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Abstract

Deciphering the cis-regulatory code, the rules by which DNA sequence governs
gene regulation, is a central challenge in biology with wide-ranging implications
for understanding disease mechanisms and engineering DNA for synthetic biology
and therapeutic applications. Deep learning models consistently achieve state-of-
the-art performance in predicting regulatory activity from DNA sequence, but their
black-box nature limits mechanistic insight. Post hoc interpretability tools have
identified important sequence motifs corresponding to transcription factor (TF)
binding sites, yet the quantitative contribution of surrounding sequence context
remains poorly understood. Here, we treat a high-performing sequence-to-function
model as a virtual experimental platform, pairing explainable AI with large-scale
in silico motif-context swap experiments to quantify the relative contributions of
TF motifs and surrounding sequence context to the model’s predicted enhancer
activity. Using attribution maps, we identify and localize motif instances, then
systematically transplant identical motif syntax between different sequence contexts
and measure changes in predicted activity to estimate each component’s effect.
Surprisingly, we find that sequence context plays an outsized role compared to
motifs, sometimes accounting for most of the predicted activity. Context effects are
most pronounced in housekeeping gene programs, where motifs modestly tune a
baseline set by sequence context, whereas developmental programs show stronger
motif-driven regulation. Our results motivate a paradigm shift from motif-centric
models toward quantitative motif–context frameworks that treat sequence context
as an active component of the cis-regulatory code rather than a passive scaffold.

1 Introduction

Gene regulation coordinates when, where, and to what extent genes are expressed, enabling essential
processes from cell division and tissue development to environmental response [1, 2]. Much of this
control is mediated by transcription factors (TFs), proteins that recognize specific DNA sequence
motifs – short patterns typically 6-20 nucleotides long – and influence transcriptional output. The
set of sequence-encoded rules by which motifs and other sequence features combine to control



activity is referred to as the cis-regulatory code [3]. This code governs a wide range of functional
outcomes, including chromatin accessibility [4], chromatin conformation [5], and gene expression [6].
Deciphering it remains a central challenge in genomics, with broad implications for understanding
disease, predicting the effects of genetic variation, and designing synthetic regulatory sequences for
biotechnology and therapeutic applications.

For decades, efforts to decipher the cis-regulatory code have centered on cataloging TF motifs. High-
throughput sequencing assays such as ChIP-seq [7], ATAC-seq [8], and massively parallel reporter
assays (MPRAs [9]) have been instrumental in mapping functional sequence elements across the
genome. Yet these approaches typically highlight broad regions rather than pinpointing the specific
nucleotides that drive activity. Computational motif discovery methods refine these maps by detecting
enriched sequence patterns [10, 11], but such methods are agnostic to whether the motifs they detect
are functionally active. By contrast, sequence-to-function deep neural networks (DNNs) can directly
learn sequence patterns that are predictive of functional activity [12–15]. These models can identify
functional motifs, including weak or partial sites, and capture how they act in combination with
surrounding sequence context [16–20]. As a result, sequence-to-function DNNs now underpin many
tasks in regulatory genomics, from variant effect prediction to the design of synthetic regulatory
elements [6, 21, 22].

Despite these advances, genomic DNNs have not yet resolved the cis-regulatory code. A central
challenge is interpretability: most DNNs function as black boxes, making it difficult to extract
mechanistic rules they have learned. In genomics, post hoc interpretation methods attempt to
address this by identifying sequence positions most influential for predictions [23, 24]. Common
approaches—including in silico mutagenesis [25], saliency maps [26], integrated gradients [27], and
DeepSHAP/DeepLIFT [28, 29]—often recover patterns resembling known motifs (Fig. 1). While
reinforcing the motif-centric view of regulation, they offer limited insight into the role of surrounding
sequence context.

A complementary perspective comes from virtual experiments. A trained DNN can be viewed as a
global function approximator [30], a surrogate for the biological experiment that maps sequence to
functional readout. This enables scalable counterfactual experiments performed in silico that would
be costly or impractical in the lab [31–33]. Counterfactual predictions highlight a direct causal link
between the perturbed element and model predictions, providing insights into the biology through the
lens of the DNN. Global importance analysis (GIA), for instance, tests motif sufficiency by embedding
motifs into compositionally matched background sequences and measuring predicted activity [33].
This framework has revealed the effects of flanking nucleotides, motif–motif interactions, and
distance-dependent binding relationships [17–20]. In this paradigm, a motif (or set of motifs) is
deemed sufficient if its insertion into an otherwise neutral background produces strong activity.

This motif sufficiency framework, however, rests on a key assumption: that sequence context does not
itself carry functional information [34–36]. However, it is well known that TF binding is influenced
by a host of other factors, including local DNA shape [37], low affinity binding sites [20], chromatin
accessibility [38], nucleosome positioning [39, 40], and 3D chromatin structure [41]. Moreover,
transplanting motifs into new genomic contexts often fails to reproduce endogenous activity [42–44].
Further evidence is observed in attribution maps of state-of-the-art genomic DNNs, which often
reveal distributed but low signal outside canonical motifs. These observations suggest that motif
syntax and sequence context jointly shape regulatory output, but their relative contributions remain
incompletely quantified.

Here, we treat a high-performing DNN trained to map DNA sequence to enhancer activity as a
virtual experimental platform to quantify the contribution of sequence context to regulatory activity
predictions. This computational approach enables systematic analysis across billions of sequence
pairs that would be prohibitively expensive and time-consuming to test experimentally. Using
attribution maps, we identify the arrangement of motif instances and treat the remaining sequence as
the surrounding DNA context. We then run counterfactual motif-context swaps, moving identical
motifs into new contexts or placing new motifs into the same context, and measure changes in
predicted activity. We find that context interventions can shift predictions as much as, and sometimes
more than, motif interventions. A compositional readout then separates motif syntax from background
features, revealing structured context signals that help explain these effects. These results call for
a paradigm shift from motif-centric models to quantitative motif–context frameworks that treat
background sequence as an active determinant of enhancer activity rather than a passive scaffold.
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Figure 1: Analysis overview. Left: Sequence-to-function deep learning workflow. The DeepSTARR
model takes 249-bp DNA sequences as input and outputs predicted enhancer activities under house-
keeping (Hk) and developmental (Dev) promoter conditions, given by STARR-seq measurements.
Post hoc attribution methods generate base-resolution importance maps, which can be visualized
as sequence logos to highlight motif features. Right: Compositional analysis framework. Motif
composition is assessed through enrichment and co-occurrence of recurring motifs identified from
attribution maps. Background composition is characterized using attribution-weighted k-mer spectra
and differential k-mer analysis.

2 Quantifying the contribution of motif syntax on model predictions

To systematically assess how sequence context influences regulatory activity, we treated a Deep-
STARR model, a convolutional neural network trained on Drosophila melanogaster enhancer STARR-
seq (Self-Transcribing Active Regulatory Region sequencing) data [18], as a virtual experimental
platform to run counterfactual perturbation experiments. DeepSTARR takes 249-nt sequences as input
and outputs two quantitative values corresponding to enhancer activity measured under developmental
and housekeeping promoter contexts (see Methods in Appendix B for details).

We first asked whether motif syntax alone is sufficient to drive enhancer activity. For 5,000 se-
quences randomly sampled from predicted activity bins, we identified motif syntax using SEAM
[45]. SEAM uncovers the repertoire of cis-regulatory mechanisms accessible within a local region
of sequence space around a sequence anchor by applying partial random mutagenesis, computing
attribution maps across the resulting library, and clustering these maps. A key property we exploit is
SEAM’s ability to disentangle attribution signal into components that are sensitive to mutagenesis
(motif-driven “foreground”) versus components that are robust to mutagenesis (context-driven “back-
ground”) (see Methods, Appendix B). Foreground maps retain positional and strength information of
motifs, enabling syntax-level analysis (placement, spacing, orientation). We summarized recurring
foreground patterns with TF-MoDISco-lite [46, 47], localized instances with FIMO-lite [46], and
matched them to JASPAR TF motifs [48] using Tomtom-lite [49], with manual curation to align
Drosophila motif annotations reported in the original DeepSTARR study. This yielded binary masks
that delineate foreground motif positions from background context, enabling controlled motif–context
swap interventions.

To test motif sufficiency, we randomly sampled 100 sequences along with corresponding SEAM-
separated foregrounds and transplanted each sequence’s complete motif syntax, preserving native
arrangement, into dinucleotide-shuffled versions of the same sequence. This procedure disrupts
endogenous context while retaining overall nucleotide and dinucleotide composition. For each
wild-type sequence, ten shuffled backgrounds were generated, and predictions were averaged across
replicates—an established GIA-style marginalization step to isolate the effect size of the embedded
motif patterns while reducing contributions from spurious motifs introduced by shuffling (Fig. 2A).

Our results revealed that motif syntax embedded in shuffled backgrounds yielded substantially
lower predicted activities compared to the same motifs in their endogenous contexts, even when
transplanted from high-activity sequences (Fig. 2B). Similar observations were obtained using an
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Figure 2: Virtual motif-context swap experiments reveal strong sequence context effects. (A)
Schematic of the motif-context swap experiment. 100 sequences were randomly sampled from
different predicted activity bins (high, medium, low). For each sequence, motif syntax was isolated
using attribution-derived binary masks, and background context was isolated by neutralizing motifs by
replacing masked positions with dinucleotide-shuffled sequences. Motif syntax from a given sequence
was then transplanted into background contexts drawn from different activity bins, and enhancer
activities were predicted with DeepSTARR. (B-C) Predicted activity of identical motif syntax placed
in different sequence contexts. Boxplot show predicted activities of motif syntax in endogenous
sequence, in high-, medium-, and low-activity backgrounds, and in a dinucleotide-shuffled control
background for developmental (B) and housekeeping (C) regulatory programs.

alternative approach based on attribution thresholds rather than motif discovery with TF-MoDISco
(Fig. 5, Appendix A). Together, these in silico experiments indicate that motif syntax alone is
insufficient to reproduce wild-type activity in the model, implying a substantial learned dependence
on sequence context.

3 Quantifying the dependency of motif syntax and sequence context

The insufficiency of motif syntax in shuffled backgrounds raises a critical question: how much does
sequence context itself contribute to the model’s regulatory output? To address this, we performed
controlled motif–context swap experiments using sequences from the three predicted activity bins
(Fig. 2A). Motif syntax was held constant while backgrounds were systematically exchanged between
bins. Backgrounds were generated by neutralizing all motif positions: masked bases were replaced
with nucleotides drawn from a dinucleotide-shuffled version of the same sequence, thereby preserving
local composition while removing specific motif instances. Ten independent shuffles were generated
per background, and predictions were averaged to marginalize residual contributions from unintended
motifs.

These counterfactuals revealed striking context dependence. High-activity motif syntax placed into
high-activity backgrounds retained strong activity, but when embedded in low-activity backgrounds
its activity dropped sharply (Fig. 2B). Conversely, low-activity motif syntax transplanted into high-
activity backgrounds gained substantial activity. Thus, background context alone can modulate
enhancer output as strongly as, and in some cases more strongly than, motif syntax. The balance
between motif and background effects differed by regulatory program: in developmental enhancers,
motifs tuned activity around a moderate baseline set by context, whereas in housekeeping enhancers,
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background context often dominated, suggesting a greater reliance on broad sequence features in
housekeeping gene regulation.

Beyond these program-specific trends, we observed asymmetric compatibility between motifs and
backgrounds. High-activity motifs yielded higher activities in their endogenous contexts, with
reduced activity in other high-activity backgrounds, consistent with co-adaptation of activating
elements and their contexts [50]. By contrast, low-activity motif syntax was more interchangeable
across backgrounds: embedding it in different low-activity backgrounds produced similarly repressive
predictions. Importantly, these effects cannot be explained by simple nucleotide composition. When
low-activity motifs were placed into dinucleotide-shuffled sequences, repression was lost and activity
increased. This suggests that repression can be achieved more flexibly, whereas activation depends
on tighter coordination between motifs and context.

Together, these findings reveal that sequence context contributes substantially more to regulatory
activity than typically appreciated, highlighting it as a key component of the cis-regulatory code
alongside motif syntax. To dissect the compositional basis of motif syntax and background context
contributions, we next examine each component independently.

4 Compositional analysis of foreground attributions

To characterize the sequence features captured in the motif syntax, we analyzed SEAM-foreground
attribution maps using TF-MoDISco-lite [46]. SEAM separates model attributions into motif-related
(“foreground”) and broader sequence-context (“background”) components, allowing us to focus
on motif arrangements without confounding from diffuse contextual signals. Because foreground
attributions retain both positional and importance information, this approach captures subtleties in
motif placement and strength that are often missed by conventional motif scans. The resulting position
weight matrices were matched to known motifs in the JASPAR database, with manual curation to
align with Drosophila naming conventions and the motifs reported in the original DeepSTARR study.

Positional distribution of SEAM-foreground attributionD E

A

B

C Motif co-occurrence analysis

Figure 3: Motif composition analysis of enhancers under the developmental regulatory program.
(A) Motif enrichment of the top 10,000 motif hits across 5,000 sequences per activity bin. Motifs
were discovered using TF-MoDISco-lite applied to SEAM-foreground attribution maps (integrated
gradients) and localized with FIMO-lite. Bars indicate total counts of each motif type after removal of
redundant calls. (B) Histogram of motif counts per sequence for sequences from different activity bins.
(C) Motif co-occurrence, showing covariance of motif-motif counts within the same sequence across
bins. (D) Positional distribution of motif hits within the 249-nt input window, stratified by activity
bin. (E) Position-wise normalized attribution profiles from SEAM-foreground maps. Attribution
scores at each position were divided by the sum of absolute attributions per sequence and averaged
across sequences within each bin.
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Motif enrichment. We quantified motif composition in 5,000 sequences per activity bin (high,
medium, low). Motifs such as AP-1, CREB/ATF, and CTCF were enriched in the high-activity bin,
whereas GATA showed greater enrichment in the low-activity bin (Fig. 3A). Other motifs, including
dMax/dMyc and Twist, exhibited only modest differences across bins. High-activity sequences also
showed a higher motif burden (more motif hits per sequence) than medium- or low-activity sequences
(Fig. 3B). Together, these results suggest that most motifs are shared across bins, but differences in
their relative abundance and overall motif burden contribute to the observed activity differences.

Motif co-occurrence. We examined pairwise motif co-occurrence (via a covariance analysis) to
observe whether motif pairs are differential across activity bins (Fig. 3B). Homotypic pairs (AP-1–
AP-1, CREB/ATF–CREB/ATF, CTCF–CTCF) were enriched in the high-activity bin, whereas the
heterotypic AP-1–CREB/ATF pair was depleted in the high-activity bin. GATA–GATA showed no
appreciable difference across bins, while GATA–CREB/ATF was enriched in the low-activity bin.
Overall, most pairs were shared across bins; differences reflect shifts in the relative frequency of
a small subset of pairs rather than wholesale rewiring. These compositional patterns suggest that
certain pairwise motif arrangements are associated with different activity levels, but the co-occurrence
analysis alone does not establish whether these differences drive the observed separation between
bins.

Motif positional bias. Next, we examined the positional distribution of motifs within the 249-nt input
window. Across all activity bins, motifs were strongly concentrated near the sequence center, with
only minor enrichment toward the 5′ and 3′ ends (Fig. 3C). Foreground attribution signals showed the
same central bias, indicating that centrally located motifs contribute disproportionately to predicted
enhancer activity (Fig. 3D).

Housekeeping program. In housekeeping enhancers, CTCF showed little enrichment, in contrast
to the developmental program (Fig. 6, Appendix A). Instead, DRE/DREF, Ohler1, and Ohler2
were enriched in the high-activity bin, whereas Ohler7 was slightly enriched in the low-activity bin.
Pairwise co-occurrence patterns showed no major differences across bins, with only minor variations
in specific pairs. Motif burden was also similar across bins. Positional distributions were broadly
similar to those in developmental enhancers, with strong central concentration but a broader spread.
Taken together, the minimal compositional differences in motif enrichment, co-occurrence, and
burden across bins suggest that motif syntax alone provides limited discriminatory power between
activity levels in housekeeping programs.

Overall, the same core set of motifs was present across all activity bins, with shifts in relative
abundance and co-occurrence. Low-activity sequences contained many of the same motifs as high-
activity sequences but at different enrichments or in different pairings. Motifs were generally
concentrated near the sequence center, indicating that syntax differences occur within a narrow
local window rather than across broad positional ranges. Thus, while subtle compositional shifts
in motif usage are evident, these alone are insufficient to fully account for the observed activity
separation between bins. This findings suggest that background sequence context plays a substantial
role alongside motif syntax in determining predicted enhancer activity.

5 Compositional analysis of background attributions

Our motif–context swap experiments revealed strong background effects despite only subtle differ-
ences in motif composition across activity bins, motivating us to identify the background features
underlying these effects. We therefore analyzed SEAM-background attribution maps using an
attribution-weighted k-mer approach (see Methods in Appendix B). By weighting k-mers according
to their attribution scores, we capture the relative importance of sequence features without discarding
weaker but biologically meaningful signals. This extends the framework of Majdandžić et al.[51], who
computed k-mer spectra from high-attribution positions using a threshold-based approach, by instead
applying continuous attribution weighting across all positions. This methodological advance avoids
the information loss inherent in hard thresholding and enables more sensitive detection of background
compositional differences across activity bins at the 6-mer level. Using this approach, we found
that high- and medium-activity backgrounds display more structured, skewed k-mer distributions,
whereas low-activity backgrounds show a more uniform, high-entropy spectrum (Fig. 4A).

To pinpoint specific k-mers enriched in different activity bins, we performed differential k-mer
analysis on attribution-weighted spectra. For each bin, we generated replicate spectra by sampling
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Figure 4 background composition analysis

A B Differential k-mer analysis

High activity vs medium activity

High activity vs low activity

Log2 fold change

-L
og

10
 A

dj
us

te
d 

P-
va

lu
e

-3 0 3

0

30

60

90

Log2 fold change

-1.0 0 1.00.5-0.5

-L
og

10
 A

dj
us

te
d 

P-
va

lu
e

0

2.5

5.0

7.5

10.0

Significant

Not significant

Significant

Not significant

C Differential k-mer compositionAttribution-weighted k-mer spectrum analysis

D Positional distribution of SEAM-background attribution

Figure 4: Background composition analysis for enhancers under the developmental regulatory
program. (A) Attribution-weighted k-mer spectra comparing sequence composition across activity
bins. Frequencies were weighted by attribution scores from SEAM-background maps to highlight
contextual features contributing to predicted activity. (B) Differential k-mer analysis using DESeq2.
Volcano plots show significant k-mers for high- vs. medium-activity bins (top) and high- vs. low-
activity bins (bottom). Points represent individual k-mers, colored by statistical significance and
fold-change direction. (C) GC content of differentially enriched k-mers. Boxplots compare GC
content between upregulated and downregulated k-mers for each bin comparison. (D) Positional
distribution of background attributions. Absolute value of attribution scores from SEAM-background
maps were normalized by dividing each position’s attribution by the sum of absolute attributions
across the sequence.

250 sequences at a time and repeating the procedure 20 times, then discretized the weighted counts
and analyzed them with DESeq2 [52], a statistical method originally developed for identifying
differentially expressed genes in RNA-seq data. This framework is well-suited because attribution-
weighted k-mer counts behave like RNA-seq data: discrete, overdispersed, and subject to variability
in library size. Comparing high- and medium-activity backgrounds revealed only a modest set of
differentially enriched k-mers (Fig. 4B). By contrast, high- versus low-activity comparisons produced
a substantially larger set of differentially enriched k-mers, indicating that low-activity backgrounds
differ more markedly in their 6-mer composition.

GC-content analysis of differentially enriched 6-mers revealed a consistent polarity: low-activity
sequences were enriched for GC-rich k-mers, whereas high-activity sequences were enriched for
AT-rich ones, most prominently in high versus low comparisons (Fig. 4C). To examine how these
background features are organized within sequences, we assessed the spatial distribution of SEAM-
background attributions across the 249-nt input window. As with motifs in SEAM-foreground maps,
background attributions were concentrated near the sequence center, though in a broader and more
diffuse profile (Fig. 4D). This pattern indicates that background context effects are most pronounced
locally, in close proximity to motifs.

We observed similar trends in housekeeping enhancers, with the distinction that high-activity se-
quences displayed a more pronounced k-mer spectrum (Fig. 7, Appendix A). These results indicate
that background context contains non-random, activity-specific sequence patterns that extend beyond
simple base composition. The enrichment of AT-rich k-mer in high-activity backgrounds and GC-rich
k-mer in low-activity backgrounds suggests that local sequence arrangements, rather than overall
nucleotide content, underlie these effects. Given the concentration of background attributions near
sequence centers, these patterns are consistent with local sequence features that could influence DNA
accessibility, protein-DNA interactions, or other context-dependent regulatory mechanisms.
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6 Conclusion

Using explainable AI and large-scale virtual experiments, we dissected the respective contributions of
motif syntax and background context to predicted enhancer activity. Because controlled perturbations
at this scale are infeasible in the lab, we treated DeepSTARR as a virtual experimental platform, en-
abling billions of paired counterfactual motif–context swaps. By directly quantifying how predictions
change when identical motifs are placed into different backgrounds, we uncovered context effects that
have been largely overlooked in regulatory genomics. While motif syntax has traditionally been the
focus of mechanistic studies, our results challenge this motif-centric view: background sequence can
rival or exceed motif effects in shaping predicted activity, elevating context from a passive scaffold
to a fundamental component of the cis-regulatory code. Compositional analyses indicate that these
effects arise from specific local sequence arrangements—particularly AT-rich k-mers in high-activity
backgrounds and GC-rich k-mers in low-activity backgrounds—rather than simple base composition,
and may reflect features related to DNA shape, nucleosome positioning, or other chromatin-mediated
mechanisms.

Our analyses showed that placing identical motifs into different backgrounds often resulted in large
changes in predicted activity, with background alone sometimes tuning activity across the entire
dynamic range. This influence could not be explained by base composition alone and was consistent
across developmental and housekeeping enhancers, though the relative importance of motifs versus
background differed by program. We further found evidence that motifs and their native contexts
may be co-adapted, with endogenous backgrounds supporting slightly higher activity than even other
high-activity contexts, and that this specificity is particularly important for activating regulation while
repressive regulation operates more flexibly across compatible contexts.

These findings have several implications. First, they highlight that motif activity is inherently context-
dependent, suggesting that computational and laboratory-based experimental assays that place motifs
in randomized sequence contexts may yield more biologically relevant measurements when using
activity-matched or biologically realistic backgrounds rather than randomized shuffles. Second, they
provide a framework for incorporating context effects into sequence design strategies, potentially
improving the rational design of synthetic enhancers and regulatory elements. Third, they suggest that
background features may reflect higher-order sequence properties such as DNA shape or chromatin
accessibility that merit targeted investigation in future work. Finally, while our experiments were
performed with the DeepSTARR model on Drosophila STARR-seq data, testing whether these
effects generalize to other models, assays, and species will be essential for understanding the broader
applicability of these conclusions.

This study is computational and all effect sizes reflect what DeepSTARR learned from Drosophila
STARR-seq; therefore our conclusions pertain to the model’s predicted enhancer activity and may not
generalize to other assays or species. As with any surrogate modeling approach, DeepSTARR may
have learned spurious associations rather than true causal relationships if the training data contained
unmeasured confounders, and our counterfactual scenarios may involve sequence distributions
the model has never encountered. However, DeepSTARR’s predictions and attribution-derived
features have been experimentally validated in prior work, supporting the use of attribution-guided
counterfactuals as a meaningful lens on regulatory mechanisms. Additionally, if important regulatory
patterns are not captured in attribution maps, this could artificially inflate the apparent importance
of sequence context. We mitigated this concern by using SEAM, which calculates attribution maps
across a local region of sequence space rather than from single sequences, ensuring more robust and
complete pattern detection.

Together, this work demonstrates that explainable AI, coupled with counterfactual virtual experiments,
can quantify how sequence context modulates regulatory predictions. While the field has long
recognized that features like GC content influence regulatory activity, these have typically been
treated as nuisance parameters to be controlled for rather than as integral regulatory elements, with
motifs remaining the primary focus of mechanistic investigation. Our results necessitate a paradigm
shift from motif-centric models to integrated motif–context models that regard sequence context
(surrounding each motif) as an essential component of the cis-regulatory code rather than a passive
scaffold. By highlighting the functional importance of sequence context in addition to motifs, our
findings open new directions for both dissecting the principles of gene regulation and designing
synthetic regulatory sequences with greater precision.
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A Additional Figures

Tangermeme Threshold

Motif syntax across different backgrounds (Developmental) Motif syntax across different backgrounds (Developmental)

Motif syntax across different backgrounds (Housekeeping) Motif syntax across different backgrounds (Housekeeping)

Figure 5: Comparison of motif syntax selection methods. Panel layout: left = Tangermeme; right =
attribution-thresholding (90th percentile of the per-sequence maximum attribution). Top row = devel-
opmental program; bottom row = housekeeping program. Each panel shows box plots of predicted
activity for identical motif syntax placed into five sequence contexts: endogenous, high-activity
backgrounds, medium-activity backgrounds, low-activity backgrounds, and a dinucleotide-shuffled
endogenous control. Results from the two methods are highly similar; conclusions about motif syntax
are unchanged whether motifs are selected by Tangermeme or by attribution-thresholding.
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Figure 6: Motif composition analysis of enhancers under the housekeeping regulatory program.
(A) Motif enrichment of the top 10,000 motif hits across 5,000 sequences per activity bin. Motifs
were discovered using TF-MoDISco-lite applied to SEAM-foreground attribution maps (integrated
gradients) and localized with FIMO-lite. Bars indicate total counts of each motif type after removal of
redundant calls. (B) Histogram of motif counts per sequence for sequences from different activity bins.
(C) Motif co-occurrence, showing covariance of motif-motif counts within the same sequence across
bins. (D) Positional distribution of motif hits within the 249-nt input window, stratified by activity
bin. (E) Position-wise normalized attribution profiles from SEAM-foreground maps. Attribution
scores at each position were divided by the sum of absolute attributions per sequence and averaged
across sequences within each bin.
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Figure 7: Background composition analysis for enhancers under housekeeping gene program. (A)
Attribution-weighted k-mer spectra comparing sequence composition across activity bins. k-mer
frequencies were weighted by attribution scores from SEAM-background maps to identify context
features contributing to predicted activity. (B) Volcano plot for differential k-mer analysis identifies
statistically significant k-mers from high-activity versus low-activity bins via DESeq2. Points
represent individual k-mers colored by significance and fold-change direction. (C) GC content
distribution of differentially enriched k-mers. Boxes compare GC content between upregulated and
downregulated k-mers for each activity bin comparison. (D) Position-wise normalized attribution
scores from SEAM-background maps across activity bins. Scores were normalized by dividing each
position’s attribution by the sum of absolute attributions across all positions in each sequence.
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B Methods

B.1 Models and data

We employed the DeepSTARR model [18], a convolutional neural network trained to predict quan-
titative enhancer activity from DNA sequence. DeepSTARR was originally trained on Drosophila
melanogaster UMI-STARR-seq data comprising ∼500,000 synthetic candidate enhancers of length
249 bp, inserted into a reporter construct and assayed in both embryonic and S2 cell contexts. Each
sequence was assigned two quantitative labels: developmental activity (measured in embryos) and
housekeeping activity (measured in S2 cells). Labels represent normalized enhancer activity as log2
fold-change relative to plasmid input.

The network architecture follows a multi-task convolutional design: four convolutional layers with
max-pooling extract motif-level and higher-order sequence features, followed by two fully connected
layers that integrate these features into two regression outputs corresponding to the developmental
and housekeeping activities. Training was performed in the original study using mean squared error
loss and held-out test sets to ensure generalization across sequences.

In this study, we used the publicly released pretrained DeepSTARR model weights without additional
fine-tuning [18]. All input sequences were one-hot encoded over 249 nucleotides, and model outputs
for the developmental and housekeeping tasks were used directly as quantitative activity predictions.
Where classification was required, sequences were stratified into activity bins based on these model
predictions.

B.2 Sequence selection based on predicted activity

Predicted enhancer activities were obtained directly from the pretrained DeepSTARR model outputs.
Based on these quantitative predictions, sequences were stratified into three bins: high activity
(predicted log2 fold-change > 2.0), medium/neutral activity (0.0–0.5), and low/negative activity (log2
fold-change < -1.0). These thresholds were applied separately to developmental and housekeeping
predictions, and all downstream analyses used the resulting binned sets. 5,000 sequences were
randomly selected from each bin.

B.3 Attribution analysis

We computed nucleotide-level attribution maps using Integrated Gradients (IntGrad) [27]. For a given
sequence x, IntGrad estimates the contribution of each nucleotide by integrating the gradients of
the model output with respect to the input along an interpolation path from a baseline input x′ to x.
We used a dinucleotide-shuffled version of each sequence as its baseline, thereby preserving local
composition while disrupting regulatory motifs. Linear interpolation between the baseline and the
original sequence was performed in 20 evenly spaced steps, and gradients were accumulated across
this path to yield the final attribution score for each nucleotide. Attribution maps were computed
separately for developmental and housekeeping outputs of DeepSTARR.

B.4 SEAM analysis

SEAM (Systematic Explanation of Attribution-based Mechanisms) combines partial random mutage-
nesis with attribution analysis to probe the repertoire of cis-regulatory mechanisms within a local
neighborhood of sequence space [45]. A central feature is the separation of motif-related “foreground”
signal—features that are sensitive to partial random mutagenesis—from broader sequence-context
“background” signal that remains robust under the same perturbations. Foreground attribution maps
thus capture motif syntax (placement, orientation, strength), whereas background maps highlight
contextual signals based on local sequence properties. For each input sequence, SEAM generates a
local library of mutated variants, computes attribution maps for all variants, and clusters these maps
to segregate foreground and background components. This workflow enables scalable dissection of
motif syntax and context effects.

In our study, we optimized SEAM to improve computational efficiency while preserving the inter-
pretability of background maps. We systematically evaluated clustering algorithms, cluster numbers,
and the number of mutagenized sequences used per library. We found that using 10,000 mutated
sequences per wild-type sequence, combined with k-means clustering into 30 clusters, faithfully

15



reproduced the background attribution maps obtained from the original implementation (which used
100,000 sequences with hierarchical clustering). See Appendix C for additional details.

We then applied this optimized SEAM workflow to 5,000 sequences from each activity bin, sampling
4,000 from the training set and 1,000 from the test set. For each sequence, a local library was
generated with a 10% mutation rate, attribution scores were computed for all variants, and k-means
clustering was performed. Background separation was applied to each cluster to yield both foreground
and background attribution maps. The background maps were averaged across all clusters to produce
a representative background attribution map per sequence.

B.5 Foreground composition analysis

Motif discovery analysis. We applied TF-MoDISco from the tangermeme package [46] to the
pooled set of sequences and foreground attribution maps across all activity bins. To increase coverage
of regulatory features, we augmented the dataset by including foreground maps from the top 10
SEAM clusters ranked by average model prediction. Each sequence was paired with 10 distinct
foreground attribution maps drawn from its local library, yielding 10,000 augmented sequences per
bin and 30,000 total.

TF-MoDISco was run with a window size of 20 and flank size of 5, with all other parameters
set to module defaults. Seqlets were initially clustered into 30 groups using k-means, requiring a
minimum of 30 seqlets per cluster. Each cluster was iteratively refined by aligning seqlets to core
regions, defined as contiguous positions of at least 6 nucleotides with attribution scores above the
20th percentile of local scores. Core regions were aligned across seqlets, and consensus boundaries
(median start and end positions) were used to trim seqlets. Refinement was repeated for three
iterations.

Cluster quality was assessed by coherence, defined as the average Pearson correlation across all
pairwise seqlet comparisons within a cluster, and cluster similarity, defined as the Pearson correlation
between consensus matrices. Clusters with coherence below 0.25 and at least 60 seqlets were
split, retaining new subclusters if coherence improved. Clusters with similarity greater than 0.75
were merged. From each final cluster, a contribution weight matrix (CWM), summarizing the
average attribution patterns across seqlets, and a position weight matrix (PWM), capturing nucleotide
frequency profiles, were generated. The final clusters for the developmental and housekeeping
programs yielded 44 and 64 motifs, respectively.

Motif identification. The resulting PWMs were queried against the JASPAR vertebrate motif
database [48] to assess similarity with known transcription factor binding motifs. Motif matching was
performed using Tomtom-lite [49], run with 1,000 nearest targets for each query motif and default
parameters for all other settings. In addition, cluster PWMs from TF-MoDISco were manually com-
pared to motifs reported in the original DeepSTARR analysis to ensure consistency with previously
identified regulatory features.

Motif localization analysis. Motif CWMs were scanned separately across attribution maps in
each bin and their reverse complements using FIMO-lite [49] to locate motif hits. For each motif, a
background probability distribution was computed and used to calculate similarity scores between the
motif and each scanned window. Hits were defined using a p-value threshold of 0.01, with multiple
testing correction applied to report significant sites at a q-value threshold of 0.05. For analyses
of motif enrichment and positioning, the top 10,000 hits by p-value were used as a representative
foreground for each bin.

Merging redundant motifs. TF-MoDISco often returns multiple highly similar PWMs for the
same TF family (e.g., >10 GATA-like clusters in the developmental program), which leads to double
counting during scanning and inflates per-sequence hit counts (some sequences showed ≥40 calls).
To address this, we collapsed redundant calls post hoc. Within each motif label, any two hits whose
intervals overlapped by at least 80% of the shorter interval (on either strand) were merged and treated
as a single site, retaining the higher-scoring instance. After collapsing, per-sequence counts fell to a
plausible range (maximum 11), and all enrichment and positional analyses used this deduplicated set.
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B.6 Motif–Context swap experiment

To quantify the relative contributions of motif syntax and surrounding sequence context, we performed
motif–context swap experiments. 100 sequences were sampled from the test set of each bin. For
each sequence, we defined a foreground (motif) mask by identifying motif hits (see Foreground
composition analysis) and extending each hit by two nucleotides on either side. A complementary
background mask was defined as all positions not included in the foreground mask.

Background-only sequences were generated by replacing nucleotides at the foreground mask positions
with bases drawn from a dinucleotide-shuffled version of the entire sequence. In this way, motif
instances were neutralized while preserving overall nucleotide and dinucleotide composition. Ten
independent dinucleotide-shuffled versions were created per sequence, producing ten background-
only replicates.

Motif–context swaps were then performed in an all-by-all design. For each source sequence, the com-
plete motif syntax (foreground positions defined by its mask) was transplanted into the background-
only sequences of every target sequence across all three activity bins. For each target background,
the transplant was repeated across its ten dinucleotide-shuffled replicates, and DeepSTARR predic-
tions were averaged to marginalize over residual contributions from spurious motifs introduced by
shuffling.

In total, this yielded 90,000 motif–context swaps (300 sources × 300 targets), each evaluated with
10 shuffled replicates. Predicted activities were computed separately for the developmental and
housekeeping outputs of DeepSTARR.

B.7 Background composition analysis

Attribution-weighted k-mer analysis. To identify background sequence features underlying
activity differences, we extended the attribution consistency framework of Majdandžić et al. [51].
Their method quantified reliability of attribution maps across models by first selecting highly attributed
regions using a local threshold (90th percentile of attributions within each sequence), and then
comparing the k-mer spectra of these regions against an uninformative prior using Kullback–Leibler
divergence.

In our extension, rather than discarding lower-attribution bases with a threshold, we weighted every
possible k-mer by its attribution signal. Specifically, for each k-mer occurrence within a sequence, we
summed the absolute attributions of its constituent nucleotides with optional separation of attribution
scores into positive and negative contributions. These attribution sums were then aggregated across all
instances of that k-mer, and normalized by the total absolute attribution over the sequence, yielding a
weighted k-mer spectrum. This approach preserves weaker but biologically meaningful background
features that would otherwise be lost (see Appendix C for more details).

We applied this method at the 6-mer level to generate weighted k-mer spectra for each sequence,
producing 5,000 spectra per bin. These spectra were then compared across activity bins to assess
systematic differences in background composition.

Differential k-mer analysis. To test whether background sequence composition differed systemati-
cally across activity bins, we performed a differential k-mer analysis. Because k-mer spectra derived
from individual 249 nt sequences were too sparse to support statistical testing, we pooled sequences
within each activity bin and applied k-means clustering (k = 3). From each cluster, we sampled
250 sequences to generate sufficiently large and homogeneous groups, which yielded 20 replicate
pools per activity bin for downstream analysis. UMAP [53] visualizations confirmed that this pooling
strategy produced tight clusters while maintaining diversity across replicates (data not shown).

Count matrices were generated for k ranging from 4 to 8, with each matrix containing k-mer counts
across the 20 replicate pools per bin. We adapted DESeq2, originally developed for differential gene
expression analysis, to test for k-mers enriched between bins. To avoid bias from automatic outlier
handling, both replacement of outlying values and default filtering were disabled.

Differentially enriched k-mers were assigned to the bin in which they were most upregulated. To
focus on robust signals, we removed k-mers with low overall abundance, filtering out those below the
20th percentile of counts across all sequences. For each set of bin-specific k-mers, we then calculated
GC content distributions and compared these across bins.
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C SEAM optimization analysis

To apply SEAM across thousands of sequences, we benchmarked configurations that preserve
SEAM-background map fidelity while improving computational efficiency. We ran SEAM on 15
representative sequences spanning activity levels and varied three hyperparameters: (i) size of the
local mutational library, (ii) clustering method, and (iii) number of clusters. As a high-fidelity
reference, we used background attribution maps produced with a 100,000-variant local library and
hierarchical clustering, default settings for SEAM. For each setting, we computed the Spearman
correlation between its background map and the reference (and recorded runtime) to identify an
efficient operating point for large-scale analyses.

C.1 Optimizing SEAM clustering

To choose a clustering strategy that preserves SEAM background-map fidelity while scaling to
thousands of sequences, we fixed the local library size at 10,000 variants and compared four methods
on 15 representative sequences spanning activity levels. For each sequence, attribution maps from
the local library were clustered; cluster-level background maps were then averaged to produce a
single background attribution map. Fidelity was quantified as the Spearman correlation to a high-
fidelity reference generated with a 100,000-variant library and hierarchical clustering. We report the
distribution of correlations across sequences and, for stochastic methods, assessed stability across
random initializations.

We evaluated:

• Hierarchical (Ward’s linkage). Clusters are merged to minimize within-cluster variance; a
dendrogram cut yields a preset number of clusters (50 in the reference configuration).

• Leiden on a k-nearest-neighbor graph. A 10-NN graph on flattened attribution maps (no
self-edges) is partitioned by modularity optimization, producing a data-driven number of
clusters.

• k-means in the original feature space. k-means++ initialization with 50 clusters on
flattened attribution maps; UMAP was used only for visualization.

• k-means on low-dimensional embeddings. Attribution maps were embedded with UMAP
or t-SNE (default parameters), followed by k-means with 50 clusters.

Across methods, fidelity to the reference was uniformly high (Fig. 8), indicating that SEAM’s
background separation is robust to clustering choice at this library size. k-means in the original
feature space achieved the highest median correlation (0.989) with the tightest spread across sequences
and parallelizes cleanly with simple, reproducible hyperparameters. Embedding-based k-means and
Leiden were comparable but offered no fidelity or stability advantage. We therefore adopted k-means
in the original feature space for subsequent large-scale analyses.

C.2 Optimizing number of clusters

With k-means selected, we next chose the cluster count. Holding the local library size at 10,000
variants and all other settings fixed, we evaluated k ∈ {10, 20, 30, 40} on 15 representative sequences.
For each k, cluster-level background maps were averaged to a single background attribution map per
sequence and compared to the high-fidelity reference via Spearman correlation.

Fidelity was high across all k values (Fig. 8B). A modest improvement in median correlation and
reduced spread was observed around k = 30 (average Spearman’s ρ = 0.989), balancing fidelity and
computational cost. We therefore used 30 clusters in subsequent analyses.

C.3 Optimizing number of sequences

The initial SEAM implementation used a local library of 100,000 sequences, which presented a
significant challenge for large-scale analysis. To identify a library size that offered sufficient coverage
of the regulatory sequence space while maintaining efficiency, we evaluated local libraries with the
following numbers of sequences: 100, 500, 1000, 5000, 10,000, 25,000, 50,000, 75,000, and 100,000.
For each, both attribution accuracy and computational runtime were measured.
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A B

C D

Figure 8: SEAM background attribution map optimization for scalability. Fidelity is the Spearman
correlation between SEAM background attribution maps from each configuration and a high-fidelity
reference (100,000-variant local library with hierarchical clustering). (A) Boxplots across clustering
methods on the same 10,000-variant library; methods were comparable, with k-means providing
the most stable alignment to the reference. (B) Boxplots across numbers of clusters (10–40) for
k-means; higher k modestly improves robustness (reduced spread), with overall high fidelity across
settings. (C) Spearman correlation versus library size; performance plateaus at ∼10,000 variants, well
below the original 100,000. (D) Final operating point (k-means, 30 clusters, 10,000-variant library)
shows high correspondence to the reference across activity bins. Optimization targeted background
attribution fidelity; foreground maps were not used for tuning.

Fidelity increased with library size and plateaued at ∼10,000 variants (Fig. 8C). A 10,000-variant
library achieved an average Spearman correlation of 0.992 to the reference while reducing average
computation time by ∼24-fold. Smaller libraries degraded fidelity with limited additional speed
gains. We therefore adopted a 10,000-variant local library in the final SEAM configuration.

Final configuration. The selected operating point (k-means (original feature space) with k = 30
and a 10,000 variant local library) achieves uniformly high fidelity across sequences in both regulatory
programs; when stratified by activity bin, Spearman correlations to the reference cluster near 0.975
with tight dispersion, confirming suitability for large-scale analyses (Fig. 8D).
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D Attribution-weighted k-mer analysis

To better assess background sequence features, we extended the attribution consistency framework
of Majdandžić et al.[51]. This framework was originally designed for model selection in sequence-
to-function prediction tasks, where the objective is to train DNNs on DNA sequence and evaluate
not only predictive accuracy but also the reliability of attribution maps used for interpretation. They
benchmarked consistency metrics on two representative tasks: (i) a synthetic binary classification
task, where positive sequences were embedded with multiple instances of a small set of “core” motifs
and negatives with other background motifs, and (ii) an experimental task, where models predict
chromatin accessibility profiles from ATAC-seq data in human cell lines (see [51] for details).

In their approach, attribution consistency was quantified by identifying highly attributed positions
(90th percentile within each sequence), aggregating the k-mer spectra from those positions, and
comparing this distribution to an uninformative prior using Kullback–Leibler divergence (KLD).
Models whose attribution maps produced motif-enriched k-mer distributions were judged to yield
more interpretable explanations.

We modified this procedure by replacing the thresholding step with an attribution-weighted k-mer
spectrum. Instead of discarding lower-attribution bases, each base contributes to the k-mer score in
proportion to its attribution magnitude, thereby retaining weaker but biologically relevant context.
Benchmarking on the same tasks as Majdandžić et al., we found that attribution-weighting provided a
stronger indicator of model quality. On the synthetic motif-embedding dataset, where ground-truth
motif positions are known, the weighted metric correlated more strongly with attribution signal-to-
noise ratio (Pearson r = 0.880 vs. 0.587, Fig. 9A). On the chromatin accessibility task, where no
ground truth exists, the weighted metric stratified models with comparable predictive performance but
differing attribution quality, with higher-scoring models yielding clearer motif structure and reduced
spurious background (Figs. 9B–C).
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Figure 9: Efficacy of attribution-weighted metric in assessing model reliability. Models were trained
on (A) a synthetic binary classification task in which sequences contained either core motifs (positives)
or background motifs (negatives), and (B-C) an experimental task predicting chromatin accessibility
from ATAC-seq data. (A) On synthetic data, the weighted KL-divergence metric correlates more
strongly with ground-truth attribution signal-to-noise ratio (SNR) than the threshold-based method.
(B) On experimental data, models with similar predictive accuracy can be separated by the attribution-
weighted k-mer metric, indicating that accuracy alone does not guarantee interpretability. (C) Models
identified as reliable by the weighted metric produce attribution maps with clearer motif structure
and less spurious signal.
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In the main text of this paper, we use attribution-weighting solely to compute k-mer spectra for
sequence analysis. Its benchmarking as a model-consistency metric is included here in the appendix
to validate the approach and demonstrate continuity with prior work.
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