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ABSTRACT

Several recent studies have shown that the use of extra in-distribution data can lead
to a high level of adversarial robustness. However, there is no guarantee that it
will always be possible to obtain sufficient extra data for a selected dataset. In this
paper, we propose a biased multi-domain adversarial training (BiaMAT) method
that induces training data amplification using freely available auxiliary datasets.
The proposed method can achieve increased adversarial robustness on a primary
dataset by leveraging auxiliary datasets via multi-domain learning. Specifically, data
amplification on both robust and non-robust features can be accomplished through
the application of BiaMAT as demonstrated through an additional analysis based
on shuffle testing. Our experimental results indicate that BiaMAT can effectively
utilize the robust and non-robust features present in various auxiliary datasets.
Moreover, we demonstrate that while existing methods are vulnerable to negative
transfer due to the distributional discrepancy between auxiliary and primary data,
the proposed method enables neural networks to flexibly leverage diverse image
datasets for adversarial training by successfully handling the domain discrepancy
through the application of a confidence-based selection strategy.

1 INTRODUCTION

The usefulness of adversarial examples in training deep neural networks (DNNs) demonstrates that the
method through which these structures perceive the world is markedly different from that employed
by humans. Many approaches (Dhillon et al., 2018; Xie et al., 2019) have been proposed to bridge
the gap in adversarial robustness between humans and DNNs. Among these, training based on the
use of adversarial examples as training data is considered as the most effective method to improve the
robustness of DNNs. Unfortunately, as demonstrated by Schmidt et al. (2018), the sample complexity
of adversarially robust generalization is substantially higher than that of standard generalization.
To address this issue, several recent studies (Carmon et al., 2019; Stanforth et al., 2019) leveraged
extra (in-distribution) unlabeled data and developed methods for improving the sample complexity of
robust generalization. However, although such methods enable state-of-the-art adversarial robustness,
they are not always capable of obtaining extra in-distribution data for any selected data distribution.

In this paper, we propose a biased multi-domain adversarial training (BiaMAT) method to improve
the adversarially robust generalization ability of a classifier on a primary dataset based on the use of
auxiliary datasets. The proposed method yields the desired effect based on the following assumption:

Assumption 1. A common robust and non-robust feature space exists between the distributions of
primary and auxiliary data.

Robust features (Ilyas et al., 2019) exhibit human-perceptible patterns, and if two datasets are
sufficiently similar from a human perspective, it can be inferred that they share robust features.
On the other hand, non-robust features are imperceptible to the human visual system, and thus,
we cannot determine whether Assumption 1 is correct. Fortunately, several recent studies have
provided empirical evidence in support of the existence of a common non-robust feature space
among diverse image datasets (Naseer et al., 2019; Lee et al., 2021). Therefore, unlike existing
state-of-the-art methods (Carmon et al., 2019; Stanforth et al., 2019), which employ in-distribution
data, under BiaMAT, the distributions of the auxiliary datasets and the corresponding primary dataset
can differ. For example, by applying BiaMAT, we can leverage CIFAR-100 (Krizhevsky et al., 2009),
Places365 (Zhou et al., 2017), or ImageNet (Chrabaszcz et al., 2017; Deng et al., 2009) as an auxiliary
dataset for adversarial training on CIFAR-10 (Krizhevsky et al., 2009).
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The proposed method achieves an inductive transfer between adversarial training on the primary
dataset (referred to as the “primary task”) and auxiliary datasets (referred to as “auxiliary tasks”).
In other words, BiaMAT learns primary and auxiliary tasks in parallel within the framework of
multi-domain learning (Nam & Han, 2016), and the inductive bias provided by the auxiliary tasks
is transferred to the primary task through a common hidden structure. This mechanism can be
considered to be an increase in the size of the training dataset (Caruana, 1997). In addition, based
on the dichotomy between robust and non-robust features, we classify the effects of adversarial
training into two types and demonstrate the usefulness of the proposed method irrespective of the
type considered. In particular, we dissociate the compound effect of the proposed method into the
effects of consistency transfer and robust feature transfer and assess the contribution of each through
shuffle testing (Caruana, 1997). Our experimental results on CIFAR-10, CIFAR-100, and ImageNet
demonstrate that BiaMAT can effectively use training signals generated from various auxiliary
datasets. Furthermore, we show that while existing methods are vulnerable to negative transfer due
to the distributional discrepancy between auxiliary and primary data, the proposed method enables
neural networks to flexibly leverage diverse image datasets for adversarial training by successfully
dealing with domain discrepancy through the application of a confidence-based selection strategy. In
summary, our paper makes the following contributions:

• We propose the use of BiaMAT to improve the adversarial robustness of classifiers on primary
datasets by leveraging auxiliary datasets that are more accessible than extra in-distribution datasets.

• We analyze the proposed method by applying the shuffle test to show that the effects of BiaMAT
arise from a combination of consistency transfer and robust feature transfer.

• We introduce a confidence-based selection strategy, which enables the proposed method to leverage
diverse image datasets without resulting in negative transfer.

• By applying BiaMAT with various auxiliary datasets, we show that different datasets can be related
in terms of adversarial robustness, even though they seem unrelated from a human perspective.

2 BIASED MULTI-DOMAIN ADVERSARIAL TRAINING

We first describe consistency learning and robust feature learning in Section 2.1. A naive method
to reduce the sample complexity of adversarially robust generalization by using auxiliary datasets
is presented in Section 2.2. In Section 2.3, we theoretically analyze how auxiliary datasets can
induce training data amplification in multi-domain learning by using the dichotomy between robust
and non-robust features. Finally, in Section 2.4, a confidence-based selection strategy is proposed
to address the negative transfer problem encountered in the naive method when a large domain
discrepancy exists between the primary and auxiliary datasets.

2.1 PRELIMINARY: ROBUST AND NON-ROBUST FEATURES

Tsipras et al. (2018) described the effect of adversarial training by constructing a classification task
through which training examples (x, y) ∈ Rd+1 × {±1} are drawn from a distribution, as follows:

y
u.a.r∼ {−1,+1}, x1 =

{
+y w.p. p
−y w.p. 1− p , x2, . . . , xd+1

i.i.d.∼ N (ηy, 1), (1)

where x1 is a robust feature that strongly correlates to the label (p ≥ 0.5), and the remaining features
x2, . . . , xd+1 are non-robust features that weakly correlate to the label (0 < η < 1). For this data
distribution, the authors demonstrated that the following linear classifier could attain a standard
accuracy arbitrarily close to 100%, although it is susceptible to adversarial attacks:

f(x) = sign(w>unifx), where wunif =

[
0,

1

d
, . . . ,

1

d

]
. (2)

Most importantly, they indicated the importance of adversarial training via the following lemma:
Lemma 1. (Tsipras et al.) Adversarial training results in a classifier that assigns zero weight to
non-robust features x2, . . . , xd+1.

Lemma 1 shows that adversarial training (i) lowers the sensitivity of the classifier to non-robust
features and (ii) achieves a certain level of classification accuracy by learning robust features. We
refer to (i) and (ii) as consistency learning and robust feature learning, respectively. We discuss
additional related work in Appendix C.
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2.2 A NAIVE BIASED MULTI-DOMAIN ADVERSARIAL TRAINING METHOD

Multi-domain learning (Dredze et al., 2010) is a strategy for improving the performance of tasks
that solve the same problem across multiple (but related) domains by sharing information across
these domains. In standard settings, domains typically share semantic features but have different
image distributions. For example, in the Office dataset (Saenko et al., 2010), data that belong to
the same class (e.g., keyboard) are separated into different domains (e.g., amazon, webcam). In
adversarial settings, by contrast, it is possible to find evidence for tighter-than-expected relationships
between different datasets (Naseer et al., 2019). In particular, the use of domain-agnostic adversarial
examples (Naseer et al., 2019) and robust training methods that leverage different datasets (Chan et al.,
2020; Lee et al., 2021) demonstrates that common adversarial spaces can exist across considerably
different datasets. Therefore, our proposed method expands the range of related domains relative to
that considered under standard settings with the goal of maximizing the adversarial robustness of
the classifier on one primary dataset. In this respect, BiaMAT differs from standard multi-domain
learning, for which the primary goal is increasing the average performance over multiple domains.
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Figure 1: Conceptual network architecture of a
multi-domain learning model. Domains share a
feature embedding function, but each has its own
prediction function.

To examine this, we consider a multi-domain
learning problem on T datasets Dt =
{(xti, yti)}

nt
i=1 ⊂ X ×Yt, where t ∈ {1, . . . , T}.

The hypothesis of the problem is denoted by
H = {ht : X → Yt}Tt=1, and ht = ft ◦ g.
Here, ft is the prediction function that outputs
class probabilities for dataset Dt, and g is the
shared feature embedding function. Figure 1 pro-
vides an overview of this problem. The param-
eterized functions {ft}Tt=1 and g are trained in
parallel on {Dt}Tt=1. The loss function for Dt

is defined as `t = E(x,y)∼Dt
[`adv(x, y;ht, S)] ,

where `adv is the adversarial loss, and S repre-
sents the set of perturbations an adversary can
apply. Any existing adversarial losses (Madry
et al., 2017; Zhang et al., 2019) can be employed for `adv. We focus on the `∞-robustness, the most
common robustness scenario considered in the field of heuristic defenses (Madry et al., 2017; Zhang
et al., 2019; Lee et al., 2020). Our goal is to attain a small adversarial loss on the primary dataset.
Thus, assuming that D1 is the primary dataset, the proposed method minimizes the following loss:

L = `1 +
α

T − 1

T∑
t=2

`t, where α ∈ [0, 1]. (3)

α is a hyperparameter that biases the multi-domain learning toward the primary dataset. The detailed
procedure of the naive BiaMAT is described in Appendix A. Although the proposed naive BiaMAT
can improve the adversarial robustness of classifiers, it can also cause negative transfer (or hurt
performance) depending on the auxiliary datasets used (Table 1). To address this issue, we introduce
a confidence-based selection strategy in Section 2.4.

2.3 THEORETICAL MOTIVATION

In this section, we analyze the proposed method from the perspective of consistency learning and
robust feature learning, which are the two effects of adversarial training. In particular, based on
Section 2.1, we define a simple Gaussian model to demonstrate how the proposed method induces
training data amplification using an auxiliary dataset that satisfies Assumption 1.

Setup and overview Given a shared feature embedding function g : X → Z , we define primary
and auxiliary data models in the feature space Z , sampled from each of the following distributions:

(Primary) y
u.a.r∼ {−1,+1}, z1 ∼ N (y, u2), z2, . . . , zd+1

i.i.d.∼ N (ηy, 1),

(Auxiliary) ỹ = sign(γ) · y, z̃1 ∼ N (y|γ|, v2), z̃2, . . . , z̃d+1
i.i.d.∼ N (ηy|γ|, 1),

(4)

where γ ∈ [−1, 1] is the correlation coefficient between the two tasks. We use the accent (tilde) to
represent variables associated with the “auxiliary task”. The correlation between the two tasks can
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also be represented by a covariance matrix; however, since this does not change our theoretical results,
we use a correlation coefficient for simplicity. In Equation 4, z1 is a robust feature that is strongly
correlated with the label, whereas the other features z2, · · · , zd+1 are non-robust features that are
weakly correlated with the label (0 < η < 1). If the two datasets are highly correlated in terms of
robust and non-robust features, from Equation 2, it is evident that the following linear classification
models can achieve a high standard accuracy on the primary and auxiliary datasets, respectively,
although they have a low degree of adversarial robustness:

(Primary) p(y = +1 | z) = σ(w>z), p(y = −1 | z) = 1− σ(w>z),
(Auxiliary) p(ỹ = +1 | z̃) = σ(γw>z̃), p(ỹ = −1 | z̃) = 1− σ(γw>z̃),

(5)

where w =
[
0, 1d , . . . ,

1
d

]
, and σ(·) denotes a sigmoid function. To study the effect of adversarial

training on the auxiliary task on the consistency learning from the primary task, we derive the
gradients of the primary and auxiliary adversarial losses with respect to the non-robust features,
which are then back-propagated through the shared feature embedding function g. In addition, we
demonstrate how the application of shuffle testing enables us to dissociate the compound effect of the
proposed method into the effects of consistency transfer and robust feature transfer.

Consistency transfer First, we construct the adversarial feature vector z̃adv = g(x̃+ δ) : δ ∈ S
against our classification model, where x̃ ∈ X denotes the auxiliary input vector. The objective
function of the adversary to deceive our model is the cross-entropy loss (Madry et al., 2017).

Lemma 2. The expectation of the adversarial feature vector against the auxiliary task is

E
[
z̃adv
1

]
= y, E

[
z̃adv
i

]
= (η − λ)y, where i ∈ {2, · · · , d+ 1} and η < λ < 1. (6)

Proof is in Appendix B. Our classification model is trained on z̃adv by applying the stochastic gradient
descent to the cross-entropy loss. In particular, by deriving the auxiliary loss gradient with respect to
the adversarial feature vector, we determine the training signals that are generated from the auxiliary
task and transferred to the primary task through the shared feature embedding function.

Theorem 1. Let `(;w) and ˜̀(; γw) be the loss functions of the primary and auxiliary tasks, re-
spectively. When the auxiliary data are closely related to the primary data from the perspective of
robust and non-robust features, i.e., |γ| = 1, the expectation of the gradient of ˜̀with respect to
z̃adv
i : i ∈ {2, · · · , d+ 1} is

E

[
∂ ˜̀

∂z̃adv
i

]
=
γ

d
E
[
σ(γw>z̃adv)− γt− 1− γ

2

]
=

1

d
E
[
σ(w>zadv)− t

]
= E

[
∂`

∂zadv
i

]
, (7)

where t = 1
2 (y + 1). The theoretical results in the cases of |γ| < 1 (weak correlation) are dis-

cussed in Appendix B. From Lemma 2 and Theorem 1, for i ∈ {2, · · · , d+ 1}, it can be seen that
sign

(
E
[
z̃adv
i

])
= sign

(
E
[
∂ ˜̀

∂z̃adv
i

])
= −y. That is, the application of a gradient descent guides the

shared feature embedding function to pay less attention to non-robust features in the images. In
addition, Theorem 1 shows that if the auxiliary task is closely related to the primary task in terms
of non-robust features, the training signals obtained from the auxiliary adversarial loss and back-
propagated to the shared feature embedding function have the same effect as those of the primary task
from the perspective of consistency learning. Therefore, this can be considered data amplification for
consistency learning, and we define this effect of the proposed method as consistency transfer.

Robust feature transfer If |γ| = 1 and the weight value for the robust feature z1 is non-zero,
clearly, the auxiliary task on z̃adv can induce data amplification for robust feature learning as well
as consistency learning. We define this effect of the proposed method as robust feature transfer. To
empirically assess whether the proposed method can improve the robust generalization via robust
feature transfer, we conduct a shuffle test in which: (i) the class labels are shuffled among all samples
in an auxiliary dataset, that is, the true labels in an auxiliary dataset are replaced by random labels;
(ii) a classifier is then trained by a naive approach (Section 2.2) using the shuffled auxiliary dataset,
and the trained model is evaluated on the primary task. The original shuffle test was used by Caruana
(1997) to show that the advantages of multitask learning depend on the training signals for the
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auxiliary tasks; here, we use the shuffle test to separately observe the two effects (consistency and
robust feature transfers) induced by BiaMAT.

To investigate the effect of adversarial training on the shuffled auxiliary dataset, we replace the true
labels in the auxiliary data defined in Equation 4 with random labels. That is, we define the auxiliary
feature–label pairs, (z̃, q) ∈ Rd+1 × {±1}, sampled from a distribution as follows:

z̃1 ∼ N (y|γ|, v2), z̃2, . . . , z̃d+1
i.i.d.∼ N (ηy|γ|, 1), q

u.a.r∼ {−1,+1}. (8)

For the case in which the auxiliary task is adversarially trained on (z̃, q) pairs by applying the
stochastic gradient descent to the cross-entropy loss, the following theorem can be proven:

Theorem 2. Let ˜̀(; γw) be the loss function of the auxiliary task. Then, if |γ| = 1, the signs of
z̃adv
i : i ∈ {2, · · · , d+ 1} and the auxiliary loss gradient with respect to z̃adv

i are

sign
(
z̃adv
i

)
= −γq = sign

(
∂ ˜̀

∂z̃adv
i

)
with high probability. (9)

Because the gradient with respect to z̃adv
i is of the same sign as z̃adv

i with high probability, the
application of a gradient descent makes the shared feature embedding function to refrain from using
non-robust features, thereby enabling the model to achieve consistency transfer. Conversely, the
shuffled dataset cannot provide any robust features because the use of random labels completely
eliminates the relationship between images and labels. To further investigate the effect of adversarial
training on the shuffled auxiliary dataset with regard to robust feature transfer, we assign a positive
number to the weight (defined in Equation 5) corresponding to the robust feature z1 and derive the
training signals that are sent to the shared feature embedding function as follows:

Theorem 3. Let ˜̀(; γw) be the loss function of the auxiliary task. Then, if |γ| = 1 and w1 > 0, the
signs of z̃adv

1 and the auxiliary loss gradient with respect to z̃adv
1 are

sign(z̃adv
1 ) = y, sign

(
∂ ˜̀

∂z̃adv
1

)
= −γq with high probability. (10)

Assuming that the classification model is still vulnerable to adversarial examples,
∣∣∣ ∂ ˜̀

∂z̃adv
i

∣∣∣ is indepen-
dent of q because an adversary can always yield a large loss regardless of q. Hence, in the theoretical
case of an infinite batch size, the adversarial training on the shuffled auxiliary dataset will not affect
the robust feature learning from the primary task because y and q are independent of each other, and
q is sampled uniformly at random. In practice, however, the minibatch gradient descent is employed
to train DNNs, and thus, unfavorable training signals can be generated from the auxiliary task on
the shuffled dataset in terms of robust feature learning. To resolve this issue, we use the expectation
of random labels instead of the one-hot random labels. Furthermore, to close the gap between the
theory (|γ| = 1) and practice, we use a shared prediction function for the primary and the shuffled
auxiliary data. In other words, we assign yrandom = [ 1c , . . . ,

1
c ], where c is the number of the classes in

the primary dataset, to all the auxiliary data for the shuffle test. A theoretical analysis of our Gaussian
model demonstrating that the use of the expectation of random labels can achieve consistency transfer
is provided in Appendix B, and the shuffle test results are described and discussed in Section 3.2.

2.4 A CONFIDENCE-BASED SELECTION STRATEGY

We can consider the case in which the use of a shuffled auxiliary dataset results in better adversarial
robustness than that produced by the use of the normal (unshuffled) version of the dataset. In
adversarial settings, a common non-robust feature space can exist between considerably different
datasets (Naseer et al., 2019; Lee et al., 2021). That is, the high applicability of the proposed method
arises from consistency transfer. By contrast, recent studies (Tsipras et al., 2018; Ilyas et al., 2019;
Santurkar et al., 2019) have shown that robust features exhibit human-perceptible patterns. Hence,
an auxiliary dataset that has a weak relationship with a primary dataset from a human perspective
can assist the primary task by enhancing consistency learning but, at the same time, it can suppress
the advantages of multi-domain learning by generating an inductive bias toward extraneous robust
features–an effect called “negative transfer”. As an example, Ilyas et al. (2019) showed that, by
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constructing a non-robust dataset based on randomly and uniformly selected target classes, it is
possible to train a classifier that outperforms one that is trained with a non-robust dataset containing
false (and deterministically selected) robust features. In this respect, random labels can enhance the
effectiveness of the proposed method by preventing irrelevant robust feature transfer.

On this basis, we introduce a confidence-based selection strategy in BiaMAT. The confidence-based
method first (i) trains a classifier from scratch on the primary dataset; (ii) after a few epochs (warm-up
epochs), sets up a threshold using a hyperparamter π ∈ R+ and the mean confidence of the sampled
primary data to sort out the auxiliary data samples that are likely to cause negative transfer; (iii)
selects the lower-than-threshold auxiliary data in each training batch based on the confidence in
the primary classes; (iv) uses the low confidence data in a shuffle-testing manner (yrandom) and the
remaining auxiliary data as in the naive method (yt). In summary, the confidence-based method
enables neural networks to flexibly leverage diverse datasets for adversarial training, without requiring
the class distribution match between the primary and auxiliary datasets. The pseudo-code for the
overall procedure of BiaMAT is presented in Algorithm 1.

3 EXPERIMENTAL RESULTS AND DISCUSSION

3.1 EXPERIMENTAL SETUP Algorithm 1 Biased multi-domain adversarial training
(BiaMAT) with the confidence-based selection strategy

Require: Primary dataset D1, auxiliary datasets
{Dt}Tt=2, model parameter θ, batch size n, training
iterations K, warmup iterations Kw, learning rate
τ , hyperparameters α ∈ R+ and π ∈ R+

1: for k = 1 to Kw do
2: /* Warm-up without auxiliary datasets */
3: L ← 2

n

∑
{x1

i ,y
1
i }

n/2
i=1∼D1

`adv(x
1
i , y

1
i ;h1, S)

4: θ ← θ − τ · ∇θL
5: end for
6: confidence threshold ω ← π 2

n

∑n/2
i=1 maxh1(x

1
i )

7: for k = Kw + 1 to K do
8: `1 ← 2

n

∑
{x1

i ,y
1
i }

n/2
i=1∼D1

`adv(x
1
i , y

1
i ;h1, S)

9: for Dt in auxiliary datasets {Dt}Tt=2 do
10: `high, `low ← 0, 0
11: /* The confidence-based selection strategy for

auxiliary datasets */
12: for xti, yti in {xti,yti}

n/2(T−1)
i=1 ∼ Dt do

13: if maxh1(x
t
i) < ω then

14: `low += 2(T−1)
n `adv(x

t
i, y

random;h1, S)
15: else
16: `high += 2(T−1)

n `adv(x
t
i, y

t
i ;ht, S)

17: end if
18: end for
19: `t ← `low + `high
20: end for
21: L ← `1 +

α
T−1

∑T
t=2 `t

22: θ ← θ − τ · ∇θL
23: end for
24: Output: adversarially robust classifier h1 = f1 ◦ g

Datasets We complement our analysis
with experiments conducted on CIFAR-10,
CIFAR-100, and ImageNet. ImageNet is
resized (Chrabaszcz et al., 2017) to dimen-
sions of 64 × 64 and then randomly di-
vided into datasets that contain 100 and
900 classes, which are termed ImgNet100
and ImgNet900, respectively. SVHN (Net-
zer et al., 2011), Places365, and ImageNet
are used as auxiliary datasets. Auxiliary
data that do not fit the input size of the
classifier are resized to the primary data
size. For instance, when CIFAR-10 is used
as the primary dataset, Places365 is down-
sampled to a dimension of 32 × 32, and
ImageNet32x32 is leveraged.

Adversarial attack methods Fast gra-
dient sign method (FGSM) (Goodfellow
et al., 2014) is an one-step attack using the
sign of the gradient. Madry et al. (2017)
proposed an iterative application of the
FGSM method (PGD). Carlini & Wagner
(CW) (Carlini & Wagner, 2017) attack is a
targeted attack that maximize the logit of
a target class and minimize that of ground-
truth. Autoattack (AA) (Croce & Hein,
2020) is an ensemble attack that consists
of two PGD extensions, one white-box at-
tack (Croce & Hein, 2019), and one black-
box attack (Andriushchenko et al., 2019).

Implementation details In our experiments, we adopt the adversarial training methods proposed
by Madry et al. (2017) and Zhang et al. (2019) as the baseline methods, denoted by AT and TRADES,
respectively. On the CIFAR datasets, we use WRN28-10 (Zagoruyko & Komodakis, 2016) and
WRN34-10 for AT and TRADES, respectively. Although increasing the number of training epochs is
expected to lead to higher adversarial robustness because of the use of additional data, owing to the
high-computational complexity of adversarial training, we restrict the training of BiaMAT to 100
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Table 1: Shuffle test results and accuracy (%) comparison of the models trained by AT and the
naive BiaMAT using auxiliary datasets on CIFAR-10. More results on the effectiveness of the naive
BiaMAT can be found in Appendix G. Red numbers denote worse robustness than the vanilla AT.

Method Auxiliary dataset Shuffled Clean AA

AT - - 87.37 48.53

AT+BiaMAT
(naive)

SVHN 7 87.23 47.44
3 87.05 48.53

CIFAR-100 7 87.65 48.48
3 87.12 49.89

Places365 7 87.15 48.88
3 88.58 49.24

ImageNet 7 89.01 50.33
3 87.87 49.81

or 110 epochs with a batch size of 256 (128 primary and 128 auxiliary data samples, respectively).
To evaluate adversarial robustness, we apply several attacks, including PGD, CW, and AA, with an
`∞-bound with the same setting as that used in the training. PGD and CW with K iterations are
denoted by PGDK and CWK , respectively, and the unperturbed test set is denoted by Clean. We
consistently select the best checkpoint (Wong et al., 2020) to measure the adversarial robustness of
the model on the test set. Further details regarding the model implementation, including an ablation
study on choosing different values of π, are summarized and discussed in Appendix I.

3.2 NAIVE VERSION OF BIAMAT AND SHUFFLE TEST RESULTS

In Section 2.3, we describe the shuffle test as a tool to understand the effects of the proposed method.
Table 1 lists the results of executing the shuffle test on CIFAR-10 using several auxiliary datasets.
Here, the naive BiaMAT without shuffling is equivalent to Algorithm 1 where Kw = 0 and ω = 0,
whereas the shuffled version is set to Kw = 0 and ω = 1. From Table 1, we find that the application
of the naive BiaMAT with shuffling leads to better adversarial robustness than that induced by the
non-shuffled counterpart (except for ImageNet), even though image-label mappings in the auxiliary
datasets are disrupted. These results demonstrate that the robust feature transfer induced by the naive
method using all the data in each of the SVHN, CIFAR-100, and Places365 datasets is detrimental
to the primary task on CIFAR-10. Specifically, the use of SVHN exhibits the most severe negative
transfer among all the auxiliary datasets tested, and this is consistent with the fact that SVHN
differs most from CIFAR-10 from the robust feature perspective (see Appendix H for more details).
Furthermore, SVHN is the only dataset that does not derive improved robustness compared with the
baseline method (AT) in the shuffle test, indicating that it may not share enough non-robust features
with CIFAR-10 to achieve consistency transfer. By contrast, Table 1 shows that the application of
the naive method using ImageNet leads to significant improvements in adversarial robustness. In
particular, the fact that blocking robust feature transfer using random labels leads to less performance
improvements indicates that beneficial inductive transfer in terms of robust feature learning can
be achieved from the auxiliary task on ImageNet. That is, the shuffle test results demonstrate that
ImageNet shares a large number of robust features as well as non-robust features with CIFAR-10.
More details and further analysis on the results listed in Table 1 can be found in Appendix G.

3.3 ADVERSARIAL ROBUSTNESS UNDER VARIOUS ATTACKS

Table 2 summarizes the improvements in the adversarial robustness of the models obtained from the
application of BiaMAT (the results on ImgNet100 can be found in Appendix E). The proposed method
can freely use various auxiliary datasets as it avoids negative transfer through the application of the
confidence-based selection strategy; in fact, a comparison of Tables 1 and 2 demonstrates that the
proposed method effectively overcomes negative transfer and achieves only beneficial training signals
for the primary task from the auxiliary task. To observe how the confidence-based selection strategy
works while the model is being trained through the application of the proposed method, we define a
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Table 2: Performance improvements (accuracy %) on CIFAR-10 and CIFAR-100 following applica-
tion of the proposed method using various datasets. The best results within each baseline method (AT
and TRADES) are indicated in bold. The results on ImgNet100 can be found in Appendix E.

Primary dataset Method Auxiliary dataset Clean PGD100 CW100 AA

CIFAR-10

AT - 87.37 50.87 50.93 48.53

AT+BiaMAT
(ours)

SVHN 87.34 51.90 51.40 48.61
CIFAR-100 87.22 55.93 52.09 50.08
Places365 87.76 57.00 51.70 49.48
ImageNet 88.75 57.63 53.04 50.78

TRADES - 85.85 56.62 55.16 53.93

TRADES+BiaMAT
(ours)

SVHN 85.49 56.86 55.21 53.94
CIFAR-100 87.02 58.69 56.85 55.48
Places365 87.18 59.15 56.36 55.24
ImageNet 88.03 59.80 58.01 56.64

CIFAR100

AT - 62.59 26.80 26.07 24.13

AT+BiaMAT
(ours)

Places365 63.44 32.61 28.53 26.49
ImageNet 64.05 33.74 29.78 27.65

TRADES - 62.04 32.53 30.07 28.82

TRADES+BiaMAT
(ours)

Places365 64.58 34.38 30.72 29.24
ImageNet 65.82 36.36 33.42 31.87

ratio nhigh

naux
, where naux and nhigh denote the amount of auxiliary data and the higher-than-threshold

auxiliary data within each training batch, respectively. That is, the ratio represents the percentage of
data used for robust feature transfer as well as consistency transfer for an auxiliary dataset. Figure 2
shows the plot of the ratio nhigh

naux
at π = 0.55 (defined in Algorithm 1) during the training of the

AT+BiaMAT models using various auxiliary datasets on CIFAR-10. As shown, the confidence-based
selection strategy successfully filters out data that are likely to induce negative transfer for the primary
task. In other words, a relatively high percentage of ImageNet data are used for robust feature transfer,
and each of the SVHN, CIFAR100, and Places365 datasets are mostly used in the shuffle-testing
manner, which is consistent with the results listed in Table 1. Additional analysis is in Appendix K.

Figure 2: Ratio nhigh

naux
for each auxiliary dataset with

respect to the primary task on CIFAR-10.

We conduct several experiments to further inves-
tigate the proposed method. (Appendix D) To
observe the effects of the use of more auxiliary
datasets, we train a BiaMAT model using a com-
bination of two auxiliary datasets; the results
show that the use of more auxiliary datasets does
not always lead to further improvements in ad-
versarial robustness. In other words, the relation-
ship between the primary and auxiliary datasets
is more important to BiaMAT than the number
of auxiliary datasets. (Appendix J) To demon-
strate that BiaMAT can achieve robust feature
transfer, we construct robust datasets (Ilyas et al.,
2019) from the AT and AT+BiaMAT models and
normally train models from scratch on each ro-
bust dataset; the results show that the robust dataset developed using the AT+BiaMAT model results
in more accurate and robust models than those trained on the robust dataset of the AT model.

3.4 COMPARISON WITH OTHER RELATED METHODS

Carmon et al. (2019) proposed a semi-supervised learning technique where the training dataset is
augmented with unlabeled in-distribution data; the main difference between this and BiaMAT is the

8
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Table 3: Comparison (accuracy %) of the effectiveness of BiaMAT with the semi-supervised (Carmon
et al., 2019) and pre-training (Hendrycks et al., 2019a) methods on CIFAR-10.

Method Auxiliary dataset Clean PGD100 CW100 AA

TRADES (baseline) - 85.85 56.62 55.16 53.93

Hendrycks et al. (2019a) CIFAR-100 80.21 45.68 44.52 42.36
ImageNet 87.11 57.16 55.43 55.30

Carmon et al. (2019)

CIFAR-100 82.61 54.32 51.64 50.81
Places365 83.95 56.72 53.95 52.81
ImageNet 85.42 57.46 54.66 53.79

ImageNet-500k 86.02 59.49 56.43 55.63

TRADES+BiaMAT
(ours)

CIFAR-100 87.02 58.69 56.85 55.48
Places365 87.18 59.15 56.36 55.24
ImageNet 88.03 59.80 58.01 56.64

distribution of additional data. For instance, Carmon et al. (2019) collected the in-distribution data
of the CIFAR-10 dataset from 80 Million Tinyimages dataset (Torralba et al., 2008) and used the
unlabeled data with pseudo-labels. Therefore, no assumptions are required regarding the classes of
the primary and auxiliary datasets in our scenario, but the semi-supervised method is ineffective
when the primary and auxiliary datasets do not share the same class distributions. To demonstrate
this, we assign pseudo-labels to the auxiliary data using a pre-trained classifier and configure each
training batch (for TRADES) such that it contains the same amount of primary and pseudo-labeled
data, as in Carmon et al. (2019). In particular, we sort the ImageNet data based on the confidence
in the CIFAR-10 classes and select the top 50k (or top 5k) samples for each class in CIFAR-10
(or CIFAR-100); this is denoted as ImageNet-500k. As shown in Table 3, the Carmon et al. (2019)
method exhibits lower effectiveness than the proposed method. Specifically, the results obtained using
CIFAR-100 and Places365 demonstrate that the semi-supervised method is vulnerable to negative
transfer because of the considerable domain discrepancy between the primary and auxiliary datasets.

Hendrycks et al. (2019a) demonstrated that ImageNet pre-training can improve adversarial robustness
on the CIFAR datasets. However, the pre-training method is effective only when a dataset that has a
distribution similar to that of the primary data and a sufficiently large number of samples is used. To
demonstrate this, we adversarially pre-train the CIFAR-100 and ImageNet (Hendrycks et al., 2019a)
models and then adversarially fine-tune them on CIFAR-10. The results in Table 3 demonstrate that
the pre-training method is ineffective when leveraging datasets that do not satisfy the conditions
mentioned above. In other words, because the effect achieved by the pre-training method arises from
the reuse of features pre-trained on a dataset that contains a large quantity of data with a distribution
similar to that of the primary dataset, CIFAR-100 is not suitable for application of the CIFAR-10 task.
Conversely, BiaMAT avoids such negative transfer through the application of a confidence-based
strategy. That is, these results emphasize the high compatibility of the proposed method with a variety
of datasets. More results and further discussions on Table 3 can be found in Appendix F.

4 CONCLUSIONS AND FUTURE DIRECTIONS

In this study, we develop BiaMAT, a method that uses freely available auxiliary datasets to reduce
the large gap between training and test errors in adversarial training. We demonstrate from the
results of a shuffle test that the effectiveness of the proposed method can be attributed to two factors:
consistency transfer and robust feature transfer. In particular, we show that while existing methods are
vulnerable to negative transfer due to the distributional discrepancy between auxiliary and primary
data, the proposed method can successfully overcome negative transfer through the application of a
confidence-based selection strategy. In this study, however, the application of any method that can
improve the performance of multi-domain learning is not considered. In addition, there is room for
improvement in the effectiveness of the proposed method with regard to the strategy used to avoid
negative transfer. In future work, therefore, we will develop algorithms in which additional techniques,
such as the use of out-of-distribution detection strategies (Liang et al., 2018), are implemented.

9
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5 REPRODUCIBILITY STATEMENT

The code and pre-trained models of our study are available at: https://github.com/BiaMAT/
BiaMAT_under_review. The proofs of the theoretical results in our work can be found in Ap-
pendix B. The implementation details, including the training times of the models, the hyperparameters
(α and π), datasets, and architectures, are provided in Section 3.1 and Appendix I.
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A THE OVERALL PROCEDURE USED BY THE NAIVE VERSION OF BIAMAT

Algorithm 2 The naive version of biased multi-domain adversarial training

Require: Primary dataset D1, auxiliary datasets {Dt}Tt=2, hyperparameter α, model parameter θ,
batch size n, training iterations K, learning rate τ

1: for k = 1 to K do
2: primary mini-batch {x1

i ,y
1
i }
n/2
i=1 ∼ D1

3: compute loss:
4: for t = 1 to T do
5: auxiliary mini-batch {xti,yti}

n/2(T−1)
i=1 ∼ Dt

6: `t ← 2(T−1)
n

∑n/2(T−1)
i=1 `adv(x

t
i, y

t
i ;ht, S)

7: end for
8: L ← `1 +

α
T−1

∑T
t=2 `t

9: model update:
10: θ ← θ − τ · ∇θL
11: end for
12: Output: adversarially robust classifier h1 = f1 ◦ g

B PROOFS

Lemma 2. The expectation of the adversarial feature vector against the auxiliary task is

E
[
z̃adv
1

]
= y, E

[
z̃adv
i

]
= (η − λ)y, where i ∈ {2, · · · , d+ 1} and η < λ < 1. (8)

Proof. Our model comprises a non-linear feature embedding function g : X → Z and a linear
classifier fγw : Z → Y . In addition, the theoretical model is based on two principles that reflect the
behaviors of neural networks against adversarial examples: (i) the signs of the non-robust features
z̃i : i ∈ {2, · · · , d + 1} are switched by an adversary with high probability; (ii) the sign of the
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robust feature z1 is not easily switched by an adversary. The objective of an adversary is to find
an adversarial perturbation δ? = argmaxδ∈S

˜̀(g(x̃ + δ), ỹ; γw). Because fγw is linear, we can
easily determine the optimal adversarial direction in the feature space Z using∇g ˜̀(g(x̃+ δ), ỹ; γw).
Since the scale of the adversarial perturbation in the feature space is a problem of maximizing
the convex function ˜̀(g(x̃+ δ), ỹ; γw), as the scale of the perturbations increases, the situation is
better from the adversarial point of view. However, the these principles limit the scale range. By (i),
λi > η = |E [z̃i]|, where i ∈ {2, · · · , d+ 1}; by (ii), λ1 < 1 = |E [z̃1]|. Therefore, without loss of
generality, the adversarial feature vector z̃adv can be approximated by z̃ + λ · sign(∇z̃ ˜̀(z̃, ỹ; γw))
(we set η < λ = λ1 = · · · = λd+1 < 1 for simplicity).

The loss function of the auxiliary task is formulated as

˜̀(z̃, ỹ; γw) = −t̃ lnσ(γw>z̃)− (1− t̃) ln (1− σ(γw>z̃)), where t̃ =
1

2
(ỹ + 1). (13)

Therefore,

E
[
z̃adv
1

]
= E

[
z̃1 + λ · sign

(
∂ ˜̀

∂z̃1

)]
= y + E

[
λ · sign

(
γw1(σ(γw

>z̃)− t̃)
)]

= y,

E
[
z̃adv
i

]
= E

[
z̃i + λ · sign

(
∂ ˜̀

∂z̃i

)]
= ηy + E

[
λ · sign(γwi(σ(γw>z̃)− t̃))

]
.

(14)

We have
sign(γwi(σ(γw>z̃)− t̃)) = sign(wi) · sign(γσ(γw>z̃)− γt̃) = −y. (15)

Hence,

E
[
z̃adv
i

]
= ηy − λy, where i ∈ {2, · · · , d+ 1} and t =

1

2
(y + 1). (16)

Theorem 1. Let `(;w) and ˜̀(; γw) be the loss functions of the primary and auxiliary tasks, re-
spectively. When the auxiliary data are closely related to the primary data from the perspective of
robust and non-robust features, i.e., |γ| = 1, the expectation of the gradient of ˜̀with respect to
z̃adv
i : i ∈ {2, · · · , d+ 1} is

E

[
∂ ˜̀

∂z̃adv
i

]
=
γ

d
E
[
σ(γw>z̃adv)− γt− 1− γ

2

]
=

1

d
E
[
σ(w>zadv)− t

]
= E

[
∂`

∂zadv
i

]
, (9)

Proof. The expectation of the gradient of ˜̀with respect to z̃adv
i : i ∈ {2, · · · , d+ 1} is

E

[
∂ ˜̀

∂z̃adv
i

]
= E

[γ
d
(σ(γw>z̃adv)− t̃)

]
. (18)

Based on Equation 15, we obtain

E
[γ
d
(σ(γw>z̃adv)− t̃)

]
=
γ

d
E
[
σ(γw>z̃adv)− γt− 1− γ

2

]
=

1

d
E
[
σ(w>zadv)− t

]
. (19)

Theorem 2. Let ˜̀(; γw) be the loss function of the auxiliary task. Then, if |γ| = 1, the signs of
z̃adv
i : i ∈ {2, · · · , d+ 1} and the auxiliary loss gradient with respect to z̃adv

i are

sign(z̃adv
i ) = −γq = sign

(
∂ ˜̀

∂z̃adv
i

)
with high probability. (11)

Proof. The gradient of ˜̀with respect to z̃i : i ∈ {2, · · · , d+ 1} is

∂ ˜̀

∂z̃i
=
γ

d
(σ(γw>z̃)− r), where r =

1

2
(q + 1). (20)
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Therefore, the adversarial feature z̃adv
i can be calculated as z̃adv

i = z̃i − λγq. Because E [z̃i] = ηy

and η < λ, the sign of z̃adv
i is equal to −γq with high probability. In addition, the gradient of ˜̀with

respect to z̃adv
i is given as

∂ ˜̀

∂z̃adv
i

=
γ

d
(σ(γw>z̃adv)− r). (21)

Considering the adversarial vulnerability of our classification model, we can rewrite σ(γw>z̃adv) as
1
2 (1− ζq), where ζ ∈ (0, 1). Then,

∂ ˜̀

∂z̃adv
i

=
γ

d

(
1

2
− ζq

2
− q

2
− 1

2

)
=
−γq
2d

(1 + ζ). (22)

Hence, the sign of ∂ ˜̀

∂z̃adv
i

is equal to −γq with high probability.

Theorem 3. Let ˜̀(; γw) be the loss function of the auxiliary task. Then, if |γ| = 1 and w1 > 0, the
signs of z̃adv

1 and the auxiliary loss gradient with respect to z̃adv
1 are

sign(z̃adv
1 ) = y, sign

(
∂ ˜̀

∂z̃adv
1

)
= −γq with high probability. (12)

Proof. The gradient of ˜̀with respect to z̃1 is

∂ ˜̀

∂z̃1
= γw1(σ(γw

>z̃)− r), where r =
1

2
(q + 1). (23)

Assuming that the classification model is still vulnerable to adversarial examples, the adversarial
feature z̃adv

1 is given as z̃adv
1 = z̃1 − λγq. Because E [z̃1] = y and λ < 1, the sign of z̃adv

i is equal to y
with high probability. In addition, the gradient of ˜̀with respect to z̃adv

1 is

∂ ˜̀

∂z̃adv
1

= γw1(σ(γw
>z̃adv)− r). (24)

Considering the adversarial vulnerability of our classification model, σ(γw>z̃adv) can be rewritten
as 1

2 (1− ζq), where ζ ∈ (0, 1). Then,

∂ ˜̀

∂z̃adv
1

= γw1

(
1

2
− ζq

2
− q

2
− 1

2

)
=
−γqw1

2
(1 + ζ). (25)

Hence, the sign of ∂ ˜̀

∂z̃adv
1

is equal to −γq with high probability.

If we use E [q] = 0 instead of sampled random labels q for consistency learning, the gradient of ˜̀
with respect to z̃i : i ∈ {2, · · · , d+ 1} is

∂ ˜̀

∂z̃i
=
γ

d

(
σ(γw>z̃)− 1

2

)
. (26)

Based on the high standard accuracy of our classification model, the gradient of ˜̀with respect to
z̃i : i ∈ {2, · · · , d+ 1} can be rewritten as

∂ ˜̀

∂z̃i
=
γ

d

(
σ(γw>z̃)− 1

2

)
=
γ

d

(
1

2
(1 + ζγy)− 1

2

)
=
ζy

2d
with high probability. (27)

Therefore, the adversarial feature z̃adv
i can be calculated as z̃adv

i = z̃i + λy. Because E [z̃i] = ηy and
η < λ, the sign of z̃adv

i is equal to y with high probability. In addition, the gradient of ˜̀with respect
to z̃adv

i is given as
∂ ˜̀

∂z̃adv
i

=
γ

d

(
σ(γw>z̃adv)− 1

2

)
. (28)
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Because z̃adv
i = z̃i + λy, σ(γw>z̃adv) can be approximated by 1

2 (1 + γy). Then,

∂ ˜̀

∂z̃adv
i

=
y

2d
. (29)

Hence, the signs of z̃adv
i and the auxiliary loss gradient with respect to z̃adv

i are

sign(z̃adv
i ) = y = sign

(
∂ ˜̀

∂z̃adv
i

)
with high probability. (30)

B.1 WHEN |γ| < 1

When |γ| < 1 (weak correlation), our theorems can be replaced as follows:

Theorem 4. Let `(;w) and ˜̀(; γw) be the loss functions of the primary and auxiliary tasks, respec-
tively. Then, the sign of the expectation of the gradient of ˜̀with respect to z̃adv

i : i ∈ {2, · · · , d+ 1}
is

sign

(
E

[
∂ ˜̀

∂z̃adv
i

])
= sign

(
E
[
γγ̂

d
σ(|γ|w>z̃adv)− t

])
= −y

= sign
(
E
[
1

d
σ(w>zadv)− t

])
= sign

(
E
[
∂`

∂zadv
i

])
, where γ̂ = sign(γ)

(31)

Theorem 5. Let ˜̀(; γw) be the loss function of the auxiliary task and γ̂ = sign(γ). Then, the signs
of z̃adv

i : i ∈ {2, · · · , d+ 1} and the auxiliary loss gradient with respect to z̃adv
i are

sign(z̃adv
i ) = −γ̂q = sign

(
∂ ˜̀

∂z̃adv
i

)
with high probability. (32)

Theorem 6. Let ˜̀(; γw) be the loss function of the auxiliary task and γ̂ = sign(γ). Then, if |γ| = 1
and w1 > 0, the signs of z̃adv

1 and the auxiliary loss gradient with respect to z̃adv
1 are

sign(z̃adv
1 ) = y, sign

(
∂ ˜̀

∂z̃adv
1

)
= −γ̂q with high probability. (33)

The theorems in the cases of |γ| < 1 show that the scale of the correlation coefficient does not change
our main idea. Moreover, the training signals generated from the auxiliary task are weakened as |γ|
approaches 0 (shown in Equation 31). Note that we consider only a common robust and non-robust
feature space between the primary and auxiliary data in our theoretical model. Therefore, negative
transfer, induced by learning exclusive features of auxiliary tasks, cannot be described in our model.

C RELATED WORK

Adversarial training Adversarial training (Madry et al., 2017; Szegedy et al., 2013) strengthens
adversarial robustness by substituting adversarial examples for training samples. Given a dataset
D = {(xi, yi)}ni=1, where xi ∈ Rd+1 is an example in the input space and yi is its associated label,
the objective of adversarial training is to make the classifier robust by minimizing the adversarial
loss:

min
θ

E
(x,y)∼D

[
max
δ∈S
L(x+ δ, y; θ)

]
, (34)

where L(; θ) is the loss function, and S represents the set of perturbations an adversary can apply,
which is generally the set of `p-bounded perturbations. As the goal of the adversary is to lower the
accuracy of the classifier, the 0-1 loss should be used as the loss function L. However, a surrogate
loss will replace the 0–1 loss when there are accompanying computational problems. In previous
studies, Madry et al. (2017) utilized the cross-entropy loss as the objective function, and Zhang et al.
(2019) suggested the optimization of the following loss:

min
h

E
(x,y)∼D

[
φ(h(x)y) + max

δ∈S
φ(h(x)h(x+ δ))

]
, (35)
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Table 4: Performance improvements (accuracy %) on CIFAR-10 following application of the proposed
method using various datasets. The best result is indicated in bold.

Method Auxiliary dataset Clean PGD100 CW100 AA

AT - 87.37 50.87 50.93 48.53

AT+BiaMAT

SVHN 87.34 51.90 51.40 48.61
CIFAR-100 87.22 55.93 52.09 50.08

SVHN, CIFAR-100 87.61 54.58 52.03 49.88
Places365 87.76 57.00 51.70 49.48
ImageNet 88.75 57.63 53.04 50.78

Places365,ImageNet 87.88 56.22 51.86 49.58

where h is a hypothesis, and φ is the classification-calibrated loss. The first term in Equation 35
increases the natural accuracy, and the second term minimizes the difference between the output of
the natural example and the adversarial example.

Robust and non-robust features Ilyas et al. (2019) indicated that the adversarial vulnerabilities
of neural networks could be attributed to the existence of non-robust features. Robust features are
useful under adversarial perturbations, whereas non-robust features are useful only for standard
classification and not adversarial robustness. They noted that the non-robust features were inherent to
the dataset and were well-generalized yet brittle. Their hypothesis suggested that any two independent
models trained on a given dataset were likely to learn similar non-robust features; thus, perturbations
disturbing such features would also apply to both models.

Naseer et al. (2019) demonstrated the existence of a common adversarial space among different
datasets by producing domain-agnostic adversarial perturbations; they showed that the adversarial
examples generated using an adversarial function trained on Paintings, Cartoons, or Medical data
could decrease the performance of the classifier trained on ImageNet with a high success rate. These
findings indicate that a common non-robust feature space can exist between considerably different
datasets.

D THE EFFECTS OF THE USE OF MORE AUXILIARY DATASETS

We investigate the effects of the use of more auxiliary datasets under the proposed method and provide
the experimental results in Table 4. The results demonstrate that the use of more auxiliary datasets
does not always lead to further improvements in adversarial robustness. The results on CIFAR-10
indicate that the use of both SVHN and CIFAR-100 results in a lower degree of robustness than that
achieved by using CIFAR-100 alone. Likewise, leveraging a combination of ImageNet and Places365
leads to more vulnerable models than that utilizing only ImageNet. In other words, the relationship
between the primary and auxiliary datasets is more important to the proposed method than the number
of auxiliary datasets.

In fact, this result is a general phenomenon that can be easily observed even in non-adversarial setting.
To show this, we conducted an additional test in which: (1) the CIFAR-10 training set was classified
into datasets that contain 25000, 12500, and 12500 samples, namely cifar-A, cifar-B, and cifar-C,
respectively. We added uniform noise to the cifar-C dataset to sparsify the information included in
the cifar-C dataset; (2) a classifier (ResNet18) was then trained on cifar-A using cifar-B and cifar-C
as extra datasets with a batch size of 128 and evaluated on the test set. The results in Table 5 indicate
that although cifar-B and cifar-C each result in performance improvement as an additional data set,
the use of both cifar-B and cifar-C results in a test accuracy lower than that achieved by using cifar-B
alone. We hypothesize that that this is because the density of information in the training dataset is
more important than the total amount of information included in the training dataset in terms of the
minibatch gradient descent. In other words, when DNNs are trained with a small batch size, the
quality of each minibatch gradient is more important than the total amount of information in the
dataset. To confirm this, we additionally run the abovementioned experiments with larger batch sizes;
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Table 5: Comparison (accuracy %) of the effectiveness of data augmentation (cifar-B and cifar-C) on
cifar-A.

Batch size Dataset Test error (mean±std over 5 runs)

128

cifar-A 9.58±0.21
cifar-A + cifar-B 7.32±0.14
cifar-A + cifar-C 9.15±0.26

cifar-A + cifar-B +cifar-C 7.45±0.21

256

cifar-A 10.48±0.21
cifar-A + cifar-B 8.06±0.18
cifar-A + cifar-C 9.78±0.25

cifar-A + cifar-B +cifar-C 8.12±0.20

384

cifar-A 11.08±0.35
cifar-A + cifar-B 8.58±0.22
cifar-A + cifar-C 10.70±0.25

cifar-A + cifar-B +cifar-C 8.29±0.21

512

cifar-A 11.49±0.20
cifar-A + cifar-B 9.22±0.12
cifar-A + cifar-C 11.21±0.27

cifar-A + cifar-B +cifar-C 8.94±0.20

1024

cifar-A 13.22±0.25
cifar-A + cifar-B 10.55±0.21
cifar-A + cifar-C 12.85±0.33

cifar-A + cifar-B +cifar-C 10.23±0.17

Table 6: Performance improvements (accuracy %) on ImgNet100 following application of the
proposed method using Places365 and ImgNet900. The best results are indicated in bold.

Primary dataset Method Auxiliary dataset Clean PGD100 CW100 AA

ImgNet100
AT - 66.60 35.46 31.90 29.54

AT+BiaMAT Places365 70.04 40.52 33.24 30.64
ImgNet900 68.00 40.18 35.00 32.88

in fact, Table 5 reveal that the use of both cifar-B and cifar-C results in a higher test accuracy than
that achieved by using cifar-B alone in large batch settings.

E THE EXPERIMENTAL RESULTS ON IMGNET100

Table 6 shows that the proposed method allows improvements to both standard and robust generaliza-
tions on ImgNet100 (we use WRN16-10 on ImgNet100).

F COMPARISON WITH OTHER RELATED METHODS

Semi-supervised Carmon et al. (2019) and Stanforth et al. (2019) proposed a semi-supervised
learning technique by augmenting the training dataset with unlabeled in-distribution data. The
main difference between them and BiaMAT is the distribution of additional data leveraged. For
instance, Carmon et al. (2019) collected in-distribution data of the CIFAR-10 dataset from 80 Million
Tinyimages dataset (Torralba et al., 2008) and used the unlabeled data with pseudo labels. Stanforth
et al. (2019) categorized CIFAR-10 into labeled and unlabeled data. Their theoretical analysis also
assumed that the unlabeled data were in-distribution, and when out-of-distribution data were used
instead, a large performance drop can be observed. Therefore, while no assumptions are required
for the classes of the primary and auxiliary datasets in our scenario, the semi-supervised methods
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Table 7: Comparison (accuracy %) of the effectiveness of BiaMAT with the semi-supervised (Carmon
et al., 2019) and pre-training (Hendrycks et al., 2019a) methods on the CIFAR datasets.

Primary dataset Method Auxiliary dataset Clean AA

CIFAR-10

Hendrycks et al. (2019a) CIFAR-100 80.21 42.36
ImageNet 87.11 55.30

Carmon et al. (2019)

CIFAR-100 82.61 50.81
Places365 83.95 52.81
ImageNet 85.42 53.79

ImageNet-500k 86.02 55.63
ImageNet-250k 86.51 56.27
ImageNet-100k 86.87 56.56

TRADES+BiaMAT
(ours)

CIFAR-100 87.02 55.48
Places365 87.18 55.24
ImageNet 88.03 56.64

CIFAR-100

Hendrycks et al. (2019a) ImageNet 59.23 28.79

Carmon et al. (2019)

Places365 56.74 26.22
ImageNet 63.45 27.71

ImageNet-500k 64.90 28.64
ImageNet-250k 66.18 29.49
ImageNet-100k 65.40 30.61

TRADES+BiaMAT
(ours)

Places365 64.58 29.24
ImageNet 65.82 31.87

Table 8: Comparison (accuracy %) of the effectiveness of pre-training-based method using pre-trained
ImageNet model on CIFAR-10 according to fine-tuning method.

Fine-tuning Clean PGD20 PGD100

AT 87.11 57.29 56.99
TRADES 83.97 57.17 57.07

are ineffective when the primary and auxiliary datasets do not share the same class distribution. To
demonstrate this, we assign pseudo labels to the auxiliary data using a classifier trained on each
primary dataset and configure each training batch to contain the same amount of primary data and
pseudo-labeled data as in Carmon et al. (2019). In particular, we sort the ImageNet data based on the
confidence in the primary dataset classes and select the top (N × 10)k (or top (N × 1)k) samples for
each class in CIFAR-10 (or CIFAR-100); this is denoted by ImageNet-(N × 100)k. In Table 7, the
Carmon et al. (2019) method exhibits lower compatibility than the proposed method. In particular,
the results obtained using CIFAR-100 and Places365 demonstrate that the semi-supervised method is
vulnerable to negative transfer because of the considerable domain discrepancy between the primary
and auxiliary datasets.

Pre-training Hendrycks et al. (2019a) demonstrated that ImageNet pre-training can significantly
improve adversarial robustness on CIFAR-10. Although adversarial training on ImageNet is expensive,
fine-tuning on the primary dataset does not require an extensive number of computations once the
pre-trained model has been acquired. However, once this has been done, it is difficult to obtain
benefit from the application of cutting-edge methods in the fine-tuning phase because the hypothesis
converges in the same basin in the loss landscape (Neyshabur et al., 2020) when trained from pre-
trained weights. For example, as shown in Table 2, TRADES generally achieves higher adversarial
robustness than AT. However, fine-tuning a pre-trained ImageNet model (Hendrycks et al., 2019a)
through AT and TRADES, respectively, produces two models that exhibit similar levels of adversarial
accuracy on CIFAR-10 (see Table 8). By contrast, the proposed method can directly benefit from
the application of state-of-the-art adversarial training methods (Zhang et al., 2019; Carmon et al.,
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Table 9: Accuracy (%) comparison of the models trained by AT and the naive version of BiaMAT
using various datasets.

Primary dataset Method Auxiliary dataset Clean PGD100 CW100 AA

CIFAR-10

AT - 87.37 50.87 50.93 48.53

AT+BiaMAT
(naive)

SVHN 87.23 49.80 50.15 47.44
CIFAR-100 87.65 50.40 50.79 48.48

SVHN, CIFAR-100 87.64 50.79 51.39 48.90
Places365 87.15 51.39 51.46 48.88
ImageNet 89.01 52.67 53.15 50.33

Places365, ImageNet 88.36 52.17 52.43 49.81

CIFAR100
AT - 62.59 26.80 26.07 24.13

AT+BiaMAT
(naive)

Places365 62.78 27.46 26.76 24.89
ImageNet 65.87 29.55 28.73 26.26

2019). BiaMAT does not require complex operations and can also leverage a variety of datasets,
whereas the pre-training method is effective only when a dataset that has a distribution similar to
that of the primary dataset and a sufficiently large number of samples is used. To demonstrate this
difference empirically, we adversarially pre-train the CIFAR-100 and ImageNet models and then
adversarially fine-tune them on CIFAR-10. The results in Table 7 demonstrate that the pre-training
method is ineffective when leveraging datasets that do not satisfy the conditions mentioned above.
In other words, because the effect achieved by the pre-training method arises from the reuse of
features pre-trained on a dataset that contains a large quantity of data with a distribution similar
to that of the primary dataset, CIFAR-100 are not suitable for application of the CIFAR-10 task.
Conversely, BiaMAT avoids such negative transfer through the application of a confidence-based
selection strategy. That is, these results emphasize the high compatibility of the proposed method
with a variety of datasets.

Out-of-distribution data augmented training Out-of-distribution data augmented training
(OAT) (Lee et al., 2021) was proposed as a means of supplementing the training data required
for adversarial training. Under the assumption that non-robust features are shared among different
datasets, the authors theoretically demonstrated that using out-of-distribution data with a uniform
distribution label can reduce the contribution of non-robust features and empirically demonstrated that
their method promotes the adversarial robustness of a model. OAT is similar to our proposed method
in that it improves adversarial robustness by using additional data with a distribution that differs from
that of the primary data. In fact, OAT is identical to the shuffle-testing described in Section 2.3. In
other words, OAT does not derive useful information in terms of robust feature learning from auxiliary
datasets; that is, it does not achieve robust feature transfer. This is because OAT can only eliminate
the contribution of features from the auxiliary dataset. Therefore, BiaMAT outperforms OAT when
the auxiliary dataset has a close relationship with the primary dataset in terms of robust features. By
contrast, if the auxiliary dataset contains a large amount of useful information in terms of consistency
learning rather than robust feature learning, the improvements resulting from the applications of OAT
and BiaMAT can be similar.

G MORE RESULTS ON THE EFFECTIVENESS OF THE NAIVE VERSION OF
BIAMAT

Table 9 summarizes the effects of the naive version of BiaMAT on the robust generalization perfor-
mance on the CIFAR datasets. Additionally, we investigate the importance of the number of classes
and that of samples per class in an auxiliary dataset in terms of negative transfer, when the correlation
between the primary and auxiliary datasets is high. For this, we define a subsampling ratio nsub

nall
, where

nall and nsub denote the numbers of data samples in an auxiliary dataset and in a subset of the auxiliary
dataset, respectively; Figure 2 shows the changes in the effectiveness of the naive method (under AA)
on the robust generalization performance on CIFAR-10 using ImageNet with the subsampling ratio
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Figure 3: The changes in the effectiveness of the naive method on the robust generalization
performance on CIFAR-10 (baseline: AT) using ImageNet with the subsampling ratio nsub

nall
∈

{0.01, 0.025, 0.05, 0.1, 0.25}.

Table 10: FID to CIFAR-10.

Dataset FID

SVHN 9.55
CIFAR-100 3.02
Places365 4.62
ImageNet 3.21

nsub
nall
∈ {0.01, 0.025, 0.05, 0.1, 0.25}. As shown in the figure, after a certain level of auxiliary dataset

size is satisfied, the influences of the number of classes and that of samples per class in the auxiliary
dataset on the effectiveness of multi-domain learning are similar. However, when the auxiliary dataset
size is very small (nsub

nall
≤ 0.05), a small number of samples per class causes more negative transfer

when compared to a small number of classes.

H SVHN DIFFERS MOST FROM CIFAR-10 FROM THE ROBUST FEATURE
PERSPECTIVE

We can approximate the difference between different datasets from the robust feature perspective
by using a robust classifier. Specifically, we measure the Frechet inception distance (FID) (Heusel
et al., 2017) between the CIFAR-10 and auxiliary datasets using the hidden representation of an
adversarially trained CIFAR-10 classifier (AT) and summarize the results in Table 10. As presented,
SVHN differs most from CIFAR-10 from a robust classifier perspective.

Although CIFAR-100 is the closest dataset to CIFAR-10 as shown in Table 10, CIFAR-100 is not the
auxiliary dataset that resulted in the largest performance improvement through the naive BiaMAT
(Table 1). This is because CIFAR-100 has a much smaller number of classes or samples per class
than Places365 and ImageNet. Please refer to Appendix G for further discussions.

I IMPLEMENTATION DETAILS

Datasets CIFAR-10 (Krizhevsky et al., 2009) consists of 50,000 training images and 10,000 test
images in 10 classes. CIFAR-100 (Krizhevsky et al., 2009) consists of 50,000 training images and
10,000 test images in 100 classes. Both CIFAR-10 and CIFAR-100 images have sizes of 32 × 32
pixels. ImageNet Deng et al. (2009) consists of 1,281,167 training images and 100,000 test images in
1,000 classes. Chrabaszcz et al. (2017) provided downsampled variants of the ImageNet dataset. The
ImageNet32x32 and ImageNet64x64 datasets (Chrabaszcz et al., 2017) have the same number of
classes and images as ImageNet, but the images are downsampled to sizes of 32× 32 and 64× 64
pixels, respectively. SVHN is obtained from a very large set of images from urban areas in various
countries using Google Street View. The CIFAR datasets are labeled subsets of the 80 million
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Table 11: The training times of the models in our experiments.

Primary dataset Method Training time (h)

CIFAR

AT 34
AT+BiaMAT (naive) 56

AT+BiaMAT 56.5
TRADES 52

TRADES+BiaMAT 103

ImgNet100 AT 119
AT+BiaMAT 196

Table 12: The hyperparameter α for each model in Table 9

Primary dataset Method Auxiliary dataset α

CIFAR-10 AT+BiaMAT
(naive)

SVHN 0.5
CIFAR-100 0.5

SVHN, CIFAR-100 0.5
Places365 0.5
ImageNet 1.0

Places365, ImageNet 1.0

CIFAR100 AT+BiaMAT
(naive)

Places365 0.5
ImageNet 1.0

tiny images dataset (Torralba et al., 2008), and the 80 million tiny images dataset contains images
downloaded from seven independent image search engines: Altavista, Ask, Flickr, Cydral, Google,
Picsearch, and Webshots. The Places365 images are queried from several online image search engines
(Google Images, Bing Images, and Flickr) using a set of WordNet synonyms. The ImageNet images
are collected from online image search engines and organized by the semantic hierarchy of WordNet.

Training time The training times of the models are summarized in Tables 11. We used a single
Tesla V100 GPU with CUDA10.2 and CuDNN7.6.5. Because of the increased training dataset size
(and batch size) in the proposed method, the training time was almost twice that of the baseline
method. Furthermore, a comparison of AT+BiaMAT(naive) and AT+BiaMAT revealed that the
proposed confidence-based selection strategy requires negligible time.

Tables 1 and 9 For the experiments in Table 1 and 9, we executed 100 training epochs on the
CIFAR datasets. The initial learning rate was set to 0.1, and the learning rate decay was applied at 60%
and 90% of the total training epochs with a decay factor of 0.1. Weight decay factor and `∞-bound
were set to 2e-4 and 8

255 , respectively. To observe the best performance that each auxiliary dataset can
produce through the naive version of BiaMAT, we used different α values for each auxiliary dataset.
The hyperparameter α for each model presented in Table 9 is summarized in Table 12.

Table 2 For the models associated with AT, we executed 100 training epochs (including 5 warm-up
epochs) on CIFAR-10, CIFAR-100, and ImgNet100. The initial learning rate was set to 0.1, and the
learning rate decay was applied at 60% and 90% of the total training epochs with a decay factor of
0.1. Weight decay factor and `∞-bound were set to 2e-4 and 8

255 , respectively. Based on a recent
study (Pang et al., 2021), for the models associated with TRADES, we executed 110 training epochs
(including 5 warm-up epochs) on CIFAR-10 and CIFAR-100. The initial learning rate was set to 0.1,
and the learning rate decay was applied at the 100th epoch and 105th epoch with a decay factor of
0.1. Weight decay factor and `∞-bound were set to 5e-4 and 0.031, respectively.

The hyperparameter α and π for each model presented in Table 1 is summarized in Table 13. From
Table 13, it can be observed that when the proposed method is applied with AT, it produces good
results around α = 1.0 and π = 0.5 regardless of the primary dataset used. However, when the
proposed method is applied with TRADES, the optimal set of hyperparameters are dependent on the
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Table 13: The hyperparameter α and π for each model in Table 2
.

Primary dataset Method Auxiliary dataset α π

CIFAR-10

AT+BiaMAT

SVHN

1.0 0.55CIFAR-100
Places365
ImageNet

TRADES+BiaMAT
CIFAR-100

0.5 0.5Places365
ImageNet

CIFAR100
AT+BiaMAT Places365 1.0 0.5ImageNet

TRADES+BiaMAT Places365 1.0 0.3ImageNet

ImgNet100 AT+BiaMAT Places365 1.0 0.5ImgNet900

characteristics of the primary task, such as the scale of training loss and its learning difficulty. For
example, the primary task on CIFAR-10 achieves a lower training loss than that on CIFAR-100, and
thus, a smaller α value is required when the primary dataset is CIFAR-10 than that required when
the primary dataset is CIFAR-100. In addition, when the proposed method is applied to improve
the sample complexity of a high-difficulty task, the confidence-based selection strategy becomes
sensitive to the hyperparameter π, because the threshold used by the strategy is determined based
on the confidences of the sampled primary data. Therefore, as a future research direction, we aim to
develop an algorithm that can stably detect the data samples causing negative transfer.

When CIFAR-10 is the primary dataset, we use the same adversarial loss function for the primary and
auxiliary tasks under BiaMAT. However, this setting can be problematic when the TRADES+BiaMAT
model is trained on CIFAR-100. TRADES uses the prediction of natural examples instead of labels
to maximize the adversarial loss. In this respect, when an insufficient training time is applied to a
challenging dataset, such as CIFAR-100 and ImageNet, low-quality training signals can arise owing
to the inaccurate predictions. Therefore, in our experiment, the cross-entropy loss with labels is used
for auxiliary tasks when the primary dataset is CIFAR-100. The application of the cross-entropy loss
function allows the TRADES+BiaMAT models to achieve a high level of adversarial robustness on
CIFAR-100, as shown in Table 2.

Pre-training In the pre-training phase, the model was adversarially trained on the auxiliary dataset
according to the implementation details described in Section 3.1. The fine-tuning phase commenced
from the best checkpoint of the pre-training phase. We adversarially fine-tuned the entire layers of the
pre-trained model on the primary dataset. The learning rate was set according to the global step over
the pre-training and fine-tuning phase. For example, if the best checkpoint was acquired at the 65th
epoch in the pre-training phase, the learning rate of the fine-tuning phase commenced at 0.01 and
decreased to 0.001 after 25 epochs. When SVHN and CIFAR-100 were used as the auxiliary datasets,
the abovementioned type of learning rate schedule rendered better robustness than that achieved by
fine-tuning the model with a fixed learning rate (Hendrycks et al., 2019a).

I.1 ABLATION STUDY ON THE HYPERPARAMETER π

Here, we provide the results of ablation study on π in Table 14. From the results of the AT+BiaMAT
model, the effectiveness of BiaMAT is smooth near the optimal π when it is applied with AT. In the
results of TRADES+BiaMAT, however, it can be seen that the effectiveness of the proposed method
is relatively sensitive to π when it is applied with TRADES. We speculate that this is because of the
relatively complex loss function of TRADES, which introduces another regularization hyperparameter
β (Zhang et al., 2019). Therefore, in future work, we will develop advanced algorithms that adaptively
control the threshold in BiaMAT for learning stability.
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Table 14: The results of ablation study on π. Primary dataset: CIFAR-10; Auxiliary dataset: ImageNet.

Method π AA

AT+BiaMAT

0.45 49.85
0.50 50.35
0.55 50.78
0.60 50.32
0.65 50.35
0.70 50.69

TRADES+BiaMAT

0.45 56.42
0.50 56.64
0.55 56.21
0.60 54.70
0.65 54.95
0.70 54.04

Table 15: Accuracy (%) comparison of the models (WRN34-10) trained on each robust dataset
generated from the AT and AT+BiaMAT models.

Source model Clean FGSM (mean±std over 5 runs)

AT 87.49±0.20 30.79±1.16

AT+BiaMAT 88.19±0.16 31.82±1.06

J ROBUST DATASET ANALYSIS

Ilyas et al. (2019) generated a robust dataset containing only robust features (relevant to an adversari-
ally trained model) to demonstrate their existence in images. In particular, they optimized:

min
xr

‖g(xr)− g(x)‖2
, where x is the target image and g is the feature embedding function. They initialized xr as a different
randomly chosen image from the training set. Thus, the robust dataset consists of optimized xr–target
label y pairs.

To confirm robust feature transfer through application of the proposed method, we construct robust
datasets from the AT and AT+BiaMAT models. We then normally train models from scratch on each
robust dataset using the cross-entropy loss and list the results in Table 15. As shown, the robust
dataset developed using the model trained with the proposed method results in more accurate and
robust models than those trained on the robust dataset of the baseline model. The proposed method
thus enables neural networks to learn better robust features via inductive transfer between adversarial
training on the primary and auxiliary datasets (i.e., robust feature transfer).

K ADDITIONAL ANALYSIS OF THE CONFIDENCE-BASED SELECTION
STRATEGY

Since robust features exhibit human-perceptible patterns, we conjecture that auxiliary data samples
more related to the original dataset classes can contribute more to robust feature transfer. From
this motivation, we design our algorithm to shuffle labels of the less-related samples. In particular,
we adopt an automatic confidence-based sample selection strategy, widely used in existing novelty
detection literature (Hendrycks et al., 2019b). To understand how the proposed confidence-based
selection strategy works in practice, we analyze the ratio of samples having higher confidences than
the confidence threshold (i.e., ω in Algorithm 1). If a sample contributes more to learn robust features,
it tends to have a higher confidence score than less contributed samples.

We use the AT+BiaMAT model in Table 2, trained on the CIFAR-10 dataset with the ImageNet
auxiliary dataset. The model shows 88.75% clean accuracy and 50.78% robust accuracy on AA. Table
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Table 16: Average higher-than-threshold ratio of the ImageNet training images by the AT+BiaMAT-
trained CIFAR-10 classifier. The fine-grained ImageNet classes are mapped to CIFAR-10 superclasses
by the WordNet hierarchy. “All” denotes the entire training ImageNet images. “Deer” and “Horse”
classes has zero error because there is only one ImageNet class matched to each of them (Table 17).

CIFAR-10 Superclass Average higher-than-threshold ratio Standard error

Airplane 0.849 0.096
Automobile 0.706 0.163

Bird 0.554 0.143
Cat 0.501 0.136

Deer 0.720 -
Dog 0.592 0.103
Frog 0.653 0.070
Horse 0.819 -
Ship 0.677 0.215

Truck 0.763 0.129

Others (dismatched) 0.290 0.196

All 0.335 0.219

(a) The top-10 highest confident samples from “aircraft carrier” class.

(b) The top-10 lowest confident samples from “aircraft carrier” class.

Figure 4: The top-10 highest and lowest confident ImageNet training samples (“aircraft carrier” class)
by the BiaMAT trained classifier on CIFAR-10.

16 shows the average higher-than-threshold ratio (i.e, the ratio of samples contribute to learn robust
features) of ImageNet training images by the model. We show the average higher-than-threshold ratio
for each CIFAR-10 superclasses, where the mapping is shown in Table 17. We match classes of two
datasets by using the ImageNet synset following CINIC-10 (Darlow et al., 2018)1.

In Table 16, we observe that the related classes show higher selection ratio (larger than 50%) than
the dismatched classes (29%) and the entire average (33.5%). In other words, the auxiliary samples
with CIFAR-10 superclasses contribute more to robust feature transfer than less related samples
(“Others” in Table 16). We also illustrate the samples from the class “aircraft carrier”, showing
87.0% higher-than-threshold ratio in Figure 4. In the figure, the highest confident samples plausibly
match to the CIFAR-10 superclasses, such as “Ship” and “Airplane”. On the other hand, the lowest
confident samples, therefore their labels are shuffled during the training, seem to be less related to the
CIFAR-10 superclasses and the original CIFAR-10 training images. The low confident samples can
take a role of “out-of-distributed” dataset that can improve the confidence-based selection strategy as
shown in Hendrycks et al. (2019b).

Finally, we take a look into the “Others” classes as well. While the CIFAR-10 related classes
show high higher-than-threshold ratios, we also witness that some classes not highly related to the
CIFAR-10 superclasses, but weakly related to them also show high higher-than-threshold ratios.
For example, (“grey whale”, 0.750), (“promontory”, 0.749), (“breakwater”, 0.734), (“dock”, 0.730),

1We follow the official synset mapping used by CINIC-10 https://github.com/BayesWatch/
cinic-10/blob/master/synsets-to-cifar-10-classes.txt
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Table 17: The mapping between CIFAR-10 superclasses and ImageNet classes for Table 16.

CIFAR-10 superclass ImageNet classes

Airplane airliner, amphibian

Automobile beach wagon, convertible, sports car, ambulance, jeep, limousine, racer, cab, Model T

Bird kite, white stork, ostrich, bustard, American egret, albatross, oystercatcher,
red-breasted merganser, dowitcher, bee eater, redshank, red-backed sandpiper, goldfinch,
black stork, crane, ruddy turnstone, bald eagle, partridge, magpie, black grouse, vulture,
sulphur-crested cockatoo, junco, chickadee, American coot, spoonbill, quail,
little blue heron, goose, indigo bunting, bulbul, pelican, brambling, limpkin, coucal, robin,
ptarmigan, house finch, European gallinule, ruffed grouse, bittern, water ouzel, drake,
peacock, jay, prairie chicken, jacamar, black swan, hummingbird, African grey, hornbill, hen,
great grey owl, cock, king penguin, knot, toucan, lorikeet, flamingo, macaw

Cat Persian cat, tabby, Egyptian cat, Siamese cat, Angora, lynx, cheetah, tiger cat, lion, cougar,
leopard, jaguar, snow leopard, tiger

Deer bison

Dog Japanese spaniel, Maltese dog, Pekinese, Shih-Tzu, Samoyed, Saint Bernard, Pomeranian,
white wolf, Brabancon griffon, Great Pyrenees, Newfoundland, miniature poodle, toy terrier,
toy poodle, chow, kit fox, Arctic fox, Mexican hairless, coyote, red wolf, red fox,
standard poodle, hyena, dhole, Eskimo dog, Great Dane, Rhodesian ridgeback, keeshond,
Pembroke, Chihuahua, bull mastiff, dingo, Cardigan, timber wolf, boxer, basenji, grey fox,
pug, African hunting dog, Leonberg, dalmatian

Frog tailed frog, tree frog, bullfrog

Horse sorrel

Ship yawl, speedboat, fireboat, lifeboat, canoe, gondola

Truck pickup, police van, trailer truck, minivan, moving van, tow truck, fire engine, garbage truck, tractor

(“geyser”, 0.728), and (“sandbar”, 0.717) are not directly included in the CIFAR-10 superclasses,
but share the similar environmental backgrounds (e.g., “grey whale” and “ship” are usually on the
ocean background). The multi-domain learning strategy by BiaMAT let the model learn an auxiliary
information by discriminating between such weakly related auxiliary classes and the CIFAR-10
superclasses. Our BiaMAT can learn better robust features by the additional tasks to discriminate
weak auxiliary classes from the target classes.

To sum up, our confidence-based selection strategy let the model learn better robust feature transfer
from plausible extra images, while less plausible images improve the performance of the confidence-
based selection strategy. At the same time, the multi-domain learning strategy by BiaMAT makes the
model learn discriminative features between the samples highly correlated with target classes and the
sample weakly correlated with targets (e.g., “grey whale”), thus BiaMAT shows a good robust feature
transfer capability. Therefore, BiaMAT can learn diverse and fine-grained features using extra images
related to the target classes without suffering from the negative transfer, resulting in showing better
robustness generalizability.
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