
Blameless Users in a Clean Room:
Defining Copyright Protection for Generative Models

Aloni Cohen
Department of Computer Science

University of Chicago
aloni@uchicago.edu

Abstract

Are there any conditions under which a generative model’s outputs are guaranteed
not to infringe the copyrights of its training data? This is the question of “provable
copyright protection” first posed in [VKB23]. They define near access-freeness
(NAF) and propose it as sufficient for protection. This paper revisits the question
and establishes new foundations for provable copyright protection—foundations
that are firmer both technically and legally. First, we show that NAF alone does
not prevent infringement. In fact, NAF models can enable verbatim copying, a
blatant failure of copy protection that we dub being tainted. Then, we introduce
our blameless copy protection framework for defining meaningful guarantees, and
instantiate it with clean-room copy protection. Clean-room copy protection allows
a user to control their risk of copying by behaving in a way that is unlikely to copy
in a counterfactual “clean-room setting.” Finally, we formalize a common intuition
about differential privacy and copyright by proving that DP implies clean-room
copy protection when the dataset is golden, a copyright deduplication requirement.

1 Introduction

A user of a generative model is worried about unwitting copyright infringement. She is worried that
the model’s outputs might resemble copyrighted works in the training data through no fault of her
own, exposing her to legal liability. The user would like some assurance that this won’t happen. We
ask: What assurances can the model provider give, and under what conditions?

Ideally, the generative model would never reproduce copyrighted work. That’s unrealistic. Typical
models can be prompted to generate copyrighted output: print the following [VKB23,
LCG24]. It’s also unnecessary. In the example, copying is clearly the user’s fault. Instead, we should
protect blameless users from inadvertent infringement. If the model reproduces copyrighted work,
it should be because the user induced it to (or was very unlucky). This guarantee should satisfy a
careful, honest user. As long as the user’s use of the model does not itself cause the infringement,
consciously or subconsciously, then the result is unlikely to infringe.

Our goal is to formalize such a guarantee—in a mathematically and legally rigorous way—and to
study its feasibility. We’re after “provable copyright protection” at deployment time, first studied by
Vyas, Kakade, and Barak [VKB23]. They propose near access-freeness (NAF) as an answer.

Our contributions This paper establishes new foundations for provable copyright protection—
foundations that are firmer both mathematically and legally than prior work.

1. We prove that near access-free (NAF) models can enable verbatim copying. NAF is the first
(and only other) attempt at a mathematical definition intended to offer “provable copyright protection”

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

for generative models [VKB23]. The proof leverages NAF’s lack of protection against multiple
prompts or data-dependent prompts.

2. We define tainted models, which enable users to reproduce verbatim training data despite
knowing nothing about the underlying dataset, a blatant failure of copy protection (Section 5). A
meaningful definition of provable copyright protection must exclude tainted models. NAF does not.

3. We introduce a framework for defining copy protection guarantees, called blameless copy
protection (Section 6). It protects blameless users—those who don’t themselves induce infringement—
from unwitting copying.

4. We define clean-room copy protection ((κ, β)-clean), a first instantiation of our frame-
work (Section 7), drawing inspiration from clean-room design. A training algorithm is (κ, β)-clean
if, for every user who copies in a (counterfactual) “clean-room environment” with probability ≤ β,
the probability of copying in the real world is ≤ κ. Clean-room copy protection lets users choose
their tolerance for risk κ and then tune β accordingly. Clean-room copy protection also excludes
tainted models under mild assumptions.

5. We prove that differential privacy (DP) implies clean-room copy protection, formalizing a
common intuition about DP and copyright (Section 8). This holds when the dataset is golden, a
copyright deduplication requirement. Thus, DP provides a way to bring copyrighted expression “into
the clean room” without tainting the model.

This paper does not offer a legal analysis of where liability would lie under existing law. Instead,our
paper develops a mathematical framework for preventing unwitting infringement—where holding the
user liable would be unjust—and proposes a rule for assigning fault when copying does inevitably
occur (Section 9).

Related work There is a lot of recent work on copyright questions for generative AI [CLG+23,
LCG24, HLJ+23], and the first generation of cases are working their way through the courts (e.g.,
New York Times v Microsoft). But most are only tangentially related to goal of stating and proving
formal guarantees against copyright infringement.

Vyas, Kakade, and Barak were the first to propose a mathematical property—near access-freeness
(NAF)—aimed at “preventing deployment-time copyright infringement” [VKB23]. Elkin-Koren,
Hacohen, Livni, and Moran argue that copyright cannot be “reduced to privacy” [EKHLM24].
Referring to both NAF and DP by umbrella term “algorithmic stability”, they argue that the sort of
provable guarantees that [VKB23] and this paper seek do not capture copyright’s complexities. Li,
Shen, and Kawaguchi propose and empirically evaluate an attack called VA3 against NAF [LSK24].
They provide good evidence that the CP-k algorithm of [VKB23] may not prevent infringement, but
some uncertainty remains (see Appendix B.3). We discuss these three papers at length. There is also
work on new NAF algorithms [GAZ+24, CKOX24].

Scheffler, Tromer, and Varia [STV22] give a complexity-theoretic account of substantial similarity,
and a procedure for adjudicating disputes. In contrast, we treat substantial similarity as a black box.
That differential privacy might protect against infringement has been suggested in [BLM20, HLJ+23,
VKB23, EKHLM24, CKOX24]. Livni, Moran, Nissim, and Pabbaraju [LMNP24] study the problem
of attributing credit to inputs of an algorithm that influence its output, motivated by copyright. They
define a condition under which a given input need not be credited (with credit required otherwise).
Under their definition, a differentially private algorithm never has to credit its inputs—a manifestation
of the common intuition that differential privacy prevents copying which we discuss in Section 8.

1.1 Notation

W is the domain of works protected by copyright law. For example,W might be the space of possible
images, texts, or songs. We assumeW is discrete. We usually use w ∈ W to denote an individual
work, along with c, y, z ∈ W as described in the following. We denote by C ⊆ W the set of all
in-copyright works—those currently under copyright protection—and denote a particular copyrighted
work by c ∈ C. A dataset D = (w1, . . . , wn) ∈ W∗ is a list of works with multiplicities allowed. We
sometimes abuse notation and treatD as a set. A conditional generative model (model) p is a mapping
from a prompt x to a probability distribution p(·|x) overW which samples y ∈ W with probability
p(y|x). A training algorithm Train maps a dataset D to a model p. A user u is an algorithm which

2

uses black-box access to a model p, along with auxiliary input aux ∈ {0, 1}∗ ∪ {⊥}, and outputs a
work z ∈ W (see Section 4).

Symbol Definition

W; w, y, z Domain of works (e.g., images, text); individual works
D Dataset D = (w1, . . . , wn)
Train Training algorithm mapping datasets D to models p
p; p(y | x) Conditional generative model; the probability of generating y on prompt x
aux Auxiliary information given to the user (usually aux = ideas(w))
u User taking input aux and access to p and outputting a work z ← up(aux)
τ ; τ(E; aux) Real-world distribution; the probability of event z ∈ E in the

probability experiment p← Train(D), z ← up(aux)

C; c Set of in-copyright works; an in-copyright work
SubSim(w) Set of works substantially similar to w
ideas(w) Non-copyrightable ideas associated with w
“w′ stems from w” w′ is a derivative work of w, represented as edges in graph G
CD; C−D In-copyright works from which some work (CD) / no work (C−D) in D stems
scrub(D, c) Sub-dataset of works in D that don’t stem from c
τ−c; τ−c(E; aux) Clean-room distribution, defined like τ but replacing D with scrub(D, c)

Table 1: Common symbols and their definitions. Bolded terms are exogenously (legally) defined.

2 The legal-technical interface

To use legal concepts within a mathematical formalism, we assume some exogenously-defined
functions reflecting and operationalizing those concepts. They are the interface between math and
law, enabling mathematical study of legal concepts without formalizing the concepts themselves.
Three legal concepts are needed for this paper: substantial similarity, ideas, and access. This section
defines functions SubSim and ideas for the first two. Section 7.1 operationalizes access.

To prove copying, a plaintiff (copyright holder) must prove two things: substantial similarity and
access. The former requires the defendant work’s to be substantially similar to the original, with vague
tests varying by jurisdiction. Access requires the defendant to have had a reasonable opportunity to
view the original (e.g., it’s online). Independent creation of substantially similar works is allowed.
The function SubSim defines what it means for one work to be substantially similar to another.
Definition 2.1 (SubSim). For a work w ∈ W , the set SubSim(w) ⊆ W contains all works w′ that
are substantially similar to w. We assume w substantially similar to itself: w ∈ SubSim(W). For a
set of works W ⊆ W , we define SubSim(W) = ∪w∈WSubSim(w).

Copyright does not protect ideas, only original expression. For example, the text and images in a
cookbook may be copyrighted, but not the method of cooking a dish. To be afforded protection, there
must be a minimum of creativity beyond the ideas. The function ideas defines the non-copyrightable
ideas of a work, as opposed their expression. We represent these ideas as a string which one can view
as encoding a set or any other data type.
Definition 2.2 (ideas). For a work w ∈ W , the string ideas(w) ∈ {0, 1}∗ ∪ {⊥} is (some represen-
tation of) the ideas contained in w. For a set of works W ⊆ W , we define the set of all their ideas
ideas(W) = {ideas(w) : w ∈ W}.

We never actually compute SubSim nor ideas. This is a feature: it means we can be agnostic as to the
specific instantiation. One might view them as capturing the “true” legal concept. Or one may take
a more practical view. For example, interpreting SubSim(w) as reflecting the opinion of a typical
judge or jury. However the reader wishes to interpret these functions is fine (up to any assumptions
stated where used). In particular, our results hold even for SubSim(w) = {w} and ideas(w) = ⊥.
In contrast, a model provider (or data provider) would need to actually work with the copyright
dependency graph in Section 7. We discuss this limitation in Section 9.

3 Near access-free models do not provide provable copyright protection

Near access-freeness (NAF) is a mathematical definition for “provable copyright protection” [VKB23].
This section describes near access-freeness and its limitations. We prove that models can enable

3

verbatim copying while still satisfying NAF. While NAF provides protection against a single prompt
that is independent of the training data, it makes no guarantees against many prompts (composi-
tion) [LSK24], nor a single prompt derived from non-copyrightable ideas (not expression). We
emphasize that our focus is definitions for provable copyright protection, where NAF falls short.
Practically, NAF may still provide useful protection in many natural settings. For space, we defer
algorithms, proofs, and additional discussion to Appendix B.

3.1 NAF Background

NAF informally Near access-freeness (NAF) is the first (and only other) attempt at a mathematical
definition intended to offer “provable copyright protection” for generative models [VKB23]. Moti-
vated by the legal requirement of access, NAF is meant to show “that the defendant’s work is close to
a work which was produced without access to the plaintiff’s work” [VKB23]. NAF is closely related
to DP. But surprisingly, any training algorithm Train can be used in a black-box way to construct a
NAF model without the extra noise that is the hallmark of DP (Theorem 3.3).

The definition of NAF requires a generative model p trained using a copyrighted work c to be close to
a “safe” model safe trained without any access to c. How close is governed by a parameter k ≥ 0:
smaller k means closer models. A corollary of the NAF requirement is that for any prompt x, the
probability p generates something substantially similar to c is at most 2k-times greater than safe
doing so. We heuristically expect the latter probability to be miniscule, if safe and x are independent
of c. If so, this bounds the probability that p’s output infringes on prompt x.

Known limitations of NAF Prior works discuss and critique the NAF framework in three ways:
questioning NAF’s technical effectiveness [LSK24], its legal applicability [LCG24, EKHLM24], and
its real-world practicality [HLJ+23, EKHLM24, LCG24, CKOX24].

∗ Technically, Li, Shen, and Kawaguchi propose and empirically evaluate an attack called VA3
against NAF [LSK24]. See Appendix B.3 for a full discussion. They show that a black-box attacker,
can reliably induce a model to produce outputs that infringe on a target work c∗. They also give a
white-box prompt writing algorithm for diffusion models that greatly improves performance. VA3
provides good evidence that the CP-k algorithm of [VKB23] may not prevent infringement. Some
uncertainty remains because the algorithm implemented in VA3 deviates from the original. The paper
leaves open whether k-NAF (with fixed k) prevents copyright infringement, formalizes a flawed
attack model, and avoids the underlying definitional questions almost entirely.

∗ Legally, Elkin-Koren et al. [EKHLM24] and Lee, Cooper, and Grimmelman [LCG24] argue that
NAF is wrong on the law. See Appendix B.4 for a detailed discussion of these arguments.

∗ Practically, the main concern is that deduplicating data in the way needed to make NAF effective is
infeasible [EKHLM24, LCG24, HLJ+23]. It is unrealistic to produce enough clean training data to
pretrain foundation models, advances in deduplication notwithstanding. Moreover, NAF learning
algorithms are computationally expensive and may lag in performance [CKOX24]. These concerns
are justified and also apply to DP. Still, there may be settings where golden data is practical (Sec. 9),
to say nothing of the value of theory.

3.2 NAF definition and the Copy Protection (CP) algorithm

Near access-freeness (NAF) is defined with respect to a function safe. The safe function maps a
copyrighted data point c ∈ C to a generative model safec ∈ P trained without access to c. An example
sharded-safe is in Appendix B (Alg. 1). Thm. 3.3 presents the main feasibility result: any training
algorithm Train can be used as a black-box to construct an NAF model CP, short for copy protection.

Definition 3.1 (Max KL divergence). For distributions p, q, ∆max(p‖q) := maxy∈Supp(p) log p(y)
q(y) .

Definition 3.2 (kx-NAF [VKB23]). Fix a set C and function safe : C → P . A generative model
p is kx-near access-free (kx-NAF) on prompt x ∈ X with respect to C and safe if for every c ∈ C,
∆max

(
p(·|x) ‖ safec(·, x)

)
≤ kx. A model p is k-NAF with respect to C and safe if for all x ∈ X , it

is kx-NAF for some kx ≤ k.

4

NAF bounds the probability that p’s output copies c relative to the probability under safe. If p is
kx-NAF safe on prompt x with respect to C and safe, then for any c ∈ C:

p(SubSim(c) | x) ≤ 2kx · safec(SubSim(c) | x). (1)

Hence, bounding kx prevents copying c, assuming safec(SubSim(c)|x) is negligibly small (in |c|).
Theorem 3.3 (Copy Protection algorithm [VKB23]). Let p be the model returned by CP (Algorithm 2
in Appendix B), and q1 and q2 be the models returned by sharded-safe. Let kx ≤ − log

(
1 −

dTV

(
q1(·|x), q2(·|x)

))
. Then p is kx-NAF for x with respect to C and sharded-safe.

3.3 Failures of NAF models

We now describe two ways NAF fails to prevent copying, leveraging its lack of protection against
multiple prompts (i.e., composition) and data-dependent prompts. In each case, a user reproduces
training data c ∈ D verbatim. In Section 3.3.1, the model generates c when prompted with ideas(c)—
a prompt that depends on c but not on any copyrightable expression thereof. In Section 3.3.2, the user
issues a fixed sequence of prompts, recovering k bits of the dataset with each query.

3.3.1 CP can regurgitate training data

We show that CP—the main NAF algorithm of [VKB23]—can fail to protect against copying. Using
a prompt containing no copyrightable expression, a user can cause the NAF model returned by CP to
regurgitate copyrighted training data. This is based on an observation of Thomas Steinke [Ste23].

Observe that CP is a black-box transformation from an underlying training algorithm Train. Thus,
CP is really a family of algorithms—one per Train. The following theorem states that there exists
Train∗ such that the resulting NAF algorithm CP∗ fails in the following way. On prompt x = ideas(c)
reproduces training datum c verbatim. We defer the proof of (a slight generalization) of this theorem
to Appendix B.2. It uses the training algorithm Train∗ = Trainkv (Alg. 3) described in Example 5.2.
Theorem 3.4. For model training algorithm Train∗, let CP∗ be the kx-NAF algorithm from Theo-
rem 3.3, and let p∗ ← CP∗. For all ideas, there exists a training algorithm Train∗ such that for all
datasets D and for all works c ∈ D whose ideas are distinct in D (i.e., ∀w ∈ D,w 6= c : ideas(w) 6=
ideas(c)): p∗ (c | ideas(c)) = 1.

3.3.2 k-NAF does not prevent full reconstruction

Our next theorem shows that k-NAF may allow training data to be reconstructed, even if k is
arbitrarily small and independent of x. This is because the k-NAF guarantee does not compose across
a user’s many queries, and each query may leak up to k bits of training data. In more detail, we give
a family of models that are k-NAF with respect to pure noise, yet which enable a user to reconstruct
the dataset verbatim. For any ` ≥ 1, let coin`(·|x) be uniform over {0, 1}` for all prompts x. As a
generative model, coin`(·|·) is clearly a “safe” instantiation of safec for any copyrighted work c. The
proof is deferred to Appendix B.2.
Theorem 3.5. Fix C ⊆ W ⊆ {0, 1}∗. For D ∈ W∗, let L be total the length of D in bits. There
exists a (deterministic) training algorithm Train : (D, k) 7→ pk,D satisfying the following.

• For all D and k > 0: pk,D is k-NAF with respect to C and coin` for ` = max{1, bkc}.
• There exists a user u such that for all D and k > 0: u makes poly(L, 1/k) black-box

queries to pk,D and outputs D with probability > 0.99.

4 The interaction between user and model

People interact with generative models in complex ways: refining prompts and using results to create
a final product whose author is not solely human nor machine. Meaningful copyright protection must
cover such cases. To that end, we make the interaction between a user and the model explicit.

Let u be a (randomized) algorithm called the user, p be a model, and aux ∈ {0, 1}∗ ∪ {⊥} be an
auxiliary input. In cryptography, auxiliary inputs allow one to define security guarantees even when
an algorithm has instance-specific side information. In our setting, the algorithm is the user, and the
side information is the non-copyrightable ideas of an in-copyright work. We denote by up(aux) the

5

algorithm u run with input aux and black-box access to p. The result is a work z ∈ W distributed
as z ← up(aux). Together with a training algorithm Train and a dataset D, this process induces
probability measure τ overW .
Definition 4.1 (User’s output distribution). For a user u, training algorithm Train, dataset D, and
auxiliary information aux, we define the user’s output distribution τ overW as:

τ(w; aux) = Pr
p←Train(D)
z←up(aux)

[z = w].

The probability is taken over the randomness of the algorithms Train, u, and p. Note that τ depends
on Train, u, and D. The notation elides these dependencies to reduce clutter.

Legally, the user’s output infringes on the copyright of a work c ∈ C only if it is substantially similar
to c. Preventing substantial similarity prevents infringement. This motivates our first desideratum.
Desideratum 1. We want τ(SubSim(C); aux) to be as small as possible for as many users as possible.

By considering the user’s output distribution, we require protection against multiple prompts (com-
position) and data-dependent prompts (when aux contains the ideas of work in the training data, as
below). This fixes the shortcomings of NAF that enabled the attacks described in Section 3.3.

5 Tainted models enable copying

This section defines what it means for a generative model to be tainted. Tainted models let users
copy training data of which they have no knowledge. We say a training algorithm Train is tainted if
there is a fixed algorithm u that copies work from the training dataset using only trained model and
unprotected ideas. The order of quantifiers is important: the user u is fixed while the dataset D is
arbitrary. Such a user cannot possibly be at fault—it cannot know a work in all possible datasets D.
Definition 5.1 (Tainted training). We say Train is tainted with respect to ideas if there exists a user u
such that for all datasets D and all works w ∈ D: τ

(
SubSim(D); ideas(w)

)
> 0.99.

If the goal is to prevent copying, being tainted is as bad as it gets. Thus, we get our next desideratum.
We will see that NAF fails this test but Definition 7.6 passes.
Desideratum 2. A meaningful definition of provable copyright protection should bar tainted models.

As an example, we show that any training algorithm can be made tainted (Example 5.2). This is used
to prove Theorem 3.5. Note E.1 presents a negative example: a training algorithm that always returns
a single fixed model is not tainted, under the mild assumption that it is possible for two works to
express the same ideas so differently that no work is similar to both.
Example 5.2. Algorithm 3 in the Appendix describes a tainted algorithm Trainkv, constructed
from any training algorithm Train0 in a black-box way. In words, Trainkv(D) trains a model
q0 ← Train0(D), and also builds a key-value store I mapping ideas id to the set Did = {w ∈
D : ideas(w) = id}. On prompt x, the model qkv returns a random element of I[x] = Dx if it is
non-empty. Otherwise, it returns a generation sampled from q0(·|x). It is easy to see that Trainkv
is tainted. Consider the user up(aux) that returns a sample from p(·|aux). Fix D and w ∈ D, and
let p ← Trainkv(D). By construction, the user always outputs an element of Dideas(w). Therefore,
τ(SubSim(D); ideas(w)) ≥ τ(Dideas(w); ideas(w)) = 1.

5.1 Tainted NAF models

Desideratum 2 lays out a necessary condition for provable copyright protection: exclude tainted
training algorithms. NAF fails this test. This is captured by the following corollaries of Theorem B.5
(slightly generalizing Theorem 3.4) and Theorem 3.5.
Corollary 5.3 (of Thm. B.5). For any ideas, the NAF algorithm CP∗ given by Thm. 3.4 is tainted.

Proof. Consider the user up(aux) that returns a sample from p(·|aux). Fix D and w ∈ D, and let
p∗ ← CP∗(D). By Theorem B.5, τ(SubSim(D); ideas(w)) ≥ τ(Dideas(w); ideas(w)) = 1.

Corollary 5.4 (of Thm 3.5). For any k, ideas, there exists a tainted algorithm Train such that for all
datasets D, the model p← Train(D) is k-NAF with respect to coin`.

6

6 Blameless copy protection: a definitional framework

Our goal is to define provable copyright protection. The previous section gives a negative answer:
provable copyright protection should bar tainted models. This section and those that follow give a
positive answer: provable copyright protection should protect blameless users.

We can’t hope to guarantee that a generative model never reproduces copyrighted work, even works it
was not trained on. Malicious users can always induce copying. (Formally, if the set of in-copyright
works C is non-empty, there exists u that always infringes: τ(SubSim(C);⊥) = 1.) Instead, we wish
to protect blameless users—who don’t themselves induce infringement—from unwitting copying.

This suggests a framework for defining meaningful guarantees, which we call blameless copy
protection. First, define a class of blameless users B. Second, guarantee that for blameless users, the
probability of copying τ(SubSim(C); aux) at most some small κ.
Definition 6.1 (Blameless copy protection). Fix κ > 0 and a class B of blameless users. We say
Train is (κ,B)-copy protective if for all blameless u ∈ B and all aux, D ∈ W∗, C ⊆ W:

τ(SubSim(C); aux) < κ.

The missing piece is B: What makes a user blameless? Different answers will yield different
versions of blameless copy protection. So Definition 6.1 is less a definition than a framework for
definitions. Instantiating it may require additional assumptions. As we cannot perfectly capture legal
blamelessness, we should err on the side of protecting more users rather than less. In Section 7, we
offer a first instantiation of blameless copy protection, inspired by clean-room design. But there may
be very different ways to formalize blamelessness, which we leave for future work. The cryptographic
notion of extraction offers an intriguing approach: a user is blameworthy if a copyright-infringing
work can be efficiently extracted from the user itself.

7 Defining clean-room copy protection

This section formalizes what it means to have access to a copyrighted work (Section 7.1) and
instantiates the blameless copy protection framework (Section 7.2)—drawing inspiration from clean-
room design. In copyright law, a clean room is “a process of producing a product under conditions
guaranteeing independent design and foreclosing the possibility of copying” [Elk90]. The clean room
keeps contamination out, like keeping dust out of a semiconductor lab. The idea comes from cases
involving reverse engineering. Roughly, a team is given a description of design specs of the product
(ideas) but not the product itself (expression), and tasked with producing a compatible product. There
is no access, as long as the team itself was not spoiled by prior familiarity with the product or its
design. As such, the outcome is constructively non-infringing. Even substantial similarities will be
the product of independent creation.

Clean-room design is the inspiration for a counterfactual clean-room distribution where a user
interacts with a model trained without access to certain in-copyright works (Definition 7.4). We
quantify the blamelessness of a user as the probability β that the user—in the clean-room distribution—
would have produced something that is substantially similar to the excluded works (Definition 7.5).
Clean-room copy protection provides a corresponding bound κ on the probability of copying any
work in the real distribution (Define 7.6), where κ depends on β.

7.1 Scrubbing a dataset removes access

A clean room is a setting where a user does not have access to a particular copyrighted work. To pin
this down, we first operationalize the legal concept of access.

The copyright dependency graph We need a way to say whether a work w′ is a derivative of
another work w a copyright-relevant way. Such dependencies are directed, with later works stemming
from earlier works. The copyright dependency graph encodes this relation. It is assumed to capture
the legal concept of access in the following sense: For purposes of copyright law, a dataset D only
gives access to a work w if there is some w′ ∈ D that stems from w.
Definition 7.1 (Copyright dependency graph). The copyright dependency graph is a directed graph
G = (W, E) whose edges reflect dependencies relevant for copyright. If (w,w′) ∈ E, we say that
w′ stems from w. We assume that every w stems from itself: (w,w) ∈ E for all w.

7

It is useful to refer to the set of all copyrighted works for which access is or isn’t implied by access to
a dataset D. We denote these sets by CD and C−D, respectively. For the sake of copyright analysis,
access to D does not constitute access to any copyrighted c ∈ C−D.
Definition 7.2 (CD and C−D). We define CD = {c ∈ C : ∃w ∈ D, (c, w) ∈ E} as the set of
copyrighted works from which any work in D stems. We denote its complement C−D = C \ CD.

The scrub function We define the function scrub to operationalize the legal concept of access. It
removes from a dataset any work that stems from a target copyrighted work c. That is, anyw for which
c→ w is an edge in the copyright dependency graph. The result is a new dataset scrub(D, c) ⊆ D.
For the sake of copyright analysis, access to scrub(D, c) does not constitute to access to c.
Definition 7.3 (scrub). Fix copyright dependency graph G = (W, E), dataset D and work c. The
dataset scrub(D, c) = (w ∈ D : (c, w) 6∈ E) is the sub-dataset of D of works not stemming from c.

Observe that CD = {c ∈ C : scrub(D, c) 6= D} and C−D = {c ∈ C : scrub(D, c) = D}

7.2 Clean training algorithms: copy protection for blameless users in a clean room

This section gives a clean-room inspired formulation of copy protection. Informally, we say that a
training algorithm is (κ, β)-clean if for all users u: either (i) u would have copied in a clean-room
setting with probability at least β; or (ii) u copies in the real world with probability at most κ. Making
this precise, we define the user’s clean-room output distribution (Definition 7.4), blameless users in
the clean room (Definition 7.5), and (κ, β)-clean-room copy protection (Definition 7.6).

7.2.1 The user’s clean-room distribution

We define a user’s clean-room distribution, a counterfactual to its true distribution τ . For a copyrighted
work c, we denote by τ−c the user’s output distribution in a clean room where the model doesn’t
depend on c. The only difference from the user’s real-world output distribution τ (Definition 4.1) is
that the model is trained on scrub(D, c) instead of D.
Definition 7.4 (User’s clean-room distribution). For user u, training algorithm Train, dataset D,
work c, and auxiliary information aux, we define the user’s clean-room distribution τ−c for c as:

τ−c(w; aux) = Pr
p←Train(scrub(D,c))

z←up(aux)

[z = w].

This is closely related to NAF. The model p← Train(scrub(D, c)) is NAF’s safe model safec for an
appropriately defined function safe. The clean-room distribution τ−c is the distribution over outputs
that results when the user given aux interacts with safec.

7.2.2 Clean-room blamelessness and copy protection

We postulate that blameless users can control their risk of copying when using a model trained in a
clean room. Given β > 0, a blameless user can guarantee that they copy a work c that was “outside
the clean room” with probability at most β. This should hold even if the user is exposed to c in
some other than through the model. (For a weaker assumption, see Note E.3.) People are constantly
exposed to copyrighted works, yet we somehow to manage to avoid copying every day. Using a
model trained without access to c shouldn’t change that.

We call these users β-blameless in a clean room, or β-blameless for short. Definition 7.5 formalizes
this idea. Recall that C−D is the set of copyrighted works from which no element of D stems
(Definition 7.2). Thus, the set of works “outside the clean room” is C−D ∪ {c}.
Definition 7.5 (Blameless in the clean room (β-blameless)). For 0 ≤ β ≤ 1, a user u is β-blameless
in the clean room (β-blameless) with respect to D, C, Train if for all c ∈ C and all aux:1

τ−c

(
SubSim

(
C−D ∪ {c}

)
; aux

)
≤ β.

Instantiating our framework (Definition 6.1), we now define clean training algorithms as those that
provide copy protection to users who are blameless in the clean room.

1Equivalently, Bclean
β (D, C, ideas) := {u : ∀c ∈ C, ∀aux, τ−c

(
SubSim

(
C−D ∪ {c}

)
; id

)
≤ β}.

8

Definition 7.6 (Clean-room copy protection; (κ, β)-clean). For κ, β > 0, we say Train is (κ, β)-clean
if for all C ⊆ W , D ∈ W∗, all users u who are β-blameless (w.r.t. C, D,Train), and all aux:

τ(SubSim(C); aux) ≤ κ.
If this only holds for datasets D in an admissible set D ⊆ W∗, we say Train is (κ, β)-clean for D.
Remark 7.7 (How small is β?). We think of β as the probability that a “truly blameless” user
(whatever that means) nevertheless produces something substantially similar to a copyrighted work.
There is a limit to how small this can be. Even a monkey on a typewriter—truly blameless if anyone
is—has a non-zero β. We conjecture that β ≈ 10−6 or 10−9 is achievable by a conscientious user.

7.2.3 Clean-room copy protection is not tainted

By Desideratum 2, a good definition of provable copy protection should exclude tainted training
algorithms. Theorem D.1 shows that clean-room copy protection passes this test, under a reasonable
assumption on ideas and SubSim. Roughly, the assumption is that there exist at least n distinct ideas
each of which can be expressed in m� n ways satisfying a strong dissimilarity property: that for
any distinct w and w′, the set of works substantially similar to both w and w′ is empty.

8 Differential privacy’s protection against copying

Many works have suggested that differential privacy [DMNS06] (DP) should protect against copying
if the training data are deduplicated [BLM20, HLJ+23, VKB23, EKHLM24, CKOX24, LMNP24].
This section turns the suggestion into a theorem. For background on DP, see Appendix C.

At a high level, we show that DP training blameless users from copyright infringement (in the sense
of Definition 7.6) if the training dataset is golden, a copyright-deduplication condition defined below.
If so, the probability of copying is at most ≈ eεβND, where β is a user’s probability of copying in
the clean room and ND = |CD| is the number of copyrighted works to which D grants access. To
guarantee the risk is at most κ, the user sets β ≈ κ/eεND. The linear dependence on ND is not ideal,
but may sometimes be good enough or improved (Note E.4.)

This allows a user choose their appetite for copyright risk κ and then act to set β accordingly. Stephen
King writing his next bestseller has a much lower risk tolerance (κ = 10−9) than Joe Schmoe writing
a wedding toast (κ = 10−1). Most users are somewhere in between. For ε = 5 and ND = 200, 000
Stephen King needs β ≈ 10−15 while Joe Schmoe only needs β ≈ 10−6. If β ≈ 10−15 is too small
(Remark 7.7), Stephen King can instead forgo using the LLM altogether.

A dataset D is golden if at most one item w ∈ D stems from any copyrighted work c.2 That item
could be c itself or a derivative work. No protected original expression appears in more than one
element of a golden dataset. For example, it can contain one copy or parody of the Abbey Road
album cover (not both), and many parodies of the out-of-copyright Mona Lisa. Note E.5 explains
why golden datasets will typically remain golden as the set of in-copyright works evolves over time.
Definition 8.1 (Golden dataset). Let G = (W, E) be a copyright dependency graph, and C ⊆ W be
the set of in-copyright works. A dataset D is golden (with respect to G, C) if for all c ∈ C there is at
most one w ∈ D such that (c, w) ∈ E.

Theorem 8.2. Let Train be (ε, δ)-differentially private for ε > 0, δ ≥ 0. Let ND = |CD|. Then Train
is (κ, β)-clean for golden datasets D, for all β ≥ 0 and κ ≥ (eεND + 1)β +NDδ.

Proof. Fix C ⊆ W , D, and user u that is β-blameless (Def. 7.5). We must show that for all aux,
τ(SubSim(C); aux) ≤ κ. Because D is golden, |D \ scrub(D, c)| ≤ 1. Hence, datasets scrub(D, c)
and D are either equal or neighboring for all c ∈ C. Applying DP and post-processing, we have
τ(E) ≤ eε · τ−c(E) + δ for all events E and all c ∈ C.

τ(SubSim(C); aux) ≤ τ(SubSim(C−D); aux) +
∑
c∈CD

τ(SubSim(c); aux) (union bound)

≤ β +NDδ + eε ·
∑
c∈CD

τ−c(SubSim(c); aux) (DP; Prop. 8.3 below)

≤ (eεND + 1)β +NDδ ≤ κ (β-blameless)
2The term is borrowed from [VKB23] who use it only informally and with a different meaning.

9

In the proof above, we need to bound the probability τ(SubSim(C−D); aux) of similarity with some
work in C−D in the real distribution τ . Blamelessness only gives us a bound in the clean-room
distribution τ−c. Proposition 8.3 shows that the latter implies the former.
Proposition 8.3. Let u be β-blameless w.r.t. D, C, Train. For all aux: τ (C−D; aux) ≤ β.
Proof. By definition of C−D, scrub(D, c) = D and hence τ−c = τ . Also, C−D = C−D ∪ {c}. Thus,
τ(C−D; aux) ≤ τ−c (SubSim (C−D ∪ {c}) ; aux) ≤ β, with the last inequality by blamelessness.

9 Discussion: provable copyright protection in practice?

What if copying occurs? People copy without generative models, and will continue copying with
them. One way to evaluate the usefulness of a copyright-mitigation measure is to consider what
happens when copying does occur. Who should pay?

It is hard to assign culpability on the basis of NAF alone, as tainted NAF models can induce a user
acting appropriately to infringe. Clean-room copy protection gives a clearer theoretical account of
who is culpable if training is differentially private. The provider is culpable if the data wasn’t golden;
the user is culpable if not blameless; possibly both are culpable, or neither. However, this test is
impossible to apply as blamelessness cannot in general be checked.

Even so, a simple indemnification rule is possible: The model provider pays for infringement if the
copied work appears too often in the training data. This is a question of fact that legal process and
forensic experts are well-suited to resolve. Experts for each party can examine the training data
and testify before the finder of fact. Our indemnification rule gives users what they want. Users
are indemnified when there is any possibility that the model is to blame, and they can control their
risk tolerance by tuning β. The rule also gives model providers what they want. Besides offering a
valuable protection for users, the provider can trade off their overall exposure to copyright penalties
with their effort spent cleaning the data. Perhaps the provider can even pass the liability to third-party
data providers contracted to provide golden data. Many generative AI services already indemnify
their users against copyright liability, but impose restrictions that could require a complex forensic
analysis of the creation of the infringing artifact to decide whether the indemnification applies. In
contrast, our indemnification rule imposes no restrictions on the user and reduces the question of
liability to a clear question of fact.

How reasonable are the requirements for clean room protection? Theorem 8.2 requires DP
models, golden data, and blameless users. Are these requirements reasonable?

Constructing a golden dataset large enough to pre-train a foundation model is hopeless. Making a
golden dataset is much harder than deduplication (already a major challenge [LIN+21]): it depends
on squishy legal standards and on data outside the dataset. Fine-tuning is much more promising.
Even with differential privacy, tens of thousands of training data can suffice to train useful models.
Creating a golden dataset with tens of thousands of items seems feasible but expensive. One only
needs to be able to determine if two items stem from a common in-copyright work (i.e., siblings in
the copyright dependency graph). For a given pair of items, doing so with confidence is plausible
with appropriate domain expertise. Another approach would be to create or commission new work
with known copyright dependencies. There are non-technical ways to address the challenge of golden
datasets. Suppose the trainer license the data from a data provider. They could require metadata to
include copyright dependencies, or that the data provider provide golden data. Either way, the license
agreement can indemnify users if the data provider’s failure to appropriately clean or tag the data
leads to infringement. Not all is lost if the data is imperfect. The guarantees will still hold for any
work satisfying the golden condition.

Blamelessness presents a greater challenge: it is not checkable, not even by the user. Still, we believe
that diligent users who are attentive to the possibility of inadvertent infringement can guarantee
β-blamelessness for β small enough to make Theorem 8.2 meaningful. This is the crux of the matter.
Why do I think that users can avoid being unduly influenced by works to which they have been
exposed? I don’t have a good answer. More than anything, I can’t shake the belief that I could do
it. That I could productively use ChatGPT-4o to produce a story or image that is wholly original,
bearing no resemblance even to stories and images with which I am intimately familiar. People are
able to be truly creative, despite constant exposure to copyrighted work. Somehow you and I manage
to avoid copying every day.

10

Acknowledgements

We are indebted to Mayank Varia for many helpful discussions and encouragement. We thank Gautam
Kamath, Yu-Xiang Wang, Seewong Oh, and especially Thomas Steinke for early discussions when
the idea of this paper was still taking shape. Theorem 3.4 is based on an observation of Thomas. We
thank Sarah Scheffler, Randy Picker, Lior Strahilevitz, James Grimmelmann, anonymous reviewers,
and attendees of the 2024 Works-in-Progress Roundtable on Law and Computer Science at the
University of Pennsylvania for feedback on an early draft.

References
[BLM20] Olivier Bousquet, Roi Livni, and Shay Moran. Synthetic data generators–sequential

and private. Advances in Neural Information Processing Systems, 33:7114–7124, 2020.

[CKOX24] Wei-Ning Chen, Peter Kairouz, Sewoong Oh, and Zheng Xu. Randomization tech-
niques to mitigate the risk of copyright infringement. arXiv preprint arXiv:2408.13278,
2024.

[CLG+23] A Feder Cooper, Katherine Lee, James Grimmelmann, Daphne Ippolito, Christo-
pher Callison-Burch, Christopher A Choquette-Choo, Niloofar Mireshghallah, Miles
Brundage, David Mimno, Madiha Zahrah Choksi, et al. Report of the 1st workshop on
generative ai and law. arXiv preprint arXiv:2311.06477, 2023.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography: Third Theory of Cryp-
tography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings
3, pages 265–284. Springer, 2006.

[EKHLM24] Niva Elkin-Koren, Uri Hacohen, Roi Livni, and Shay Moran. Can copyright be
reduced to privacy? Forthcoming, Foundations of Responsible Computing, 2024.
https://arxiv.org/abs/2305.14822.

[Elk90] David S Elkins. NEC v. Intel: A guide to using “clean room” procedures as evidence.
10 Computer L.J. 453, 1990.

[GAZ+24] Aditya Golatkar, Alessandro Achille, Luca Zancato, Yu-Xiang Wang, Ashwin Swami-
nathan, and Stefano Soatto. Cpr: Retrieval augmented generation for copyright
protection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12374–12384, 2024.

[HLJ+23] Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A. Lemley,
and Percy Liang. Foundation models and fair use. Journal of Machine Learning
Research, 24(400):1–79, 2023.

[LCG24] Katherine Lee, A. Feder Cooper, and James Grimmelmann. Talkin’ ’bout ai generation:
Copyright and the generative-ai supply chain. Forthcoming, Journal of the Copyright
Society, 2024. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=
4523551.

[LIN+21] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris
Callison-Burch, and Nicholas Carlini. Deduplicating training data makes language
models better. arXiv preprint arXiv:2107.06499, 2021.

[LMNP24] Roi Livni, Shay Moran, Kobbi Nissim, and Chirag Pabbaraju. Credit attribution and
stable compression. Advances in Neural Information Processing Systems, 37:2663–
2685, 2024.

[LSK24] Xiang Li, Qianli Shen, and Kenji Kawaguchi. Va3: Virtually assured amplification
attack on probabilistic copyright protection for text-to-image generative models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12363–12373, 2024.

11

https://arxiv.org/abs/2305.14822
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4523551
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4523551

[Ste23] Thomas Steinke. Personal communication, 2023.

[STV22] Sarah Scheffler, Eran Tromer, and Mayank Varia. Formalizing human ingenuity: A
quantitative framework for copyright law’s substantial similarity. In Proceedings of
the 2022 Symposium on Computer Science and Law, pages 37–49, 2022.

[VKB23] Nikhil Vyas, Sham Kakade, and Boaz Barak. Provable copyright protection for
generative models. arXiv preprint arXiv:2302.10870, 2023.

12

A Are we trying to reduce copyright to privacy? No!

Elkin-Koren, Hacohen, Livni, and Moran argue that copyright cannot be “reduced to privacy.”
Referring to both NAF and DP by umbrella term algorithmic stability, they argue that the sort of
provable guarantees that [VKB23] and this paper seek do not capture copyright’s complexities.

Algorithmic stability approaches, when used to establish proof of copyright in-
fringement are either too strict or too lenient from a legal perspective. Due to this
misfit, applying algorithmic stability approaches as filters for generative models
will likely to distort the delicate balance that copyright law aims to achieve between
economic incentives and access to creative works.

Too strict by excluding permitted uses of copyrighted data: (1) works in the public domain; (2)
unprotected aspects of copyrighted work (e.g., ideas, facts, procedures); and (3) lawful uses of
copyrighted work, especially fair use. Too lenient when protected expression originating in one
work is present in many other works in a training data set. For example, copies, derivatives, or
snippets of the original (whether fair use or not) would undermine any NAF- or DP-based guarantee
if unaccounted for.

We completely agree, and suspect that [VKB23] would too. The claim that “copyright can be reduced
to privacy” is a straw man. It would be foolish to suggest that the whole of copyright law for
generative AI be governed my a mathematical formalism like NAF or DP. That doesn’t mean that a
mathematical formalism offering legal guarantees isn’t worthwhile—as a thought experiment or as a
first step towards practical solutions.

Still, a formalism that is both too lenient and too strict won’t support a legal conclusion either way.
As we cannot reduce copyright to a mathematical formalism, we must choose how to err. In this
work, we seek sufficient conditions under which one can guarantee no infringement. Conditions that
are too strict will leave room for improvement, but won’t be fatally flawed. But conditions that are
too lenient would be fatal—they would not suffice. Thus, we must address the possibility that one
work’s copyrighted expression appears in many other works.

B Deferred material on near access-free models (Section 3)

This section presents our detailed treatment of near access-free models. It describes near access-
freeness and its limitations. We prove that models can enable verbatim copying while still satisfying
NAF. While NAF provides protection against a single prompt that is independent of the training
data, it makes no guarantees against many prompts [LSK24], nor a single prompt derived from
non-copyrightable ideas (not expression).

To make this section self-contained, we repeat material from Section 3, quoting freely.

B.1 Definitions and main results from [VKB23]

NAF is defined with respect to a function safe. The safe function maps a copyrighted data point
c ∈ C to a generative model safec ∈ P trained without access to c. An example safe function
is sharded-safe. We simplify the notation of [VKB23] by fixing the divergence to maximum KL
divergence.

Definition B.1 (Max KL divergence). For distributions p, q, ∆max(p‖q) := maxy∈Supp(p) log p(y)
q(y) .

Definition B.2 (kx-NAF [VKB23]). Fix a set C and function safe : C → P . A generative model p is
kx-near access-free (kx-NAF) on prompt x ∈ X with respect to C and safe if for every c ∈ C,

∆max

(
p(·|x) ‖ safec(·, x)

)
≤ kx.

A model p is k-NAF with respect to C and safe if for all x ∈ X , it is kx-NAF for some kx ≤ k.

The appeal of this definition is that it can be used to bound the probability that model p produces
outputs that violate the copyright of a work c, relative to the probability under safe.

13

Lemma B.3 (k-NAF event bound [VKB23]). Suppose model p is kx-NAF on prompt x with respect
to C and safe. Then for any c ∈ C and any event E ⊆ Y:

p(E|x) ≤ 2kx · safec(E|x).

Letting E = SubSim(c) be the event that y is substantially similar to c, we get

p(SubSim(c)|x) ≤ 2kx · safec(SubSim(c)|x).

As copying requires substantial similarity, bounding kx suffices to prevent violation whenever
safec(SubSim(c)|x) is negligibly small. Heuristically, we expect safec(SubSim(c)|x) to be negligible
in |c|. It may sometimes be large, e.g., when x contains the copyrighted work c [VKB23].

Theorem 3.3 presents the main feasibility result of [VKB23]: any training algorithm Train can be
used as a black-box to construct an NAF model CP, short for copy protection.
Theorem B.4 ([VKB23]). Let p be the model returned by CP, and q1 and q2 be the models returned
by sharded-safe. Then p is kx-NAF with respect to C and sharded-safe, with

kx ≤ − log

(
1− dTV

(
q1(·|x), q2(·|x)

))
. (2)

Observe that CP(D) is well-defined if and only if ∀x, ∃y: q1(y|x) > 0 and q2(y|x) > 0.

Algorithm 1: sharded-safe [VKB23]
Parameters: Dataset D, training algorithm Train
Do the following once: // or derandomize for statelessness;

Partition D into disjoint datasets D1 and D2;
Set q1 ← Train(D1), q2 ← Train(D2);

Input: c ∈ C
Let i = min{j : c 6∈ Dj};
Result: qi

Algorithm 2: CP: Copy-Protection [VKB23]
Input: Dataset D
Learn: Run sharded-safe(D) to obtain q1, q2 as in Algorithm 1
Result: The model p with

p(y|x) =
min{q1(y|x), q2(y|x)}

Z(x)

where Z(x) is a normalization constant that depends on x.

B.2 Failures of NAF models

B.2.1 CP can regurgitate training data

We show that CP—the main NAF algorithm of [VKB23]—can fail to protect against copying. Using
a prompt containing no copyrightable expression, a user can cause the NAF model returned by CP to
regurgitate copyrighted training data. This is based on an observation of Thomas Steinke [Ste23].

The following claim is a slight generalization of Theorem 3.4. In words, instantiating CP = CPkv

with the (tainted) training algorithm Trainkv (Algorithm 3) described in Example 5.2, causes training
data regurgitation.

Note that Trainkv is itself built from some underlying training algorithm Train0. The only requirement
we need of Train0 is that it produces models with full support. That is, for every dataset D, model
p0 ← Train0(D), prompt x, and output y ∈ W , we require p(y|x) > 0.
Theorem B.5. Let D be a dataset. For ideas id ∈ I, let Did = {w′ ∈ D : ideas(w′) = id}.
Let Train0 produce models with full support. Let Trainkv, sharded-safekv and CPkv be as defined

14

Algorithm 3: Trainkv (for Example 5.2 and Theorem B.5)
Parameters: Training algorithm Train0
Input: Data D
Output: Model qkv
Let q0 ← Train0(D);
Initialize empty key-value store I , whose keys are ideas id, values are sets of works W ⊂ W;
for w ∈ D do

I[ideas(w)]← I[ideas(w)] ∪ {w} // add w to I[ideas(w)];

Let qkv the conditional generative model which on prompt x does the following:;
W ← I[x];
if W 6= ∅ then return y sampled uniformly from W ;
else return y sampled from q0(·|x);

Result: qkv

in Algorithms 3, 1, and 2, defined with respect to Train0 (and the preceding algorithms). Let
p← CPkv(D). Then for all w ∈ D:

p
(
Dideas(w) | ideas(w)

)
= 1.

In particular, for any copyrighted work c ∈ D whose unique ideas are unique, we get

p(c | ideas(c)) = 1.

Theorem B.5 does not contradict the CP theorem (Theorem 3.3). This is because CP is only kx-NAF,
where kx depends on the prompt x. In our construction, the bound on kx given by Theorem 3.3 is not
vacuous for x ∈ ideas(D).

Proof of Theorem B.5. Unrolling the algorithms, CPkv(D) calls sharded-safekv, which shards the
data into D1 and D2 and trains qi ← Trainkv(Di). Without loss of generality, suppose w ∈ D1. Let
id = ideas(w).

By construction, q1(Did|id) = 1 (as in Example 5.2). Thus, for all outputs y ∈ W:

p(y|id) ∝ min
{
q1(y|id), q2(y|id)

}
=

{
q2(y|id) if y ∈ Did

0 if y 6∈ Did

The distribution p(·|id) is well-defined if there exists y ∈ Did such that q2(y|id) > 0. The model
q2(·|id) returns an element of D2 ∩Did if it has non-empty intersection, or it returns a sample from
an underlying model with full support (the model returned by Train0). Either way, q2(y|id) > 0 for
all y ∈ D2 ∩Did.

The claim follows immediately:

p(Did | id) = 1− p(Did | id) = 1.

B.2.2 k-NAF does not prevent full reconstruction

Our next theorem shows that k-NAF may allow training data to be reconstructed, even if k is
arbitrarily small and independent of x. This is because the k-NAF guarantee does not compose across
a user’s many queries, and each query may leak up to k bits of training data.

We give a family of models that are k-NAF with respect to a model that returns pure noise, yet enable
a user to reconstruct the dataset verbatim. For any ` ≥ 1, let coin`(·|x) be uniform over {0, 1}`
for all prompts x. As a generative model, coin`(·|·) is clearly a “safe” instantiation of safec for any
copyrighted work c.
Theorem (Theorem 3.5). Fix C ⊆ W ⊆ {0, 1}∗. For D ∈ W∗, let L be total the length of D in bits.
There exists a (deterministic) training algorithm Train : (D, k) 7→ pk,D satisfying the following.

• For all D and k > 0: pk,D is k-NAF with respect to C and coin` for ` = max{1, bkc}.

15

• There exists a user u such that for all D and k > 0: u makes poly(L, 1/k) queries to pk,D
and outputs D with probability > 0.99.

Remark B.6. The theorem and proof can be adapted to more realistic safe by encoding D in the bias
of a hash of p’s outputs. But the added complexity would obscure the technical idea used in the proof:
biasing safe can reveal D without violating NAF.

Proof of Theorem 3.5. We parse D as a bit string of length L, and let D[j] be its jth bit. We prove
the result separately for k ≥ 1 and 0 < k < 1.

For k ≥ 1, Train outputs the model pk,D as follows:

pk,D(·|x) =

{
(D[x], D[x+ 1], . . . , D[x+ `− 1]) if x ∈ [L− `+ 1]

sample uniform y ∈ {0, 1}` otherwise

The model pk,D is k-NAF with respect to C and coin`: ∀x, ∆max

(
pk,D(·|x) ‖ safec(·, x)

)
≤ k. To

reconstruct D, the user u queries p`(·|x) for x = i`+ 1 for i = 0, 1, . . . , (L− 1)/`.

For 0 < k < 1, Train sets β = 2k − 1 and outputs the model pk,D as follows:

pk,D(·|x) =

{
y ∼ Bernoulli(1

2 + β(D[x]− 1
2)) if x ∈ [L]

y ∼ Bernoulli(1
2) otherwise

The intuition is that pk,D encodes D[x] in the bias of the output of pk,D(·|x), with the magnitude of
β ∈ (0, 1) controlling the strength of the bias. The model pk,D is k-NAF with respect to coin1: ∀x,
∆max

(
pk,D(·|x) ‖ safec(·, x)

)
= log 1/2+β(D[x]−1/2)

1/2 ≤ log(1 + β) ≤ k.

To determine D[j] with greater than > 1− 1
100L , the user u makes poly(L, log 1/β) = poly(L, 1/k)

queries to the model, and stores the majority. The user does this for each j ∈ [L] and outputs the
result. By a union bound, the user’s output is equal to D with probability greater than 0.99.

B.3 VA3: an empirical attack on NAF [LSK24]

Li, Shen, and Kawaguchi propose and empirically evaluate a “Virtually Assured Amplification Attack”
against NAF [LSK24]. At a high level, [LSK24] shows that an attacker, interacting with an NAF
model in a black-box manner, can reliably induce a model to produce outputs that infringe on a target
work c∗. They also give a white-box prompt writing algorithm for diffusion models (Anti-NAF) that
greatly improves the performance of their attacks.

Overall, the work provides good evidence that the algorithms proposed by [VKB23] may not prevent
infringement. Some uncertainty remains because the algorithm implemented in [LSK24] deviates
from the original, as explained below. The paper leaves open whether k-NAF (with fixed k) prevents
copyright infringement, formalizes a flawed attack model, and avoids the underlying definitional
questions almost entirely.

We now describe [LSK24] in more detail, offering a somewhat different interpretation than the
original.

The paper’s main focus is the Amplification Attack. Given a target copyrighted work c∗, an attacker
repeatedly queries a model with some prompt x = x(c∗). It returns the generation most similar to
c∗. This process amplifies the one-shot probability of infringement. For example, from 0.40% to
13.64% when x is the original caption of c∗ in the training data, or from 8.52% to 77.36% using the
Anti-NAF prompt generator. In our view, this not actually the paper’s main negative result for NAF.

More significant (for our purposes) is the existence of prompts x whose one-shot probability of
infringement is non-negligible: 0.40% or 8.52% in the previous example. The message is similar
to our Theorem B.5. Namely, that the NAF constructions of [VKB23] admit models for which
prompts x derived from non-copyrightable aspects of c∗ can produce infringing generations. Based
on the top half of [LSK24, Table 1], the prompts trivialize NAF’s protection by making kx ≈
log(1/safe(SubSim(c∗) | x)).

Though the paper does not speculate, we suspect that the mechanism for the failure is similar to
our construction in Theorem B.5. The model, repeatedly fine-tuned on c∗, regurgitates c∗ with high
enough probability that it survives the reweighting of CP and CP-k [LSK24, Fig. 8].

16

Now we turn to the paper’s limitations.

First, the attack model has a conceptual flaw, highlighting the need for our definitions-first approach.
The attacker knows c∗ and is actively trying to induce a similar generation [LSK24, Sec. 4.1]. Indeed,
the Amplification Attack requires knowing c∗. This setup allows trivial attacks, like prompting
return c∗. Such an attack would not be meaningful. Any infringement would be the users’ fault, not
something we care to prevent. Still, the flaw in the attack model doesn’t affect the paper’s experiments.
Because they use a text-to-image model, he prompts used in the attack are just a few words long and
contain nothing copyrightable.

Second, the results say nothing about k-NAF, where a fixed k upper-bounds kx ≤ k for every prompt
x. At best, the experiments are negative results for the particular kx-NAF algorithm CP-k given in
[VKB23], where kx depends on x. But as we explain next, it is not entirely clear. (Our Theorems 3.4
and 3.5 are for kx-NAF and k-NAF algorithms, respectively.)

Third, the algorithm in [LSK24] deviates from CP-k in an important way. As originally defined,
CP-k is a rejection-sampling version of CP (Algorithm 2). Given a model p, a safe model safe, and
constant k, prompt x, and generation y, let ρ(y|x) = log (p(y|x)/safe(y|x)). Oversimplifying, CP-k
repeatedly samples y ← p(·|x) until ρ(y|x) ≤ k, and returns the final sample. [VKB23] proves that
CP-k is kx-NAF for kx = k + log(1/ν(x)), where ν(x) = Pry[ρ(y|x) ≤ k].

[LSK24]’s implementation differs. Instead of fixing k, they fix ν(x). The experiments sample many
generations y ← p(·|x), and return the ν(x) = 5%, 10%, . . . with smallest ρ(y|x). This strikes us as
a meaningful difference. At a minimum, the CP-k theorem doesn’t apply as is. Despite the gap, we
view the results of [LSK24] as strong evidence of weaknesses of CP-k. We conjecture that there is a
value of kx for which the implemented version achieves kx-NAF with high probability, but did not
attempt to prove it.

B.4 On NAF’s legal relevance

NAF is motivated by two concepts from copyright law: access and substantial similarity. The
plaintiff in a copyright infringement claim has the burden of proving that the defendant copied
original expression from the copyrighted work. The plaintiff does so by proving that (i) the defendant
had access to the copyrighted work, and (ii) the defendant’s work is substantially similar to the
plaintiffs work.

With the above in mind, [VKB23] explain the relevance of NAF to copyright liability.

To show a copyright violation has occurred the plaintiff must prove that “there are
substantial similarities between the defendant’s work and original elements of the
plaintiff’s work” (assuming access). Its negation would be to show that defendant’s
work is not substantially similar to the original elements of the plaintiff’s work.
Our approach would instead correspond to showing that the defendant’s work is
close to a work which was produced without access to the plaintiff’s work. [W]e
think this is a stronger guarantee...

As for why it’s a stronger guarantee, the argument is as follows. The probability that the defendant’s
work—produced by the real model p—is substantially similar to plaintiff’s work is not much greater
than the probability would have been had the defendant used the safe model (which had no access).
We heuristically expect the latter probability to be miniscule. Hence, substantial similarity between
the defendant’s and plaintiff’s works is exceedingly unlikely.

Elkin-Koren et al. [EKHLM24] correctly argue that copyright cannot be “reduced to privacy.” How-
ever, this is a straw man of version of [VKB23] and the present paper (see Appendix A for additional
discussion).

The sharpest criticism is by Lee, Cooper, and Grimmelman who argue that NAF is simply wrong on
the law [LCG24]. “[NAF] is explicitly inspired by copyright’s concept of access, but copyright law
itself does not work that way. Just as two authors can independently create identical works and each
hold a copyright in theirs, it is not a defense to copyright infringement that you would have copied
the work from somewhere else if you hadn’t copied it from the plaintiff.”

We agree that NAF’s envisioned legal defense doesn’t work (technical guarantees aside). To see why,
consider a case in which the model’s generated output was in fact substantially similar to a piece of

17

training data. As to the access element, the defendant did in fact have access to the copied work by
way of the model. The defendant’s work may even be so “strikingly similar” to the plaintiff’s that
access becomes moot.3 Despite being central to NAF, access appears to be a red herring. Whatever
copyright protection NAF offers is by way of minimizing the likelihood of producing substantially
similar outputs.

C Differential privacy background [DMNS06]

An algorithm is differentially private (DP) if its output never depends too much on any one unit of
input data. How much is “too much” is governed by a parameter ε > 0. Smaller values of ε provide
stronger guarantees. In this work, a “unit of input data” is one work w in the training dataset D.
Definition C.1 (Neighboring datasets). Datasets D,D′ ∈ W∗ are neighboring if they differ by
inserting or deleting a single element. We denote neighboring datasets by D ∼ D′.
Definition C.2 ((ε, δ)-Differential privacy). Let ε, δ ≥ 0, and let M : W∗ → Ω be an algorithm
mapping dataset D ∈ W∗ to some output domain Ω. M is (ε, δ)-differentially private ((ε, δ)-DP) if
for all neighboring pairs D,D′ ∈ W∗, and all subsets of outputs S ⊆ Ω:

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ.

Anything that one does with the output of a DP algorithm is also DP. In DP parlance, DP is robust to
post-processing in the presence of arbitrary auxiliary information. Formally, for any function f , any
string aux, and any set S:

Pr[f(M(D), aux) ∈ S] ≤ eε · Pr[f(M(D′, aux)) ∈ S] + δ. (3)

D Clean-room copy protection is not tainted

Theorem D.1. Fix β < 1, n ≥ 1, and m ≥ n
β . Suppose there exists W = (wi,j) ∈ Wm×n such that

for all i 6= i′ ∈ [m] and all j ∈ [n]:

ideas(wi,j) = ideas(wi′,j) and SubSim(wi,j) ∩ SubSim(wi′,j) = ∅.
If Train be tainted with respect to ideas, then Train is not (κ, β)-clean.

The proof uses Lemma D.2, stated below.

Proof of Theorem D.1. Fix ideas and let Train be tainted with respect to ideas. Let u be the user
guaranteed by taintedness of Train, and τ its output distribution. We must show Train is not (κ, β)-
clean. Namely, that there exist ũ, C̃, and D̃ for which (i) ũ is β-blameless, and (ii) there exists ˜aux
such that τ̃(SubSim(C̃); ˜aux) ≥ κ. Here, τ̃ is ũ’s output distribution.

Let id = ideas(w1,1). Define ũ = uid to be the user with id hard-coded that simulates u(id), always
ignoring its auxiliary input aux. By construction, τ̃(E; aux) = τ(E; id) for all aux and all events
E. That is, the event E is independent of aux. Because ũ ignores its auxiliary input, we can invoke
Lemma D.2. Thus, there exists D̃ such that ũ is β-blameless with respect to D̃, C̃ = D̃, and Train
(condition (i) above). Moreover, wi,1 ∈ D̃ for some i ∈ [n].

Let id′ = ideas(wi,1). By hypothesis, id = id and therefore ũ = uid′ . Taintedness of Train implies
condition (ii) above:

τ̃(SubSim(C);⊥) = τ(SubSim(C); id′) = τ(SubSim(D); id′) > 0.99 ≥ κ.
Lemma D.2. Fix β < 1, n ≥ 1, and m ≥ n

β . Suppose there exists W = (wi,j) ∈ Wm×n such that
for all i 6= i′ ∈ [m] and all j ∈ [n]: SubSim(wi,j)∩SubSim(wi′,j) = ∅. Let u be a user that ignores
its auxiliary input: up(aux) = up(⊥) for all aux. For all Train, there exists x ∈ [m]n such that u is
β-blameless with respect to D(x) =

(
wxj ,j

)
j∈[n], C = D(x), and Train.

3“The plaintiff can prove that the defendant copied from the work by proving by a preponderance of the
evidence that ... there is a striking similarity between the defendant’s work and the plaintiff’s copyrighted
work.” From the Ninth Circuit’s Manual of Model Civil Jury Instructions https://www.ce9.uscourts.gov/
jury-instructions/node/326.

18

https://www.ce9.uscourts.gov/jury-instructions/node/326
https://www.ce9.uscourts.gov/jury-instructions/node/326

Proof of Lemma D.2. Because u ignores aux, we omit it throughout. Take C = D, which implies
C−D = ∅. Hence, user u is β-blameless if for all w ∈ D: τ−w(SubSim(w)) ≤ β.

Let D(x)
−j = scrub(D(x), wxj ,j) := (wxj′ ,j

′)j′ 6=j . (For a counter example, we can choose the
copyright dependency graph and hence scrub.) Define

pj(x) = τ
(x)
−wxj,j

(SubSim(wxj ,j)) = Pr
p←Train(D

(x)
−j)

z←up(⊥)

[z ∈ SubSim(wxj ,j)].

We must show that:
∃x ∈ [m]n,∀j ∈ [n] : pj(x) ≤ β. (?)

For x ∈ [m]n, define j∗(x) = argmaxj∈[n] pj(x). Define the sets Zj = {x ∈ [m]n : j∗(x) = j}.
One of the Zj contains at least mn/n distinct strings. Moreover, there is a subset X∗ ⊆ Zj of at
least (mn/n)/mn−1 = m/n strings that agree on all but the jth coordinate.

Summarizing, the set X∗ satisfies three properties. (1) For all x, x′ ∈ X∗, j∗(x) = j∗(x′) =: j∗.
(2) All x, x′ ∈ X∗ disagree at the j∗(x)th coordinate, and agree on all other coordinates. (3) |X∗| ≥
m/n.

By (2), D(x)
−j∗ = D

(x′)
−j∗ for all x, x′ ∈ X∗. It follows that τ (x)−wxj∗ ,j

∗ = τ
(x′)
−wj∗ ,x

′
j∗

=: τ∗ for all

x, x′ ∈ X∗. Consider the events Ex = SubSim(wxj∗ ,j∗) for x ∈ X∗. By hypothesis and by
(2), these events are disjoint. Hence,

∑
x∈X∗ τ

∗(Ex) ≤ 1. By (3), there exists x ∈ X∗ such
that pj∗(x) = τ∗(Ex) ≤ n/m ≤ β. By (1) and definition of j∗(x), we have for all j ∈ [n],
pj(x) ≤ pj∗(x) ≤ β. This proves (?) and completes the proof.

E Deferred remarks

Note E.1 (A fixed model is not tainted). The following claim states that any training algorithm that
always returns a single fixed model is not tainted, under the mild assumption that it is possible for
two works to express the same ideas so differently that no work is similar to both.

Claim E.2. Suppose there exists a pair of works w0, w1 ∈ W such that ideas(w0) = ideas(w1) and
SubSim(w0)∩ SubSim(w1) = ∅. Then for any fixed model q, the constant algorithm Trainq(D) = q
is not tainted.

Proof. Let Di = {wi} and fix a user u. Let τi be the user’s output distribution (Definition 4.1) with
D = Di and aux = ideas(wi). By construction, τ1 = τ∗ = τ2. Note that τ∗(wi) ≤ 1/2 for one of
i = 0, 1. Equation (??) is violated for the corresponding Di.

Note E.3 (Blameless users’ auxiliary information). One can weaken this assumption (making more
users blameless) by restricting aux in Definitions 7.5 and 7.6. For example, by allowing aux to include
ideas(c) but not original expression of works in C−D ∪ {c}. This would undermine Desideratum 1,
yielding qualitatively weaker protection. DP would still suffice (Theorem 8.2) with this change.

Note E.4 (On the linear dependence on ND). Notice that κ > ND · (β + δ) grows linearly with
ND = |CD|. This only yields a meaningful bound if ND � 1/(β + δ). Along with the difficulty
of creating enormous golden datasets (Section 9), this is another reason that our approach is most
practical when only medium-sized datasets are required (i.e., fine-tuning).

On the other hand, the factor of ND = |CD| from the union bound is unreasonably pessimistic. Ideas
sometimes differ so greatly that the risk of substantial similarity is essentially 0: a photorealistic
bird will never resemble Dr. Seuss’s Cat in the Hat. If the user is targeting a fixed set of ideas
id (conditioning τ on id), one might instead take the union bound over C idD = {c ∈ CD : id ∈
ideas(SubSim(c))}. We expect that typically N id

D := |C idD| � |CD| = ND.

19

Note E.5 (Golden datasets remain golden over time). Theorem 8.2 states that (ε, δ)-differentially
private models are (κ, β)-clean for golden datasets (and appropriate κ and β). The set of golden
datasets D depends on the set of in-copyright works C. For example, every D is golden when nothing
is in-copyright (C = ∅).
This presents a challenge: Will a golden dataset remain golden as the set of works protected by
copyright evolves? As copyrights expire and new works are created, the sets of in-copyright works
today C and tomorrow C′ will diverge. For Definition 7.6 to offer lasting protection, we need D ⊆ D′.

Fortunately, it will typically be true that datasets remain golden as the set of in-copyright works
evolves. This requires three observations. First, expiring copyrights don’t affect goldenness. If D is
golden for C, then D is golden for C ∩C′. Second, a work is afforded copyright protections as soon as
it is fixed in a tangible medium. This means that if a work currently exists will ever be in-copyright
(in C′), then it already in-copyright (in C). Hence, C′ \ C contains only works that do not yet exist.
The exception is when a work becomes newly eligible for copyright protections, and the change in
eligibility is applied retroactively. For example, if a court extends copyright to a new class of works.
Third, no work can stem from a work created later. Combined with the previous observation, D is
golden with respect to C′ \ C. Putting it all together, we have that D ∈ D implies that D is golden
with respect to (C ∩ C′) ∪ (C′ \ C) = C′. That is, D ∈ D′.

20

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The introduction includes an overview of the organization of the paper with
pointers to all the main claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In addition to fully stating assumptions throughout, particular discussion of
limitations are in Section 3.1,Section 9, and Appendix A,
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21

Answer: [Yes]

Justification: Full assumptions and proofs of all theoretical results are included in the body
or appendix. (And if I thought the proofs were incorrect, you wouldn’t be reading this.)

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The various provisions in the Code either don’t apply to this very theoretical
work, or are addressed in the next question.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Based on the examples in the Guidelines below, this very theoretical paper
does not present the sort of societal impacts this question is asking about. Of course, how
copyright law applies to AI has great potential to impact society. Even so, any societal
impacts of this paper would be tenuous.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

25

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Notation

	The legal-technical interface
	Near access-free models do not provide provable copyright protection
	NAF Background
	NAF definition and the Copy Protection (CP) algorithm
	Failures of NAF models
	CP can regurgitate training data
	k-NAF does not prevent full reconstruction

	The interaction between user and model
	Tainted models enable copying
	Tainted NAF models

	Blameless copy protection: a definitional framework
	Defining clean-room copy protection
	Scrubbing a dataset removes access
	Clean training algorithms: copy protection for blameless users in a clean room
	The user's clean-room distribution
	Clean-room blamelessness and copy protection
	Clean-room copy protection is not tainted

	Differential privacy's protection against copying
	Discussion: provable copyright protection in practice?
	Are we trying to reduce copyright to privacy? No!
	Deferred material on near access-free models (Section 3)
	Definitions and main results from VyasKB23
	Failures of NAF models
	CP can regurgitate training data
	k-NAF does not prevent full reconstruction

	VA3: an empirical attack on NAF li2024va3
	On NAF's legal relevance

	Differential privacy background dwork2006calibrating
	Clean-room copy protection is not tainted
	Deferred remarks

