
Under review as a conference paper at ICLR 2024

PROXIMAL CURRICULUM WITH TASK CORRELATIONS
FOR DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Curriculum design for reinforcement learning (RL) can speed up an agent’s
learning process and help it learn to perform well on complex tasks. However,
existing techniques typically require domain-specific hyperparameter tuning,
involve expensive optimization procedures for task selection, or are suitable only
for specific learning objectives. In this work, we consider curriculum design in
contextual multi-task settings where the agent’s final performance is measured
w.r.t. a target distribution over complex tasks. We base our curriculum design on
the Zone of Proximal Development concept, which has proven to be effective in
accelerating the learning process of RL agents for uniform distribution over all
tasks. We propose a novel curriculum, ProxCoRL, that effectively balances the
need for selecting tasks that are not too difficult for the agent while progressing
the agent’s learning toward the target distribution via leveraging task correlations.
We theoretically justify the task selection strategy of ProxCoRL by analyzing
a simple learning setting with REINFORCE learner model. Our experimental
results across various domains with challenging target task distributions affirm
the effectiveness of our curriculum strategy over state-of-the-art baselines in
accelerating the training process of deep RL agents.

1 INTRODUCTION

Deep reinforcement learning (RL) has shown remarkable success in various fields such as games,
continuous control, and robotics, as evidenced by recent advances in the field (Mnih et al., 2015;
Lillicrap et al., 2015; Silver et al., 2017; Levine et al., 2016). However, despite these successes,
the broader application of RL in real-world domains is often very limited. Specifically, training RL
agents in complex environments, such as contextual multi-task settings and goal-based tasks with
sparse rewards, still presents significant challenges (Kirk et al., 2021; Andrychowicz et al., 2017;
Florensa et al., 2017; Riedmiller et al., 2018).

Curriculum learning has been extensively studied in the context of supervised learning (Weinshall
et al., 2018; Zhou & Bilmes, 2018; Elman, 1993; Bengio et al., 2009). Recent research has explored
the benefits of using curriculum learning in sequential decision making settings, such as reinforce-
ment learning and imitation learning (Florensa et al., 2017; Riedmiller et al., 2018; Wöhlke et al.,
2020; Florensa et al., 2018; Racanière et al., 2020; Klink et al., 2020a;b; Eimer et al., 2021; Ka-
malaruban et al., 2019; Yengera et al., 2021). The objective of curriculum design in RL is to speed
up an agent’s learning process and enable it to perform well on complex tasks by exposing it to a
personalized sequence of tasks (Narvekar et al., 2020; Portelas et al., 2021; Weng, 2020). To achieve
this objective, several works have proposed different curriculum strategies based on different design
principles, such as the Zone of Proximal Development (ZPD) (Vygotsky & Cole, 1978; Chaiklin,
2003) and Self-Paced Learning (SPL) (Kumar et al., 2010; Jiang et al., 2015). However, existing
techniques typically require domain-specific hyperparameter tuning, involve expensive optimization
procedures for task selection, or are suitable only for specific learning objectives, such as uniform
performance objectives.

In this work, we investigate curriculum design in contextual multi-task settings with varying degrees
of task similarity, where the agent’s final performance is measured w.r.t. a target distribution over
complex tasks. We base our curriculum design on the Zone of Proximal Development concept,
which has proven to be effective in accelerating the learning process of RL agents for uniform
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distribution over all tasks (Florensa et al., 2017; Wöhlke et al., 2020; Florensa et al., 2018;
Tzannetos et al., 2023). We propose a novel curriculum strategy, PROXCORL, that effectively
balances the need for selecting tasks that are neither too hard nor too easy for the agent (according
to the ZPD concept) while still progressing its learning toward the target distribution via leveraging
task correlations. We have mathematically derived our curriculum strategy by analyzing a specific
learning setting. The strengths of our curriculum strategy include its broad applicability to
many domains with minimal hyperparameter tuning, computational and sample efficiency, easy
integration with deep RL algorithms, and applicability to any target distribution over tasks, not just
uniform distribution. Our main results and contributions are as follows:

I. We propose a curriculum strategy, PROXCORL, that effectively trades off the suitable task
difficulty level for the agent and the progression towards the target tasks (Section 3).

II. We mathematically derive PROXCORL for the single target task setting with a discrete pool
of tasks by analyzing the effect of picking a task on the agent’s learning progress in a specific
learning scenario (Section 3.1).

III. We propose an extension of PROXCORL that can be applied to a wide range of task spaces and
target distributions. This extension can be seamlessly integrated with deep RL frameworks,
making it easy to use and apply in various scenarios (Section 3.2).

IV. We empirically demonstrate that the curricula generated with PROXCORL significantly im-
prove the training process of deep RL agents in various environments, matching or outper-
forming existing state-of-the-art baselines (Section 4).

1.1 RELATED WORK

Curriculum strategies based on Self-Paced Learning (SPL). In the realm of supervised learning,
curriculum strategies leveraging the SPL concept attempt to strike a balance between exposing the
learner to all available training examples and selecting examples in which it currently performs
well (Kumar et al., 2010; Jiang et al., 2015). In the context of RL, the SPL concept has been
adapted by researchers in SPDL (Klink et al., 2020a;b; 2021), SPACE (Eimer et al., 2021), and
CURROT (Klink et al., 2022) by controlling the intermediate task distribution with respect to
the learner’s current training progress. While both SPDL and CURROT involve a setting where
the learner’s performance is measured w.r.t. a target distribution over the task space (similar to
our objective), SPACE operates in a setting where the learner’s performance is measured w.r.t. a
uniform distribution over the task space. SPDL and CURROT serve as state-of-the-art baselines
in our experimental evaluation. The task selection mechanism varies across these methods. SPDL
and CURROT operate by solving an optimization problem at each step to select the most relevant
task (Klink et al., 2021; 2022). On the other hand, SPACE relies on ranking tasks based on the
magnitude of differences in current/previous critic values to choose the task for the next step (Eimer
et al., 2021). Furthermore, the work of CURROT Klink et al. (2022) showcase issues about using
KL divergence to measure the similarity between task distributions as used in SPDL – instead, they
introduce an alternative approach by posing the curriculum design as a constrained optimal transport
problem between task distributions. We provide more detailed information on the hyperparameters
used in these methods in the appendix.

Curriculum strategies based on Unsupervised Environment Design (UED). The UED problem
setting involves automatically designing a distribution of environments that adapts to the learning
agent (Dennis et al., 2020). UED represents a self-supervised RL paradigm in which an environment
generator evolves alongside a student policy to develop an adaptive curriculum learning approach.
This approach can be utilized to create increasingly complex environments for training a policy,
leading to the emergence of Unsupervised Curriculum Design. PAIRED (Dennis et al., 2020) is
an adversarial training technique that solves the problem of the adversary generating unsolvable
environments by introducing an antagonist who works with the environment-generating adversary to
design environments in which the protagonist receives a low reward. Furthermore, the connections
between UED and another related method called PLR (Jiang et al., 2021b) have been explored
in (Jiang et al., 2021a; Parker-Holder et al., 2022), resulting in demonstrated improvements over
PAIRED. PLR, originally designed for procedural content generation based environments, samples
tasks/levels by prioritizing those with higher estimated learning potential when revisited in the
future. TD errors are used to estimate a task’s future learning potential. Unlike (Jiang et al., 2021a;

2



Under review as a conference paper at ICLR 2024

Parker-Holder et al., 2022), PLR does not assume control over the environment generation process,
requiring only a black box generation process that returns a task given an identifier.

Curriculum strategies based on ZPD concept. Effective teaching provides tasks of moderate
difficulty (neither too hard nor too easy) for the learner, as formalized by the Zone of Proximal De-
velopment (ZPD) concept (Vygotsky & Cole, 1978; Chaiklin, 2003; Oudeyer et al., 2007; Baranes
& Oudeyer, 2013; Zou et al., 2019). In the context of RL, several curriculum strategies are based
on the ZPD concept, such as selecting the next task randomly from a set of tasks with success rates
within a specific range Florensa et al. (2017; 2018). However, the threshold values for success rates
require tuning based on the learner’s progress and domain. A unified framework for performance-
based starting state curricula in RL is proposed by Wöhlke et al. (2020), while Tzannetos et al.
(2023) propose a broadly applicable ZPD-based curriculum strategy with minimal hyperparameter
tuning and theoretical justifications. Nonetheless, these techniques are generally suitable only for
settings where the learner’s performance is evaluated using a uniform distribution over all tasks.

Other automatic curriculum strategies. Various automatic curriculum generation approaches ex-
ist, including: (i) formulating the curriculum design problem as a meta-level Markov Decision Pro-
cess (Narvekar et al., 2017; Narvekar & Stone, 2019); (ii) learning to generate training tasks similar
to a teacher (Dendorfer et al., 2020; Such et al., 2020; Matiisen et al., 2019; Turchetta et al., 2020);
(iii) using self-play for curriculum generation (Sukhbaatar et al., 2018); (iv) leveraging disagreement
between different agents trained on the same tasks (Zhang et al., 2020); and (v) selecting starting
states based on a single demonstration (Salimans & Chen, 2018; Resnick et al., 2018). Interested
readers can refer to recent surveys on RL curriculum design (Narvekar et al., 2020; Portelas et al.,
2021; Weng, 2020).

Curriculum strategies based on domain knowledge. In supervised learning, early works involve
ordering examples by increasing difficulty (Elman, 1993; Bengio et al., 2009; Schmidhuber,
2013; Zaremba & Sutskever, 2014), which has been adapted in hand-crafted RL curriculum
approaches (Asada et al., 1996; Wu & Tian, 2016). Recent works on imitation learning have also
utilized iterative machine teaching framework to design greedy curriculum strategies (Kamalaruban
et al., 2019; Yengera et al., 2021; Liu et al., 2017; Yang et al., 2018; Zhu et al., 2018). However, all
these approaches require domain-specific expert knowledge for designing difficulty measures.

2 FORMAL SETUP

In this section, we formalize our problem setting based on prior work on teacher-student curriculum
learning (Matiisen et al., 2019).

Multi-task RL. We consider a multi-task RL setting with a task/context space C, in which each task
c ∈ C is associated with a learning environment modeled as a contextual Markov Decision Process
(MDP), denoted byMc :=

(
S,A, γ, Tc, Rc, P

0
c

)
(Hallak et al., 2015; Modi et al., 2018). The state

space S and action space A are shared by all tasks in C, as well as the discount factor γ. Each
contextual MDP includes a contextual transition dynamics Tc : S × S × A → [0, 1], a contextual
reward function Rc : S × A → [−Rmax, Rmax], where Rmax > 0, and a contextual initial state
distribution P 0

c : S → [0, 1]. We denote the space of environments byM = {Mc : c ∈ C}.
RL agent and training process. We consider an RL agent acting in any environment Mc ∈ M
via a contextual policy π : S × C × A → [0, 1] that is a contextual mapping from a state to
a probability distribution over actions. Given a task c ∈ C, the agent attempts the task via a
trajectory rollout obtained by executing its policy π in the MDP Mc. The trajectory rollout
is denoted as ξ =

{
(s(τ), a(τ))

}
τ=0,1,...

with s(0) ∼ P 0
c . The agent’s performance on task c

is measured by the value function V π(c) := E
[∑∞

τ=0 γ
τ ·Rc(s

(τ), a(τ))
∣∣π,Mc

]
. The agent

training corresponds to finding a policy that performs well w.r.t. a target distribution µ over C, i.e.,
maxπ V

π
µ where V π

µ := Ec∼µ [V
π(c)]. The training process of the agent involves an interaction

between two components: a student component that is responsible for policy updates and a teacher
component that is responsible for task selection. The interaction happens in discrete steps indexed
by t = 1, 2, . . ., and is formally described in Algorithm 1. Let πend denote the agent’s final policy
at the end of teacher-student interaction. The training objective is to ensure that the performance of
the policy πend is ϵ-near-optimal, i.e., (maxπ V

π
µ − V πend

µ ) ≤ ϵ.
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Algorithm 1 RL Agent Training as Interaction between Teacher-Student Components

1: Input: RL agent’s initial policy π1
2: for t = 1, 2, . . . do
3: Teacher component picks a task ct ∈ C.
4: Student component attempts the task via a trajectory rollout ξt using the policy πt inMct .
5: Student component updates the policy to πt+1 using the rollout ξt.
6: Output: RL agent’s final policy πend ← πt+1.

Student component. We consider a parametric representation for the RL agent, whose cur-
rent knowledge is parameterized by θ ∈ Θ ⊆ Rd, and each parameter θ is mapped to a
policy πθ : S × C × A → [0, 1]. At step t, the student component updates the knowledge
parameter based on the following quantities: the current knowledge parameter θt, the task ct

picked by the teacher component, and the rollout ξt =
{
(s

(τ)
t , a

(τ)
t )

}
τ
. Then, the updated

knowledge parameter θt+1 is mapped to the agent’s policy given by πt+1 := πθt+1
. As a

concrete example, for the REINFORCE agent (Sutton et al., 1999), the knowledge parameter
is updated as follows: θt+1 ← θt + ηt ·

∑∞
τ=0G

(τ)
t · g(τ)t , where ηt is the learning rate,

G
(τ)
t =

∑∞
τ ′=τ γ

τ ′−τ ·Rct(s
(τ ′)
t , a

(τ ′)
t ), and g(τ)t =

[
∇θ log πθ(a

(τ)
t |s(τ)t , ct)

]
θ=θt

.

Teacher component. At time step t, the teacher component selects a task ct for the student
component to attempt via a trajectory rollout, as shown in line 3 in Algorithm 1. The sequence
of tasks, also known as the curriculum, that is chosen by the teacher component has a significant
impact on the performance improvement of the policy πt. The primary objective of this work is
to develop a teacher component to achieve the training objective in a computationally efficient and
sample-efficient manner.

3 OUR CURRICULUM STRATEGY PROXCORL

In Section 3.1, we mathematically derive a curriculum strategy for the single target task setting with
a discrete pool of tasks by analyzing a specific learning scenario. Then, in Section 3.2, we present
our final curriculum strategy that is applicable in general learning settings.

3.1 CURRICULUM STRATEGY FOR SINGLE TARGET TASK SETTINGS

In this section, we present our curriculum strategy for a setting where the task space C is a discrete
set and the target distribution µ is a delta distribution concentrated on a single target task ctarg. To
design our curriculum strategy, we investigate the effect of selecting a task ct at time step t on the
agent’s performance V πθt

µ and its convergence towards the target performance V ∗
µ := maxπ V

π
µ .

Therefore, we define the training objective improvement at time step t and analyze this metric for
a specific learning scenario.

Expected improvement in the training objective. At time step t, given the current knowledge
parameter θt, the task ct picked by the teacher component, and the student component’s rollout ξt,
we define the improvement in the training objective as follows:

∆t(θt+1

∣∣θt, ct, ξt) := (V ∗
µ − V

πθt
µ )− (V ∗

µ − V
πθt+1
µ ).

Additionally, we define the expected improvement in the training objective at step t due to picking
the task ct as follows (Weinshall et al., 2018; Kamalaruban et al., 2019; Yengera et al., 2021; Graves
et al., 2017):

It(ct) := Eξt|ct [∆t(θt+1|θt, ct, ξt)] .
Based on the above measure, a natural greedy curriculum strategy for selecting the next task ct
is given by: ct ← argmaxc∈C It(c). We aim to approximate such a curriculum strategy without
computing the updated policy πθt+1

. To this end, we analyze the function It(·) for REINFORCE
learner model under a specific learning setting. This analysis enables us to develop an intuitive
curriculum strategy by effectively combining three fundamental factors: (i) the learning potential
inherent in the source task, (ii) the transfer potential between the source and target tasks, i.e., their
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similarity, and (iii) the potential for performance improvement in the target task. Looking ahead, it
is indeed captivating to extend our investigations to more complex learning settings, where we can
explore the potential for devising more sophisticated curriculum strategies.

Intuitive form of It(·). We define gt : C → Rd as gt(c) := [∇θV
πθ (c)]θ=θt

, and ψt : C → Rd

as ψt(c) := gt(c)
∥gt(c)∥ . By applying the first-order Taylor approximation of V πθt+1 (ctarg) at θt, we

approximate the improvement in the training objective as follows:
∆t(θt+1

∣∣θt, ct, ξt) = V πθt+1 (ctarg)− V πθt (ctarg) ≈ ⟨θt+1 − θt, gt(ctarg)⟩ .
The knowledge parameter update for the REINFORCE agent can be written as: θt+1 ← θt+ηt·ĝt(ct),
where Eξt|ct

[
ĝt(ct)

]
= gt(ct). Then, for the REINFORCE agent, we approximate the expected

improvement in the training objective as follows:
It(ct) ≈

〈
Eξt|ct [θt+1 − θt], gt(ctarg)

〉
= ηt · ∥gt(ct)∥ · ∥gt(ctarg)∥ · ⟨ψt(ct), ψt(ctarg)⟩ .

In the above, the term ∥gt(ct)∥ corresponds to the learning potential inherent in the source task,
the term ∥gt(ctarg)∥ corresponds to the learning potential inherent in the target task, and the term
⟨ψt(ct), ψt(ctarg)⟩ corresponds to the transfer potential between the source and target tasks. In the
subsequent discussion, we analyze the function It(·) under a contextual bandit setting.

Contextual bandit setting. We consider the REINFORCE learner model with the following policy
parameterization: given a feature mapping ϕ : S × C × A → Rd, for any θ ∈ Rd, we parameterize
the policy as πθ(a|s, c) = exp(⟨θ,ϕ(s,c,a)⟩)∑

a′ exp(⟨θ,ϕ(s,c,a′)⟩) ,∀s ∈ S, c ∈ C, a ∈ A. In the following, we
consider a specific problem instance of contextual MDP setting. Let Mc be a contextual MDP
with a singleton state space S = {s}, and an action space A = {a1, a2}. Any action a ∈ A taken
from the initial state s ∈ S always leads to a terminal state. Let r : C → [0, 1] be a mapping
from task/context space C to the interval [0, 1]. For any context c ∈ C, we denote the optimal and
non-optimal actions for that context as aopt

c and anon
c , respectively. The contextual reward function

is defined as follows: Rc(s, a
opt
c ) = 1, and Rc(s, a

non
c ) = 0, for all c ∈ C. Further, we define

ψ : C → Rd as ψ(c) := (ϕ(s, c, aopt
c ) − ϕ(s, c, anon

c )). Subsequently, for the REINFORCE agent
operating under the above setting, the following theorem quantifies the expected improvement in
the training objective at time step t:
Theorem 1. For the REINFORCE agent with softmax policy parameterization under the contextual
bandit setting described above, we have:

It(c) ≈ ηt ·
V πθt (c)

V ∗(c)
·
(
V ∗(c)− V πθt (c)

)
· V

πθt (ctarg)

V ∗(ctarg)
·
(
V ∗(ctarg)− V πθt (ctarg)

)
· ⟨ψ(c), ψ(ctarg)⟩ ,

where V ∗(c) = maxπ V
π(c), and ηt is the learning of the REINFORCE agent.

A detailed proof of Theorem 1 can be found in Appendix C.1. As a more general result, we
conducted an analysis of the gradient function gt(·) within the context of a tree-structured contex-
tual MDP setting, as described in Appendix C.2. This analysis establishes a connection between
∥gt(c)∥1 and the term V

πθt (c)
V ∗(c) ·

(
V ∗(c)− V πθt (c)

)
.

Curriculum strategy. Inspired by the above analysis, we propose the following curriculum strategy:

ct ← argmax
c∈C

V πθt (c)

V ∗(c)︸ ︷︷ ︸
1⃝

·
(
V ∗(c)− V πθt (c)

)︸ ︷︷ ︸
2⃝

·
(
V ∗(ctarg)− V πθt (ctarg)

)︸ ︷︷ ︸
3⃝

· ⟨ψ(c), ψ(ctarg)⟩︸ ︷︷ ︸
4⃝

, (1)

where V ∗(c) = maxπ V
π(c) and ψ : C → Rd is a context representation mapping. Given that the

term V
πθt (ctarg)
V ∗(ctarg)

tends to have a significantly low value, we omit its inclusion in the above proposal
for the sake of numerical stability. At time step t, the teacher component picks a task ct according
to the above equation. The curriculum strategy involves the following quantities: 1⃝ the agent’s
relative performance on the task c, 2⃝ the expected regret of the agent on the task c, 3⃝ the expected
regret of the agent on the target task ctarg, and 4⃝ the correlation between the tasks c and ctarg. The
product of the terms 1⃝ and 2⃝ enforces picking tasks that are neither too hard nor too easy for the
current policy (corresponding to the ZPD principle). The product of the terms 3⃝ and 4⃝ enforces
picking tasks that are highly correlated with the target task. The curriculum strategy effectively
balances these two objectives.
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SGR POINTMASS-S:2G POINTMASS-S:1T BIPEDALWALKER

Reward binary binary binary dense

Context R3 R3 R3 R2

State R4 R4 R4 R24

Action R2 R2 R2 R4

Target Dist. R2 Plane Double-Mode
Gaussian Single Task Uniform with

trivial tasks

(a) Complexity of environments (b) Illustration of the environments

Figure 1: (a) provides a comprehensive overview of the complexity of the environments based on
the reward signals, context space, state space, action space, and target distribution. (b) showcases
the environments by providing an illustrative visualization of each environment (from left to right):
SGR, POINTMASS-S and BIPEDALWALKER.

3.2 CURRICULUM STRATEGY FOR GENERAL SETTINGS

In this section, we extend the curriculum strategy in Eq. (1) to practical settings of interest, i.e., a
general task space C, a general target distribution µ, and V ∗(c) values being unknown. We begin
by constructing two large discrete sets, Ĉunif and Ĉtarg, which are subsets of the original task space
C. Ĉunif is obtained by sampling contexts from C according to uniform distribution, while Ĉtarg is
obtained by sampling contexts from C according to the target distribution µ. For the general setting,
we consider the following curriculum strategy:

(cttarg, ct)← argmax
(ctarg,c)∈Ĉtarg×Ĉunif

V πθt (c)

V ∗(c)
·
(
V ∗(c)− V πθt (c)

)
·
(
V ∗(ctarg)− V πθt (ctarg)

)
· ⟨ψ(c), ψ(ctarg)⟩ .

(2)

Next, we replace V ∗(·) with Vmax, i.e., the maximum possible value that can be achieved for any
task in the task space – this value can typically be obtained for a given domain. Further, when
training deep RL agents, allowing some stochasticity in task selection is useful. In particular, the
argmax selection in Eq. (2) can be problematic in the presence of any approximation errors while
computing V πθt (·) values. To make the selection more robust, we replace argmax selection in
Eq. (2) with softmax selection and sample (cttarg, ct) from the distribution given below:

P
[
(cttarg, ct) = (ctarg, c)

]
∝ exp

(
β · V

t(c)

Vmax
·
(
Vmax − V t(c)

)
·
(
Vmax − V t(ctarg)

)
· ⟨ψ(c), ψ(ctarg)⟩

)
,

(3)

where β is a hyperparameter and V t(·) values are obtained from the critic network of the RL agent to
estimate V πθt (·). Finally, the teacher component samples (cttarg, ct) from the above distribution and
provides the task ct to the student component – we refer to this selection strategy as PROXCORL.

4 EXPERIMENTAL EVALUATION

In this section, we validate the effectiveness of our curriculum strategy by conducting experiments
in environments selected from the state-of-the-art works of Klink et al. (2022) and Romac et al.
(2021). Throughout the experiments, we utilize the PPO method from the Stable-Baselines3 library
for policy optimization (Schulman et al., 2017; Raffin et al., 2021).

4.1 ENVIRONMENTS

In our evaluation, we examine three distinct environments detailed in the following paragraphs.
These environments are selected to showcase the effectiveness of our curriculum strategy in
handling target distributions with varying characteristics within the context space C. The first
environment, Sparse Goal Reaching (SGR), features target distributions with uniform coverage
over specific dimensions of the context space and concentrated on one dimension. For the second
environment, Point Mass Sparse (POINTMASS-S) we consider two settings. In one setting, the
target distribution exhibits multiple modalities. In the second setting, the target is concentrated on
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a single context c ∈ C. Lastly, the third environment has a uniform target distribution spanning the
entirety of the context space. A summary and illustration of these environments are presented in
Figure 1. For additional details about each environment, please refer to Appendix D.1.

Sparse Goal Reaching (SGR). Based on the work of Klink et al. (2022), we consider a sparse-
reward, goal-reaching environment in which an agent needs to reach a desired position with high
precision. Such environments have previously been studied by Florensa et al. (2018). Within this
environment, the contexts, denoted as c ∈ C ⊆ R3, encode both the desired 2D goal position and
the acceptable tolerance for reaching that goal. Our primary objective centers around achieving as
many goals as possible with high precision, indicated by a low tolerance threshold. In this regard,
the target distribution µ takes the form of a uniform distribution, but it is restricted to a specific 2D
region within C where the tolerance (C-Tolerance) for each context is set at a minimal value of 0.05.
Additionally, the presence of walls within the environment renders many of the tasks specified by
C infeasible, necessitating the identification of a feasible task subspace. We generate our training
tasks by randomly selecting 9900 contexts from C using uniform distribution to create Ĉunif, and
by selecting 100 contexts according to the target distribution µ to form Ĉtarg. For the purpose of
evaluation, we employ a separate held-out set sampled from the target distribution µ.

Point Mass Sparse (POINTMASS-S). Based on the work of Klink et al. (2020b), we consider a
contextual POINTMASS-S environment where an agent navigates a point mass through a gate of
a given size towards a goal in a two-dimensional space. To heighten the challenge, we replace the
original dense reward function with a sparse one, a strategy also considered in Tzannetos et al.
(2023). Specifically, in the POINTMASS-S environment, the agent operates within a goal-based
reward setting where the reward is binary and sparse, i.e., the agent receives a reward of 1 only upon
successfully moving the point mass to the goal position. The parameters governing this environment,
such as the gate’s position, width, and the ground’s friction coefficient, are controlled by a contextual
variable c ∈ C ⊆ R3. This variable comprises C-GatePosition, C-GateWidth, and C-Friction. Our
experimental section explores two distinct POINTMASS-S environment settings. In the first setting,
denoted as POINTMASS-S:2G, the target distribution µ takes the form of a bimodal Gaussian
distribution. Here, the means of the contextual variables

[
C-GatePosition, C-GateWidth

]
are set to[

−3.9, 0.5
]

and
[
3.9, 0.5

]
for the two modes, respectively. In the second setting, POINTMASS-S:1T,

the target distribution µ is concentrated on a single context c ∈ C. More precisely, the contextual
variables

[
C-GatePosition, C-GateWidth, C-Friction

]
take on the following values:

[
0.9, 0.5, 3.5

]
.

To construct our training tasks, we draw 20000 contexts from C using a uniform distribution, form-
ing Ĉunif. The set Ĉtarg is created by sampling 400 contexts from C according to the target distribution
µ. We employ a held-out set sampled from the target distribution µ for evaluation purposes.

Bipedal Walker Stump Tracks (BIPEDALWALKER). We conduct additional experiments within the
TeachMyAgent benchmark for curriculum techniques, as introduced in Romac et al. (2021). In this
context, we chose a bipedal agent tasked with walking in the Stump Tracks environment, which is an
extension of the environment initially proposed in Portelas et al. (2019). The state space comprises
lidar sensors, head position, and joint positions. The action space is continuous, and the goal is
to learn a policy that controls the torque of the agent’s motors. The walker is rewarded for going
forward and penalized for torque usage. An episode lasts 2000 steps and is terminated if the agent
reaches the end of the track or if its head collides with the environment (in which case a reward of
−100 is received). Within this environment, the contextual variables c ∈ C ⊆ R2 control the height
(C-StumpHeight) and spacing (C-StumpSpacing) of stumps placed along the track for each task.
Our experimental setup is equivalent to the bipedal walker stump track environment with mostly
trivial tasks, as described in Romac et al. (2021). In this setup, C-StumpHeight is constrained to
the range

[
−3; 3

]
, while C-StumpSpacing remains within

[
0; 6

]
. Notably, the environment enforces

the clipping of negative values for C-StumpHeight, setting them to 0. Consequently, half of the
tasks have a mean stump height of 0, introducing a significant proportion of trivial tasks (50%).
To address the procedural task generation, we randomly draw 1000 tasks from C to construct the
training task set, denoted as Ĉunif. Additionally, every four epochs, we resample 1000 tasks and
update the training set Ĉunif. The set Ĉtarg is obtained by sampling 500 tasks from C according to the
target distribution µ, which is uniform in C.
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(d) BIPEDALWALKER

Figure 2: Performance comparison of RL agents trained using different curriculum strategies. The
performance is measured as the mean return (±1 standard error) on the test pool of tasks. The
results are averaged over 10 random seeds for SGR, 15 random seeds for POINTMASS-S:2G, 15
random seeds for POINTMASS-S:1T and 10 random seeds for BIPEDALWALKER. The plots are
smoothed across 2 evaluation snapshots that occur over 25000 training steps.

4.2 CURRICULUM STRATEGIES EVALUATED

Variants of our curriculum strategy. We consider two curriculum strategies as described
next. First, PROXCORL is based on Eq. (3). Throughout all the experiments, we use the fol-
lowing choice to compute similarity between ψ(s) and ψ(ctarg): exp(−||c − ctarg||2). Second,
PROXCORL-UN is a variant of it that does not take into account the target distribution µ and
hence ignores the correlations. Specifically, PROXCORL-UN drops the target task-related terms
3⃝ and 4⃝ derived in Eq.(1), and selects the next task according to the following distribution:
P
[
ct = c

]
∝ exp

(
β · V

t(c)
Vmax

· (Vmax − V t(c))
)
. We note that this strategy is similar to a ZPD-based

curriculum strategy proposed in Tzannetos et al. (2023) for uniform performance objective.

State-of-the-art baselines. SPDL (Klink et al., 2020b), CURROT (Klink et al., 2022), PLR (Jiang
et al., 2021b), and GRADIENT (Huang et al., 2022) are state-of-the-art curriculum strategies for
contextual RL. We adapt the implementation of an improved version of SPDL, presented in Klink
et al. (2021), to work with a discrete pool of contextual tasks. PLR (Jiang et al., 2021b) was orig-
inally designed for procedurally generated content settings, but we have adapted its implementation
for the contextual RL setting operating on a discrete pool of tasks.

Prototypical baselines. We consider two prototypical baselines: IID and TARGET. The IID
strategy samples the next task from C with a uniform distribution, while the TARGET strategy
samples according to the target distribution µ.

4.3 RESULTS

Convergence behavior. As illustrated in Figure 2, the RL agents trained using our curriculum
strategy, PROXCORL, perform competitively w.r.t. those trained with state-of-the-art and proto-
typical baselines. In Figure 2a for SGR, PROXCORL outperforms all the other techniques by
a large margin. PROXCORL selects tasks that are neither too hard nor too easy for the agent’s
current policy and are also correlated with the target distribution. CURROT stands out among
other strategies due to its ability to gradually choose tasks from the target distribution. Importantly,
solely selecting target contexts for training is inadequate, as evidenced by the underperformance
of TARGET compared to all other techniques. The results for POINTMASS-S:2G are presented in
Figure 2b, where we can observe that PROXCORL, PROXCORL-UN, and CURROT outperform
the other strategies. PROXCORL demonstrates success in handling bimodal target distributions
by alternating the selection between the modes of the target distribution. Although it initially
has a slower performance than PROXCORL-UN and CURROT, it eventually matches/surpasses
their performance. Despite PROXCORL-UN not explicitly considering the target distribution in
its formulation, it progressively selects more challenging contexts and effectively encompasses the
tasks from the target distribution in this scenario. For POINTMASS-S:1T, in Figure 2c, we observe
that PROXCORL quickly succeeds in the single target task compared to the other techniques.
Although CURROT converges slower, it finally performs similarly to the proposed technique. For
BIPEDALWALKER, Figure 2d, where the target distribution is uniform, PROXCORL-UN achieves
the best performance. This technique, by definition, considers a uniform performance objective.
PROXCORL is able to handle a uniform target distribution better than CURROT for this setting.
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(e) BIPEDALWALKER: 2D context space

Figure 3: (a) presents the average C-Tolerance of the selected tasks during different curricu-
lum strategies for SGR. (b-c) present the average distance between the selected contexts C-
GatePosition and C-GateWidth and the target distribution for POINTMASS-S:2G. (d) presents the
two-dimensional context space of POINTMASS-S:2G. The target distribution is depicted as a black
x and encodes the two gates with C-GateWidth = 0.5 at C-GatePosition = {−3.9, 3.9}. Each col-
ored dot represents the context/task selected by PROXCORL during training, where brighter colors
indicate later training stages. (e) presents the two-dimensional context space of BIPEDALWALKER.
The target distribution is uniform. Each colored dot represents the context/task selected by PROX-
CORL during training, where brighter colors indicate later training stages.

Curriculum plots. Figure 3a displays the average C-Tolerance of tasks selected from the proposed
curriculum (PROXCORL), CURROT, IID, and TARGET. Our observation reveals that both PROX-
CORL and CURROT manage to reduce the average C-Tolerance below that of IID, indicating
that both techniques gradually prioritize tasks that align with the target distribution. However, it is
noteworthy that CURROT continues to decrease the context values to reach the target distribution,
while PROXCORL does not necessarily converge to the target distribution. This trend is similarly
evident in Figures 3b and 3c, where PROXCORL after succeeding on the target distribution
returns to sampling closer to IID. Conversely, CURROT persists in reducing the context values
to attain convergence with the target distribution. Figure 3d provides a visual representation of the
two-dimensional context space for the POINTMASS-S:2G setting. The curriculum initially starts
from larger C-GateWidth values and centered C-GatePosition values, gradually shifting towards
the two modes of the target distribution in the later stages of training. In Figure 3e, we depict the
two-dimensional context space for the BIPEDALWALKER setting. Despite the uniformity of the
target distribution of contexts, we observe that in the later stages of training, PROXCORL disregards
trivial tasks characterized by C-StumpHeight values smaller than 0. Instead, it focuses on tasks
from the remaining task space.

5 CONCLUDING DISCUSSIONS

We proposed a novel curriculum strategy that strikes a balance between selecting tasks that are
neither too hard nor too easy for the agent while also progressing the agent’s learning toward the
target distribution by utilizing task correlation. We mathematically derived our curriculum strategy
through an analysis of a specific learning scenario and demonstrated its effectiveness in various
environments through empirical evaluations. Here, we discuss a few limitations of our work and
outline a plan on how to address them in future work. First, it would be interesting to extend our
curriculum strategy to high-dimensional context spaces in sparse reward environments. However,
sampling new tasks in such environments poses a significant challenge due to the estimation of
the value of all tasks in the discrete sets Ĉunif and Ĉtarg. Second, while our curriculum strategy uses
a simple distance measure to capture task correlation, it would be worthwhile to investigate the
effects of employing different distance metrics over the context space on curriculum design.
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A TABLE OF CONTENTS

In this section, we briefly describe the content provided in the paper’s appendices.

• Appendix B provides a discussion of the broader impact of our work and compute resources used.
• Appendix C provides a proof for Theorem 1 and an additional theoretical justification for our

curriculum strategy. (Section 3.1)
• Appendix D provides additional details for experimental evaluation. (Section 4)

B DISCUSSIONS

Broader impact. This work presents a novel curriculum strategy for contextual multi-task settings
where the agent’s final performance is measured w.r.t. a target distribution over the context space.
Given the algorithmic and empirical nature of our work applied to learning agents, we do not foresee
any direct negative societal impacts of our work in the present form.

Compute resources. The experiments for SGR and POINTMASS-S were conducted on a cluster
of machines equipped with Intel Xeon Gold 6134M CPUs running at a frequency of 3.20GHz. The
experiments for BIPEDALWALKER were conducted on machines equipped with Tesla V100 GPUs.

C JUSTIFICATIONS FOR THE CURRICULUM STRATEGY

In this section, we provide some insights into the proposed curriculum strategy by analyzing two
specific learning settings. For both settings, we consider the REINFORCE learner model with the
following policy parameterization: given a feature mapping ϕ : S × C × A → Rd, for any θ ∈ Rd,
we parameterize the policy as πθ(a|s, c) = exp(⟨θ,ϕ(s,c,a)⟩)∑

a′ exp(⟨θ,ϕ(s,c,a′)⟩) ,∀s ∈ S, c ∈ C, a ∈ A.

C.1 CONTEXTUAL BANDIT SETTING

Let Mc be a contextual MDP with a singleton state space S = {s}, and an action space A =
{a1, a2}. Any action a ∈ A taken from the initial state s ∈ S always leads to a terminal state. Let
r : C → [0, 1] be a mapping from task/context space C to the interval [0, 1]. For any context c ∈ C,
we denote the optimal and non-optimal actions for that context as aopt

c and anon
c , respectively. The

contextual reward function is defined as follows: Rc(s, a
opt
c ) = 1, andRc(s, a

non
c ) = 0, for all c ∈ C.

Further, we define ψ : C → Rd as ψ(c) := (ϕ(s, c, aopt
c )− ϕ(s, c, anon

c )).
Theorem 1. For the REINFORCE agent with softmax policy parameterization under the contextual
bandit setting described above, we have:

It(c) ≈ ηt ·
V πθt (c)

V ∗(c)
·
(
V ∗(c)− V πθt (c)

)
· V

πθt (ctarg)

V ∗(ctarg)
·
(
V ∗(ctarg)− V πθt (ctarg)

)
· ⟨ψ(c), ψ(ctarg)⟩ ,

where V ∗(c) = maxπ V
π(c), and ηt is the learning of the REINFORCE agent.

Proof. For the REINFORCE agent, the expected improvement in the training objective can be ap-
proximated as follows:

It(c) = Eξt|ct [∆t(θt+1|θt, ct, ξt)] ≈ ηt · ⟨gt(c), gt(ctarg)⟩ .
For the contextual bandit setting described above, we simplify the gradient gt(c) as follows:

gt(c) = [∇θV
πθ (c)]θ=θt

= Ea∼πθt (·|s,c)
[
Rc(s, a) · [∇θ log πθ(a|s, c)]θ=θt

]
= πθt(a

opt
c |s, c) ·Rc(s, a

opt
c ) ·

[
∇θ log πθ(a

opt
c |s, c)

]
θ=θt

= πθt(a
opt
c |s, c) ·Rc(s, a

opt
c ) ·

(
ϕ(s, c, aopt

c )− Ea′∼πθt (·|s,c)[ϕ(s, c, a
′)]
)

= πθt(a
opt
c |s, c) ·Rc(s, a

opt
c ) · (1− πθt(aopt

c |s, c)) · (ϕ(s, c, aopt
c )− ϕ(s, c, anon

c ))
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= πθt(a
opt
c |s, c) ·Rc(s, a

opt
c ) · (1− πθt(aopt

c |s, c)) · ψ(c)

=
πθt(a

opt
c |s, c) ·Rc(s, a

opt
c )

Rc(s, a
opt
c )

· (Rc(s, a
opt
c )− πθt(aopt

c |s, c) ·Rc(s, a
opt
c )) · ψ(c)

=
V πθt (c)

V ∗(c)
·
(
V ∗(c)− V πθt (c)

)
· ψ(c),

where we used the facts that V πθt (c) = πθt(a
opt
c |s, c) · Rc(s, a

opt
c ) and V ∗(c) = Rc(s, a

opt
c ). Based

on the above simplification of gt(c), we have:

It(c)

≈ ηt · ⟨gt(c), gt(ctarg)⟩

= ηt ·
V πθt (c)

V ∗(c)
·
(
V ∗(c)− V πθt (c)

)
· V

πθt (ctarg)

V ∗(ctarg)
·
(
V ∗(ctarg)− V πθt (ctarg)

)
· ⟨ψ(c), ψ(ctarg)⟩ .

C.2 TREE-STRUCTURED MDP SETTING

LetM denote a collection of contextual MDPs sharing a deterministic tree structure. In this struc-
ture, the state space S encompasses all nodes in the tree, the action space A = {a1, . . . , aN} is
defined such that taking an action from any non-leaf node deterministically transitions to a node in
the subsequent level, while taking any action from a leaf node leads to a terminal state. The initial
state is consistently set as the top node. Each MDPMc ∈M is associated with a distinct leaf node
Lc serving as the goal state. Notably, we operate within a sparse reward setting, wherein taking
any action from a goal state yields a reward of 1, while all other scenarios result in a reward of
0. Then, for the REINFORCE agent under the above setting, the following proposition provides an
upper bound on the quantity ∥gt(c)∥1:
Proposition 1. For the REINFORCE agent with softmax policy parameterization under the contex-
tual MDP setting described above, we have:

∥gt(c)∥1 ≤ 2 · ϕmax · Uπθt (c),

where ϕmax = max(s,c,a)∈S×C×A ∥ϕ(s, c, a)∥1, and

V πθt (c)

V ∗(c)
· (V ∗(c)− V πθt (c)) ≤ Uπθt (c) ≤ (V ∗(c)− V πθt (c)).

Proof. For the REINFORCE agent under the contextual MDP setting, we write gt(c) as follows:

gt(c) = [∇θV
πθ (c)]θ=θt

= E
ξ∼Pr

πθt
c

[
Rc(ξ) ·

∑
τ

[
∇θ log πθ(a

(τ)|s(τ), c)
]
θ=θt

]
,

where ξ =
{
(s(τ), a(τ))

}
τ
, Pr

πθt
c (ξ) =

∏
τ πθt(a

(τ)|s(τ), c), and Rc(ξ) =
∑

τ γ
τ ·Rc(s

(τ), a(τ)).

Let ξopt,c =
{
(s

(τ)
opt,c, a

(τ)
opt,c)

}
τ

be the unique optimal trajectory for the MDPMc. Then, using the

softmax policy parameterization, we can write gt(c) as follows:

gt(c) = E
ξ∼Pr

πθt
c

[
1[ξ = ξopt,c] ·Rc(ξ) ·

∑
τ

[
∇θ log πθ(a

(τ)|s(τ), c)
]
θ=θt

]
= Pr

πθt
c (ξopt,c) ·Rc(ξopt,c) ·

∑
τ

[
∇θ log πθ(a

(τ)
opt,c|s(τ)opt,c, c)

]
θ=θt

= Rc(ξopt,c) ·Pr
πθt
c (ξopt,c) ·

∑
τ

ϕ(s
(τ)
opt,c, c, a

(τ)
opt,c)− E

a∼πθt (·|s
(τ)
opt,c,c)

[
ϕ(s

(τ)
opt,c, c, a)

]
.

Then, we bound the ℓ1-norm of gt(c) as follows:

∥gt(c)∥1 ≤ Rc(ξopt,c) ·Pr
πθt
c (ξopt,c) ·

∑
τ

∥∥∥ϕ(s(τ)opt,c, c, a
(τ)
opt,c)− E

a∼πθt (·|s
(τ)
opt,c,c)

[
ϕ(s

(τ)
opt,c, c, a)

]∥∥∥
1
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≤ Rc(ξopt,c) ·Pr
πθt
c (ξopt,c) ·

∑
τ

{
(1− πθt(a(τ)opt,c|s(τ)opt,c, c)) ·

∥∥∥ϕ(s(τ)opt,c, c, a
(τ)
opt,c)

∥∥∥
1

+
∑

a̸=a
(τ)
opt,c

πθt(a|s(τ)opt,c, c) ·
∥∥∥ϕ(s(τ)opt,c, c, a)

∥∥∥
1

}

≤ Rc(ξopt,c) ·Pr
πθt
c (ξopt,c) ·

∑
τ

{
(1− πθt(a(τ)opt,c|s(τ)opt,c, c)) +

∑
a̸=a

(τ)
opt,c

πθt(a|s(τ)opt,c, c)

}
· ϕmax

= 2 · ϕmax ·Rc(ξopt,c) ·Pr
πθt
c (ξopt,c) ·

∑
τ

(1− πθt(a(τ)opt,c|s(τ)opt,c, c)).

We lower and upper bound the term Pr
πθt
c (ξopt,c) ·

∑
τ (1− πθt(a

(τ)
opt,c|s(τ)opt,c, c)) as follows:

Pr
πθt
c (ξopt,c) · (1−Pr

πθt
c (ξopt,c))

= Pr
πθt
c (ξopt,c) ·

∑
τ

{
τ−1∏
τ ′=0

πθt(a
(τ ′)
opt,c|s(τ

′)
opt,c, c)

}
· (1− πθt(a(τ)opt,c|s(τ)opt,c, c))

≤ Pr
πθt
c (ξopt,c) ·

∑
τ

(1− πθt(a(τ)opt,c|s(τ)opt,c, c)),

and

(1−Pr
πθt
c (ξopt,c)) =

∑
τ

{
τ−1∏
τ ′=0

πθt(a
(τ ′)
opt,c|s(τ

′)
opt,c, c)

}
· (1− πθt(a(τ)opt,c|s(τ)opt,c, c))

≥
∑
τ

{∏
τ

πθt(a
(τ ′)
opt,c|s(τ

′)
opt,c, c)

}
· (1− πθt(a(τ)opt,c|s(τ)opt,c, c))

= Pr
πθt
c (ξopt,c)

∑
τ

(1− πθt(a(τ)opt,c|s(τ)opt,c, c)),

respectively. Further, by using the fact that V πθt (c) = Rc(ξopt,c) · Pr
πθt
c (ξopt,c) and V ∗(c) =

Rc(ξopt,c), we have:

Rc(ξopt,c) ·Pr
πθt
c (ξopt,c) · (1−Pr

πθt
c (ξopt,c)) =

V πθt (c)

V ∗(c)
· (V ∗(c)− V πθt (c)),

and
Rc(ξopt,c) · (1−Pr

πθt
c (ξopt,c)) = (V ∗(c)− V πθt (c)).

Finally, by combining these results, we have the following:

∥gt(c)∥1 ≤ 2 · ϕmax · Uπθt (c),

where
V πθt (c)

V ∗(c)
· (V ∗(c)− V πθt (c)) ≤ Uπθt (c) ≤ (V ∗(c)− V πθt (c)).

D EXPERIMENTAL EVALUATION – ADDITIONAL DETAILS

D.1 ENVIRONMENTS

Sparse Goal Reaching (SGR (Klink et al., 2022)). In this environment, the state consists of the
agent’s position, denoted as s = [x y]. The action corresponds to the agent’s displacement in a 2D
space, represented as a = [dx dy]. The contextual variable c = [c1 c2 c3] ∈ C ⊆ R3 comprises
the following elements: C-GoalPositionX, C-GoalPositionY, and C-Tolerance. The bounds for each
contextual variable are [−9, 9] for C-GoalPositionX, [−9, 9] for C-GoalPositionY, and [0.05, 18] for
C-Tolerance. The reward in this environment is sparse, meaning the agent receives a reward of
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1 only when it reaches the goal. An episode is considered successful if the distance between the
agent’s position and the goal is below the tolerance, i.e., ∥s− [c1, c2]∥2 ≤ c3. If the agent exceeds
the limit of 200 steps per episode before reaching the goal, the episode terminates with a reward of 0.
The presence of walls in the environment creates situations where certain combinations of contexts
[c1 c2 c3] are unsolvable by the agent, as it is unable to get close enough to the goal to satisfy the
tolerance condition. This suggests that a successful curriculum technique should also be able to
identify the feasible subspace of contexts to accelerate the training process. The target context
distribution consists of tasks that are uniformly distributed w.r.t. the contexts c1 (C-GoalPositionX)
and c2 (C-GoalPositionY). However, it is concentrated in the minimal C-Tolerance, where c3 is set
to 0.05. In other words, the target distribution comprises only high-precision tasks.

In this environment, we employ Proximal Policy Optimization (PPO) with 5120 steps per policy
update and a batch size of 256. The MLP policy consists of a shared layer with 64 units, followed
by a second separate layer with 32 units for the policy network, and an additional 32 units for the
value network. All the remaining parameters of PPO adopt the default settings of Stable Base-
lines 3 (Schulman et al., 2017; Raffin et al., 2021). Furthermore, all the hyperparameters remain
consistent across all the curriculum strategies evaluated.

Point Mass Sparse (POINTMASS-S (Klink et al., 2020b)). In this environment, the state consists
of the position and velocity of the point-mass, denoted as s = [x ẋ y ẏ]. The action corresponds
to the force applied to the point-mass in a 2D space, represented as a = [Fx Fy]. The contextual
variable c = [c1 c2 c3] ∈ C ⊆ R3 comprises the following elements: C-GatePosition, C-GateWidth,
and C-Friction. The bounds for each contextual variable are [−4, 4] for C-GatePosition, [0.5, 8] for
C-GateWidth, and [0, 4] for C-Friction. At the beginning of each episode, the agent’s initial state is
set to s0 = [0 0 3 0], and the objective is to approach the goal located at position g = [x y] = [0 − 3]
with sufficient proximity. If the agent collides with a wall or if the episode exceeds 100 steps,
the episode is terminated, and the agent receives a reward of 0. On the other hand, if the agent
reaches the goal within a predefined threshold, specifically when ∥g − [x y]∥2 < 0.30, the episode
is considered successful, and the agent receives a reward of 1. The target distribution µ is represented
by a bimodal Gaussian distribution, with the means of the contexts [C-GatePosition C-GateWidth]
set as [−3.9 0.5] and [3.9 0.5] for the two modes, respectively. This choice of target distribution
presents a challenging scenario, as it includes contexts where the gate’s position is in proximity to
the edges of the environment and the gate’s width is relatively small.

In this environment, we employ Proximal Policy Optimization (PPO) with 5120 steps per policy
update. The batch size used for each update is set to 128, and an entropy coefficient of 0.01 is
applied. The MLP policy consists of a shared layer with 64 units, followed by a second separate
layer with 64 units for the policy network, and an additional 64 units for the value network. All
the remaining parameters of PPO adopt the default settings of Stable Baselines 3 (Schulman et al.,
2017; Raffin et al., 2021). Furthermore, all the hyperparameters remain consistent across all the
curriculum strategies evaluated.

Bipedal Walker Stump Tracks BIPEDALWALKER (Romac et al., 2021)). The experiment with
BIPEDALWALKER is based on the stump tracks environment with a classic bipedal walker embodi-
ment, as can be found in TeachMyAgent benchmark (Romac et al., 2021). The experimental setting
is considered a mostly trivial task space, and the curriculum technique (teacher component) has no
prior knowledge. Namely, in this setting, no reward mastery range, no prior knowledge concerning
the task space, i.e., regions containing trivial tasks, and no subspace of test tasks are given. The
learned policy that controls the walker agent with motor torque is trained with the Soft Actor Critic
(SAC) algorithm for 20 million steps.

D.2 CURRICULUM STRATEGIES EVALUATED

Variants of our curriculum strategy. Below, we report the hyperparameters and implementation
details of the variants of our curriculum strategies used in the experiments (for each environment):

1. For both PROXCORL and PROXCORL-UN:

(a) β parameter controls the softmax selection’s stochasticity: we set β = 50 for the
SGR and the BIPEDALWALKER environment, and β = 70 for POINTMASS-S:2G
and POINTMASS-S:1T.
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(b) Vmax normalization parameter: we set Vmax = 1 for all environments. Since BIPEDAL-
WALKER is a dense reward environment, the reward is scaled with the upper and lower
bound rewards as provided by Romac et al. (2021).

(c) Npos parameter that controls the frequency at which V t(·) is updated: we set Npos =
5120 for SGR, POINTMASS-S:2G and POINTMASS-S:1T environments, which is
equivalent to the PPO update frequency. For BIPEDALWALKER, the frequency of
updates is after each episode.

State-of-the-art baselines. Below, we report the hyperparameters and implementation details of the
state-of-the-art curriculum strategies used in the experiments (for each environment):

1. For SPDL (Klink et al., 2020b):
(a) VLB performance threshold: we set VLB = 0.5 for SGR, POINTMASS-S:2G, and

POINTMASS-S:1T environment.
(b) Npos parameter that controls the frequency of performing the optimization step to up-

date the distribution for selecting tasks: we set Npos = 5120 for SGR, POINTMASS-
S:2G, and POINTMASS-S:1T environment.

(c) For BIPEDALWALKER, we perform the experiments provided in Romac et al. (2021)
for the Self-Paced teacher, which is equivalent to SPDL technique.

2. For CURROT (Klink et al., 2022):
(a) VLB performance threshold: we set VLB = 0.4 for SGR, VLB = 0.6 for POINTMASS-

S:2G and POINTMASS-S:1T, and VLB = 180 for BIPEDALWALKER.
(b) ϵ distance threshold between subsequent distributions: we set ϵ = 1.5 for SGR,

ϵ = 0.05 for POINTMASS-S:2G and POINTMASS-S:1T, and ϵ = 0.5 for BIPEDAL-
WALKER.

(c) We choose the best-performing pair (VLB, ϵ) for each environment from the set
{0.4, 0.5, 0.6} × {0.05, 0.5, 1.0, 1.5, 2.0}. For BIPEDALWALKER, we use the hyper-
parameters provided in Klink et al. (2022).

(d) Npos parameter that controls the frequency of performing the optimization step to
update the distribution for selecting tasks: we set Npos = 5120 for all environments.

(e) The implementation in this paper incorporates all the original components of the strat-
egy, including the update of the success buffer, the computation of the updated context
distribution, and the utilization of a Gaussian mixture model to search for contexts that
meet the performance threshold.

(f) At the beginning of the training process, the initial contexts are uniformly sampled
from the context space C, following the same approach utilized in all other techniques.

3. For PLR (Jiang et al., 2021b):
(a) ρ staleness coefficient: we set ρ = 0.5 for the SGR, POINTMASS-S:2G and

POINTMASS-S:1T environment.
(b) βPLR temperature parameter for score prioritization: we set βPLR = 0.1 for all the

environments.
(c) Npos parameter that controls the frequency at which V t(·) is updated: we set Npos =

5120 for all the environments.
(d) The technique has been adapted to operate with a pool of tasks. By employing a

binomial decision parameter d, a new, unseen task is randomly selected from the task
pool and added to the set of previously seen tasks. The seen tasks are prioritized and
chosen based on their learning potential upon revisiting, aligning with the approach
utilized in the original strategy. As more unseen tasks are sampled from the pool, the
binomial decision parameter d is gradually annealed until all tasks are seen. Once
this occurs, only the seen tasks are sampled from the replay distribution, taking into
account their learning potential.

4. For GRADIENT (Huang et al., 2022):
(a) Number of stages Nstage: we set 5 stages for SGR, and 10 stages for POINTMASS-

S:2G, POINTMASS-S:1T, and BIPEDALWALKER. We selected the number of stages
based on the original paper experiments and a value search in the set {3, 5, 7, 10}.
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(b) Maximum number of steps per stage: we select 100000 steps as the maximum number
of training steps before switching to the next stage.

(c) ∆αGRADIENT per stage: we set ∆α = 0.2 for SGR, and ∆α = 0.1 for BIPEDAL-
WALKER. For POINTMASS-S:2G and POINTMASS-S:1T, we choose the next α
based on α(i) = 1

Nstage−i . These selections are based on the experimental section
and the provided implementation from Huang et al. (2022).

(d) Reward threshold per stage is set to 0.8 for all the experiments. If the policy achieves
this threshold, it switches to the next stage before reaching the maximum number of
steps.

Our curriculum strategy only requires forward-pass operation on the critic-model to obtain value
estimates for a subset of tasks c and ctarg in C, followed by an argmax operation over this subset.
We note that the computational overhead of our curriculum strategy is minimal compared to the
baselines. In particular, SPDL and CURROT require the same forward-pass operations and perform
an additional optimization step to obtain the next task distribution. CURROT relies on solving an
Optimal Transport problem requiring a high computational cost. Even when reducing the Optimal
Transport problem to a linear assignment problem, as done in practice, the complexity is O(n3). As
for PLR, it has an additional computational overhead for scoring the sampled tasks.
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