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Abstract
We propose a novel local learning rule for spiking
neural networks in which spike propagation times
undergo activity-dependent plasticity. Our plastic-
ity rule aligns pre-synaptic spike times to produce
a stronger and more rapid response. Inputs are
encoded by latency coding and outputs decoded
by matching similar patterns of output spiking ac-
tivity. We demonstrate the use of this method in a
three-layer feed-foward network with inputs from
a database of handwritten digits. Networks con-
sistently showed improved classification accuracy
after training, and training with this method also
allowed networks to generalize to an input class
unseen during training. Our proposed method
takes advantage of the ability of spiking neurons
to support many different time-locked sequences
of spikes, each of which can be activated by differ-
ent input activations. The proof-of-concept shown
here demonstrates the great potential for local de-
lay learning to expand the memory capacity and
generalizability of spiking neural networks.

1. Introduction
The brain has a great capacity for learning and memory, and
the mechanisms that allow it to reliably and flexibly store
information can provide new foundational mechanisms for
learning in artificial networks. Perhaps the most widely
discussed mechanism associated with learning is Hebbian
plasticity (Hebb, 1949; Markram et al., 2011). This theory
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on neural learning states that when one neuron causes re-
peated excitation of another, the efficiency with which the
first cell excites the second is increased.

The basic idea underlying Hebbian mechanisms is the
brain’s ability to change: local activity changes how neu-
rons in a network communicate with each other, in turn
affecting the overall behavior. In Hebbian plasticity, these
changes are to the strength of connections between neurons.
However, experimental observations (Bucher & Goaillard,
2011; Grossman et al., 1979; Hatt & Smith, 1976; Lüscher
et al., 1994) have demonstrated that local activity can affect
not only the strength of connections but also the speed with
which action potentials travel between neurons. This alter-
ation in transmission delays is likely an inherent part of how
the brain learns and stores memories, as encoding informa-
tion in time-locked sequences expands the computational
capacity of a network (Izhikevich, 2006).

Local plasticity rules, such as spike-timing-dependent plas-
ticity (STDP) (Markram et al., 1997), that change synaptic
weights in an activity-dependent manner are of great interest
in the context of unsupervised deep learning in deep spiking
neural networks (SNNs) (Tavanaei et al., 2019). But why
should plasticity in SNNs be confined to synaptic weights,
when we are aware of a much richer repertoire of plastic
changes that occur in the brain (Gittis & du Lac, 2006;
Zhang & Linden, 2003)? In particular, there is evidence that
neurons may change the speed of spike transmission in an
activity-dependent manner (Lin & Faber, 2002; Debanne,
2004). This type of delay plasticity would allow networks
to encode information and learn using spike times, and a
similar type of learning could be translated to neuromorphic
event-based hardware (Taherkhani et al., 2020; Grimaldi
et al., 2022). Delay plasticity in neural networks has been
explored, but the majority of studies have used supervised
methods (Schrauwen & van Campenhout, 2004; Wang et al.,
2019; Taherkhani et al., 2015; Johnston et al., 2006), with
one noteworthy study using an unsupervised method to train
only the readout layer of a reservoir (Paugam-Moisy et al.,
2008). Supervised methods come with many drawbacks,
including high requirements for memory and less flexibility
for real-time applications. The development of a local de-
lay learning rule that uses time-based coding would allow
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the advancement of more robust and flexible neuromorphic
computing devices.

Here, we present a local activity-dependent delay plastic-
ity algorithm for unsupervised learning with spike times
(Farner, 2022). In this learning rule, the timing of pre- and
post-synaptic spikes influences the delay of the connection
rather than its weight, causing any subsequent spike trans-
mission between a pair of neurons to occur at a different
speed. The mechanism of our method is to better align all
pre-synaptic spikes causally related to a post-synaptic spike,
with the purpose of producing a faster and stronger response
in the post-synaptic neuron. We applied our developed delay
learning method to the classification of handwritten digits
(LeCun & Cortes, 2005) in a simple proof-of-concept and
demonstrated that training delays in a feedforward SNN is
an effective method for information processing and clas-
sification. Our networks consistently outperformed their
untrained counterparts and were able to generalize their
training to a digit class unseen during training.

2. Delay learning in spiking neural networks
This section presents the activity-dependent delay plasticity
method developed in this study and the encoding and decod-
ing approaches of latency coding (LC) and polychronous
group pattern (PGP) clustering used in our delay learning
framework1. The goal of our proposed learning method is
to consolidate the network activity associated with similar
inputs that constitute a distinct input class, so that the net-
work will produce similar patterns of activity to be read
out. With this aim in mind, the delays of pre-synaptic neu-
rons that together produce activity in a post-synaptic neuron
are adjusted to better align the arrival of their spikes at the
post-synaptic neuron. Our framework was developed using
Izhikevich regular spiking (RS) neurons.

Analogous to how STDP potentiates connections between
causally related neurons to enhance the post-synaptic re-
sponse, our delay plasticity mechanism increases the post-
synaptic response by better aligning causally related pre-
synaptic spikes. This alignment process is illustrated in
Fig. 1(a) for the case of four pre-synaptic neurons connected
to one post-synaptic neuron. As shown in this figure, the pre-
synaptic spikes (purple lines) that arrive (green lines) before
the post-synaptic spike (blue line) are pushed towards their
average arrival time (yellow line). The delay di,j between
pre-synaptic neuron i and post-synaptic neuron j changes
according to the following equation:

∆di,j =− 3 tanh

(
ti + di,j − t̄pre

3

)
,

0 ≤ ∆tlag < 10 ms,

(1)

1Code available at https://github.com/
DelayLearninginSNN/DelayLearninginSNN.

Figure 1. Schematics of algorithms for delay learning and encod-
ing/decoding. (a) Delay learning algorithm. Purple vertical lines
indicate presynaptic spike initiation times, green lines indicate
presynaptic spike arrival times according to their delays di, and the
blue line indicates the post-synaptic spike time. The learning mech-
anism works by pushing pre-synaptic spikes that arrive before the
post-synaptic spike towards their average arrival time, indicated
by the yellow line. (b) Encoding/decoding. Left: Input values are
encoded as spike latencies. Right: PGPs are defined as sets of
sequential activity triggered by inputs, and they are clustered in a
hierarchical manner by checking the ratio of matching spikes with
other PGPs.

where ti is the spike time of neuron i, t̄pre is the average pre-
synaptic arrival time across all neurons with spikes arriving
within 10 ms before the post-synaptic spike, and ∆tlag =
tj − ti + di,j is the time lag between when the pre-synaptic
spike arrives at the post-synaptic neuron and when the post-
synaptic neuron fires. The time window of 10 ms was
selected because this is the window in which a pre-synaptic
spike elicits a post-synaptic response.

The encoding and decoding approaches are illustrated in
Fig. 1(b). In LC, inputs are encoded in the relative spike
timing of the input neurons. That is, input channels with
a value of 0 will fire first, followed by other channels in
order of increasing input value. Through experimentation,
we determined that rescaling the dynamic range to relative
latencies of [0, 40 ms] produced good results.

Our decoding approach of PGP clustering is based on the
concept of polychronization, introduced by Izhikevich as
the occurrence of “reproducible time-locked but not syn-
chronous firing patterns” (Izhikevich, 2006). Thus, a PGP
is one such time-locked pattern in the output layers of a net-
work, consistently produced in response to the same input.
Because different inputs from the same class do not activate
precisely the same input neurons, we also introduced an
unsupervised method of clustering PGPs into output classes.
A given PGP is described as a nested set in our framework.
Each neuron that fires in a given layer is appended to the
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Table 1. Network architecture and experimental parameters
Layer Number Connection Digits Train Test PGP match
size of layers probability Weight (unseen) instances instances threshold

100 3 0.1 6 0, 1, (2) 20 25 80%, 90%

corresponding level of the set. Presynaptic spikes from
an earlier layer are connected to postsynaptic spikes they
participate in eliciting. The resulting PGP describes how
activity flows through the network, retaining the ordinal
relationships of the spikes without explicitly including time.

We cluster these output PGPs using hierarchical clustering.
First, a pair of PGPs is said to belong to the same cluster
if the number of intersecting elements in the set is greater
than 95% of the mean number of spikes in the two PGPs.
Each cluster obtained by this pairwise comparison is then de-
scribed by the pattern averaged over all PGPs in the cluster.
This is repeated dropping the matching threshold by 5% un-
til the target threshold θ is reached. In our proof-of-concept,
we used θ = 80% and 90%.

3. Proof-of-concept: Classification of
handwritten digits

To demonstrate the utility of our proposed delay learning
method, we applied it to the classification of handwritten
digits (LeCun & Cortes, 2005). This dataset consists of
images of 28× 28 pixels; we scaled these images down to a
size of 10× 10 and assigned an input neuron to each pixel.
The details of our experimental setup are given in Table 1.
We used feedforward networks with three layers, including
the input layer, and fixed homogeneous connection weights.

In each iteration of the experiment, a feedforward network
was generated with connectivity between layers according
to the connection probability, and each connection was as-
signed an initial delay randomly drawn from the set of inte-
gers between 0 and 40 ms. We then provided inputs from
the selected digit classes to this untrained network with lo-
cal plasticity switched off to give a performance baseline
for random delays. In the training phase, different inputs
of the same digit classes were fed into the network with
local delay plasticity switched on. Following training, we
again switched off local plasticity and provided the same
set of inputs as given in the baseline test phase to assess the
performance of the trained network. One digit class was
selected as an “unseen” class, i.e., a class presented during
testing but not training, to evaluate the network’s ability to
generalize.

Fig. 2 shows the accuracy before and after training, calcu-
lated as the ratio of the count of the most common PGP
class to the total presented inputs. In nearly all cases where
the network could separate the digit classes, the trained

Figure 2. Accuracy of classifying handwritten digits before and
after training using delay learning. (a) Two training digit classes
(0,1), N = 500 networks. (b) One unseen digit class (2), N = 100
networks. Results are plotted with jitter for the sake of visualiza-
tion. Histograms show the accuracy distribution after training.
Accuracy of 0 indicates non-separable classes.

network performed better than the corresponding untrained
network; however, some networks were unable to separate
the classes (2.4% and 45% of networks for PGP thresholds
θ = 90% and 80%, respectively; see Fig. 2(a)). Networks
were also able to generalize their learning to a digit class
unseen during training (Fig. 2(b)). Here, the accuracy re-
mained low for the more stringent θ = 90% but reached up
to 64% for θ = 80% (mean accuracy 32% in 38 networks
able to separate the unseen class). Flexibility with the PGP
threshold can thus allow networks to generalize its training
to unseen classes while maintaining good performance on
trained classes.

Examples of the activity in the output layers before and
after training are shown in Fig. 3, with correct trials colored
different shades of blue according to trial number and incor-
rect trials colored orange (for a PGP matching threshold of
θ = 80%). The neurons are ordered according to their mean
spike time across all trials with inputs in digit class 0; note
that the top and bottom rows have different neuron order.
These raster plots demonstrate the way the delay learning
pushes the network to produce recognizably similar patterns
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Figure 3. Raster plots of activity in layers 2 and 3 (neurons 1–100 and 101–200, respectively) before and after training for an example
network. Digit classes 0 and 1 were used for training, and 2 is an unseen third class presented only during testing. Neurons are sorted
according to the mean spike time for all trials in digit class 0. Colors represent whether the class was correctly or incorrectly identified,
for a PGP matching threshold of θ = 80%, with the blue color scale for the correct label showing different trials. Accuracies at PGP
thresholds of 80% and 90% are reported in the lower right corner of each plot.

(PGPs) when presented with inputs from the same class,
as evidenced by the greater overlap of activity patterns af-
ter training. Prior to training, the network activity is less
structured overall and sparser in the final layer (neurons
101–200), whereas after training, the final layer is more ac-
tive, and consistent spiking patterns can be observed across
many inputs from the same class. In particular, inputs in
digit class 1 produce very similar patterns, with very few
spikes deviating from the main pattern.

Although our method yields networks with fair classification
performance, the spiking patterns we show here indicate
one drawback that will be addressed in future work: the
representations of each digit class are very similar, which
can cause erroneous class assignment. This may be solved
by introducing competition in the network to encourage
more diverse representations and thus greater separability
among output patterns.

4. Discussion
Neural networks with carefully designed spike time delays
can support many time-locked patterns of activity, expand-
ing the coding capacity when compared with traditional rate
models (Izhikevich, 2006). Delay learning enables such
polychronization in populations of spiking neurons, and our
results show that we can take advantage of this richness of
activity to train networks that can generalize their training to

new inputs. Our results demonstrate that feed-forward SNNs
trained with our proposed local delay plasticity rule produce
similar activity patterns in their output layers that can be
well classified in some networks with a strict PGP matching
threshold of 90%. Furthermore, lowering the threshold to
80% yielded some networks able to generalize their training
to novel inputs unseen during the training period.

Our proof-of-concept shows the great potential for this local
delay learning method; even with only a short training pe-
riod of 20 digit presentations, PGPs emerge in the network
activity that allow for improved classification accuracy. As
shown in Fig. 2(a), the majority of the 500 networks showed
improved accuracy after training, particularly in the case of
θ = 90%.

What this increased accuracy entails is illustrated in the
example raster plots in Fig. 3. Our delay learning method
encourages reproducible time-locked sequences of activity
to propagate through the network, which leads to earlier and
stronger activation in the final layer and more consistent
spike timing across trials. This has two effects that improve
the classification accuracy. First, the reproducibility means
that the output PGPs match each other more closely, mak-
ing it easier for our clustering algorithm to identify similar
patterns. Second, the enhanced activation of the final layer
supports a richer repertoire of activity, meaning a greater
number of representations can be supported.
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This second point is what endows the network with the
ability to generalize. Crucially, our output decoding method
is not constrained in the number of clusters it yields. This
means that the network is not confined to identifying only
the input classes on which it is trained. With our local delay
plasticity algorithm encouraging stronger responses in later
layers, we hypothesize that the trained network is able to
support a range of activity patterns that extends beyond those
produced in response to the training inputs. The network
may thus support representations of untrained input classes
that our output clustering algorithm can recognize as distinct
from those of the training classes.

Although these results are promising, there are some lim-
itations to our current approach. Fig. 2 shows that not all
networks perform well after training. In most of these cases,
the poor performance is largely due to non-separability of
input classes, frequently accompanied by a fairly high ac-
curacy prior to training (see Fig. 2(a) with threshold 80%).
These networks are likely being over-trained and producing
a homogeneous PGP that represents multiple input classes;
this is further evidenced by the similarity of the representa-
tions evident even in the relatively high-performing network
shown in Fig. 3. To counteract this and improve separability,
it would be beneficial to introduce a mechanism to produce
stimulus-specific competition among the neurons in the pop-
ulation; this would make the resultant representations of
each digit class sparser and avoid the close similarity evident
in Fig. 3. Such stimulus-specific competition could be intro-
duced by, for example, lateral inhibition in early layers (?).
This would encourage stimulus specificity among neurons
in the same layer and give preference to neurons that fire
earlier in response to a given input, leading to sparser and
more distinct representations of the different input classes.

In future work, plastic weights and diverse neuron types
can be combined with our delay learning approach to ex-
pand the computational capacity and enable mixed learning
strategies. Our delay learning approach does not yield ac-
curacies comparable with state-of-the-art weight training
methods; however, training with delays in combination with
conventional weight training has been shown to improve
efficiency and accuracy (Zhang & Linden, 2003). As such,
our future work will similarly combine weight and delay
training as a means to evaluate how delay learning can im-
prove conventional weight-based approaches, rather than
act as a substitute for weight training.

We also expect that approach to delay learning will prove
useful in the training of neuromorphic event-based hardware
(Grimaldi et al., 2022). Although SNNs are computationally
demanding to implement in conventional hardware, novel
unconventional hardwares can enable a more energetically
efficient implementation, and as such, compatible training
algorithms will be needed for these new computational sys-

tems. Using event-based computing in this way is expected
to be particularly beneficial in time-based tasks, such as
forecasting, and we hope to test our delay learning method
on such tasks in the future.
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