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Abstract

Partially observable Markov decision processes (POMDPs) model specific environ-
ments in sequential decision-making under uncertainty. Critically, optimal policies
for POMDPs may not be robust against perturbations in the environment. Hidden-
model POMDPs (HM-POMDPs) capture sets of different environment models,
that is, POMDPs with a shared action and observation space. The intuition is that
the true model is hidden among a set of potential models, and it is unknown which
model will be the environment at execution time. A policy is robust for a given
HM-POMDP if it achieves sufficient performance for each of its POMDPs. We
compute such robust policies by combining two orthogonal techniques: (1) a deduc-
tive formal verification technique that supports tractable robust policy evaluation
by computing a worst-case POMDP within the HM-POMDP, and (2) subgradient
ascent to optimize the candidate policy for a worst-case POMDP. The empirical
evaluation demonstrates that, compared to various baselines, our approach yields
policies that are more robust and generalize better to unseen POMDPs, and scales
to HM-POMDPs comprising over a hundred thousand environments.1

1 Introduction

Partially observable Markov decision processes (POMDPs) [20] are the ubiquitous model in decision-
making where agents have to account for uncertainty over the current state. Policies for POMDPs
select actions based on observations, which provide limited information about the state, and require
memory to act optimally.
Example 1. Figure 1(a) depicts a POMDP with an agent tasked to reach any of the green cells while
avoiding the obstacle in the center. The agent cannot observe its position but can detect if there is an
obstacle in its current row. Due to strong wind blowing southward, there is a small chance the agent
moves south instead of the intended direction. The optimal policy for this POMDP is straightforward:
to always go right.

Robustness. The common assumption that a single, known POMDP model sufficiently captures a
system is often unrealistic. Furthermore, the optimal policy for this POMDP may not be optimal
or perform well on a slightly perturbed model. Therefore, it may be beneficial to assume that the
system’s actual model is only known to be within a set of model variations that are critically different
but share certain similarities.

1EWRL 2025 version of the original IJCAI 2025 paper [14]. Code available on Zenodo (https://doi.
org/10.5281/zenodo.15479643) and the extended version of the paper with appendix on arXiv [13].

18th European Workshop on Reinforcement Learning (EWRL 2025).

https://doi.org/10.5281/zenodo.15479643
https://doi.org/10.5281/zenodo.15479643
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Figure 1: (a) A single POMDP. Cell colours depict possible observations for the agent: green – exit, yellow –
obstacle in the current row, and white – no obstacle. (b) An HM-POMDP with three possible obstacle locations.
(c) Robust FSC with two memory nodes, optimized by RFPG, that solves any possible configuration of this
HM-POMDP. (d) Robust evaluation of different policies. (e) High-level overview of RFPG.

Example 2. Figure 1(b) depicts a set of POMDPs comprising three potential obstacle locations. An
optimal policy for any of the individual models overfits to that particular obstacle location and fails
to solve the task in all three environments.

Hidden-model POMDPs. We introduce hidden-model POMDPs (HM-POMDPs) encapsulating
multiple different POMDPs. The ground truth model is assumed to be hidden among the set of
POMDPs. Notably, the POMDPs share the same actions and observations, and therefore, policies are
compatible with all of the POMDPs. The objective is to compute a policy that is robust in the sense
that it optimizes for the worst-case POMDPs within the set. Consequently, a robust policy achieves a
lower bound in performance on the set of POMDPs and, therefore, on the ground truth model.

Policy optimization. Computing optimal policies for POMDPs requires infinite memory and is
undecidable in general [25]. Therefore, we restrict policies to finite memory via finite-state con-
trollers (FSCs) as policy representations [26]. Computing a robust policy is challenging for HM-
POMDPs, as realistic examples may induce large sets of POMDPs, and policies may overfit when
optimized for any particular POMDP. To ensure robustness, the policy must be optimized for the
worst-case POMDPs. Therefore, we seek an approach that generalizes to the whole set of POMDPs
by optimizing it on worst-case POMDPs.

Robust policy evaluation. A robust policy evaluation is necessary to deduct the worst-case POMDPs
from the HM-POMDP and, consequently, provide a lower bound on performance. The naive approach
is to enumerate all POMDPs, but the set of POMDPs increases rapidly when we encounter many
variations in the model, rendering enumeration intractable. Therefore, a key part of our approach is
efficiently performing robust policy evaluation on large, finite sets of POMDPs.

1.1 Contributions

We introduce the robust finite-memory policy gradient (RFPG) algorithm. Figure 1(e) provides
an overview of the core steps, namely policy optimization on worst-case POMDPs and robust
policy evaluation. In RFPG, we represent the policy by an FSC and optimize its parameters through
gradient ascent to improve its robust performance. During each iteration, RFPG improves the policy
on the worst-case POMDP of the HM-POMDP, akin to subgradient ascent. The worst-case POMDPs
are selected during robust policy evaluation. We introduce a novel technique that exploits structural
similarities between POMDPs to scale to large sets. We assume that the structural similarity is
given by an equivalence relation on the transition and reward functions of the POMDPs and use it to
construct a concise representation of the HM-POMDP that enables efficient evaluation via deductive
verification. In an extensive experimental evaluation on both simple and complex HM-POMDPs,
we showcase the improvement of RFPG over several baselines, both in robust performance and in
generalization to unseen models.
Example 3. Figure 1(c) illustrates a robust policy found by RFPG, with two memory states. It uses
memory to deduce the current configuration and solves it close to optimally, moving up at least twice
to counter the southward wind.

1.2 Related Work

Models for multiple environments. Computing policies for multiple environments has been studied for
finite sets of MDPs, known as both hidden-model MDPs (HM-MDPs) [7, 39], multiple environment
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MDPs (MEMDPs) [33, 9], and families of MDPs [6]. We emphasize that, similarly to the different
terms for MDPs, our definition of HM-POMDPs could also be considered as multiple environment
POMDPs (MEPOMDPs). Robust POMDPs (RPOMDPs) [30] extend robust MDPs (RMDPs) [18, 38]
and capture a potentially infinite set of POMDPs. HM-POMDPs form a proper subclass of robust
POMDPs, and can approximate RPOMDPs up to finite precision. Methods for RPOMDPs typically
assume (local) convexity and independence over state-action pairs in the set of POMDPs, which
results in models where the environment can change completely at each step, which can be overly
conservative. In contrast, our approach assumes that a worst-case POMDP is picked adversarially at
the start and then remains fixed.

Methods for robust policy optimization. For RMDPs, various works optimize policies through policy
gradients [15, 23], using subgradients [21, 34] or mirror ascent [37]. For RPOMDPs, earlier work
introduced FSC policy iteration for optimistic (best-case) optimization [28]. Methods based on value
iteration [30, 35, 27] typically do not scale well to large state spaces. More recent methods optimize
for robust FSCs through sequential convex programming [11] or by iteratively optimizing a recurrent
neural network on worst-case POMDPs [12]. To the best of our knowledge, HM-POMDPs do not
yet exist in the literature, and RFPG is the first algorithm tackling robust policy optimization for
HM-POMDPs.

2 Preliminaries

A distribution over a countable set A is a function µ : A → [0, 1], s.t.
∑

a µ(a) = 1 and µ(a) ≥ 0
for all a ∈ A. The support of µ is supp(µ) := {a ∈ A | µ(a) > 0} and a ∼ µ denotes a ∈ supp(µ).
The set ∆(A) contains all distributions over A. ∇θf denotes the gradient of the function f wrt.
variable θ, and projA(·) denotes the projection onto the set A.
Definition 1 (POMDP). A partially observable Markov decision process (POMDP) is a tuple
M = ⟨S, s0, A, T,R, Z,O⟩ with a finite set S of states, an initial state s0 ∈ S, a finite set A of
actions, a transition function T : S ×A→ ∆(S), a reward function R : S ×A→ R, a finite set Z
of observations and a deterministic observation function O : S → Z2.

We will write T (s′ | s, a) to denote T (s, a)(s′). A Markov decision process (MDP) is a POMDP
with a unique observation z ∈ Z for every s ∈ S. A Markov chain (MC) is an MDP with |A| = 1. To
simplify notation, MDPs are tuples ⟨S, s0, A, T,R⟩ and MCs are tuples ⟨S, s0, T,R⟩. A path in an
MC is a sequence ξ = (s0, s1, . . .) of states where s0 = s0 and st+1 ∼ T (st). R(ξ) :=

∑∞
t=0 R(st)

denotes the (possibly infinite) cumulative reward for ξ [31].

Let C = ⟨S, s0, T,R⟩ be an MC. We consider reachability reward objectives: undiscounted infinite-
horizon objectives where we accumulate rewards until reaching a set G ⊂ S of goal states [31].
We assume that every goal state sG ∈ G is absorbing and collects no reward: T (sG | sG) = 1 and
R(sG) = 0; we further assume that every path ξ in C terminates in G. This definition encompasses
infinite-horizon objectives with discounted rewards. Under the assumptions above, R(ξ) is a well-
defined random variable, and its expectation JC := E [R(ξ)] will be referred to as the value of the
MC C. This value is obtained from the state-values VC : S → R by setting JC = VC(s0), after
finding the least fixed point of the recursive equation: VC(s) = R(s) +

∑
s′∈S T (s′ | s)VC(s

′).

To represent observation-based policies for POMDPs, we use finite-state controllers (FSCs). Various
types of FSCs exist in the literature [3]. In this paper, it is convenient to define FSCs as Mealy
machines whose output depends on the current node and the most recent observation.
Definition 2 (Policy). A stochastic policy as represented by a finite-state controller is a tuple π =
⟨N,n0, δ, η⟩where N is a finite set of memory nodes with the initial node n0 ∈ N , δ : N×Z → ∆(A)
is the action function, and η : N × Z → ∆(N) is the memory update function. Policy π has full
action support if supp(δ(n, z)) = A for every n ∈ N and z ∈ Z.

Given state s with observation z = O(s), the policy π executes action a ∼ δ(n, z) associated with
the current node n and the current observation z. The POMDP evolves to some state s′ ∼ T (s, a),
and the policy evolves to node n′ ∼ η(n, z). Imposing a policy π onto POMDP M yields the induced
Markov chain Mπ = (S × N, ⟨s0, n0⟩, Tπ, Rπ), where, using z = O(s), the transition function

2Observation functions with a distribution over observations can be encoded by deterministic observation
functions at the expense of a polynomial increase in the size of the state space [8].
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is defined as: Tπ(⟨s′, n′⟩ | ⟨s, n⟩) = η(n′ | n, z)∑a∈A δ(a | n, z)T (s′ | s, a), and the reward
function is defined as: Rπ(⟨s, n⟩) = ∑

a∈A δ(a | n, z)R(s, a).

The value of a policy π for a POMDP M is the value of the induced MC: Jπ
M := JMπ . In this paper,

we assume POMDPs in which the goal states are reachable from any state. This ensures that VMπ is
well-defined for any policy π with full action support and is thus differentiable.

3 Hidden-Model POMDPs

We present the main problem statement of the paper. We consider a hidden-model POMDP, which
describes an indexed set of POMDPs that share state, action, and observation spaces.
Definition 3 (HM-POMDP). Let I be a finite set of indices. A hidden-model POMDP (HM-POMDP)
is a tupleM = ⟨S, s0, A, {Ti}i∈I , {Ri}i∈I , Z,O⟩, where S, s0, A, Z,O are as in Definition 1 and
{Ti}i∈I and {Ri}i∈I are indexed sets of transition and reward functions, respectively.

Given an index i ∈ I , an instance of an HM-POMDPM is a POMDP Mi = ⟨S, s0, A, Ti, Ri, Z,O⟩.
We assume that each POMDP in the HM-POMDP has an initial state (distribution). Still, the
assumption of the shared initial state s0 or shared observation function O is non-restrictive, as it
can be lifted by introducing intermediate states at a polynomial increase in computational cost.
Importantly, the POMDPs described byM differ in their transition functions and may thus differ in
their topology, i.e., reachable states and observations. Instances inM have the same set of policies,
denoted by ΠM.
Definition 4 (Robust policy performance and optimal policy). LetM be an HM-POMDP. The robust
performance J π

M of a policy π is defined as the value of the worst instance and is maximized by an
optimal robust policy π∗, defined as:

π∗ ∈ argmax
π∈ΠM

J π
M, where J π

M := min
i∈I

Jπ
Mi

.

Then, the key problem tackled in this paper is:

Goal: Given an HM-POMDPM, find a policy π∗ optimizing the robust performance J π
M.

Our presentation focuses on the worst-case optimization of reachability rewards, i.e., argmaxmin
(or argminmax when minimizing costs). The best-case policy performance and its associated policy
are defined analogously (argmaxmax or argminmin), and our method extends to that setting.

The undecidability of the decision variant of this problem follows straightforwardly from the unde-
cidability of infinite-horizon planning for POMDPs [25]. Therefore, we focus on a sound algorithm
that aims to find a policy achieving a high robust performance within a reasonable time.
Example 4. We demonstrate robust policy evaluation on the example presented in Figure 1(b). We
encode the objective (reaching any of the green cells while avoiding the obstacle) as the maximization
of reachability reward, where visiting a cell with the obstacle is penalized by the reward of −100.
The table in Figure 1(d) reports the expected reward achieved by four policies (rows) on each of
the three POMDPs (first three columns); the last column reports the worst-case reward across all
POMDPs, i.e., the robust performance. The first three rows correspond to 2-FSCs, each optimizing the
performance in an individual POMDP. Naturally, policy πi performs well on POMDP Mi. However,
it hits the obstacle, on average, at least once for at least one other POMDP in the HM-POMDP.
The last row reports the values achieved by the policy produced by RFPG, a method that takes into
account many (in this case, all) POMDPs in the HM-POMDP. The robust performance of this policy
can be interpreted as hitting the obstacle only once with a probability of at most 2% across all
POMDPs in the HM-POMDP.

4 Robust Finite-Memory Policy Gradients

This section presents the robust finite-memory policy gradient (RFPG) algorithm to compute robust
policies for HM-POMDPs. We divide the presentation into the following parts. In Section 4.1, we
explain the steps of the main loop (recall Figure 1(e)) of RFPG. In Section 4.2, we present the main
step in policy optimization, and Section 4.3 explains contributions towards robust policy evaluation
on HM-POMDPs with many instances. In Section 4.4, we provide additional details.
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4.1 Overview of RFPG

RFPG alternates between the following main steps:

• Policy optimization, through policy (sub)gradients, and,
• Robust policy evaluation, through deductive verification.

During robust policy evaluation, we select a POMDP whose value coincides with the robust perfor-
mance J π

M.
Definition 5 (Worst-case POMDP). Given a policy π, a worst-case POMDP M is an instance of the
HM-POMDPM that is a minimizer of π’s robust performance J π

M:

M ∈ argmin
Mi,i∈I

Jπ
Mi

, such that Jπ
M = J π

M

Given a policy π, computing its robust performance J π
M and a worst-case POMDP M analytically is

mathematically tractable since HM-POMDPM has finitely many instances.

During policy optimization, RFPG optimizes the candidate policy π through policy gradient ascent on
POMDP M , locally optimizing the candidate policy π for its robust performance. As we represent π
by an FSC, we parameterize the action function δθ by θ ∈ Θ ⊆ ∆(A)Z×N and the update function
ηϕ by ϕ ∈ Φ ⊆ ∆(N)Z×N . Thus, we simultaneously optimize π to learn what to remember and how
to act.
Remark 1. We observe that J π

M is non-differentiable in general due to the minimization over the
finite set. Thus, it may be infeasible to compute the gradient ∇θ,ϕJ π

M to optimize the candidate
policy π for robust performance directly. This challenge is circumvented by our iterative approach.

4.2 Policy Optimization for HM-POMDPs

Here, we address the first key component of RFPG– optimization of the candidate policies for robust
performance. Our approach builds on subgradients, and we optimize π with a subgradient ∇θ,ϕJ

π
M ,

where M is a worst-case POMDP for π as in Definition 5. If there is no unique worst-case POMDP
given π, we select one of them arbitrarily. Then, for any k ∈ N, the projected subgradient ascent of
the policy’s parameters is:

θ(k+1) = projΘ(θ
(k) + αk∇θ(k)Jπ(k)

M )
∣∣∣
M∈argminMi,i∈I Jπ(k)

Mi

ϕ(k+1) = projΦ(ϕ
(k) + αk∇ϕ(k)Jπ(k)

M )
∣∣∣
M∈argminMi,i∈I Jπ(k)

Mi

where π(k) = ⟨N,n0, δθ(k) , ηϕ(k)⟩, and αk are the (diminishing) step sizes. By iteratively refining the
policy on the worst POMDP via subgradients, we may efficiently learn robust behavior and generalize
to other (unseen) POMDPs of the HM-POMDP. Policy gradient ascent on a single POMDP, i.e., for
solving argminπ∈ΠM Jπ

M , converges to a local optimum [26, 1]. The situation is more complex for
HM-POMDPs since we are maximizing for the minimum across a set of POMDPs. In particular,
∇Jπ

M does not guarantee the ascent of J π
M, i.e., robust performance at each step may not improve

monotonically. This is in part due to the fact that there can exist multiple worst-case POMDP, i.e.,
there might exist multiple subgradients for a policy π. However, the subgradients still provide a
meaningful direction for optimizing the robust performance. Yet, similar to the case of POMDPs, we
may not provide global optimality guarantees. To combat the non-monotonicity, RFPG returns the
best robust policy found over all iterations until a time-out is reached. In the following, we detail how
we compute the gradients ∇Jπ

M for worst-case POMDPs M that we use to optimize the candidate
policy π.

Policy gradients on POMDPs with FSCs. For a worst-case POMDP M , computing the gradient
of the objective ∇ϕ,θJ

π
M with respect to the policy’s parameters ϕ and θ enables us to climb the

gradient and improve the policy [26]. To ensure the gradients are well-defined, the partial deriva-

tives: ∂ηϕ(n
′|n,z)/∂ϕn,z,n′ , and, ∂δθ(a|n,z)/∂θn,z,a, as well as the ratios:

∣∣∣∣ ∂ηϕ(n′|n,z)

∂ϕ
n,z,n′

∣∣∣∣/ηϕ(n
′|n,z), and,∣∣∣ ∂δθ(a|n,z)

∂θn,z,a

∣∣∣/δθ(a|n,z), must be uniformly bounded [2].
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These conditions are satisfied under a softmax parameterization. We have that the parameters can
range over the real numbers, i.e., we set Φ ⊆ RN×Z×N and Θ ⊆ RN×Z×A, making the projections
projΘ and projΦ trivial. The softmax function σ transforms any finite set of real numbers to a
categorical distribution over the set. Given parameters ϕ ∈ Φ, the probabilities ηϕ(n

′ | n, z) are
given, for all n, z, n′ ∈ N × Z × N , based on the exponential function exp: ηϕ(n

′ | n, z) =
σn′(ϕn,z) = exp (ϕn,z,n′ )/

∑
m exp (ϕn,z,m), The partial derivative of a softmax probability with respect

to a particular parameter input is:

∂ηϕ(n
′ | n, z)

∂ϕn,z,m
=

{
ηϕ(m | n, z)(1− ηϕ(n

′ | n, z)) m = n′

−ηϕ(m | n, z)ηϕ(n′ | n, z) m ̸= n′

Recall that the value of the policy Jπ
M = VMπ (⟨s0, n0⟩) is given by the value of the initial state of

the induced MC Mπ. Then, for ϕ and ηϕ, the expression for the partial derivatives of our objective
with respect to the individual parameters is:

∂Jπ
M

∂ϕn,z,n′
=

∑
m

∂VMπ (⟨s0, n0⟩)
∂ηϕ(m | n, z)

· ∂ηϕ(m | n, z)
∂ϕn,z,n′

,

and similarly for θ and δθ. Then, the gradient ∇Jπ
M is comprised of the partial derivatives for the

individual parameters:

∇Jπ
M =

[
∇ϕJ

π
M ,∇θJ

π
M

]
=

[{
∂Jπ

M

∂ϕn,z,n′

∣∣ ∀n, z, n′
}
,

{
∂Jπ

M

∂θn,z,a
| ∀n, z, a

}]
.

By computing ∇Jπ
M , we optimize the parameters of the policy for the POMDPs M selected during

robust policy evaluation.

4.3 Robust Policy Evaluation

The robust performance J π
M of a given policy π (see Def. 4) can be computed by enumerating every

POMDP Mi, i ∈ I , applying π to obtain the induced MC Mπ
i and computing its value. In this section,

we develop a methodology that avoids this enumeration and scales our approach to HM-POMDPs that
describe many instances. The key to such a methodology is a concise representation of HM-POMDPs,
namely a succinct representation of a set of transition {Ti}i∈I and reward {Ri}i∈I functions.

To compactly describe a set of (structurally similar) transition functions, we merge transitions that
are shared between multiple instances. For instance, in the HM-POMDP from Figure 1(b), in the
initial position (x = 0, y = 0) of the agent, all actions have the same immediate effect regardless
of the particular instance. On the other hand, when executing an action from state (x = 1, y = 0),
the agent receives a penalty of -100 in the instance (Oy = 0), but receives no penalty in all other
POMDPs. Formally, let s,a∼ be the equivalence relation on I defined as i s,a∼ j iff Ti(s, a) = Tj(s, a)
and Ri(s, a) = Rj(s, a), i.e., executing action a in POMDPs Mi and Mj has the same effect and
yields the same reward. I/s,a∼ denotes the corresponding equivalence partitioning of I wrt. s,a∼ .
Then, to compactly describe a set of structurally similar POMDPs, we introduce a quotient POMDP,
which is an extension of quotient MDPs (a mild variation of feature MDPs [10]) used in [6] to reason
about families of MDPs. Intuitively, the quotient POMDP is a POMDP that can execute action a in
state s from an arbitrary Mi, i ∈ I.
Definition 6 (Quotient POMDP). Given HM-POMDP M = ⟨S, s0, A, {Ti}i∈I , {Ri}i∈I , Z,O⟩,
the quotient POMDP associated with M is a POMDP QM = ⟨S, s0, AQ, TQ, RQ, Z,O⟩ with
actions AQ = A × 2I . Let (a, I) be denoted as aI . We define TQ(s′ | s, aI) = Ti(s

′ | s, a) and
RQ(s, aI) = Ri(s, a) where i ∈ I (arbitrarily).

While POMDPs in Definition 1 assume that every action is available in every state, in our imple-
mentation, we assume w.l.o.g. that every state s is associated with some set A(s) ⊆ A of available
actions, i.e., the transition function T : S × A ↛ ∆(S) is partial. Then, in the quotient POMDP,
we assume that AQ(s) = {aI | a ∈ A(s), I ∈ I/s,a∼}, i.e., in state s an agent chooses to play a
specific variant of action a available in any Mi, i ∈ I. This allows us to efficiently encode families
of POMDPs where action a coincides in many family members.

We lift the notion of the induced Markov chain (Section 2) from POMDPs to quotient POMDPs: The
induced quotient MDP defines the set of MCs describing behavior of π in the POMDPs captured
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by the quotient POMDP. Intuitively, in the current state (s, n) of the induced quotient MDP, using
z = O(s), an action a ∼ δ(n, z) is selected and the system transitions to an intermediate state
(s, n, a), in which a specific variant of action a is selected from the set I/s,a∼ ; then, the state is
updated according to TQ(s, aI) and the memory is updated according to η(n, z).

Definition 7 (Induced quotient MDP). Given quotient POMDP QM = ⟨S, s0, AQ, TQ, RQ, Z,O⟩
and policy π = ⟨N,n0, δ, η⟩. Let A∅ := A ⊔ {∅} where ∅ is a fresh action. The induced quotient
MDP associated withQM and π is an MDP Lπ

M = ⟨S ×N ×A∅, (s0, n0,∅), AL, TL, RL⟩ where
AL = {∅} ⊔ 2I with available actions AL(·, ·,∅) = {∅} and AL(s, ·, a) = I/s,a∼ . The reward
function is RL(⟨s, n, a⟩, I) = RQ(s, aI) and the transition functions are, using z = O(s), as:

TL(⟨s, n, a⟩ | ⟨s, n,∅⟩,∅) = δ(a | n, z),
TL(⟨s′, n′,∅⟩ | ⟨s, n, a⟩, I) = TQ(s′ | s, aI) · η(n′ | n, z).

Given such a quotient MDP compactly describing a family {Mπ
i }i∈I of induced MCs, we can use

deductive formal verification techniques implemented in the tool PAYNT [4] to efficiently identify an
MC with the minimal value of Jπ

Mi
= J π

M, obtaining the robust performance of π and an associated
worst-case POMDP M .

4.4 RFPG Algorithm

Algorithm 1: The RFPG algorithm
Input :An HM-POMDPM, a set G of goal states
Output :A policy π∗ achieving the best J π∗

M
Global :number of GA steps GASTEPS, step sizes αk

1 N ← SIZEOFFSC(M) ▷ See App. B

2 θ(0), ϕ(0) ← INIT(Θ,Φ, N), k ← 0, ν∗ ← −∞
3 π(0) ← ⟨N,n0, δθ(0) , ηϕ(0)⟩ ▷ Build policy

4 QM ← QUOTIENTPOMDP(M) ▷ Def.6
5 while TIMEOUT IS NOT REACHED do
6 Lπ(k)

M ← INDUCEDMDP
(
QM, π(k)

)
▷ Def. 7

7 M (k),J π(k)

M ← PAYNT
(
Lπ(k)

M , G
)
▷ Sec. 4.3

8 if J π(k)

M > ν∗ then π∗ ← π(k), ν∗ ← J π(k)

M
9 for j ← k to k + GASTEPS − 1 do

10 θ(j+1) ← projΘ
(
θ(j) + αj∇θ(j)Jπ(j)

M(k)

)
11 ϕ(j+1) ← projΦ

(
ϕ(j) + αj∇ϕ(j)Jπ(j)

M(k)

)
12 π(j+1) ← ⟨N,n0, δθ(j+1) , ηϕ(j+1)⟩
13 k ← k + GASTEPS
14 return π∗

Algorithm 1 outlines the key steps of
RFPG. First, we determine the number of
nodes for the policy π. Determining the
optimal size is undecidable [25], therefore,
we apply a heuristic that solves a small
sample set of POMDPs fromM to deter-
mine an adequate size (Line 1, see Ap-
pendix B). We then initialize the gradi-
ent ascent parameters (Line 2, see Ap-
pendix A ) and build the corresponding
policy π (Line 3). Finally, we build the
quotient POMDP QM (Line 4, see Defi-
nition 6) that compactly represents the set
of POMDPs in the given HM-POMDPM.
The main loop runs until the given timeout
is reached. We first construct for the cur-
rent policy π the induced quotient MDP
Lπ(k)

M (Line 6, see Definition 7). The tool
PAYNT [4] takes this MDP Lπ(k)

M and the
given goal states G to compute a worst-
case POMDP M (k) and the robust perfor-
mance J π(k)

M (Line 7, see Section 4.3).

We then update the running optimum (Line 8). Finally, we run GASTEPS gradient ascent steps
to update parameters ϕ and θ of the policy π, now on POMDP M (k) (Line 9, see Section 4.2).
GASTEPS is a hyperparameter that should be tuned based on the size of the HM-POMDP: having
many instances |I| slows down the policy evaluation, while many states |S| slows down the gra-
dient update steps. In our experiments, we picked GASTEPS = 10, such that at most 75% of the
computation time is spent on policy evaluation.

5 Experimental Evaluation

In this section, we evaluate RFPG on the following questions.

(Q1) Does RFPG produce policies with higher robust performance compared to several baselines?
(Q2) Can RFPG generalize to unseen environments?
(Q3) How does the POMDP selection affect performance?
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5.1 Experimental Setting

Benchmarks. We extend four POMDP benchmarks [24, 29, 32] and one family of MDPs [6] to
HM-POMDPs. These benchmarks together encompass a varied selection of different complexities
of HM-POMDPs, i.e., different numbers of POMDPs and sizes thereof, as reported in Table 1.
Appendix C gives a detailed description of the benchmarks.

Baselines. For (Q1), we compare our approaches (1) to the POMDP solver SAYNT [5], which
provides competitive performance to other state-of-the-art tools that compute FSCs, and (2) standard
FSC policy gradient ascent (GA) for POMDPs [1, 17]. We create four different baselines by using the
following two strategies to compute robust policies:

• Enumeration: SAYNT-E/GA-E runs SAYNT/GA independently on each of the POMDPs in the
HM-POMDP and selects the policy with the best robust performance.

• Union: SAYNT-U/GA-U runs SAYNT/GA on the union POMDP, constructed from the disjoint
union of the POMDPs described by the HM-POMDP, with a uniform distribution over the initial
states of these POMDPs.

Set-up. Due to their size, executing the baselines on the complete sets of POMDPs described by
our benchmark suite of HM-POMDPs is infeasible. Moreover, we are interested in assessing the
generalizability of our method (Q2). Therefore, we design the following experiment: (1) Pick a
random subset of ten POMDPs from the full HM-POMDP, (2) compute a robust policy for this
smaller sub-HM-POMDP using the four baselines and RFPG (referred to as RFPG-S), (3) compare
the achieved robust performance of RFPG to the baselines on this sub-HM-POMDP (Q1). To further
study the scalability and generalization of RFPG to large HM-POMDPs, we extend the experiment
with the following steps: (4) compute a robust policy for the full HM-POMDP using RFPG, and
(5) compare the robust performance of the resulting six policies on the full HM-POMDP using
the policy evaluation method from Section 4.3. From this experiment, we can not only assess the
scalability of our approach compared to the baselines but, moreover, the ability to generalize to
unseen environments (Q2). Additionally, we can see if RFPG produces a better robust performance
than RFPG-S, indicating whether it is essential to assess all POMDPs within an HM-POMDP. All
methods have a one-hour timeout to compute a policy; in case of a timeout, we report the robust
performance of a uniform random policy. To report statistically significant results, each experiment
was carried out on 10 different subsets obtained using stratified sampling from the full HM-POMDP.
Appendix D provides information on the infrastructure used to run the experiments.

5.2 Overview of the Experimental Results

We present three experimental artifacts that report the key results of the experimental evaluation.

The table in Figure 2 reports, similar to Example 4, the values achieved by the policies on one
particular subset of the Obstacles(8,5) HM-POMDP. The table shows the performance of the baseline
methods except for GA-E, whose results are generally worse and are reported in Appendix E. The
right-most column shows the results for the full HM-POMDP. It provides details in this particular
environment on how (Q1) RFPG compares to the baselines on the subset of POMDPs and how (Q2)
RFPG generalizes to the full HM-POMDP.

Table 1 summarizes the main results, including all algorithms and benchmarks to provide substantial
evidence to answer (Q1) and (Q2). The upper part of the table contains less complex HM-POMDPs,
describing a modest number of POMDPs, while the lower part includes more complex problems. The
left part of the table presents the results for the sub-HM-POMDPs, and the values are normalized
wrt. the value obtained using RFPG-S. The right part presents the results for the full HM-POMDP
with the values normalized wrt. the value obtained using RFPG. We average values over 10 seeds; the
extended Tables 2 and 3 in Appendix E include standard errors. Values below 1 indicate how much
the baselines lag behind RFPG-S (the left part) and by RFPG (the right part), respectively.

The learning curves in Figure 3 show the robust performance over time for the policies computed
by RFPG and by the variant of the GA optimization that in every iteration of Algorithm 1 selects a
random POMDP, similar to domain randomization [36], to answer (Q3). We report curves for two
selected benchmarks, a simpler and a harder one; learning curves for all benchmarks are reported
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M

SAYNT M1

SAYNT M2

SAYNT M3

SAYNT M4

SAYNT M5

SAYNT M6

SAYNT M7

SAYNT M8

SAYNT M9

SAYNT M10

GA-U

SAYNT-U

RFPG-S

-13 -132 -262 -119 -104 -33 -111 -104 -119 -95 -285

-24 -14 -219 -194 -120 -38 -106 -186 -89 -22 -284

-136 -106 -16 -120 -136 -214 -29 -171 -170 -135 -361

-16 -105 -132 -23 -111 -120 -33 -14 -272 -121 -286

-13 -132 -262 -119 -104 -33 -111 -104 -119 -95 -285

-15 -112 -219 -103 -120 -30 -97 -104 -180 -95 -285

-15 -177 -163 -103 -120 -31 -15 -120 -180 -13 -284

-106 -15 -138 -195 -120 -103 -106 -104 -89 -104 -284

-271 -91 -123 -272 -120 -103 -271 -170 -16 -136 -361

-23 -30 -253 -207 -107 -40 -117 -186 -40 -22 -284

-24 -14 -219 -194 -120 -38 -106 -186 -89 -22 -284

-37 -120 -173 -132 -112 -111 -109 -132 -171 -91 -230

-94 -130 -145 -137 -139 -118 -138 -135 -149 -145 -220

Figure 2: Performance (maximizing) of SAYNT-E (first 10 rows), SAYNT-U, GA-U, and RFPG-S for a sub-
HM-POMDP of Obstacles(8,5). In the first 10 columns, corresponding to the evaluation of the individual
POMDPs, we highlight the worst-case value of each method in blue and the best worst-case value among these
in green. Independently, we highlight the highest value on the full HM-POMDP M (last column) in green. For
comparison, RFPG achieves a value of −206 on M, surpassing the baselines.

Model
Subset of |I| = 10 POMDPs Full HM-POMDP
SAYNT-E SAYNT-U GA-E GA-U SAYNT-E SAYNT-U GA-E GA-U RFPG-S

Obstacles(10,2) 0.76 0.81 0.92 0.95 0.19 0.71 0.21 0.94 0.99
Network 1.06 1.05 0.93 0.96 1.04 1.07 0.72 1.02 1.02
Avoid 1.05 0.10 0.52 0.98 0.18 0.18 0.08 1.10 1.23

Rover 0.88 0.85 0.88 0.85 0.75 0.80 0.75 0.80 0.83
Obstacles(8,5) 0.79 0.67 0.71 0.68 0.62 0.72 0.25 0.81 0.84
DPM 0.80 0.61 0.95 0.61 0.54 0.64 0.46 0.62 0.91

Table 1: Values of policies computed by the baselines and RFPG-S on a subset of POMDPs of size 10, evaluated
on both the subset and the full HM-POMDP. Values evaluated on the subset are normalized wrt. the value of
RFPG-S; values evaluated on the HM-POMDP are normalized wrt. the value of RFPG. Each method had a total
timeout of 1 hour. The reported results are averaged over 10 seeds.

in Appendix E. We consider the full HM-POMDP and plot the average values over 10 seeds together
with 95% confidence intervals. Next, we analyze the presented results.

5.3 Analysis of the Experimental Results

(Q1) Comparison to baselines

Detailed evaluation via Obstacles(8,5). As expected, the table in Figure 2 shows that the policy
optimized for a particular POMDP achieves excellent relative value on this POMDP, but generally
performs poorly on other POMDPs. The best robust performance of SAYNT-E is achieved with
the policy optimized for POMDP M7, yielding a value of -180 for the subset and -284 for the HM-
POMDP. The baselines using the union POMDP provide more robust policies. GA-U outperforms
SAYNT-U in both settings, although SAYNT-E outperforms GA-E. While SAYNT-U achieves a better
average, its robust performance is worse than GA-U. Being the best baseline on this benchmark,
GA-U computes a policy achieving a value of -173 on the subset and -230 for the HM-POMDP.
Our approach significantly improves these values: RFPG-S finds a policy with a value of -149
on the subset and -220 on the HM-POMDP, and RFPG finds a policy with a value of -206 on the
HM-POMDP (not reported in the table).

Comparison on the whole benchmark suite. Table 1 shows that our approach generally outperforms
the baselines. Below, we analyze the left and right parts of the table in more detail.

Subsets. The results demonstrate the benefits of our approach already for the subsets of POMDPs,
especially for the more complex benchmarks. In 4 (out of 6) benchmarks, the best policies produced by
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Figure 3: Learning curves of RFPG compared to a baseline configured to randomly select a POMDP from the
HM-POMDP at each iteration. We plot averages over 10 seeds together with 95% confidence intervals.

the baselines are behind the policies found by RFPG. We also observe that the relative performance of
the particular baselines significantly varies among the benchmarks. This shows that (i) already small
subsets require generalization in the policies for particular POMDPs to obtain robust performance and
(ii) the union POMDP, which “averages" the individual POMDPs in the subset, does not necessarily
provide an adequate abstraction and provides worse results than the enumeration even when it is
tractable to solve it.

Full HM-POMDPs. We observe similar trends to the previous setting; however, our approach’s
benefits are even more significant. GA-U and SAYNT-U are sometimes competitive with RFPG on
the three benchmarks with smaller I , as it is more probable that useful POMDPs end up in the union.
For the more complex benchmarks with large I, in most cases, the baselines cannot produce policies
with a value better than 80% of the value produced by RFPG. For the most complex benchmark,
DPM, the gap between RFPG and the best baseline (SAYNT-U) is 36%. We also observe that RFPG
considerably improves RFPG-S on these benchmarks, which demonstrates the scalability of our
approach: RFPG can effectively reason about HM-POMDPs describing over 130000 environments.

(Q2) Generalization Recall Table 1 to compare RFPG-S and the baselines. These results demonstrate
the effectiveness of policies optimized for the same subset in generalizing to unseen POMDPs in the
HM-POMDP. Except for the Network benchmark, RFPG-S provides much better generalization to
the full HM-POMDP. The most complex benchmark, DPM, shows a gap of 26% between RFPG-S
and the best baseline.

(Q3) Ablation with random POMDP selection The learning curves in Figure 3 demonstrate the
role of robust policy evaluation within our approach. For the Network benchmark with a modest
number of POMDPs, the random selection of the POMDP has a decent chance of sampling useful
POMDPs for policy optimization, which is similar to what we observed for GA-U and SAYNT-U.
Therefore, the performance is competitive with RFPG, yet RFPG performs slightly better on average.
On the other hand, for DPM, the HM-POMDP describes over a hundred thousand POMDPs, and the
learning curve clearly shows that robust policy evaluation is essential for more complex problems
involving a larger number of POMDPs. Random selection leads to policies that achieve significantly
worse values, with very high fluctuations in values during the learning process.

6 Conclusion

HM-POMDPs encapsulate sets of POMDPs, with the assumption that the true model is hidden within
the set. The problem is to find a robust policy for all POMDPs. We separated the concerns of robust
policy evaluation to pick worst-case POMDPs and perform gradient ascent on the set of POMDPs
to optimize a policy. The experimental evaluation confirms that our approach has two key benefits
compared to the baselines: (1) the policies achieve better generalization to unseen POMDPs, and (2)
it scales to HM-POMDPs with over one hundred thousand POMDPs. As such, the paper presents the
first approach that can effectively solve HM-POMDPs, an important and practically-relevant subclass
of robust POMDPs.
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A Gradient ascent set-up

We initialize all the parameters in ϕ and θ independently from a zero-mean unit variance Gaussian
distributionN (0, 1). We use a fixed step size, i.e., αk = α > 0, that we set to α = 0.1. We accelerate
the ascent using momentum, which considers weighted aggregation of previous derivatives with a
decay factor of β = 0.9. We do not reset momentum when the worst-case POMDP changes during
the iterations. Furthermore, we clip gradients to a value of c = 5 to prevent exploding gradients
and improve stability during learning. The momentum is computed as follows, independently for all
parameters in θ and ϕ.

ν
(k+1)
θ ← β · ν(k)θ + (1− β) · clip(∇θJ

π
M ,−c, c),

θ(k+1) ← θ(k) + ν
(k+1)
θ ,

and, equivalently for ϕ,

ν
(k+1)
ϕ ← β · ν(k)ϕ + (1− β) · clip(∇ϕJ

π
M ,−c, c),

ϕ(k+1) ← ϕ(k) + ν
(k+1)
ϕ ,

where we again have π(k) = ⟨N,n0, δθ(k) , ηϕ(k)⟩. We compute the gradients by unrolling the FSC
onto the POMDP, constructing the resulting parametric Markov chain [19] and solving a linear
equation system to find the partial derivatives [17] that comprise the gradient∇Jπ

M .

B Determining the controller size

Since we compute exact gradients for the individual POMDPs, large sizes of FSCs require substantial
computation. Therefore, we opt to optimize sparse FSCs that do not use all memory nodes for each
observation. For a policy π = ⟨N,n0, δ, η⟩ represented by an FSC, we assume the size is given by a
memory model µ : N × Z → N, where µ(n, z) determines the size of the set |N | for memory node
n ∈ N and observation z ∈ Z. We find µ by running the existing POMDP solver SAYNT [5] with
a short timeout, which can return a candidate memory model from a given POMDP M . Since we
optimize for sets of POMDPs, we sample a subfamily of POMDPs from the HM-POMDP. On each
of the k sampled POMDPs, we run SAYNT to find the set of memory models B = {µ̂1, µ̂2, . . . µ̂k},
and aggregate these results into a single memory model µ by taking the point-wise maximum
µ(n, z) = max

µ̂∈B
µ̂(n, z), for all n, z ∈ N × Z.

We use a stratified sampling scheme without replacement, using the factored representation of
variations of the HM-POMDP. While it does not guarantee that the samples provide practically
different POMDPs, it may better cover the differences in the HM-POMDP than a naive uniform
sampling approach.

C Benchmark descriptions

The benchmarks are described using an extension of the guarded-command language PRISM [22],
where each HM-POMDP is described as a POMDP that contains several parameters (so-called
holes), similar to [6]. Unlike standard parametric POMDPs, where parameters only affect transition
probabilities, holes can also occur in the guard, state update, and rewards associated with the given
command.

Obstacles(N ,X) and Avoid consider grid worlds [24] where an agent is tasked with reaching a target
cell, similar to the one depicted in Figure 1(b). Obstacles(N ,X) considers an N by N grid with X
static obstacles, where holes describe possible obstacle locations. Similarly, Avoid describes a 5 by 5
grid where the agent must reach the target while avoiding adversaries patrolling the grid; the holes
determine the initial locations of adversaries as well as their overall behavior.

Network [29, 40] concerns the downlink scheduling of traffic to a number of different users. The
model describes a time-slotted system: each packet corresponds to one time period, and these periods
are divided into an equal number of slots. The goal is to maximize the number of packets delivered
to the users across all the channels. The holes in this HM-POMDP determine the total number of
packets/periods and the number of slots in each period.
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Rover [16, 6] considers scheduling for the Mars rover that has a limited battery and a variety of tasks
it can undertake. The tasks differ in their success probability, energy consumption, and scientific
value upon success. The goal is to schedule the tasks in order to maximize the scientific value before
running out of battery. The holes in the HM-POMDP determine the battery capacity and, for each of
the available tasks, its probability of success and energy consumption. This HM-POMDP augments
the MDP sketch from [6] with limited observability of the rover’s battery.

Finally, DPM [32] describes an electronic component designed to serve incoming requests that arrive
stochastically. The component is equipped with a queue request and has multiple power modes
(active/idle/asleep), each having different power consumption. The goal is to maximize the number
of served requests before running out of battery. The holes in the HM-POMDP determine the speed
of switching between modes, the partial observability of the request queue, and the stochastic nature
of incoming traffic.

D Infrastructure

All algorithm variants are implemented in the same prototype, implemented in a combination of
Python3 and C++, and are available in the supplemental material. All code ran on the same
Linux machine running Ubuntu 22.04.5 LTS, which has an Intel(R) Core(TM) i9-10980XE CPU
@ 3.00GHz and 256GB RAM (8 x 32GB DDR4-3200). The experiments were executed inside a
Docker container running an Ubuntu 22.04 environment.

E Additional tables and figures

This section includes additional results and figures from the experimental evaluation.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

GA-U

RFPG-S

-23.92 -155.1 -232.1 -158.9 -119.8 -63.97 -151.4 -150.6 -163.3 -98.74 -431

-673.5 -40.85 -27.62 -119 -670.1 -208.3 -33.55 -118.9 -119.4 -671.5 -766.1

-478.2 -53.5 -27.04 -117.3 -488.3 -191.4 -51.89 -119 -119.6 -504.4 -583.9

-222.9 -189.5 -161.2 -38.2 -149.5 -178.9 -231.1 -141.4 -239.4 -109.6 -420.4

-63 -142.1 -108.4 -117.6 -95.86 -160.4 -128.1 -89.17 -215.2 -323.8 -498

-525.1 -188.9 -202.4 -119.7 -603.7 -30.25 -125.2 -121.8 -124.8 -592.3 -706.9

-370.9 -54.49 -19.45 -111 -371 -204.2 -20.72 -115.6 -114.8 -370.6 -461.5

-572.1 -147.5 -117.2 -54.69 -608.6 -126.3 -97.08 -35.58 -217.6 -768 -840

-203.2 -43.33 -138.4 -224.3 -117.4 -55.39 -222.7 -137.3 -25.95 -443.4 -561.8

-61.58 -77.75 -240.3 -193.3 -131.5 -70.05 -144.1 -207.9 -89.59 -22.5 -266.6

-36.54 -120 -172.6 -132.5 -112.5 -111.3 -109.1 -131.5 -171.3 -90.52 -230.2

-93.51 -130.4 -145.2 -136.9 -139.2 -117.8 -138 -135.4 -148.8 -144.7 -220.4

Obstacles(8, 5)

Figure 4: Table comparing the performance of the policies computed by the GA baseline, as well as RFPG-S,
from a single run on Obstacles(8, 5). In the first 10 columns, corresponding to the evaluation of the individual
POMDPs, we highlight the worst-case value of each method in blue and the best worst-case value among these in
green. Independently, we highlight the highest value on the whole family (last column) in green. For comparison,
RFPG achieves a value of −205.9 on the whole family, surpassing the baselines.

In Tables 2 and 3, we show the results of Table 1 of the main paper with standard error for the
subfamily and whole family evaluation, respectively.
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Evaluation Subset of 10 POMDPs
Method SAYNT-E SAYNT-U GA-E GA-U

Obstacles(10,2) 0.76± 0.04 0.81± 0.06 0.92± 0.04 0.95± 0.05
Network 1.06± 0.01 1.05± 0.01 0.93± 0.01 0.96± 0.01
Avoid 1.05± 0.13 0.10± 0.01 0.52± 0.07 0.98± 0.08

Rover 0.88± 0.04 0.85± 0.04 0.88± 0.04 0.85± 0.04
Obstacles(8,5) 0.79± 0.06 0.67± 0.02 0.71± 0.05 0.68± 0.05
DPM 0.80± 0.04 0.61± 0.04 0.95± 0.04 0.61± 0.04

Table 2: Extension of Table 1 part one, for evaluation on the sampled subsets, including standard error with 1
delta degrees-of-freedom.

Evaluation Full HM-POMDP
Method SAYNT-E SAYNT-U GA-E GA-U RFPG-S

Obstacles(10, 2) 0.19± 0.01 0.71± 0.03 0.21± 0.02 0.94± 0.06 0.99± 0.03
Network 1.04± 0.01 1.07± 0.01 0.72± 0.02 1.02± 0.01 1.02± 0.01
Avoid 0.18± 0.05 0.18± 0.05 0.08± 0.02 1.10± 0.43 1.23± 0.39

Rover 0.75± 0.00 0.80± 0.00 0.75± 0.00 0.80± 0.00 0.83± 0.02
Obstacles(8, 5) 0.62± 0.03 0.72± 0.00 0.25± 0.02 0.81± 0.04 0.84± 0.04
DPM 0.54± 0.01 0.64± 0.02 0.46± 0.01 0.62± 0.01 0.91± 0.03

Table 3: Extension of Table 1 part two, for evaluation on the whole HM-POMDP, including standard error with 1
delta degrees-of-freedom.
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Figure 5: Learning curves of RFPG compared to a baseline configured to randomly select a POMDP from the
HM-POMDP during ascent. We plot averages over 10 seeds in combination with 95% confidence intervals.
We negate rewards in environments where the objective is to minimize costs for visibility purposes in the plot.
The upper part of the figure contains the less complex models, while the lower part contains the more complex
models. The wide confidence interval at the beginning of RFPG in Avoid is caused by a bad initial policy
(selected randomly in every seed) that takes a long time to evaluate and thus to improve.

16


	Introduction
	Contributions
	Related Work

	Preliminaries
	Hidden-Model POMDPs
	Robust Finite-Memory Policy Gradients
	Overview of rfPG
	Policy Optimization for HM-POMDPs
	Robust Policy Evaluation
	rfPG Algorithm

	Experimental Evaluation
	Experimental Setting
	Overview of the Experimental Results
	Analysis of the Experimental Results

	Conclusion
	Gradient ascent set-up
	Determining the controller size
	Benchmark descriptions
	Infrastructure
	Additional tables and figures

