratios
correctly using the property shown in Eq 9. We consider the inner optimization for ReCOIL-Q to
obtain the distribution ratio for a fixed policy π. Thus, given the visitation distribution of the replay
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buffer dR, expert dE , and the policy π, the inner optimization implicitly learn the distribution ratio
between dRmix and dE,R

mix, allowing us to infer agent visitation dπ. We consider two settings in our
experiments: (1) a 2-timestep MDP where the agent starts from state s0 and transitions to one of the
states {s1, s2, s3, s4, s5} which are absorbing. In this setting, the replay buffer perfectly covers the
unknown ground truth agent visitation. (2) a 2-D gridworld where the agent can move cardinally and
the replay buffer distribution does not cover the unknown ground truth agent visitation.

Our results (Figure 5 and 6 in Appendix D.2) demonstrate that in the perfect coverage setting,
ReCOIL is able to infer the agent policy visitation perfectly, and in the case of imperfect coverage
is able to significantly outperform other methods. Note that we modify SMODICE to incorporate
state-action expert data rather than relying on state-only expert data. IQLearn does not leverage replay
data information, relying only on expert data to infer agent visitation. SMODICE’s reward function
− log dR(s,a)

dE(s,a)
, arising from its coverage assumption is ill-defined in parts of state space where the

expert has no support leading to poor downstream density ratio estimation.

5.3 Benchmarking performance of ReCOIL on MuJoCo tasks

Dataset Env RCE ORIL SMODICE ReCOIL

random+expert
hopper 51.41±38.63 73.93±11.06 101.61±7.69 95.04±4.48

halfcheetah 64.19±11.06 60.49±3.53 80.16±7.30 84.10±4.72
walker2d 20.90±26.80 2.86±3.39 105.86±3.47 100.84±6.34

ant 105.38±14.15 73.67±12.69 126.78±5.12 126.74±4.63

random+few-expert
hopper 25.31±18.97 42.04±13.76 60.11±18.28 79.44±13.53

halfcheetah 2.99±1.07 2.84±5.52 2.28±0.62 3.90±0.66
walker2d 40.49±26.52 3.22±3.29 107.18±1.87 83.23±19.00

ant 67.62±15.81 25.41 ± 8.58 -6.10±7.85 94.25± 8.30

medium+expert
hopper 29.37±3.39 61.35±7.91 54.77±6.2 63.26±4.99

halfcheetah 61.14±18.31 57.15±3.49 58.01±3.12 84.01±3.40
walker2d 19.84±2.71 4.14±2.69 1.2±1.57 91.51±16.50

ant 81.18±29.73 103.42±8.43 102.82±4.63 119.94±4.52
Table 1: Normalized scores for ReCOIL on the different D4RL datasets along with 1000 given expert transitions
compared to different offline IL baselines. ReCOIL improves over baselines when the offline dataset has low
coverage of expert or when it is more challenging to distinguish expert vs suboptimal transitions.
In this task, we use an offline dataset of environment interactions from D4RL [8]. We consider the
following MuJoCo environments: Hopper, Walker2d, HalfCheetah, and Ant. We consider three
different dataset compositions for the offline dataset - ‘random+expert’, ‘medium+expert’, and
‘random+few-expert’. The first two datasets consist of a few expert trajectories (≤200) and a large
number of suboptimal transitions (1 million). random+few-expert has only ≤ 30 expert trajectories.
The learning agent also has access to 1000 expert transitions. We compare recent methods for offline
imitation learning with suboptimal data – RCE [6], SMODICE [37] and ORIL [59]. We do not
compare to DEMODICE [29] as SMODICE was shown to be competitive in [37].

We focus on ReCOIL-V due to its favorable property of being a single-player non-adversarial
optimization. Note, that contrary to SMODICE [37] which is based on the coverage assumption
and requires learning a discriminator, ReCOIL just learns a single parametric V function.
Table 1 empirically validates that ReCOIL-V outperforms or is competitive over baselines in all
environments. SMODICE shows poor performance in cases when the dataset has low expert coverage
(random+few-expert) or where the discriminator is not able to reliably distinguish expert vs non-expert
data (medium+expert).

6 Related Work

Developments in deep model-free reinforcement learning methods: The promise of off-policy
learning falls short as learning off-policy with function approximators presents a number of issues
like over-estimation, training instability, and various biases [51, 9, 12, 33]. Previous works have
approached fixing these issues using methods like doubleQ learning [20], target networks [39],
emphatic weightings [25, 23] among other approaches. These approaches still do not carry over
well to the offline RL setting where overestimation bias is more likely since unlike online RL, the
policy cannot correct its overestimation by deploying the current policy. A number of solutions
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exists for controlling overestimation in prior work – f -divergence regularization to the training
distribution [53, 42, 13, 11], support regularization [49], implicit maximization [32], learning a Q
function that penalizes OOD actions [34] and learning in a pessimistic MDP [28, 55]. A recent
method XQL [15] uses implicit maximization to obtain significant gains in learning performance
across online and offline RL settings. Prior work [54, 52, 32, 42] investigates specialized solutions to
incorporate previously collected off-policy data during online learning. The dual RL framework [40]
fixes the issue of distribution mismatch in ADP-based off-policy reinforcement learning works that
ignore the distribution shift [17, 12] and provides a principled solution.

Developments in deep model-free imitation learning methods: Imitation learning has benefited
greatly by using off-policy data to improve learning performance [30, 43, 47, 57]. Often, replacing
the on-policy expectation common in most Inverse RL formulations [58, 50] by expectation under
off-policy samples, which is unprincipled, has led to large gains in sample efficiency [30]. Principled
offline imitation learning using expert data only is a simple by-product of the dual-RL framework.
Previous works have proposed a solution in the dual RL space to this problem based on an unrealistic
coverage assumption [37, 57, 29] and restricting themselves to matching a particular f -divergence.
In this work, we relax this assumption and allow for generalizing to all f -divergences, presenting
a principled off-policy approach to imitation. Our work also presents an approach that allows for
single-player non-adversarial optimization for imitation learning in contrast to previous works [31].

7 Conclusion

Dual reinforcement learning algorithms have great potential for developing performant Deep RL
methods. Indeed, we show that a number of the recently developed methods for RL – Extreme
Q-learning, Conservative Q-learning, and Imitation learning – OPOLO, IQLearn, and Implicit
Behavior Cloning can be unified through the lens of an already existing framework of dual RL.
Our insight calls for these methods to be studied under this unified lens to figure out components
that contribute to the success of these methods. As a by-product of this unification, we are able to
identify novel insights that give us a way to propose: a family of implicit maximizers that avoids the
overestimation problem due to actor-critic learning by relying on in-distribution maximization, an
offline single-player non-adversarial offline imitation learning method from expert data only, and a
general off-policy imitation learning method from arbitrary data that relaxes the restrictive coverage
assumption made by prior work. We analyze the off-policy imitation learning method by experiments
in continuous control and demonstrate superior performance.
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A Appendix

A.1 A Review of Dual-RL

In this section, we aim to give a self-contained review for Dual Reinforcement Learning. For a more
thorough read, refer to [40].

A.1.1 Convex conjugates and f -divergence

We first review the basics of duality in reinforcement learning. Let f : (0,∞) → R be a convex
function. The convex conjugate f∗ of f is defined by:

f∗(y) = supx∈R[⟨x, y⟩ − f(x)] (16)

where ⟨ ⟩ denotes the dot product. The convex conjugates have the important property that f∗ is
also convex and the convex conjugate of f∗ retrieves back the original function f . Going forward,
we would be dealing extensively with f -divergences. Informally, f -divergences [] are a measure of
distance between two probability distributions. Here’s a more formal definition:

Let f : (0,∞) → R be a convex lower semi-continuous function with f(1) = 0. Let P and Q be
two probability distributions, then the f -divergence is defined as:

Df(P || Q) = Ez∼Q

[
f

(
P (z)

Q(z)

)]
(17)

Now, we will do a simple exercise in finding the convex conjugate for this f -divergence (where f is a
convex function) which will also give us the well-known variational representation of f -divergence.
We will use it frequently in the subsequent sections.

Using the definition of convex conjugate and the fact that convex conjugate of f∗ gives back f , we
have:

Df(P || Q) = Ez∼Q

[
f

(
P (z)

Q(z)

)]
(18)

= sup
y

Ez∼Q

[
P (z)

Q(z)
y(z)

]
− EQ[f

∗(y(z))] (19)

= sup
y:Z→R

Ez∼P [y(z)]− Ez∼Q[f
∗(y(z))] (20)

Thus Eq 20 derives the variational form for f -divergence. Although deriving the analytical form of
f∗ is not complicated for most common f -divergences — set the derivative for Eq 16 to zero and find
out the stationary point, it might be useful to list some common f -divergences and their conjugates
f∗. We also note an important relation regarding f and f∗: (f∗)

′
= (f ′)−1, where the ′ notation

denotes first derivative.
Table 2: List of f -divergences and their convex conjugates

Divergence f(t) f∗(u)

Forward KL − log t −1− log(−u)

Reverse KL t log t e(u−1)

Squared Hellinger (
√
t− 1)2 u

1−u

Pearson χ2 (t− 1)2 u+ u2

4

Total variation 1
2
|t− 1| u

Jensen-Shannon −(t+ 1) log( t+1
2

) + t log t − log (2− eu)

A.1.2 Duality in Reinforcement Learning

Duality in reinforcement learning allows a different perspective for solving RL problems, often giving
off-policy alternatives to typical on-policy approaches. We consider a regularized policy optimization
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objective below:
max
π

Edπ(s,a)[r(s, a)]− αDf(d
π(s, a) || do(s, a)) (21)

where do is a known state-action visitation distribution. Optimizing over π, at first sight, gives us
a non-convex problem further complicating the analysis. We can rewrite the problem as a linear
program (LP) by considering optimization over valid state-action visitations by adding a constraint
for the optimization:

max
π,d≥0

Ed(s,a)[r(s, a)]− αDf(d(s, a) || dO(s, a)) (22)

s.t d(s, a) = (1− γ)d0(s).π(a|s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′)π(a|s) (23)

where α allows us to weigh policy improvement against conservatism from staying close to the
state-action distribution dO.

A careful reader may notice that the above problem is overconstrained. The solution to the
inner maximization with respect to d is uniquely determined by the |S|×|A| constraints from the
formulation. The inner optimization, using only the constraints, uniquely determines the visitation
dπ - the state action visitation of policy π and is independent of the term being optimized 22. The
gradient with respect to policy π when d is optimized can be shown to be equivalent to the on-policy
policy gradient (see Section 5.1 from [40]).

The constraints above are the probability flow equations that a stationary state-action distribution
must satisfy. Now, how can we go about solving it? Here is where duality comes into play. First,
we form the lagrangian dual of our original optimization problem, transforming our constrained
optimization into an unconstrained form. This introduces additional optimization variables - the
Lagrange multipliers.

max
π,d≥0

min
Q(s,a)

Es,a∼d(s,a)[r(s, a)]− αDf(d(s, a) || do(s, a))

+
∑
s,a

Q(s, a)

(1− γ)d0(s).π(a|s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′)π(a|s)− d(s, a)


where Q(s, a) are the Lagrange multipliers for enforcing the equality constraints. We can now do
some algebraic manipulation on the above equation to further simplify it:

max
π,d≥0

min
Q(s,a)

Es,a∼d(s,a)[r(s, a)]− αDf(d(s, a) || dO(s, a))

+
∑
s,a

Q(s, a)

(1− γ)d0(s).π(a|s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′)π(a|s)− d(s, a)

 (24)

= max
π,d≥0

min
Q(s,a)

(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼d

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
− αDf(d(s, a) || dO(s, a))

(25)
= max

π(a|s)
min
Q(s,a)

max
d(s,a)≥0

(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼d

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
− αDf(d(s, a) || dO(s, a))

(26)
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= max
π(a|s)

min
Q(s,a)

max
d(s,a)≥0

(1− γ)

α
Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼d

[
(r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a))/α

]
−Df(d(s, a) || dO(s, a))

(27)

= max
π(a|s)

min
Q(s,a)

(1− γ)

α
Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼dO

[
f∗((r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a))/α)

]
(28)

The last step is due to the application of Eq 16 (convex conjugate definition). To see this more clearly
let y(s, a) = r(s, a) + γ

∑
s′ p(s

′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a). Then,

max
d≥0

Es,a∼d[y(s, a)]−Df(d(s, a) || do(s, a)) (29)

= max
d≥0

Es,a∼do

[
d(s, a)

dO(s, a)
y(s, a)− f

(
d(s, a)

do(s, a)

)]
(30)

= Edo [f∗(y(s, a))] (31)

Finally, the policy optimization problem is reduced to the solving the following min-max optimization,
which we will refer to as dual-Q:

max
π(a|s)

min
Q(s,a)

(1− γ)

α
Ed0(s),π(a|s)[Q(s, a)]+Es,a∼dO

[
f∗((r(s, a) + γ

∑
s′

p(s′|s, a)π(a|s′)Q(s′, a′)−Q(s, a))/α)

]
(32)

For common f -divergences, table 2 lists the corresponding convex conjugates f∗. Also, note that
the primal RL problem is convex and due to slater’s condition [3] we can interchange the min-max
between the Lagrange variable Q and visitation distribution d to max-min.

In the case of deterministic policy and deterministic dynamics, the above-obtained optimization takes
a simpler form:

min
Q(s,a)

max
π(a|s)

(1− γ)

α
Eρ0(s)[Q(s, π(s))] + Es,a∼do [f∗((r(s, a) + γQ(s′, π(s′))−Q(s, a))/α)]

(33)

Now, we have seen how we can transform a regularized RL problem into its dual-Q form which
uses Lagrange variables in the form of state-action functions. Interestingly, we can go further to
transform the regularized RL problem into Lagrange variables (V) that only depend on the state, and
in doing so we also get rid of the min-max optimization in the dual-Q.

Consider the regularized RL problem again (Eq 21). This time, we formulate the visitation constraints
to depend solely on states rather than state-action pairs. We consider α = 1 for sake of exposition.
Interested readers can derive the result for α ̸= 1 as in the dual-Q case above. Hence, we are
solving the following constrained optimization problem:

max
d≥0

Ed(s,a)[r(s, a)]−Df(d(s, a) || dO(s, a)) (34)

s.t
∑
a∈A

d(s, a) = (1− γ)d0(s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′) (35)
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As before we construct the Lagrangian dual to this problem. Note that our constraints now solely
depend on s.

max
d≥0

min
V (s)

Es∼d(s,a)[r(s, a)]−Df(d(s, a) || do(s, a)) (36)

+
∑
s

V (s)

(1− γ)d0(s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′)− d(s, a)

 (37)

Using similar algebraic manipulations we used to obtain dual-Q, we get the dual-V formulation
for policy optimization:

max
d(s,a)≥0

min
V (s)

Es,a∼d(s,a)[r(s, a)]−Df(d(s, a) || dO(s, a))

+
∑
s

V (s)

(1− γ)d0(s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′)− d(s, a)

 (38)

= min
V (s)

max
d(s,a)≥0

(1− γ)Ed0(s)[V (s)]

+ Es,a∼d

[
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s)

]
−Df(d(s, a) || dO(s, a)) (39)

= min
V (s)

max
d(s,a)≥0

(1− γ)Ed0(s)[V (s)] (40)

+ Es,a∼d

[
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s)

]
−Df(d(s, a) || dO(s, a)) (41)

= min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dO

[
f∗(r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s))

]
(42)

In summary, we have two methods for policy optimization given by:

dual-Q: maxπ minQ(1− γ)Ed0(s),π(a|s)[Q(s, a)]
+ Es,a∼do [f∗(r(s, a) + γ

∑
s′ p(s

′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a))]

and,

dual-V: minV (s)(1−γ)Ed0(s)[V (s)]+Es,a∼do [f∗(r(s, a) + γ
∑

s′ p(s
′|s, a)V (s′)− V (s))]

The above derivations for dual of RL CoP - dual-Q and dual-V brings out some important
observations

• dual-Q and dual-V present off-policy policy optimization solutions for regularized
RL problems which requires sampling transitions only from the distribution the policy
state-action visitation is being regularized against.

• The above property allows us to solve not only RL problems but also imitation problems
by setting the reward function to be zero everywhere and do to be the expert dataset,
and also offline RL problems where we want to maximize reward with the constraint
that our state-action visitation should not deviate too much from the replay buffer (do =
replay-buffer).

• dual-V formulation presents a way to solve the RL problem using a single optimization
rather than a min-max optimization of the Q-CoP or standard RL formulation. V-CoP
implicitly subsumes greedy policy maximization.
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A.1.3 Recovering the optimal policy in V-CoP

In the above derivations for dual-Q and dual-V we leveraged the fact that the closed form solution for
optimizing d is known and it could be written in the form of Eq 29. The value of d∗ can found using
KKT conditions on Eq 29:

d∗(s, a)

do(s, a)
= max

(
0, (f ′)−1

(
y(s, a)

α

))
(43)

Using this ratio there are two ways to recover the optimal policy:

Method 1: Maximum likelihood on expert visitation distribution

Policy learning can be treated as maximizing the likelihood of optimal actions:

maxEs,a∼d∗ [πθ(a|s)] (44)

Using importance sampling we can rewrite the optimization above in a more tractable form:

max
θ

Es,a∼do [w∗(s, a)πθ(a|s)] (45)

This way of policy learning is similar to weighted behavior cloning, but suffers from the issue that
policy is not optimized at state-actions where the expert does not visit, i.e w∗(s, a) = 0

Method 2: Reverse KL matching on offline data distribution (Information Projection)

To allow the policy to be optimized at all that states in the offline dataset we consider an alternate
objective:

min
θ

DKL(d
o(s)πθ(a|s) || do(s)π∗(a|s)) (46)

The objective can be written in a form suitable for optimization as follows:

min
θ

DKL(d
o(s)πθ(a|s) || do(s)π∗(a|s)) = min

θ
Es∼do(s),a∼πθ

[
log

πθ(a|s)
π∗(a|s)

]
(47)

= min
θ

Es∼do(s),a∼πθ

[
log

πθ(a|s)d∗(s)do(s)πo(a|s)
π∗(a|s)d∗(s)do(s)πo(a|s)

]
(48)

= min
θ

Es∼do(s),a∼πθ

[
log

πθ(a|s)
πo(a|s)

− log(w∗(s, a)) + log
d∗(s)

do(s)

]
(49)

= min
θ

Es∼do(s),a∼πθ
[log(πθ(a|s))− log(πo(a|s))− log(w∗(s, a))]

(50)

This method recovers the optimal policy at the states present in the dataset but requires learning
another policy πo(a|s) which can be obtained by behavior cloning the replay buffer.

A.2 Positivity constraints in Dual RL

We have ignored an important consideration in the derivation of dual-RL methods in Section A.1.2 –
the constraint that the distribution d we are optimizing for in Q-CoP and V-CoP must be positive.
Although this does not affect derivation for dual-Q as it is overconstrained and the distribution is
guaranteed to be unique, it is imperative we consider this constraint in the dual-V setting. We will
now modify the derivation for dual-V to incorporate these constraints.

max
d≥0

Ed(s,a)[r(s, a)]−Df(d(s, a) || dO(s, a)) (51)

s.t
∑
a∈A

d(s, a) = (1− γ)d0(s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′) (52)

We arrive at the following equation using the steps in Section A.1.2 (see Equation 39).
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= min
V (s)

max
d(s,a)≥0

(1− γ)Ed0(s)[V (s)]

+ Es,a∼d

[
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s)

]
−Df(d(s, a) || dO(s, a)) (53)

= min
V (s)

max
d(s,a)≥0

(1− γ)Ed0(s)[V (s)]

+ Es,a∼dO

[
d(s, a)

dO(s, a)
(r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s))

]
− Es,a∼dO

[
f(

d(s, a)

dO(s, a)
)

]
(54)

Let w(s, a) = d(s,a)
dO(s,a)

and r(s, a) + γ
∑

s′ p(s
′|s, a)V (s′)− V (s) be denoted by y(s, a). We have,

min
V (s)

max
d(s,a)≥0

(1− γ)Ed0(s)[V (s)] + Es,a∼dO [w(s, a)(y(s, a))]− Es,a∼dO [f(w(s, a))] (55)

We now direct the attention to the inner maximization and find a closed-form solution under the
constraint that d(s, a) ≥ 0.

max
d(s,a)

max
λ≥=0

Es,a∼dO [w(s, a)(y(s, a))]− Es,a∼dO [f(w(s, a))] +
∑
s,a

λ(s, a)w(s, a) (56)

where λ is the Lagrangian dual parameter than ensures the positivity constraint. Since strong duality
holds, we can use the KKT constraints to find the solutions w∗(s, a) and λ∗(s, a).

Primal feasibility: w∗ ≥ 0 ∀ s, a
Dual feasibility: λ∗ ≥ 0 ∀ s, a
Stationarity: dO(s, a)(f ′(w∗(s, a)) + y(s, a) + λ∗(s, a)) = 0 ∀ s, a
Complementary Slackness: w∗(s, a)λ∗(s, a) = 0 ∀ s, a

Using stationarity we have the following:

f ′(w∗(s, a)) = y(s, a) + λ∗(s, a) ∀ s, a (57)

Now using complementary slackness only two cases are possible w∗(s, a) > 0 or λ∗(s, a) > 0.
Combining both cases we arrive at the following solution for this constrained optimization:

w∗(s, a) = max
(
0, f ′−1

(y(s, a))
)

(58)

We refer to the resulting function after plugging the solution for w∗ back as f∗
p .

f∗
p (s, a) = w∗(s, a)(y(s, a))− f(w∗(s, a)) (59)

Note that we get the original conjugate f∗ back if we do not consider the positivity constraints. i.e

f∗(s, a) = f ′−1
(y(s, a))(y(s, a))− f(f ′−1

(y(s, a))) (60)

Finally, we have the following optimization to solve for dual-V when considering the positivity
constraints:

dual-V (with positivity constraints): minV (s)(1−γ)Ed0(s)[V (s)]+Es,a∼dO

[
f∗
p (y(s, a))

]
A.3 Dual Connections to Reinforcement Learning

Our first result shows that Conservative Q-learning [34], an offline RL method primarily understood
to prevent overestimation by learning a lower bounded Q function is actually a dual-Q method. The
lemma below formalizes the above statement:
Lemma 5. Conservative Q-Learning (CQL) is the dual of Q-CoP with the generator function
f = (t− 1)2 (Pearson χ2) and when the regularization distribution is the replay buffer (dO = dR).
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In other words, CQL eventually solves the regularized RL problem (Q-CoP) in its dual form where
the regularization is a particular form of f -divergence. This unification indicates that its better
performance compared to the family of behavior-regularized offline RL methods [42, 12, 53], which
solve the Q-CoP using approximate dynamic programming is likely due to the choice of f -divergence
and more amenable optimization afforded by the dual formulation. The dual-Q formulation has been
previously studied for online RL by the name AlgaeDICE [41] but not evaluated in the context of
offline RL. Lemma 5 also suggests that CQL is a special case of AlgaeDICE.

Leveraging the dual form of V-CoP converts the policy improvement problem from a min-max
two-player game to a single optimization, thus potentially making the optimization easier to solve [40].
We also note that an additional step needs to be performed to recover policies in dual-V which
requires solving a supervised learning problem (see Appendix A.1.3). We first show that Extreme
Q-Learning (X-QL) [15], a method for both online and offline RL based on the principle of implicit
maximization in the value function space using Gumbel regression, can be reduced to a dual-V
problem with a semi-gradient update rule (i.e stop-gradient (r(s, a) + γ

∑
s′ p(s

′|s, a)V (s′)))
when f is set to be the reverse-KL regularization. Here, implicit maximization refers to finding the
extreme values of a distribution using only samples from the distribution. This insight obtained
through duality, allows us to propose a class of algorithms extending X-QL, by choosing different
functions f which we show below to result in a family of implicit maximizers.
Lemma 6. Extreme Q-Learning (X-QL) is the dual of V-CoP with f -divergence set to be the reverse
Kullback-Liebler divergence with a semi-gradient update rule.

Figure 2: A family of implicit maximizers arising from semi-gradient dual reinforcement learning corresponding
to different f-divergences. 10000 datapoints are sampled from 1-D bounded gaussian distribution D and v is
inferred using Equation 62. As τ → 1 (see legend) we obtain more accurate estimates for the supremum of the
support.

A family of implicit maximizers: Consider the λ-parameterized semi-gradient dual-V objective
below:

min
V (s)

(1− λ)EdO(s)[V (s)] + λEs,a∼dO

[
f∗
p

([
Q̂(s, a)− V (s))

]
,
)]

(61)

where Q̂(s, a) = r(s, a) + γ
∑

s′ p(s
′|s, a)V (s′) with hat denoting stop-gradient. More generally

for any random variable X with distribution D,

min
v

(1− λ)Ex∼D[v] + λEx∼D

[
f∗
p (x− v)

]
. (62)

We show through Lemma 7 below and a simple example 2 that the semi-gradient form of dual-V
optimization naturally gives rise to a family of implicit maximizers. Intuitively, this is because
the second term in Eq 62 is minimized in value as v increases and saturates once v = max(x ∈
support(D)) while the first term is minimized for smaller v. This is opposed to specially curated
implicit maximizers found in offline RL methods [32]. Gumbel regression becomes a special case of
this family. We list some of the loss functions for value function updates with different f -divergences
in Appendix A.3.1. We also highlight that the full-gradient variant of the dual-V framework for
offline RL has been studied extensively in OptiDICE [35].
Lemma 7. Let X be a real-valued random variable with bounded support and the supremum of the
support is x∗. Then optimizing equation 62, the solution vλ satisfies the following properties

lim
λ→1

vλ = x∗ and ∀ λ1 < λ2 ∈ (0, 1), vλ1 ≤ vλ2 . (63)

A generalized policy iteration view of semi-gradient dual-V: dual-V framework presents
optimization difficulties when using full-gradients [4]. X-QL shows that stable learning can be
achieved using the semi-gradient form. Our insight into implicit maximizers suggests that using
semi-gradients brings the dual-V framework closer to generalized policy-iteration framework. The
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update of V in its semi-gradient dual form acts as an implicit policy optimizer and the estimation of
Q̂(s, a) by regressing to r(s, a)+γ(V (s′)) is akin to a policy evaluation step, bridging the connection
to generalized policy iteration.

Proofs for this section:
Lemma 5. Conservative Q-Learning (CQL) is the dual of Q-CoP with the generator function
f = (t− 1)2 (Pearson χ2) and when the regularization distribution is the replay buffer (dO = dR).

Proof. We show that CQL [34], a popular offline RL method is also a special case of dual-Q for
offline RL. Consider an f -divergence with the generator function f = (t− 1)2. The dual function f∗

is given by f∗ = ( t
2

4 + t). With the f -divergence our Q-CoP can be written as:

(1− γ)

α
Ed0,π(a|s)[Q(s, a)] + Es,a∼dO

[
y(s, a, r, s′)2

4α2
+

y(s, a, r, s′)

α

]
(64)

=
(1− γ)

α
Ed0,π(a|s)[Q(s, a)] + Es,a∼dO

[
y(s, a, r, s′)

α

]
+ Es,a∼dO

[
y(s, a, r, s′)2

4α2

]
(65)

Let’s simplify the first two terms:

1

α

(1− γ)Ed0,π(a|s)[Q(s, a)] + Es,a∼dO

r(s, a) + γ
∑
s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)


(66)

=
1

α

(1− γ)Ed0,π(a|s)[Q(s, a)] + Es,a∼dO

γ∑
s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)

− Es,a∼dO [Q(s, a)] +(((((((Es,a∼dO [r(s, a)]


(67)

=
1

α

[
(1− γ)

∑
s,a

d0(s)π(a|s)Q(s, a) + γ
∑
s,a

dO(s, a)
∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)− Es,a∼dO [Q(s, a)]

]
(68)

=
1

α

[
(1− γ)

∑
s,a

d0(s)π(a|s)Q(s, a) + γ⟨dO, PπQ⟩ − Es,a∼dO [Q(s, a)]

]
(69)

=
1

α

[
(1− γ)

∑
s,a

d0(s)π(a|s)Q(s, a) + γ⟨Pπ
∗ d

o, Q⟩ − Es,a∼do [Q(s, a)]

]
(70)

=
1

α

(1− γ)
∑
s,a

d0(s)π(a|s)Q(s, a) + γ
∑
s,a

π(a|s)Q(s, a)
∑
s′,a′

p(s|s′, a′)d(s′, a′)− Es,a∼do [Q(s, a)]


(71)

=
1

α

∑
s,a

(d0(s) + γ
∑
s′a,′

p(s|s′, a′)d(s′, a′))π(a|s)Q(s, a)− Es,a∼do [Q(s, a)] + Es,a∼do [r(s, a)]


(72)

=
1

α

[∑
s,a

do(s)π(a|s)Q(s, a)− Es,a∼do [Q(s, a)] + Es,a∼do [r(s, a)]

]
(73)

=
1

α
[Es∼do,a∼π[Q(s, a)]− Es,a∼do [Q(s, a)]] (74)
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where Pπ denotes the policy transition operator, Pπ
∗ denotes the adjoint policy transition operator.

Removing constant terms (Equation 67) with respect to optimization variables we end up with the
following form for dual-Q:

1

α
[Es∼do,a∼π[Q(s, a)]− Es,a∼do [Q(s, a)]] + Es,a∼do

[
y(s, a, r, s′)2

4α2

]
(75)

Hence the dual-Q optimization reduces to:

max
π

min
Q

α [Es∼do,a∼π[Q(s, a)]− Es,a∼do [Q(s, a)]] + Es,a∼do

[
y(s, a, r, s′)2

4

]
(76)

This equation matches the unregularized CQL objective (Equation 3 in [34]).

Lemma 6. Extreme Q-Learning (X-QL) is the dual of V-CoP with f -divergence set to be the reverse
Kullback-Liebler divergence with a semi-gradient update rule.

Proof. We show that the Extreme Q-Learning [] framework is a special case of the dual framework,
specifically the dual-V using the semi-gradient update rule.

Consider setting the f -divergence to be the KL divergence in the dual V framework, the regularization
distribution and the initial state distribution to be the replay buffer distribution (dO = dR and
d0 = dR). The conjugate of the generating function for KL divergence is given by f∗(t) = et−1.

min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dR

[
f∗

([
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s))

]
/α

)]
(77)

min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dR

[
exp(

([
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)− V (s))

]
/α− 1

)]
(78)

A popular approach for stable optimization in temporal difference learning is the semi-gradient update
rule which has been studied in previous works []. In this update strategy, we fix the targets for the
temporal difference backup. Our target in the above optimization is given by:

Q̂(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a)V (s′) (79)

The update equation for V is now given by:

min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dR

[
exp(

([
Q̂(s, a)− V (s))

]
/α− 1

)]
(80)

where hat denotes the stop-gradient operation. We approximate this target by using
mean-squared regression with the single sample unbiased estimate as follows:

min
Q

Es,a,s′∼dR

[
(Q(s, a)− (r(s, a) + V (s′)))2

]
(81)

The procedure is now equivalent to Extreme-Q learning and is a special case of the dual-V
framework.
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A.3.1 A family of implicit maximizers

Lemma 7. Let X be a real-valued random variable with bounded support and the supremum of the
support is x∗. Then optimizing equation 62, the solution vλ satisfies the following properties

lim
λ→1

vλ = x∗ and ∀ λ1 < λ2 ∈ (0, 1), vλ1 ≤ vλ2 . (63)

Proof. We analyze the behavior of the following optimization of interest.

min
v

(1− λ)Ex∼D[v] + λEx∼D

[
f∗
p (x− v)

]
(82)

f∗
p (t) is given by (using the result derived in A.2):

f∗
p (t) = −f

(
max(f

′−1
(t), 0)

)
+ tmax

(
f

′−1
(t), 0

)
(83)

The function f∗
p admits two different behaviors given by:

f∗
p =

{
−f(f

′−1
(t)) + tf

′−1
(t) = f∗(t), if f

′−1
(t) > 0

−f(0), otherwise

where f∗ is the convex conjugate of f -divergence and is strictly increasing with t. We note other
properties related to f function for f -divergences: f∗, f ′, (f ′)−1 is strictly increasing, f(0+) > 0
and (f ′)−1(t) > 0 when t > 0 and 0 otherwise.

We analyze the second term in Eq 82. It can be expanded as follows:

λ

∫
x:(f ′ )−1(x−v)>0

p(x)f∗(x− v)dx− λ

∫
x:(f ′ )−1(x−v)<0

f(0)p(x)dx (84)

From the properties of f , we use the fact that (f
′
)−1(x− v) > 0 when x− v > 0 or equivalently

x > v.

λ

∫
x>v

p(x)f∗(x− v)dx− λ

∫
x≤v

f(0)p(x)dx (85)

The first term in the above equation decreases monotonically and the second term increases
monotonically (thus the combined terms decrease) as v increases until v = x∗ (supremum of
the support of the distribution) after which the equation assumes a constant value of −λf(0).

Going back to our original optimization in Equation 82, the first term decreases monotonically with v.
As λ → 1, the minimization of the second term takes precedence, with increasing v until saturation
(v = x∗). We can go further to characterize the effect of λ on solution vλ of the equation. The
solution of the optimization can be written in closed form as:

(1− λ)

λ
= Ex∼D

[
f∗
p

′
(x− v)

]
(86)

Using the fact that f∗
p

′
is non-decreasing, we can show that the right-hand term in the equation above

increases as v decreases. This in turn implies that for all λ1, λ2 such that λ1 ≤ λ2 we have that
vλ1

≤ vλ2
.

A.4 Dual Connections to Imitation Learning

A.4.1 Offline imitation learning with expert data only

A new method for offline imitation learning: Analogous to dual-Q (offline imitation), we can
leverage the dual-V (offline imitation) setting which avoids the min-max optimization given by:

IV-Learn or dual-V (offline imitation from expert-only data):

min
V (s)

(1− γ)Ed0(s)[V (s)] + Es,a∼dE [f∗ ([T0V (s, a)− V (s))] /α)] (87)
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We propose dual-V (offline imitation) to be a new method arising out of this framework which we
leave for future exploration.

Proofs for this section:

Corollary 1. dual-Q is equivalent to Implicit Behavior Cloning [7] when r(s, a) = 0 ∀ (S,A)
and dO(s, a) = dE(s, a) and f is set to be the total variation divergence.

Equation 10 suggests that intuitively IQ-learn trains an energy-based model in the form of Q where
it pushes down the Q-values for actions predicted by current policy and pushes up the Q-values
at the expert state-action pairs. This becomes more clear when the divergence f is chosen to be
Total-Variation (f∗ = I), IQ learn reduces to:

(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE

γ∑
s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

 (88)

=

(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE

γ∑
s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)

− Es,a∼dE [Q(s, a)]

(89)

Let’s simplify the first two terms:

(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE

[
γ
∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)

]
(90)

= (1− γ)
∑
s,a

d0(s)π(a|s)Q(s, a) + γ
∑
s,a

dE(s, a)
∑
s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′) (91)

= (1− γ)
∑
s,a

d0(s)π(a|s)Q(s, a) + γ
∑
s′,a′

∑
s,a

dE(s, a)p(s′|s, a)π(a′|s′)Q(s′, a′) (92)

= (1− γ)
∑
s,a

d0(s)π(a|s)Q(s, a) + γ
∑
s′,a′

π(a′|s′)Q(s′, a′)(
∑
s,a

dE(s, a)p(s′|s, a)) (93)

= (1− γ)
∑
s,a

d0(s)π(a|s)Q(s, a) + γ
∑
s′,a′

π(a′|s′)Q(s′, a′)(
∑
s,a

dE(s, a)p(s′|s, a)) (94)

= (1− γ)
∑
s,a

d0(s)π(a|s)Q(s, a) + γ
∑
s,a

π(a|s)Q(s, a)(
∑
s′,a′

dE(s′, a′)p(s|s′, a′)) (95)

=
∑
s,a

(1− γ)d0(s)π(a|s)Q(s, a) + π(a|s)Q(s, a)(
∑
s′,a′

dE(s′, a′)p(s|s′, a′)) (96)

=
∑
s,a

π(a|s)Q(s, a)

(1− γ)d0(s) + γ
∑
s′,a′

dE(s′, a′)p(s|s′, a′)

 (97)

=
∑
s,a

π(a|s)Q(s, a)dE(s) (98)

where the last step is due to the steady state property of the MDP (Bellman flow constraint).
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Therefore IQ-Learn/dual-Q for offline imitation (in the special case of TV divergence) simplifies to
(from Equation 89):(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE

γ∑
s′,a′

p(s′|s, a)π(a′|s′)Q(s′, a′)

− Es,a∼dE [Q(s, a)]

(99)
= min

Q
EdE(s),π(a|s)[Q(s, a)]− Es,a∼dE [Q(s, a)] (100)

The gradient w.r.t for the above optimization matches the gradient update of Implicit Behavior
Cloning [7] with Q as the energy-based model.

A.5 Off-policy imitation learning (under coverage assumption)

First, we show that is easy to see why choosing the f -divergence to be reverse KL makes it possible
to get an off-policy objective for imitation learning in the dual framework. We start with the Q-CoP
for imitation learning using the reverse KL-divergence (r(s, a) = 0 and do = dE):

max
d(s,a)≥0,π(a|s)

−DKL(d(s, a) || dE(s, a))

s.t d(s, a) = (1− γ)ρ0(s).π(a|s) + γπ(a|s)
∑
s′,a′

d(s′, a′)p(s|s′, a′). (101)

Under the assumption that the replay buffer visitation (denoted by dR) covers the expert visitation
(dR > 0 wherever dE>0) [37], which we refer to as the coverage assumption, the reverse KL
divergence can be expanded as follows:

DKL(d(s, a) || dE(s, a)) = Es,a∼d(s,a)

[
log

d(s, a)

dE(s, a)

]
= Es,a∼d(s,a)

[
log

d(s, a)

dE(s, a)

dR(s, a)

dR(s, a)

]
(102)

= Es,a∼d(s,a)

[
log

d(s, a)

dR(s, a)
+ log

dR(s, a)

dE(s, a)

]
(103)

= Es,a∼d(s,a)

[
log

dR(s, a)

dE(s, a)

]
+DKL(d(s, a) || dR(s, a)). (104)

Hence the Q-CoP can now be written as:

max
d(s,a)≥0,π(a|s)

Es,a∼d(s,a)

[
− log

dR(s, a)

dE(s, a)

]
−DKL(d(s, a) || dR(s, a)) (105)

s.t d(s, a) = (1− γ)ρ0(s).π(a|s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′)π(a|s). (106)

Now, in the optimization above the first term resembles the reward function and the second term
resembles the divergence constraint with a new distribution dR(s, a) in the original regularized RL
primal (Eq 22). Hence we can obtain respective dual-Q and dual-V in the setting for off-policy
imitation learning using the reward function as rimit(s, a) = − log dR(s,a)

dE(s,a)
and the new regularization

distribution as dR(s, a). Using T π
rimit and T rimit to denote backup operators under new reward

function rimit, we have

dual-Q for off-policy imitation (coverage assumption):

max
π(a|s)

min
Q(s,a)

(1− γ)Eρ0(s),π(a|s)[Q(s, a)] + Es,a∼dR [f∗(T π
rimitQ(s, a)−Q(s, a))]. (107)

This choice of KL divergence leads us to a reduction of another method, OPOLO [57] for off-policy
imitation learning to dualQ which we formalize in the lemma below:
Lemma 8. dual-Q for off-policy imitation learning reduces to OPOLO [57], with the f -divergence
set to the reverse KL divergence when r(s, a) = 0 ∀S,A, dO = dE and under the assumption that
the replay data distribution covers the expert data distribution.
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Analogously we have dual-V for off-policy imitation (coverage assumption):

min
V (s)

(1− γ)Eρ0(s)[V (s)] + Es,a∼dR [f∗(T rimitV (s, a)− V (s))]. (108)

We note that the dual-V framework for off-policy imitation learning under coverage assumptions
was studied in the imitation learning work SMODICE [37].

B Off-policy imitation learning with relaxed coverage

We now derive our proposed method for imitation learning with arbitrary data. The derivation for the
dual-Q setting is shown below. dual-V derivation can be done similarly.
Lemma 3. (dual-Q for off-policy imitation (relaxed coverage assumption)) Imitation learning
using off-policy data can be solved by optimizing the following modified dual objective for Q-CoP
with r(s, a) = 0 ∀S,A and f -divergence considered between distributions dRmix := βd(s, a) + (1−
β)dR(s, a) and dE,R

mix := βdE(s, a) + (1− β)dR(s, a), and is given by:

max
π(a|s)

min
Q(s,a)

β(1− γ)Ed0(s),π(a|s)[Q(s, a)] + Es,a∼dE,R
mix

[
f∗
p (T π

0 Q(s, a)−Q(s, a))
]

− (1− β)Es,a∼dR [T π
0 Q(s, a)−Q(s, a)] (14)

Proof.

max
π,d≥0

min
Q(s,a)

αEs,a∼d[r(s, a)]−Df(d
R
mix || dE,R

mix)

+ α
∑
s,a

Q(s, a)

(1− γ)d0(s).π(a|s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′)π(a|s)− d(s, a)


We can use the same algebraic machinery as before (Section A.1.2) to get an unconstrained tractable
optimization problem:

max
π,d≥0

min
Q(s,a)

αEs,a∼d(s,a)[r(s, a)]−Df(d
R
mix || dE,R

mix)

+ α
∑
s,a

Q(s, a)

(1− γ)d0(s).π(a|s) + γ
∑
s′,a′

d(s′, a′)p(s|s′, a′)π(a|s)− d(s, a)

 (109)

= max
π,d≥0

min
Q(s,a)

α(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ αEs,a∼d

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
−Df(d

R
mix || dE,R

mix) (110)

= max
π,d≥0

min
Q(s,a)

α(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ αEs,a∼d

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]

+ (1− α)Es,a∼dR

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]

− (1− α)Es,a∼dR

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
−Df(d

R
mix || dE,R

mix)

(111)
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Imitation from Arbitrary data (dualQ, no positivity constraints)

= max
π(a|s)

min
Q(s,a)

max
d≥0

α(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼dR
mix

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
−Df(d

R
mix || dE,R

mix)

− (1− α)Es,a∼dR

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
(112)

Note that the inner maximization with respect to d has the constraint that d ≥ 0. This constraint was
not necessary for the previous settings for dual-Q problems we have discussed. In this setting, to
get a tractable closed form we replace the optimization variable from d to dRmix with the constraint
that d ≥ 0. This prevents the optimization to result in values for dRmix which has d < 0. Ignoring this
constraint (d ≥ 0) results in the following dual-optimization for imitation from arbitrary data.

max
π(a|s)

min
Q(s,a)

α(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼dE,R
mix

[
f∗(r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a))

]

− (1− α)Es,a∼dR

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
(113)

To incorporate the positivity constraints we begin on the inner maximization w.r.t dRmix and consider
the terms dependent on dRmix below.

max
dR
mix,d≥0

Es,a∼dR
mix

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
−Df(d

R
mix || dE,R

mix)

(114)

Let p(s, a) = (1−α)ρR(s,a)
αρE(s,a)+(1−α)ρR(s,a)

, y(s, a) = r(s, a)+γ
∑

s′ p(s
′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

and w(s, a) =
dR
mix(s,a)

dE
mix(s,a)

. We construct the lagrangian dual to incorporate the constraint d ≥ 0 in its
equivalent form w(s, a) ≥ p(s, a) and obtain the following:

max
w(s,a)

max
λ≥0

Es,a∼dE,R
mix

[w(s, a)y(s, a)]− EdE,R
mix

[f(w(s, a))] +
∑
s,a

λ(w(s, a)− p(s, a)) (115)

Since strong duality holds, we can use the KKT constraints to find the solutions w∗(s, a) and λ∗(s, a).

Primal feasibility: w∗(s, a) ≥ p(s, a) ∀ s, a
Dual feasibility: λ∗ ≥ 0 ∀ s, a

Stationarity: dE,R
mix(s, a)(f

′(w∗(s, a)) + y(s, a) + λ∗(s, a)) = 0 ∀ s, a
Complementary Slackness: (w∗(s, a)− p(s, a))λ∗(s, a) = 0 ∀ s, a

Using stationarity we have the following:

f ′(w∗(s, a)) = y(s, a) + λ∗(s, a) ∀ s, a (116)

Now using complementary slackness only two cases are possible w∗(s, a) > p(s, a) or λ∗(s, a) > 0.
Combining both cases we arrive at the following solution for this constrained optimization:

w∗(s, a) = max
(
p(s, a), f ′−1

(y(s, a))
)

(117)
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We can still find a closed-form solution for the inner optimization, in the case when d ≥
0, although a bit more involved (See Appendix for the proof). Let y(s, a) = r(s, a) +

γ
∑

s′ p(s
′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a). Also let p(s, a) = (1−α)ρR(s,a)

αρE(s,a)+(1−α)ρR(s,a)
.

max
π(a|s)

min
Q(s,a)

α(1− γ)Ed0(s),π(a|s)[Q(s, a)]

+ Es,a∼dE,R
mix

[
max

(
p(s, a), (f ′)−1 (y(s, a))

)
y(s, a)− αf

(
max

(
p(s, a), (f ′)−1 (y(s, a))

))]
(118)

− (1− α)Es,a∼dR

[
r(s, a) + γ

∑
s′

p(s′|s, a)π(a′|s′)Q(s′, a′)−Q(s, a)

]
(119)

Thus, the closed-form solution with the positivity constraints requires us to estimate the ratio p(s, a)
which is possible by learning a discriminator. We observed in our experiments that ignoring the
positivity constraints still resulted in a performant method while having the benefits of being simple.
A similar derivation can be done in V-space to obtain an analogous result.

C Implementation and Experiment Details

Environments: In this work for benchmarking we use 4 MuJoCo (licensed under CC BY 4.0)
locomotion environments: Hopper, Walker2d, HalfCheetah, and Ant. .

Offline datasets: In this task, we use offline dataset of environments interactions from D4RL [8].
We consider the following MuJoCo environments: Our dataset composition for ‘random+expert’
is similar to SMODICE [37] where we use a mixture of a small number of expert trajectories
(≤ 200 trajectories) and a large number of low-quality trajectories from the “random-v2” dataset
(1 million transitions). We similarly create another offline dataset ‘medium+expert’ consisting
of 200 expert trajectories and 1 million medium-quality transitions from the “medium-v2”. The
‘random+few-expert’ dataset is similar to the ‘random+expert’ dataset except that only 30 expert
trajectories are present in the offline dataset.

Expert dataset The offline dataset for imitation consists of 1000 transitions obtained from the
“expert-v2” dataset for the respective environment.

Baselines: We compare our proposed methods against 4 representative methods for offline imitation
learning with suboptimal data – SMODICE [37], RCE [6], ORIL [59] and IQLearn [14]. We do not
compare to DEMODICE [29] as SMODICE was shown to be competitive in [37]. SMODICE
is an imitation method emerging from the dual framework but under an restrictive coverage
assumption. ORIL adapts GAIL [21] to the offline setting by using an offline RL algorithm for policy
optimization. RCE baseline in the paper combine RCE (Eysenbach et al., 2021), the state-of-art
online example-based RL method, and TD3-BC. ORIL and RCE share the same state-action based
discriminator as in SMODICE, and TD3-BC [11] as the offline RL algorithm. All the approaches
only have access to expert state-action trajectory.

We use the author’s open-source implementations of baselines SMODICE, RCE, ORIL
available at https://github.com/JasonMa2016/SMODICE. We use the author-provided
hyperparameters (similar to those used in [37]) for all MuJoCo locomotion environments. IQ-Learn
was tested on our expert dataset by following authors implementation found here: https:
//github.com/Div99/IQ-Learn. We tested two IQ-Learn loss variants: ’v0’ and ’value’
as found in their hyperparameter configurations and took the best out of the two runs.

Policy Optimization: We use Method 1 in Section A.1.3 for policy update.

C.1 Hyperparameters

Hyperparameters for our proposed offpolicy imitation learning method ReCOIL are shown in Table 3.
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Hyperparameter Value
Policy updates npol 1
Policy learning rate 3e-5
Value learning rate 3e-4
Temperature α 0.1
f -divergence χ2

Table 3: Hyperparameters for ReCOIL.

D Experimental Results

D.1 The failure of ADP-based traditional off-policy algorithms
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Figure 3: Despite the promise of off-policy methods, current methods based on ADP such as SAC fail when the
dimension of action space, denoted by A, increases even when helpful data is added to their replay buffer. On
other hand, dual-Q methods are able to leverage off-policy data to increase their learning performance
Figure 3 shows that methods like SAC, SACfD deteriorate increasingly with increasing action
dimension when bootstrapped with off-policy data. Figure 4 shows that traditional ADP methods
suffer from overestimation during training.
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Figure 4: SAC and SACfD suffer from overestimation when off-policy data is added to the replay buffer. We
hypothesize this to cause instabilities during training while dualQ has no overestimation.

D.2 Does ReCOIL allow for better estimation of agent visitation distribution?

We consider two didactic environments which demonstrate the failures of method that either do not
utilize off-policy data (IQ-Learn) or relies on a coverage assumption (SMODICE). ReCOIL is able to
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perfectly infer agent’s visitation when replay buffer covers agent ground truth visitation perfectly
(Fig 5) and is able to outperform baselines when the replay buffer has imperfect coverage over the
agent’s ground truth visitation (Fig 6).
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Figure 5: The replay buffer distribution covers the agent policy visitation distribution. Using ReCOIL, we are
perfectly able to infer the agent policy visitation whereas a method that only relies on expert data or the replay
data with the coverage assumption fails. Results are averaged over 100 seeds.
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Figure 6: Replay buffer consists of data that visits near the initial state (0,0), a setting commonly observed when
training RL agents. We estimate agent’s policy visitation and observe ReCOIL to outperform both methods
which rely on expert data only or use the replay data with coverage assumption

D.3 Benchmarking performance of ReCOIL on MuJoCo tasks

We show learning curves for ReCOIL in Figure 7 below.
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Figure 7: ReCOIL performs competitively in the setting of learning to imitate from diverse offline data. The
results are averaged over 5 seeds
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