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Abstract

In unsupervised causal representation learning for sequential data with time-delayed
latent causal influences, strong identifiability results for the disentanglement of
causally-related latent variables have been established in stationary settings by
leveraging temporal structure. However, in nonstationary setting, existing work
only partially addressed the problem by either utilizing observed auxiliary vari-
ables (e.g., class labels and/or domain indexes) as side-information or assuming
simplified latent causal dynamics. Both constrain the method to a limited range
of scenarios. In this study, we further explored the Markov Assumption under
time-delayed causally related process in nonstationary setting and showed that
under mild conditions, the independent latent components can be recovered from
their nonlinear mixture up to a permutation and a component-wise transformation,
without the observation of auxiliary variables. We then introduce NCTRL, a princi-
pled estimation framework, to reconstruct time-delayed latent causal variables and
identify their relations from measured sequential data only. Empirical evaluations
demonstrated the reliable identification of time-delayed latent causal influences,
with our methodology substantially outperforming existing baselines that fail to
exploit the nonstationarity adequately and then, consequently, cannot distinguish
distribution shifts.

1 Introduction

Causal reasoning for time-series data is a long-lasting yet fundamental task [1–3]. The majority
of the studies focus on the temporal causal discovery among observed variables [4–6]. However,
in many real-world scenarios, the observed data (e.g., image pixels in videos) instead of having
direct causal edges, are generated by some causally related latent temporal processes or confounders.
Learning causal relations has practical use cases, which benefit a lot of downstream tasks. However,
estimating latent causal structures among those unobserved variables purely from observations
without appropriate class of assumptions is an extremely challenging task (i.e. the latent variables are
generally not identifiable) [7, 8].

Under the topic of unsupervised representation learning via nonlinear Independent Component
Analysis (ICA), some strong identifiability results of the latent variables have been established [9–14]
by introducing side information such as class labels and domain indices. Specifically focusing on
time-series data, history information is also widely used as the side information for the identifiability
of latent processes [15–18]. However, existing studies mainly focused on and derived identifiability
results in stationary settings [10, 16] (Fig 1 (a)) or nonstationary settings with explicitly observed
domain indices [12, 17, 18] (Fig 1 (b)).
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Figure 1: Graphic models for three different settings in causally related time-delayed time series data
with a visual illustration. (a) is a stationary setting in which the transition function zt+1 = fz(zt)
stays universally the same. (b) is the setting widely explored in existing work, in which the transition
function fz changes according to different domains (denoted as ct), and all those domain indices are
observed. (c) capture the unobserved domain indices by introducing a Markov chain on ct. (d) is a
more general form to model the time series data in this work. It allows nonstationary settings and it
doesn’t require the domain indices to be observed.

One can immediately tell the infeasibility of those two scenarios that general time-series data is
usually nonstationary and the side information (class labels and domain indices) is usually unobserved.
That is particularly true when considering real-world data such as video or signal sequences. It
doesn’t make any sense to assume that there exists a stationary transition function that is applied
to the whole video clip. Take a very simple video clip of a mouse2 [19] as an example, it is fairly
clear that such a simple motion example can be divided into at least two phases (1) active phase in
which the mouse is moving and (2) inactive phase in which the mouse is laying down. Instead of
using a complex transition function to describe the whole video clip, a more reasonable assumption
is that the same transition function is shared within the same phase, but across different phases, the
transition functions are different, in other words, the transition function can be expressed as a function
of the domain index. Also, it is worth mentioning that if such domain or phase indices is latent or
unobserved, then we cannot directly utilize the existing framework to learn the latent causal dynamics.
That is again a more realistic case that in general, the domain indices within a video are not accessible
without expensive human annotation.

Recently, HMNLICA [14] attempted to resolve the problem by introducing Markov Assumption on
the nonstationary discrete domain variable, they assumed the domain indices follow a first-order
Markov Chain and estimated the domain information purely from observed data. However, HMN-
LICA assumes temporally mutually independent sources in the data-generating process (conditioning
on domain indices), i.e. they don’t allow latent variables to have time-delayed causal relations in
between (Fig 1 (c)). Such an assumption imposed a huge negative impact on the usability of those
methods. Considering the video of the little mouse example, the xts are the observed video frames,
zts can be the independent motion dynamics or causal process such as position, velocity, (angular)
momentum, etc, and cts are the phases or actions such as standing up (active) and laying down (inac-
tive). To accommodate for such general sequential data, time-delayed temporal dependence should
be considered in the latent zt space (Fig 1 (d)), otherwise, it is impossible to model a complex video
data’s temporal relation purely from discrete, domain indices. Also to make sure that the latent
independent components can be recovered, temporally conditional independence should also be
enforced, i.e. Each dimension of zt is conditionally independent given the history zhistory. To this end,
a natural question is:

How can we establish identifiability of nonlinear ICA for general sequential data with
nonstationary causally-related process without observing auxiliary variable?

To answer this question, we first formulate the latent nonstationary states as a discrete Markov process
and further explore the Markov Assumption [20] which is introduced for identifiability of nonlinear
ICA in HMNLICA [14] and provided stronger identifiability result corresponding to the conditional
emission distribution (i.e. the transition function of different domains) and the transition matrix of

2https://dattalab.github.io/moseq2-website/images/sample-extraction.gif.
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the Markov process. Specifically, we generalized the identifiability of Hidden Markov Models in [20]
to accommodate time-delayed causally-related non-parametric transitions in latent space (Thm. 1).
Then we utilize the linear independence (Thm. 2) to further establish the identifiability of zt.

The main contributions of this work can be summarized as follows:

• To our best knowledge, this is the first identifiability result that can handle the nonstationary
time-delayed causally-related latent temporal processes without the auxiliary variable. We
formulate the problem, especially the nonstationary states into the Markov process, establish
identifiability purely from observed data, and then show strong identifiability of latent
independent components.

• We present NCTRL, Nonstationary Causal Temporal Representation Learning, a principled
framework to recover time-delayed latent causal variables and identify their relations from
measured sequential data under unobserved different distribution shifts.

• Experiments on both synthetic and real-world datasets demonstrate the effectiveness of the
proposed method in recovering the latent variables.

2 Problem Formulation

2.1 Time Series Generative Model

Assume we observe n-dimensional time-series data at discrete time steps, X = {x1,x2, . . . ,xT },
where each xt ∈ X is generated from time-delayed causally related hidden components zt ∈ Rn by
the invertible mixing function:

xt = g(zt). (1)
In addition to latent components zt, there is an extra hidden variable ct which is discrete with
cardinality | ct | = C, it follows a first-order Markov process controlled by a C × C transition matrix
A, in which the i, j-th entry Ai,j is the probability to transit from state i to j.

c1, c2, . . . , ct ∼ Markov Chain(A) (2)

For i ∈ {1, . . . , n}, zit, as the i-th component of zt, is generated by (some) components of history
information zt−1, discrete nonstationary indicator ct, and noise ϵit.

zit = fi({zj,t−1 | zj,t−τ ∈ Pa(zit)}, ct, ϵit) with ϵit ∼ pϵi (3)
where Pa(zit) is the set of latent factors that directly cause zit, which can be any subset of zHx =
{zt−1, zt−2, . . . , zt−L} up to history information maximum lag L. The components of zt are
mutually independent conditional on zHx and ct.

2.2 Identifiability of Latent Causal Processes and Time-Delayed Latent Causal Relations

We define the identifiability of time-delayed latent causal processes in the representation function
space in Definition 1. Furthermore, if the estimated latent processes can be identified at least up
to permutation and component-wise invertible nonlinearities, the latent causal relations are also
immediately identifiable because conditional independence relations fully characterize time-delayed
causal relations in a time-delayed causally sufficient system, in which there are no latent causal
confounders in the (latent) causal processes. Note that invertible component-wise transformations on
latent causal processes do not change their conditional independence relations.
Definition 1 (Identifiable Latent Causal Processes). Formally let X = {x1,x2, . . . ,xT } be a se-
quence of observed variables generated by the true temporally causal latent processes specified
by (fi, p(ϵi),A,g) given in Eqs. (1), (2), and (3). A learned generative model (f̂i, p̂(ϵi), Â, ĝ) is
observationally equivalent to (fi, p(ϵi),A,g) if the model distribution pĝ,p̂ϵ,Â,ĝ({x1,x2, . . . ,xT })
matches the data distribution pfi,pϵ,A,g({x1,x2, . . . ,xT }) everywhere. We say latent causal pro-
cesses are identifiable if observational equivalence can lead to identifiability of the latent variables
up to permutation π and component-wise invertible transformation T :

pf̂i,p̂ϵi
,Â,ĝ({x1,x2, . . . ,xT }) = pfi,pϵi

,A,g({x1,x2, . . . ,xT })

⇒ ĝ−1(xt) = T ◦ π ◦ g−1(xt), ∀xt ∈ X ,
(4)

where X is the observation space.

3



3 Identifiability Theory

In this section, we showed that under mild conditions, the latent variable zt is identifiable up to
permutation and a component-wise transformation. The theoretical results can be divided into two
parts (1) identifiability of the nonstationarity and (2) identifiability of the independent components.
As introduced above, the major challenge comes from the unobserved domain indices or nonstationary
indicators (ct in our graphic models). We first establish the identifiability of the different conditional
distributions from the observed data and then show that the latent variables z are identifiable. The
complete proofs can be found in Appendix A.

3.1 Identifiability of Nonstationary Hidden States

Gassiat et al.[20] showed that the conditional emission distributions in Hidden Markov Models and
the transition matrix are identifiable up to label swapping. We first generalize it to the autoregressive
setting to accommodate for the time-delayed causal relation, i.e. we showed the identifiability of
conditional emission distributions p(xt|xt−1, c).
Theorem 1. (identifiability of the nonstationarity with Markov Assumptions) Suppose the observed
data is generated following the nonlinear ICA framework as defined in Eqs. (1), (2) and (3). Suppose
the following assumptions (Markov Assumptions) hold:

i For the Markov process, the number of latent states, C, is known.

ii The transition matrix A is full rank.

Use µ1, . . . , µC ∈ Rn to denote nonparametric probability distributions of the C emission distribu-
tions µc = p(xt |xt−1, c). Then the parameters A and M = (µ1, . . . , µC) are identifiable given the
distribution, P(4)

A,M , of at least 4 consecutive observations xt,xt+1,xt+2,xt+3, up to label swapping
of the hidden states, that is:

If Ã is a C × C transition matrix and if π̃(c) is a stationary distribution of Ã with π̃(c) > 0

∀c ∈ {1, . . . , C}, and if M̃ = (µ̃1, . . . , µ̃C) are C probability distributions on Rn that verify the
equality of the distribution functions P(4)

Ã,M̃
= P(4)

A,M , then there exists a permutation σ of the set

{1, . . . , C} such that for all k, l = 1, . . . , C we have Ãk,l = Aσ(k),σ(l) and µ̃k = µσ(k).

For notational simplicity, and without loss of generality, we can assume the components are ordered
such that c = σ(c). That leads us to the identifiability of the nonstationarity in the system i.e. up
to label swapping of the hidden states, the conditional emission distributions p(xt|xt−1, ct) and
transition matrix A are identifiable, hence providing us a bridge to further leverage the temporal
independence condition in the latent space to establish the identifiability result for demixing function
or in other words the latent variables zt.

3.2 Identifiability of Latent Causal Processes

To incorporate nonlinear ICA into the Markov Assumption we define the emission distribution
p(xt |xt−1, c) as a deep latent variable model. First, the latent independent component variables
zt ∈ Rn are generated from a factorial prior, given the hidden state ct and previous zt−1, as

p(zt | zt−1, ct) =

n∏
k=1

p(zkt | zt−1, ct). (5)

Second, the observed data xt is generated by a nonlinear mixing function as in Eq. (1) which is
assumed to be bijective with inverse given by zt = g(xt). Let ηkt(ct) ≜ log p(zkt|zt−1, ct), and
assume that ηkt(ct) is twice differentiable in zkt and is differentiable in zl,t−1, l = 1, 2, ..., n. Note
that the parents of zkt may be only ct and a subset of zt−1; if zl,t−1 is not a parent of zkt, then

∂ηk

∂zl,t−1
= 0.

Theorem 2. (identifiability of the independent components) Suppose there exists an invertible function
ĝ−1, which is the estimated demixing function that maps xt to ẑt, i.e.,

ẑt = ĝ−1(xt) (6)
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such that the components of ẑt are mutually independent conditional on ẑt−1. Let

vk,t(c) ≜
( ∂2ηkt(c)

∂zk,t∂z1,t−1
,

∂2ηkt(c)

∂zk,t∂z2,t−1
, ...,

∂2ηkt(c)

∂zk,t∂zn,t−1

)⊺
,

v̊k,t(c) ≜
( ∂3ηkt(c)

∂z2k,t∂z1,t−1
,

∂3ηkt(c)

∂z2k,t∂z2,t−1
, ...,

∂3ηkt(c)

∂z2k,t∂zn,t−1

)⊺
.

(7)

And

skt ≜
(
vkt(1)

⊺, ...,vkt(C)⊺,
∂2ηkt(2)

∂z2kt
− ∂2ηkt(1)

∂z2kt
, ...,

∂2ηkt(C)

∂z2kt
− ∂2ηkt(C − 1)

∂z2kt

)⊺
,

s̊kt ≜
(
v̊kt(1)

⊺, ..., v̊kt(C)⊺,
∂ηkt(2)

∂zkt
− ∂ηkt(1)

∂zkt
, ...,

∂ηkt(C)

∂zkt
− ∂ηkt(C − 1)

∂zkt

)⊺
.

(8)

If for each value of zt, s1t, s̊1t,v2t, s̊2t, ..., snt, s̊nt, as 2n function vectors sk,t and s̊k,t, with k =
1, 2, ..., n, are linearly independent, then ẑt must be an invertible, component-wise transformation of
a permuted version of zt.

So far, the identifiability result has been established without observing the nonstationarity indicators
such as domain indices. In the next section, a novel Variational Auto-Encoder based method is
introduced to estimate the demixing function ĝ−1.

4 NCTRL: Nonstationary Causal Temporal Representation Learning

In this section, we present the details of NCTRL to estimate the latent causal processes under un-
observed nonstationary distribution shift, given the identifiability results in Sec 3. First, we show
that our framework includes three modules, Autoregressive Hidden Markov Module, Prior Network,
and Encoder-Decoder Module. Then, we provide the optimization objective of our model training
including an HMM free energy lower bound, a reconstruction likelihood loss, and a KL divergence.

4.1 Model Architecture

{𝑥!, 𝑥", ⋯ , 𝑥#} {𝑥&!, 𝑥&", ⋯ , 𝑥&#}

Encoder Decoder
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Figure 2: Illustration of NCTRLwith (1) Autoregres-
sive Hidden Markov Module, (2) Prior Network,
and (3) Encoder-Decoder Module.

Our framework extends Sequential Variational
Auto-Encoders [21] with tailored modules to
model nonstationarity, and enforces the condi-
tions in Sec. 3 as constraints. We give the esti-
mation procedure of the latent causal dynamics
model in Eq. (3). The model architecture is
showcased in Fig. 2. The framework has three
major components (1) Autoregressive Hidden
Markov Module (ARHMM), (2) Prior Network
Module, and (3) Encoder-Decoder Module.

Autoregressive Hidden Markov Module (ARHMM) The first component of our framework is
ARHMM which deals with the nonstationarity with unobserved domains. As discussed in Thm 1, the
transition function or the conditional emission distributions across different domains together with
the Markov transition matrix A are identifiable. This module estimates the transition function of
different domains p(xt|xt−1, ct) and the transition matrix A of the Markov process, and ultimately
decodes the optimal domain indices {ĉ1, ĉ2, . . . , ĉT } via the Viterbi algorithm.

Prior Network Module To better estimate the prior distribution p(ẑt|ẑHx, ct), let zHx de-
note the lagged latent variables up to maximum time lag L. We evaluate p(ẑt|ẑHx, ct) =

pϵ

(
f̂−1
z (ẑt, ẑHx, θ̂ct)

) ∣∣∣∂f̂−1
z

∂ẑt

∣∣∣ by learning a holistic inverse dynamics f̂−1
z that takes the estimated

change factors for dynamics θ̂ct as inputs. Conditional independence of the estimated latent variables
p(ẑt|ẑHx) is enforced by summing up all estimated component densities when obtaining the joint
p(zt|zHx, ct) in Eq. 9. Given that the Jacobian is lower-triangular, we can compute its determinant as
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the product of diagonal terms. The detailed derivations are given in Appendix B.2.

log p (ẑt|ẑHx, ct) =

n∑
i=1

log p(ϵ̂i|ct)︸ ︷︷ ︸
Conditional indepdence

+

n∑
i=1

log
∣∣∣∂f̂−1

i

∂ẑit

∣∣∣︸ ︷︷ ︸
Lower-triangular Jacobian

(9)

Encoder-Decoder Module The third component is a Variational Auto-Encoder based module which
utilizes reconstruction loss to enforce the invertibility of learned mixing function ĝ. Specifically, the
encoder fits the demixing function ĝ−1 and the decoder fits the mixing function ĝ. The implementation
details are in Appendix B.

4.2 Optimization

The first training objective of NCTRL is to maximize the Log-likelihood of the observed data:

log pθHMM({x1,x2, . . . ,xT }) (10)

where θHMM represents the HMM training parameters. Then the free energy lower bound can be
defined as:

−LHMM = L(q(c),θHMM) ≜ Eq(c) [log pθHMM(x1,x2, . . . ,xT , c)]−H(q(c)) (11)

Consistent with the theory part, the first training objective is to maximize data log-likelihood in the
ARHMM module to get optimal q(c⋆).

q(c⋆) ≜ argmax
q(c)

L(q(c),θHMM) (12)

which can easily be computed by the Forward-Backward algorithm and luckily all of it is differentiable
to the HMM training parameters θHMM(transition matrix A and transition function parameters θf ).

Then the second part is to maximize the Evidence Lower BOund (ELBO) for the VAE framework,
which can be written as (complete derivation steps are in Appendix B.3):

ELBO ≜ log pdata(X)−DKL(qϕ(Z|X)||pdata(Z|X))

=Ezt

T∑
t=1

log pdata(xt|zt)︸ ︷︷ ︸
−LRecon

+Ec

[
T∑

t=1

log pdata(zt|zHx, ct)−
T∑

t=1

log qϕ(zt|xt)

]
︸ ︷︷ ︸

−LKLD

(13)

We use mean-squared error (MSE) for the reconstruction likelihood loss LRecon. The KL divergence
LKLD is estimated via a sampling approach since with a learned nonparametric transition prior, the
distribution does not have an explicit form. Specifically, we obtain the log-likelihood of the posterior,
evaluate the prior log p (ẑt|ẑHx, ct) in Eq. (9), and compute their mean difference in the dataset as the
KL loss: LKLD = Eẑt∼q(ẑt|xt) log q(ẑt|xt)− log p (ẑt|ẑHx, ct).

5 Experiments

We evaluate the identifiability results of NCTRL on a number of simulated and real-world temporal
datasets. We first introduce the evaluation metrics and baselines and then discuss the datasets we
used in our experiments. Lastly, we show the experiment results discuss the performance, and make
comparisons.

5.1 Evaluation Metrics

Mean Correlation Coefficient (MCC) To evaluate the identifiability of the latent variables, we
compute the Mean Correlation Coefficient (MCC) on the test dataset. MCC is a standard metric in
the ICA literature for continuous variables which measure the identifiability of the learned latent
causal processes. MCC is close to 1.0 when latent variables are identifiable up to permutation and
component-wise invertible transformation in the noiseless case.
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Mean Square Error (MSE) for estimating A As introduced in the theory, the A is identifiable in
our setting, which means that our proposed method can provide accurate estimation for the transition
matrix A, to valid such a claim, we use mean square error (MSE) to capture the distance between the
estimated Â and ground truth A.

Accuracy for estimating ct We also test the accuracy for estimating the discrete domain indices
ct supplementary to the MSE for A since in theory, the A is identifiable but the ct is generally not
identifiable, which is relatively easy to understand as an analogy in Hidden Markov Models, the
transition matrix is identifiable but we can only “infer” the best possible discrete variables but cannot
establish identifiability for it.

It is also worth mentioning that the MSE and Accuracy are influenced by the permutation, which is
also true in clustering evaluation problems. Here we explored all permutations and selected the best
possible assignment for evaluation.

5.2 Baselines

The following identifiable nonlinear ICA methods are used: (1) BetaVAE [22] which ignores both
history and nonstationarity information. (2) i-VAE [12] and TCL [9] which leverage nonstationarity
to establish identifiability but assume independent factors. (3) SlowVAE [16], and PCL [10] which
exploit temporal constraints but assume independent sources and stationary processes. (4) TDRL [18]
which assumes nonstationary, causal processes but with observed domain indices. (5) HMNLICA [14]
which considers the unobserved nonstationary part in the data generation process but doesn’t allow
any causally related time-delayed relations.

5.3 Simulated Results

Table 1: Experiment results of two synthetic datasets on
baselines and proposed NCTRL, we run the experiments with
five different random seeds and calculate the average with
standard derivation. The best results are shown in bold.

Method Mean Correlation Coefficien (MCC)
Dataset A Dataset B Ave.

BetaVAE 44.02 ± 3.11 47.48 ± 10.58 45.75
i-VAE 89.74 ± 3.38 44.50 ± 0.25 67.12
TCL 37.12 ± 0.60 56.33 ± 3.77 46.73
SlowVAE 33.84 ± 0.60 53.92 ± 3.56 43.88
PCL 42.41 ± 2.87 63.66 ± 2.77 53.04
HMNLICA 59.82 ± 4.94 57.25 ± 1.45 58.54
TDRL 83.99 ± 1.92 72.02 ± 2.76 78.01

NCTRL 98.85 ± 0.30 99.01 ± 0.24 98.93

We generate two synthetic datasets
corresponding to different complex-
ity of the nonlinear mixing function
g. Both synthetic datasets satisfy our
identifiability conditions in the theo-
rems following the procedures in Ap-
pendix B.4. As in Table 1, NCTRL can
recover the latent processes under
unknown nonstationary distribution
shifts with high MCCs (>0.95). The
baselines that do not exploit history
(i.e., BetaVAE, i-VAE, TCL), with in-
dependent source assumptions (Slow-
VAE, PCL), consider limited nonsta-
tionary cases (TDRL) distort the iden-
tifiability results. The only baseline
that considers the unknown nonsta-
tionarity in the domain indices (HMN-
LICA) explored the Markov Assumption but doesn’t allow a time-delayed causal process and hence
suffers a poor result (MCC 0.58).

On the other hand, the difference between dataset A and dataset B is the nonlinearity in the mixing
function, dataset A has a relatively simple nonlinear mixing function, on the contrary, dataset B has
more complex nonlinearity. Some variability has been observed among the relative performance
ranks of different baselines. For example, i-VAE showed a great discrepancy between the two
datasets, which revived the weakness of capturing complex nonlinearity in the unknown nonstationary
distribution shift environments. Again we also observed that our proposed method can constantly
recover the latent independent components with high MCC which indicates on both datasets the
model is identifiable and the estimation algorithm is highly effective. To further validate if
NCTRL successfully recovered the Markov transition matrix A and inferred the domain indices ct
with high accuracy. We further examine the accuracy for estimating nonstationary domain indices
ct and the mean square error estimating the transition matrix A. As shown in Table 2 the result is
consistent with our theory in which the transition matrix A is identifiable and we can estimate it with
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Table 2: Supplementary experiment results of two synthetic datasets on estimating domain indices
ct and transition matrix A in NCTRL, we run the experiments with five different random seeds and
calculate the average with standard derivation.

Unknown Nonstationary Metrics
Dataset Accuracy estimating ct MSE estimating A

A 89.96 ± 0.24 1.01 ×10−3 ± 1.67 ×10−4

B 89.84 ± 0.29 1.08 ×10−3 ± 1.89 ×10−4

high accuracy. For the nonstationary domain indices ct even though there is no identifiability result
governing the estimation accuracy, it can still be inferred pretty well since it is nothing but a decoding
problem in Hidden Markov Models.

5.4 Real-world Applications

Video data – Modified CartPole Environment We evaluate NCTRL on the modified CartPole [23]
video dataset and compare the performances with the baselines. Modified Cartpole is a nonlinear
dynamical system with cart positions xt and pole angles θt as the true state variables. The dataset
descriptions are in Appendix B.5. Similar to the synthetic dataset, we randomly initialize a Markov
chain and roll out a series of ct, and configure the CartPole environment with respect to the ct.
Specifically, we use five domains with different configurations of cart mass, pole mass, gravity,
and noise levels. Together with the two discrete actions (i.e., left and right). By doing so, the
nonstationarity is enforced, and since we can control and access all intermediate states in the system,
all metrics including MCC and ct accuracy together with A MSE can be easily calculated. We fit
NCTRL with two-dimensional causal factors. We set the latent size n = 2 and the lag number L = 2.
In Fig. 3, the latent causal processes are recovered, as seen from (a) high MCC for the latent causal
processes; (b) the latent factors are estimated up to component-wise transformation; and (c) the latent
traversals confirm the two recovered latent variables correspond to the position and pole angle.

Cart Position

Pole Angle

True Latents

Es
tim

at
ed

 L
at

en
ts

(a) (b) (c)

Figure 3: Modified Cartpole results: (a) MCC for causally-related factors; (b) scatterplots between
estimated and true factors; and (c) latent traversal on a fixed video frame

Table 3: Experiment results of CartPole dataset. The best results are shown in bold.

Mean Correlation Coefficient (MCC)
BetaVAE i-VAE TCL SlowVAE SKD TDRL NCTRL

57.54 60.14 65.07 63.16 73.24 85.26 96.06

Similar to Table 1 and 2, we compare our NCTRL with baseline methods. In addition, we also
compare with SKD [24], a state-of-the-art sequential disentangle representation learning method
without identifiability guarantee. In Table 3 and 4 we can see that compared with TDRL, our
NCTRL can recover the latent processes under unknown nonstationary distribution shifts with high
MCCs (>0.95) with highly accurate estimated transition matrix A and high quality inferred ct.
Specifically, by comparing the result of SKD, the MCC for SKD is better than a variety of baselines,
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Table 4: Supplementary experiment results of CartPole datasets on estimating domain indices ct and
transition matrix A in NCTRL, we run the experiments with five different random seeds and calculate
the average with standard derivation.

Unknown Nonstationary Metrics
Accuracy estimating ct MSE estimating A

79.23 ± 5.33 5.01 ×10−2 ± 1.23 ×10−2

however, we can see the distinction between well-disentangled models and identifiable models, only
the models with identifiability can find the ground truth latent variables with theoretical guarantee.

Video data – MoSeq Dataset We test NCTRL framework to analyze mouse behavior video data from
Wiltschko et al. [19], which represents the original application to clustering mouse behavior3, details
of this dataset are available in Appendix B.6. Since there are no ground truth independent components
in this particular real-world dataset, we analyze it by several visualizations to see if different domains
can be properly identified and if the patterns in the recovered independent components are consistent
with the recovered domain indices. We analyze the first video clip of mouse behavior data and
visualize the two phases we discovered and segmented in Fig 4. We can clearly see from Fig 4
that there are different phases with the upper one actively moving and the lower one inactive. The
recovered independent components showed a consistent pattern with the recovered phase or domain
indices as shown in Fig 4.

Active Inactive
Independent Components

Time [ms]

Inactive

Active

Figure 4: Result visualization of MoSeq dataset. (Active, Inactive) show two representative video
frames for the active and inactive phases and (Independent Components) visualize the discovered
independent components with corresponding phases tagged with different colors.

6 Related Work

Causal Discovery from Time Series Understanding the causal structure in time-series data is
pivotal in areas such as machine learning [1], econometrics [2], and neuroscience [3]. A bulk
of the research in this realm emphasizes determining the temporal causal links among observed
variables. The primary techniques employed are constraint-based methods [25], which use conditional
independence tests to ascertain causal structures, and score-based methods [26, 27], where scores are
utilized to oversee a search operation. Some researchers also proposed a combination of these two
methods [28, 29]. Additionally, Granger causality [30] and its nonlinear adaptations [31, 32] have
gained widespread acceptance in this context.

3Dataset can be accessed via https://dattalab.github.io/moseq2-website/index.html
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Nonlinear ICA for Time Series Recently, the significance of temporal structures and non-
stationarities has been recognized in achieving identifiability within nonlinear ICA. Time-contrastive
learning (TCL [9]) utilizes the independent sources principle, focusing on data segments’ variability.
On the other hand, Permutation-based contrastive (PCL [10]) offers a learning approach that dis-
tinguishes true independent sources from shuffled ones under the uniformly dependent assumption.
HMNLICA [14] integrates nonlinear ICA with an HMM to address non-stationarity without segment-
ing data manually. The i-VAE [12] approach employs VAEs to capture the actual joint distribution
between observed and auxiliary non-stationary domains, assuming an exponential families condi-
tional distribution. The recent advancements in nonlinear ICA for time series include LEAP [17],
(i-)CITRIS [33, 34], and TDRL [18]. While LEAP introduces a novel condition emphasizing non-
stationary noise, TDRL delves deeper into a non-parametric environment within a nonstationary
context. In contrast, CITRIS recommends utilizing intervention target data for pinpointing latent
causal aspects, avoiding certain constraints but necessitating active intervention access.

Sequential Disentanglement Majority of existing work about sequential disentanglement focuses
on architecture based on dynamical variational autoencoder (VAE) [35]. Early works [36, 37]
separate dynamic factors from static factors using probabilistic methods. Then auxiliary tasks with
self-supervisory signals [38] were introduced. C-DSVAE [39] utilized contrastive penalty terms with
data augmentation to introduce additional inductive biases. In R-WAE [40], Wasserstein distance
was introduced to replace KL divergence. To deal with video disentanglement [41, 42] explored
generative adversarial network (GAN) architectures and [43] introduced a recurrent model with
adversarial loss. FAVAE, [44] proposed a factorizing VAE and [45] proposed to learn hierarchical
features. Finally, SKD [24] introduced a spectral loss term that leads to structured Koopman matrices
and disentanglement.

7 Conclusion and Discussion

Conclusion. In this paper, we first established an identifiability theory for general sequential data
with nonstationary causally-related processes under unknown distribution shifts. Then we presented
NCTRL, a principled framework to recover the time-delayed latent causal variable identify their causal
relations from measured data, and decode high-quality domain indices under Markov assumption.
Experiment results on both synthetic datasets and real-world video datasets showed that our proposed
method can recover the latent causal variables and their causal relations purely from measured data
with the observation of auxiliary variables or domain indices.

Limitation. The basic limitation of this work is that the nonstationary domain indices are assumed to
follow a Markov chain. Also, this work highly relies on the latent processes to have no instantaneous
causal relations but only time-delayed influences. If the resolution of the time series is much lower,
then it is usually violated and one has to find a way to deal with instantaneous causal relations.
Extending our theories and framework to address the scenarios when more flexibility in the domain
indices transition is allowed (i.e. beyond discrete variables following a Markov chain) and to address
instantaneous dependency or instantaneous causal relations will be some of our future work.

Boarder Impacts. This work proposes a theoretical analysis and technical methods to learn the
causal representation from time-series data, which facilitate the construction of more transparent and
interpretable models to understand the causal effect in the real world. This could be beneficial in a
variety of sectors, including healthcare, finance, and technology. In contrast, misinterpretations of
causal relationships could also have significant negative implications in these fields, which must be
carefully done to avoid unfair or biased predictions.
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A Identifiability

Assume we observe n-dimensional time-series data at discrete time steps, X = {x1,x2, . . . ,xT },
where each xt is generated from time-delayed causally related hidden components zt ∈ Rn by the
invertible mixing function:

xt = g(zt). (1)
In addition to latent components zt, there is an extra hidden component ct which is a discrete variable
with cardinality | ct | = C, it follows first-order Markov process controlled by a C × C transition
matrix A, in which the i, j-th entry Ai,j is the probability to transit from state i to j.

c1, c2, . . . , ct ∼ Markov Chain(A) (2)

For i ∈ {1, . . . , n}, zit, as the i-th component of zt, is generated by (some) components of history
information zt−1, discrete nonstationary indicator ct, and noise ϵit.

zit = fi({zj,t−1 | zj,t−τ ∈ Pa(zit)}, ct, ϵit) with ϵit ∼ pϵi|ct (3)

where Pa(zit) is the set of latent factors that directly cause zit, which can be any subset of zHx =
{zt−1, zt−2, . . . , zt−L} up to history information maximum lag L. The components of zt are
mutually independent conditional on zHx and ct.

A.1 Identifiability of Nonstationary Hidden States

Theorem 1. (identifiability of the nonstationarity with Markov Assumptions) Suppose the observed
data is generated following the nonlinear ICA framework as defined in Eqs. (1), (2) and (3). And
Suppose the following assumptions (Markov Assumptions) hold:

i For the Markov process, the number of latent states, C, is known.

ii The transition matrix A is full rank.

Use µ1, . . . , µC ∈ Rn to denote nonparametric probability distributions of the C emission distribu-
tions µc = p(xt |xt−1, c). Then the parameters A and M = (µ1, . . . , µC) are identifiable given the
distribution, P(3)

A,M , of at least 4 consecutive observations xt,xt+1,xt+2,xt+3, up to label swapping
of the hidden states, that is:

If Ã is a C × C transition matrix, if π̃(c) is a stationary distribution of Ã with π̃(c) > 0 ∀c ∈
{1, . . . , C}, and if M̃ = (µ̃1, . . . , µ̃C) are C probability distributions on Rn that verify the equality
of the distribution functions P(3)

Ã,M̃
= P(3)

A,M , then there exists a permutation σ of the set {1, . . . , C}
such that for all k, l = 1, . . . , C we have Ãk,l = Aσ(k),σ(l) and µ̃k = µσ(k).

Proof. Suppose we have:
p̃(x1, . . . ,xT ) = p(x1, . . . ,xT ) (4)

where p(x1, . . . ,xT ) has transition matrix A and emission distributions (µ1, . . . , µC), similarly for
p̃(x1, . . . ,xT ).

We consider four consecutive observations x0,x1,x2,x3 and corresponding four discrete elements
c0, c1, c2, c3.

p(x1,x2,x3 |x0) =
∑

c1,c2,c3

p(c1)p(x1 |x0, c1) ·Ac1,c2p(x2 |x1, c2) ·Ac2,c3p(x3 |x2, c3)

=
∑
c1,c2

p(c1)Ac1,c2p(x1 |x0, c1) · p(x2 |x1, c2) ·

(∑
c3

Ac2,c3p(x3 |x2, c3)

)

=
∑
c2

(∑
c1

p(c1)Ac1,c2p(x1 |x0, c1)

)
· p(x2 |x1, c2) ·

(∑
c3

Ac2,c3p(x3 |x2, c3)

)

=
∑
c2

πc2

(∑
c1

πc1Ac1,c2

πc2

µc1

)
︸ ︷︷ ︸

µ̄c2

·µc2 ·

(∑
c3

Ac2,c3µc3

)
︸ ︷︷ ︸

µ̇c2

(5)
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where πci = p(ci). Since A has full rank and the probability measures µ1, . . . , µC are linearly
independent, the probability measures {µ̄c2 =

∑
c1

πc1
Ac1,c2

πc2
µc1 | c2 = 1, . . . , C} are linearly

independent, and the probability measures {µ̇c2 =
∑

c3
Ac2,c3µc3 | c2 = 1, . . . , C} are also linearly

independent. Thus, applying Theorem 9 of [46], there exists a permutation σ of {1, . . . , C} such that,
∀i ∈ {1, . . . , C}:

µ̃i = µσ(i)∑
j

Ãi,j µ̃j =
∑
j

Aσ(i),jµj

This gives easily ∀i ∈ {1, . . . , C}:∑
j

Ãi,jµσ(j) =
∑
j

Aσ(i),σ(j)µσ(j).

Since the conditional distributions µi are linearly independent, we can establish the equivalence
between Ã and A via permutation σ,

Ãj,i = Aσ(j),σ(i), (6)

then the theorem is proved.

For notational simplicity, and without loss of generality, we assume the components are ordered such
that c = σ(c). That leads us to the identifiability of the nonstationarity in the system i.e. up to label
swapping of the hidden states, the conditional emission distributions p(xt|xt−1, ct) and transition
matrix A are identifiable, hence providing us a bridge to further leverage the temporal independence
condition in the latent space to establish the identifiability result for demixing function or in other
words the latent variables zt.

A.2 Identifiability of Latent Causal Processes

To incorporate nonlinear ICA into the Markov Assumption we define the emission distribution
p(xt |xt−1, c) as a deep latent variable model. First, the latent independent component variables
zt ∈ Rn are generated from a factorial prior, given the hidden state ct and previous zt−1, as

p(zt | zt−1, ct) =

n∏
k=1

p(zkt | zt−1, ct). (7)

Second, the observed data xt ∈ Rn is generated by a nonlinear mixing function as in Eq. (1) which
is assumed to be bijective with inverse given by zt = g−1(xt). Let ηkt(ct) ≜ log p(zkt|zt−1, ct),
and assume that ηkt(ct) is twice differentiable in zkt and is differentiable in zl,t−1, l = 1, 2, ..., n.
Note that the parents of zkt may be only ct and a subset of zt−1; if zl,t−1 is not a parent of zkt, then

∂ηk

∂zl,t−1
= 0.

Theorem 2. Suppose there exists an invertible function ĝ−1, which is the estimated demixing function
that maps xt to ẑt, i.e.,

ẑt = ĝ−1(xt) (8)
such that the components of ẑt are mutually independent conditional on ẑt−1. Let

vk,t(c) ≜
( ∂2ηkt(c)

∂zk,t∂z1,t−1
,

∂2ηkt(c)

∂zk,t∂z2,t−1
, ...,

∂2ηkt(c)

∂zk,t∂zn,t−1

)⊺
,

v̊k,t(c) ≜
( ∂3ηkt(c)

∂z2k,t∂z1,t−1
,

∂3ηkt(c)

∂z2k,t∂z2,t−1
, ...,

∂3ηkt(c)

∂z2k,t∂zn,t−1

)⊺
.

(9)

And

skt ≜
(
vkt(1)

⊺, ...,vkt(C)⊺,
∂2ηkt(2)

∂z2kt
− ∂2ηkt(1)

∂z2kt
, ...,

∂2ηkt(C)

∂z2kt
− ∂2ηkt(C − 1)

∂z2kt

)⊺
,

s̊kt ≜
(
v̊kt(1)

⊺, ..., v̊kt(C)⊺,
∂ηkt(2)

∂zkt
− ∂ηkt(1)

∂zkt
, ...,

∂ηkt(C)

∂zkt
− ∂ηkt(C − 1)

∂zkt

)⊺
.

(10)

If for each value of zt, s1t, s̊1t,v2t, s̊2t, ..., snt, s̊nt, as 2n function vectors sk,t and s̊k,t, with k =
1, 2, ..., n, are linearly independent, then ẑt must be an invertible, component-wise transformation of
a permuted version of zt.
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Proof. Combining (1) and (6) gives zt = (g−1 ◦ ĝ)(ẑt) = h(ẑt), where h ≜ g−1 ◦ ĝ. Since both g
and ĝ are invertible, h is invertible. Let Ht be the Jacobian matrix of the transformation h(ẑt), and
denote by Hkit its (k, i)th entry.

First, it is straightforward to see that if the components of ẑt are mutually independent conditional
on previous ẑt−1 and current ct, then for any i ̸= j, ẑit and ẑjt are conditionally independent given
ẑt−1 ∪ (ẑt \ {ẑit, ẑjt}) ∪ {ct}. Mutual independence of the components of ẑt conditional on ẑt−1

implies that ẑit is independent from ẑt \ {ẑit, ẑjt} conditional on ẑt−1 and ct, i.e.,

p(ẑit | ẑt−1, ct) = p(ẑit | ẑt−1 ∪ (ẑt \ {ẑit, ẑjt}), ct).

At the same time, it also implies ẑit is independent from ẑt \ {ẑit} conditional on ẑt−1 and ct, i.e.,

p(ẑit | ẑt−1, ct) = p(ẑit | ẑt−1 ∪ (ẑt \ {ẑit}), ct).

Combining the above two equations gives

p(ẑit | ẑt−1 ∪ (ẑt \ {ẑit}), ct) = p(ẑit | ẑt−1 ∪ (ẑt \ {ẑit, ẑjt}), ct),

i.e., for i ̸= j, ẑit and ẑjt are conditionally independent given ẑt−1 ∪ (ẑt \ {ẑit, ẑjt}) ∪ {ct}.

We then make use of the fact that if ẑit and ẑjt are conditionally independent given ẑt−1 ∪ (ẑt \
{ẑit, ẑjt}) ∪ {ct}, then

∂2 log p(ẑt, ẑt−1, ct)

∂ẑit∂ẑjt
= 0,

assuming the cross second-order derivative exists [47]. Since p(ẑt, ẑt−1, ct) =
p(ẑt | ẑt−1, ct)p(ẑt−1, ct) while p(ẑt−1, ct) does not involve ẑit or ẑjt, the above equality is
equivalent to

∂2 log p(ẑt | ẑt−1, ct)

∂ẑit∂ẑjt
= 0. (11)

Then for any ct, the Jacobian matrix of the mapping from (xt−1, ẑt) to (xt−1, zt) is
[
I 0
∗ Ht

]
, where

∗ stands for a matrix, and the (absolute value of the) determinant of this Jacobian matrix is |Ht|.
Therefore p(ẑt,xt−1|ct) = p(zt,xt−1|ct) · |Ht|. Dividing both sides of this equation by p(xt−1|ct)
gives

p(ẑt |xt−1, ct) = p(zt |xt−1, ct) · |Ht|. (12)

Since p(zt | zt−1, ct) = p(zt |g(zt−1), ct) = p(zt |xt−1, ct) and similarly p(ẑt | ẑt−1, ct) =
p(ẑt |xt−1, ct), Eq. 12 tells us

log p(ẑt | ẑt−1, ct) = log p(zt | zt−1, ct) + log |Ht| =
n∑

k=1

ηkt(ct) + log |Ht|. (13)

Its partial derivative w.r.t. ẑit is

∂ log p(ẑt | ẑt−1, ct)

∂ẑit
=

n∑
k=1

∂ηkt(ct)

∂zkt
· ∂zkt
∂ẑit

− ∂ log |Ht|
∂ẑit

=

n∑
k=1

∂ηkt(ct)

∂zkt
·Hkit −

∂ log |Ht|
∂ẑit

.

Its second-order cross-derivative is

∂2 log p(ẑt | ẑt−1, ct)

∂ẑit∂ẑjt
=

n∑
k=1

(∂2ηkt(ct)

∂z2kt
·HkitHkjt +

∂ηkt(ct)

∂zkt
· ∂Hkit

∂ẑjt

)
− ∂2 log |Ht|

∂ẑit∂ẑjt
. (14)

The above quantity is always 0 according to Eq. (11). Therefore, for each l = 1, 2, ..., n and each
value zl,t−1, its partial derivative w.r.t. zl,t−1 is always 0. That is,

∂3 log p(ẑt | ẑt−1, ct)

∂ẑit∂ẑjt∂zl,t−1
=

n∑
k=1

( ∂3ηkt(ct)

∂z2kt∂zl,t−1
·HkitHkjt +

∂2ηkt(ct)

∂zkt∂zl,t−1
· ∂Hkit

∂ẑjt

)
≡ 0, (15)
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where we have made use of the fact that entries of Ht do not depend on zl,t−1. Using different values
r for ct in Eq. (14) take the difference of this equation across them gives

∂2 log p(ẑt | ẑt−1; r + 1)

∂ẑit∂ẑjt
− ∂2 log p(ẑt | ẑt−1; r)

∂ẑit∂ẑjt

=

n∑
k=1

[(∂2ηkt(r + 1)

∂z2kt
− ∂2ηkt(r)

∂z2kt

)
·HkitHkjt +

(∂ηkt(r + 1)

∂zkt
− ∂ηkt(r)

∂zkt

)
· ∂Hkit

∂ẑjt

]
≡ 0.

(16)

If for any value of zt, s1t, s̊1t, s2t, s̊2t, ..., snt, s̊nt are linearly independent, to make the above
equation hold true, one has to set HkitHkjt = 0 or i ̸= j. That is, in each row of Ht there is only one
non-zero entry. Since h is invertible, then zt must be an invertible, component-wise transformation
of a permuted version of ẑt.

So far, the identifiability result has been established without observing the nonstationarity indicators
such as domain indices.

A.3 Discussion on Assumptions in Theorem 2

This condition was initially introduced in GCL [11], namely, “sufficient variability”, to extend the
modulated exponential families [9] to general modulated distributions. Essentially, the condition says
that the nonstationary domains c must have a sufficiently complex and diverse effect on the transition
distributions. In other words, if the underlying distributions are composed of relatively many domains
of data, the condition generally holds true. Loosely speaking, the sufficient variability holds if the
modulation of by c on the conditional distribution q(zit|zHx, c) is not too simple in the following
sense:

1. Higher order of k (k > 1) is required. If k = 1, the sufficient variability cannot hold;
2. The modulation impacts λij by u must be linearly independent across domains c. The

sufficient statistics functions qij cannot be all linear, i.e., we require higher-order statistics.

Further details of this example can be found in Appendix B of [11] and Appendix S1.4.1 of [18]. In
summary, we need the domains denoted by c to have diverse (i.e., distinct influences) and complex
impacts on the underlying data generation process.

B Implementation Details

B.1 Reproducibility

All experiments are done in a GPU workstation with CPU: Intel i7-13700K, GPU: NVIDIA RTX 4090,
Memory: 128 GB. The code can be found via https://github.com/xiangchensong/nctrl.

B.2 Prior Likelihood Derivation

Let us start with an illustrative example of stationary latent causal processes consisting of two time-
delayed latent variables, i.e., zt = [z1,t, z2,t] with maximum time lag L = 1, i.e., zi,t = fi(zt−1, ϵi,t)
with mutually independent noises. Let us write this latent process as a transformation map f (note
that we overload the notation f for transition functions and for the transformation map):

z1,t−1

z2,t−1

z1,t
z2,t

 = f


z1,t−1

z2,t−1

ϵ1,t
ϵ2,t


 . (17)

By applying the change of variables formula to the map f , we can evaluate the joint distribution of
the latent variables p(z1,t−1, z2,t−1, z1,t, z2,t) as:

p(z1,t−1, z2,t−1, z1,t, z2,t) = p(z1,t−1, z2,t−1, ϵ1,t, ϵ2,t)/ |detJf | , (18)
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where Jf is the Jacobian matrix of the map f , which is naturally a low-triangular matrix:

Jf =


1 0 0 0
0 1 0 0

∂z1,t
∂z1,t−1

∂z1,t
∂z2,t−1

∂z1,t
∂ϵ1,t

0
∂z2,t

∂z1,t−1

∂z2,t
∂z2,t−1

0
∂z2,t
∂ϵ2,t

 .

Given that this Jacobian is triangular, we can efficiently compute its determinant as
∏

i
∂zi,t
∂ϵi,t

. Fur-
thermore, because the noise terms are mutually independent, and hence ϵi,t ⊥ ϵj,t for j ̸= i and
ϵt ⊥ zt−1, we can write the RHS of Eq. 18 as:

p(z1,t−1, z2,t−1, z1,t, z2,t) = p(z1,t−1, z2,t−1)× p(ϵ1,t, ϵ2,t)/ |detJf | (because ϵt ⊥ zt−1)

= p(z1,t−1, z2,t−1)×
∏
i

p(ϵi,t)/ |detJf | (because ϵ1,t ⊥ ϵ2,t)

(19)

Finally, by canceling out the marginals of the lagged latent variables p(z1,t−1, z2,t−1) on both sides,
we can evaluate the transition prior likelihood as:

p(z1,t, z2,t|z1,t−1, z2,t−1) =
∏
i

p(ϵi,t)/ |detJf | =
∏
i

p(ϵi,t)×
∣∣detJ−1

f

∣∣ . (20)

Now we generalize this example and derive the prior likelihood below.

Let {f−1
i }i=1,2,3... be a set of learned inverse transition functions that take the estimated latent causal

variables, and output the noise terms, i.e., ϵ̂i,t = f−1
i (ẑi,t, {ẑt−τ , ct}).

Design transformation A → B with low-triangular Jacobian as follows:

[
ẑt−L, . . . , ẑt−1, ẑt

]⊤︸ ︷︷ ︸
A

mapped to
[
ẑt−L, . . . , ẑt−1, ϵ̂i,t

]⊤︸ ︷︷ ︸
B

, with JA→B =

(InL 0

∗ diag
(

∂f−1
i,j

∂ẑjt

))
.

(21)

Similar to Eq. 20, we can obtain the joint distribution of the estimated dynamics subspace as:

log p(A) = log p (ẑt−L, . . . , ẑt−1) +

n∑
j=1

log p(ϵ̂i,t)︸ ︷︷ ︸
Because of mutually independent noise assumption

+ log (|det (JA→B)|) . (22)

log p
(
ẑt|{ẑt−τ}Lτ=1, ct

)
=

n∑
j=1

log p(ϵ̂i,t|ct) +
n∑

i=j

log
∣∣∣∂f−1

i

∂ẑi,t

∣∣∣ (23)

B.3 Derivation of ELBO

Then the second part is to maximize the Evidence Lower BOund (ELBO) for the VAE framework,
which can be written as:
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ELBO ≜ log pdata(X)−DKL(qϕ(Z|X)||pdata(Z|X))

=EZ∼qϕ(Z|X) log pdata(X|Z)−DKL(qϕ(Z|X)||pdata(Z|X))

=EZ∼qϕ(Z|X) log pdata(X|Z)− EZ∼qϕ(Z|X) [log qϕ(Z|X)− log pdata(Z)]

=EZ∼qϕ(Z|X)

log pdata(X|Z) + log pdata(Z)︸ ︷︷ ︸
Ec[

∑T
t=1 log p(zt|zt−1,ct)]

− log qϕ(Z|X)



=Ezt


T∑

t=1

log pdata(xt|zt)︸ ︷︷ ︸
−LRecon

+Ec

[
T∑

t=1

log pdata(zt|zHx, ct)

]
−

T∑
t=1

log qϕ(zt|xt)︸ ︷︷ ︸
−LKLD



(24)

B.4 Synthetic Dataset Generation

We generated two synthetic datasets (A and B) with different nonlinear mixing functions. In this
section we will introduce the detailed implementation of the generation. The generation can be split
into steps (1) sample ct from a Markov chain, (2) generate zt with different transition functions fct
with respect to ct, and (3) generate observation xt via mixing function g.

B.4.1 Sample ct from Markov chain

We first randomly initialized a Markov chain with transition matrix A and sample 20,000 steps.

B.4.2 Generation of latent variables zt

We first randomly initialized |C| = 5 different transition functions {f1, f2, . . . , f|C|} with different
MLPs, and generate zt = fct(zHx). The dimensions are set to 8 for fair comparison.

B.4.3 Generation of observations xt

The difference between datasets A and B is the mixing function. We use a two-layer randomly
initialized MLP for dataset A and a three-layer MLP for dataset B. For each linear layer in the MLP,
we use condition number of the weight matrix to filter out ones that are not “invertible”.

B.5 Modified CartPole Dataset Generation

Similar to the synthetic datasets, we also sample from a Markov chain and get ct. For the modified
CartPole, we initialized 5 different environments which have different combinations of hyperparame-
ters such as gravity, pole mass, etc. A detailed comparison is listed in Table 1.

Table 1: Different configs for different Modified CartPole environments.
Environment ID Gravity Pole Mass Noise Scale

0 9.8 0.2 0.01
1 24.79 0.5 0.01
2 3.7 1.0 0.01
3 11.15 1.5 0.01
4 0.62 2.0 0.01

At each time step t the environment will load the corresponding hyperparameters for given ct and
update the states zt according to the configuration given ct. The nonlinear mixing function from
states to observations xt is fixed by a rendering method in the gym package.
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B.6 MoSeq Dataset

In the MoSeq dataset, the observations xt are taken to be the first 10 principal components of depth
camera video data of mice exploring an open field. The dataset consists of 20-minute depth camera
recordings of 24 mice. In preprocessing, the videos are cropped and centered around the mouse
centroid and then filtered to remove recording artifacts. Finally, the preprocessed video is projected
onto the top principal components to obtain a 10-dimensional time series.

B.7 Mean Correlation Coefficient

MCC is a standard metric for evaluating the recovery of latent factors in ICA literature. MCC first
calculates the absolute values of the correlation coefficient between every ground-truth factor against
every estimated latent variable. Pearson correlation coefficients or Spearman’s rank correlation
coefficients can be used depending on whether componentwise invertible nonlinearities exist in the
recovered factors. The possible permutation is adjusted by solving a linear sum assignment problem
in polynomial time on the computed correlation matrix.

B.8 Network Architecture

We summarize our network architecture below and describe it in detail in Table 2 and Table 3.

Table 2: Architecture details. BS: batch size, T: length of time series, i_dim: input dimension, z_dim:
latent dimension, LeakyReLU: Leaky Rectified Linear Unit.

Configuration Description Output

ARHMM Autoregressive HMM for Synthetic Data
Input: x1:T Observed time series BS × T × i_dim
Emission Module Compute µzt+1

, σzt+1
BS × T × 2 × z_dim

MLP-Encoder Encoder for Synthetic Data
Input: x1:T Observed time series BS × T × i_dim
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense Temporal embeddings BS × T × z_dim

MLP-Decoder Decoder for Synthetic Data
Input: ẑ1:T Sampled latent variables BS × T × z_dim
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense i_dim neurons, reconstructed x̂1:T BS × T × i_dim

Factorized Inference Network Bidirectional Inference Network
Input Sequential embeddings BS × T × z_dim
Bottleneck Compute mean and variance of posterior µ1:T , σ1:T

Reparameterization Sequential sampling ẑ1:T

Prior Network Nonlinear Transition Prior Network
Input Sampled latent variable sequence ẑ1:T BS × T × z_dim
InverseTransition Compute estimated residuals ϵ̂it BS × T × z_dim
JacobianCompute Compute log (|det (J)|) BS
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Table 3: Architecture details on CNN encoder and decoder. BS: batch size, T: length of time series,
h_dim: hidden dimension, z_dim: latent dimension, F: number of filters, (Leaky)ReLU: (Leaky)
Rectified Linear Unit.

Configuration Description Output

CNN-Encoder Feature Extractor
Input: x1:T RGB video frames BS × T × 3 × 64 × 64
Conv2D F: 32, BatchNorm2D, LeakyReLU BS × T × 32 × 64 × 64
Conv2D F: 32, BatchNorm2D, LeakyReLU BS × T × 32 × 32 × 32
Conv2D F: 32, BatchNorm2D, LeakyReLU BS × T × 32 × 16 × 16
Conv2D F: 64, BatchNorm2D, LeakyReLU BS × T × 64 × 8 × 8
Conv2D F: 64, BatchNorm2D, LeakyReLU BS × T × 64 × 4 × 4
Conv2D F: 128, BatchNorm2D, LeakyReLU BS × T × 128 × 1 × 1
Dense F: 2 * z_dim = dimension of hidden embedding BS × T × 2 * z_dim

CNN-Decoder Video Reconstruction
Input: z1:T Sampled latent variable sequence BS × T × z_dim
Dense F: 128 , LeakyReLU BS × T × 128 × 1 × 1
ConvTranspose2D F: 64, BatchNorm2D, LeakyReLU BS × T × 64 × 4 × 4
ConvTranspose2D F: 64, BatchNorm2D, LeakyReLU BS × T × 64 × 8 × 8
ConvTranspose2D F: 32, BatchNorm2D, LeakyReLU BS × T × 32 × 16 × 16
ConvTranspose2D F: 32, BatchNorm2D, LeakyReLU BS × T × 32 × 32 × 32
ConvTranspose2D F: 32, BatchNorm2D, LeakyReLU BS × T × 32 × 64 × 64
ConvTranspose2D F: 3, estimated scene x̂1:T BS × T × 3 × 64 × 64
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