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ABSTRACT

We empirically investigate proper pre-training supervision to build good visual
tokenizers, making Large Language Models (LLMs) powerful Multimodal Large
Language Models (MLLMs). In our benchmark, which is curated to evaluate
MLLM’s visual semantic understanding and fine-grained perception capabilities,
we discussed different visual tokenizers pre-trained with dominant methods (i.e.,
DeiT, CLIP, MAE, DINO and DINOv2), and observed that: i) Fully/weakly su-
pervised models capture more semantics than self-supervised models, but the gap
is narrowed by scaling up the pre-training dataset. ii) Self-supervised models
are better at fine-grained perception, where patch-level supervision is particu-
larly effective. iii) Tuning the visual tokenizer leads to the loss of semantics ob-
tained from large-scale pretraining, which is unfavorable with the relatively small-
scale instruction-tuning dataset. Given the findings, we reviewed methods that
attempted to unify semantics and fine-grained visual understanding, e.g., patch-
level feature distillation with semantically-rich targets. We obtain an intriguing
insight: without further modification, mask-based strategies that were once all the
rage may not be good visual tokenizer supervision. Based on this critical obser-
vation, we obtain a new MLLM equipped with a tailored Good Visual Tokenizer
– GVT, which exhibits strong visual comprehension capability at multiple scales.
In particular, without introducing extra parameters and task-specific fine-tuning,
GVT achieves superior performance on visual question answering, image caption-
ing, and other fine-grained visual understanding tasks such as object counting and
multi-class identification.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Radford et al.; Ouyang
et al., 2022) have demonstrated remarkable performance for various downstream tasks without task-
specific fine-tuning. Recently, based on the powerful LLMs, there has been a surge of research (Li
et al., 2023b; Alayrac et al., 2022; Zhu et al., 2023; Liu et al., 2023; Ye et al., 2023; Huang et al.,
2023; Yang et al., 2023b; Driess et al., 2023) that successfully adapt LLMs to vision-language tasks,
resulting in powerful Multimodal LLMs (MLLMs), e.g., BLIP-2 (Li et al., 2023b). When properly
fed with visual data, they are shown to be capable of understanding the visual world and responding
to instructions accordingly. Such vision-language understanding capability makes LLM a universal
interface for multimodal tasks, contributing towards a tentative yet promising direction towards
Artificial General Intelligence (AGI) (Bubeck et al., 2023; OpenAI, 2023).

Within this framework, images are projected to the linguistic space for the LLMs to understand,
where the common practice employs an image-text pre-trained visual tokenizer with contrastive
supervision1, i.e., CLIP. However, even though CLIP has shown strong capacity for image repre-
sentations, to the best of our knowledge, it is yet to be explored whether CLIP is the optimal visual
tokenizer for MLLMs. The absence of such investigation calls for a comprehensive comparison of
existing visual tokenizers under the MLLMs’ framework. However, recent MLLMs have mostly
investigated their performance in terms of generation quality (Zhu et al., 2023; Liu et al., 2023) or
on a small set of questions (Ye et al., 2023), leaving an in-depth quantitative evaluation untouched.

1In this work, we study visual tokenizers that map images into a continuous latent space.
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 Q: How many people are there in the image?

(a) VQA

(b) Image Captioning

(c) Object Counting

(d) Multi-class Identification

 A: Yes

 A: Some males are playing with a white frisbee.

 Q: Are the men competing?

 Q: What does this image describe?

 Q: Does sports shoe exist in the image?  A: Yes

 A: 4

Overall
Semantics

Fine-grained 
Visual

Perception

Figure 1: Different tasks require a visual understanding of different perspectives. Mainstream
vision-language tasks (VQA and image captioning) mainly focus on the general and overall seman-
tics of the image. In this work, to investigate the fine-grained visual understanding of a model, we
also study two tasks: (c) Object Counting (OC) and (d) Multi-Class Identification (MCI), focusing
on region and instance level understandings, respectively.

To this end, we curated a new benchmark to study what pretraining supervision makes for a Good Vi-
sual Tokenizer (GVTBench). It is specially designed to evaluate an MLLM’s visual understanding
capability from two important perspectives: semantic understanding and fine-grained visual per-
ception capabilities. As shown in Figure 1, the former is evaluated on Visual Question Answering
(VQA) and image captioning. While the latter is tested on two new tasks: Object Counting (OC) and
Multi-Class Identification (MCI), which requires an in-depth understanding of fine-grained visual in-
formation. Based on this benchmark, we comprehensively evaluated existing visual tokenizers with
identical architecture but different pretraining supervisions, including fully supervised DeiT (Tou-
vron et al., 2021), text-guided weakly supervised CLIP (Radford et al., 2021) and self-supervised
MAE (He et al., 2022), DINO (Caron et al., 2021), DINOv2 (Oquab et al., 2023) models (Section 2).
Our main observations are i) fully supervised and text-guided weakly supervised visual tokenizers
demonstrate better semantic representation capacity than their self-supervised counterparts, but the
gap is narrowed by scaling up the pretraining dataset (i.e., CLIP vs. DINOv2). ii) Self-supervised
visual tokenizers show better fine-grained visual perception capacity, where patch-level supervision
leads to superior region-level understanding. iii) On instruction tuning datasets which are often
smaller than visual tokenizer pretraining dataset (Liu et al., 2023; Zhu et al., 2023), jointly tuning
the visual tokenizer leads to noticeable semantic loss (i.e., frozen CLIP performs much better than
tunable CLIP on semantic understanding tasks).

Given the fact that none of the previous visual tokenizers exhibit both good semantic and fine-grained
visual perceptual capabilities, we reviewed existing methods that integrate semantic and regional su-
pervision and questioned whether they bring the best of the two worlds into a single visual tokenizer.
Existing methods can be mainly divided into two categories. Methods in the first group (Zhong et al.,
2022; Ye et al., 2023) enhance a pretrained CLIP with region-level supervision, which comes from a
pretrained Region Proposal Network (RPN) or bounding box annotations. However, we found that
this leads to the loss of original semantics, which can not be justified by the limited improvements in
fine-grained visual perception capabilities. The other group of methods (Fang et al., 2023; Wei et al.,
2022b) utilizes patch features from a pretrained CLIP as region supervision to train a new model, in-
tending to enhance its fine-grained visual perceptual capability while maintaining the rich semantics.
Specifically, Fang et al. (2023) and Wei et al. (2022a) use CLIP features to supervise the training of
Masked-Image-Modeling (MIM), while Feature Distillation (Wei et al., 2022b) directly distills the
CLIP feature into a new model without patch masking. Nonetheless, the introduction of [MASK]
token in MIM leads to train-test mismatch, requiring the visual tokenizer to be jointly optimized in
the instruction-tuning process, which again leads to semantic loss with the small-scale instruction
tuning dataset. As such, we argue that, without architectural modification, the mask-based strategies
that were once all the rage may not be good visual tokenizer supervision under MLLM’s framework.

Based on these insights, we seek a new visual tokenizer with both strong semantic understanding and
fine-grained visual perception capabilities via Feature Distillation (Wei et al., 2022b). Specifically,
given a pretrained CLIP with rich semantics, we distill it into a new model by using the patch
features as supervision, without patch masking. In this way, the rich semantics from large-scale
image-text contrastive pretraining is preserved, and the fine-grained visual perceptual capability is
greatly enhanced with patch supervision. With our new visual tokenizer and the language model
Vicuna (FastChat, 2023), we obtain a new MLLM with Good Visual Tokenizer (GVT). Benefiting
from the versatile visual tokenizer, GVT is able to perform well vision language tasks that require
visual understanding at multiple levels. Without introducing extra parameters, we achieve superior
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Table 1: Detailed Statistics of GVT-Bench.
Task Dataset Evaluation Dimension #Questions Question Type Answer Type

VQA VQAv2 General semantics 440k Multiple Free-form Text
Image Captioning MS-COCO Overall semantics 25k What does the image describe? Free-form Text

OC MS-COCO&VCR Region understanding 20k How many obj are there in the image? Number
MCI MS-COCO&VCR Instance understanding 20k Does obj exist in the image? Yes/No

performance on semantic understanding tasks, i.e., VQA and image captioning, as well as fine-
grained visual understanding tasks: instance counting and multi-class identification.

To summarize, our contributions are as follows:

• To effectively evaluate MLLM’s visual understanding capacity at different levels, we curate
a new benchmark (GVTBench) which includes both semantic understanding tasks (VQA
and image captioning) as well as fine-grained visual understanding tasks (Object Counting
and Multi-Class Identification). Based on GVTBench, we perform extensive experiments
to study what makes for good visual tokenizer supervision for MLLMs and make three
main observations.

• We reviewed methods that combine CLIP with fine-grained supervision to see if they can
achieve the best of both worlds in terms of visual semantics and fine-grained understanding.
We found that the SOTA pre-trained models (i.e., EVA) are inapplicable due to the train-test
mismatch caused by MIM. Such mask-based visual tokenizers rely on further tuning with
instructions, which leads to the loss of pre-trained rich semantics.

• Based on the insights, we tailor a new visual tokenizer by distilling the patch-level seman-
tics of a pre-trained CLIP without masking. With our visual tokenizer and Vicuna, we
arrive at a superior MLLM (GVT) with strong visual understanding capability, achieving
state-of-the-art performance on our curated benchmark.

2 GVTBENCH FOR EMPIRICAL STUDY

To comprehensively study what makes for good visual tokenizer supervision for MLLMs, we con-
duct a series of experiments to study the properties of various visual tokenizers with the same ar-
chitecture but different pretraining methods. In this work, we mainly investigate MLLMs’ visual
understanding capability from two important perspectives: semantic understanding and fine-grained
visual perception.

2.1 EXPERIMENTAL SETUP

GVTBench. A comprehensive evaluation requires a benchmark that suitably quantifies MLLM’s
visual understanding capability. Nonetheless, existing vision-language tasks mainly focus on gen-
eral and overall semantics Farhadi et al. (2010); Goyal et al. (2017), leaving a special focus on
fine-grained visual perception untouched. To this end, we curated a new benchmark – GVTBench.
It evaluates the semantic understanding capability of an MLLM on VQA (Goyal et al., 2017) and
Image Captioning (IC) (Lin et al., 2014). We report accuracy for the former and CIDEr Vedantam
et al. (2015) for the latter. For fine-grained visual perception capability evaluation, we specially
designed two new tasks for MLLMs:

• Object Counting (OC). We ask the model to count the number of certain objects appear-
ing in the image with the prompt “Question: How many {obj} are there in the image?
Answer:”. We regard it as a classification task and report a model’s prediction accuracy.

• Multi-Class Identification (MCI). We ask the model if a certain object exists in the image
with the prompt “Question: Does {obj} exist in the image? Answer:”. The model is
expected to answer “ Yes/No”, resulting in a binary classification problem. We report
accuracy for this task.

Notably, in the VQAv2 (Goyal et al., 2017) benchmark, there are also questions related to numbers
and small-scale objects. Nevertheless, these questions are of high diversity and are often coupled
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with other semantic relations, making it unsuitable to strictly evaluate fine-grained visual under-
standing capabilities. For example, to answer a typical question “How many people are sitting on
the bench?” in VQAv2, the model should first understand the relation (sit_on), which is thus not
suitable for evaluating fine-grained visual understanding solely. In contrast, our OC and MCI tasks
evaluate MLLM’s understanding of individual objects, which is decoupled from semantic relations
and thus a more appropriate test bed for fine-grained visual understanding evaluation.

To summarize, there are a total of 4 tasks in our GVTBench. (1) VQAv2 covers questions of various
types. We thus take this benchmark to evaluate the general semantic understanding capability of
a model. This task requires the model to have a good understanding of various high-level seman-
tics in the image, including relatively abstract concepts such as actions and relations. (2) We use
image captioning to quantify the capability of overall semantic understanding, which requires the
model to understand the global information of the image. It requires the model to have a proper
comprehension of the image and grasp the overall information such as the main activity and theme.
Furthermore, we curated (3) OC and (4) MCI to evaluate MLLM’s region-level and instance-level
understanding capability, respectively. Compared to the former two tasks, the latter two tasks are
totally decoupled from other semantics such as actions and relations, resulting in a better focus on
fine-grained visual understanding. The details of GVTBench are shown in Table 1.

Experimental Setting. We use visual tokenizers with different supervision to encode an image
into a set of visual tokens. Then, we follow Flamingo (ml_foundations, 2023) to use the Perceiver
Resampler (Jaegle et al., 2021) to reduce the number of visual tokens to a fixed length, which are
fed into LLM (i.e., Vicuna). The models are trained on an instruction-tuning dataset which contains
about 5M image-text pairs. In the training process, the language model is always frozen, while the
visual tokenizer can be frozen or jointly optimized. More details are deferred to the appendix.

2.2 COMPARING VISUAL TOKENIZERS

On GVTBench, we evaluate visual tokenizers with the same architecture ViT-B (Dosovitskiy et al.)
but different pretraining strategies, including fully supervised DeiT (Touvron et al., 2021), self-
supervised DINO (Caron et al., 2021), DINOv2 (Oquab et al., 2023), MAE (He et al., 2022) and
text-guided weakly supervised CLIP (Radford et al., 2021). To further investigate the effect of pre-
training dataset size, we also compared a CLIP pretrained with 20M image-text pairs, using the
checkpoint provided by (Yang et al., 2023a). Based on the results in Table 2, we arrive at the
following observations.2

Fully/weakly supervised models capture more semantics than self-supervised ones, but the gap
is narrowed or even mitigated by scaling up the pre-training dataset. With tokenizers pretrained
on relative small-scale dataset (i.e., ImageNet-1k (Russakovsky et al., 2015)) with 1.28M images),
DeiT demonstrates better image captioning performance (65.8 CIDEr) than self-supervised models
DINO (45.0) and MAE (37.3), without jointly tuning the visual tokenizer. However, with 142M
images for pretraining, the self-supervised model – DINOv2 outperforms the supervised DeiT on
image captioning (67.9) and VQA (51.3), and is only inferior to CLIP which is pretrained with weak
supervision from a large-scale dataset with 400M image-text pairs.

Self-supervised models are better at fine-grained perception, where patch-level supervision
is particularly effective. On fine-grained visual understanding tasks, i.e., OC and MCI, self-
supervised models demonstrate consistently better performance than those with supervision. When
they are jointly tuned on the instruction dataset, their OC and MCI performance are mostly boosted,
indicating their fine-grained visual perception capability gets improved. Among all the self-
supervised models, MAE achieves the best performance, indicating the patch-based supervision
is particularly effective for improving fine-grained visual understanding.

Tuning semantic-rich visual tokenizer leads to semantic loss on small-scale instruction tuning
dataset. When the tokenizer is jointly optimized on the instruction tuning dataset, the rich semantics
obtained from large-scale pretraining in CLIP and DINOv2 have noticeably dropped (e.g., CLIP
VQA 52.2 → 47.7 and DINOv2 captioning 67.9 → 49.6). We conjecture this is due to the relatively
small scale of our instruction dataset (∼5M ≪ 142M). As such, for modern MLLMs that are often

2Note these strategies adopt diverse protocols for pretraining, due to their inherent disparities. We thus
adopt the off-the-shelf checkpoints for a fair comparison.
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tuned on small-scale and high-quality instruction datasets (Zhu et al., 2023; Liu et al., 2023), jointly
tuning the visual tokenizer may not be a good option.

Table 2: Comparison of visual tokenizers with different pretraining strategies. The best result is
bold while the second best is underlined.

Tuning Supervision Visual Tokenizer # Images VQA COCO-Caption COCO-OC COCO-MCI VCR-OC VCR-MCI Avg

×

Fully DeiT (Touvron et al., 2021) 1.28M 48.3 65.8 37.5 83.6 29.7 62.5 54.6

Self
DINO (Caron et al., 2021) 1.28M 50.1 45.0 46.5 80.8 33.1 56.3 52.0
MAE (He et al., 2022) 1.28M 48.4 37.3 47.5 82.7 24.2 60.3 50.1
DINOv2 (Oquab et al., 2023) 142 M 51.3 67.9 47.0 86.0 33.3 61.5 57.8

Weakly CLIP-20M (Yang et al., 2023a) 20 M 48.2 60.9 42.5 79.1 26.5 58.3 52.6
CLIP (Radford et al., 2021) 400 M 52.2 69.3 42.5 86.0 33.4 71.2 59.1

✓

Fully DeiT (Touvron et al., 2021) 1.28M 50.7 38.4 41.0 86.9 31.2 63.6 52.0

Self
DINO (Caron et al., 2021) 1.28M 47.3 54.1 44.5 86.6 30.2 57.3 53.3
MAE (He et al., 2022) 1.28M 48.9 48.0 47.5 88.7 34.8 71.4 56.7
DINOv2 (Oquab et al., 2023) 142 M 50.5 49.6 43.5 84.1 33.2 68.9 55.0

Weakly CLIP-20M 20 M 49.6 61.2 37.0 84.5 30.0 62.2 54.1
CLIP (Radford et al., 2021) 400 M 47.7 64.2 45.5 88.0 34.5 68.8 58.1

3 UNIFYING SEMANTIC AND FINE-GRAINED VISUAL UNDERSTANDING

3.1 CLIP WITH REGION-BASED TRAINING

The generalist MLLMs call for a versatile visual tokenizer that could properly represent an image’s
content at multiple levels. However, based on the results in Table 2, none of existing pretraining
methods leads to a good visual tokenizer that excels at both semantic and fine-grained visual per-
ception capabilities. This motivates us to explore whether the best of the two worlds can be achieved
by any other method.

Fine-tuning CLIP with region supervision. One stream of work (Zhong et al., 2022; Min-
derer et al., 2022) attempted to improve region representation capability of a pretrained CLIP by
fine-tuning it with region supervision, which has demonstrated improved performance for open-
vocabulary object detection. This motivates us to study if this also enhances CLIP as a visual to-
kenizer. We mainly investigated RegionCLIP (Zhong et al., 2022) and Owl-ViT (Minderer et al.,
2022). The former finetune a CLIP with region-level supervision from bounding boxes generated
by a pretrained RPN, while the latter utilizes the region annotation from an object detection dataset.
We compared these methods with CLIP, and show the results in Table 3. It can be observed that
without joint tuning the visual tokenizer, both RegionCLIP and Owl-ViT show severe performance
drop on image captioning and VQA, indicating the rich semantics in the original CLIP is lost during
their region fine-tuning process. On the other hand, when the visual tokenizers are jointly tuned on
the instruction-tuning dataset, their fine-grained representation capability improves by a margin (on
OC and MCI performance), but this can not justify the loss of semantic representation capability,
resulting in inferior overall performance compared to the original CLIP.

Table 3: Comparing CLIP with its region-tuned counterparts.
Tuning Visual Tokenizers VQAv2 COCO-Caption COCO-OC COCO-MCI VCR-OC VCR-MCI Avg

× CLIP (Radford et al., 2021) 52.2 69.3 42.5 86.0 33.4 71.2 59.1
× RegionCLIP (Zhong et al., 2022) 48.7 28.5 41.0 86.0 34.1 70.9 51.5
× Owl-ViT (Minderer et al., 2022) 44.0 32.5 43.0 80.8 33.5 68.3 50.4

✓ CLIP (Radford et al., 2021) 47.7 64.2 45.5 88.0 34.5 68.8 58.1
✓ RegionCLIP (Zhong et al., 2022) 49.7 65.5 47.5 86.4 34.1 69.1 58.7
✓ Owl-ViT (Minderer et al., 2022) 50.8 61.2 38.5 87.1 34.2 71.3 57.2

Semantic Feature as Region Supervision. Another stream of work utilized CLIP’s patch feature
as region-level supervision for pretraining, aiming to obtain a model with both strong semantics and
better region representations. Specifically, EVA (Fang et al., 2023) and MVP (Fang et al., 2023)
use CLIP’s patch feature as regression target for Masked Image Modeling (MIM) pretraining, while
FD (Wei et al., 2022b) does not employ the masking strategy and directly distills CLIP’s patch
feature into a new model. We compared these methods in Table 4. Without jointly tuning the
visual tokenizer, FD results in performance improvement on both semantic and fine-grained visual
understanding upon CLIP. However, when a patch masking strategy is adopted, the performance of
EVA significantly drops. This can be attributed to the introduction of the [MASK] token for MIM,
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which is only used for pretraining the visual tokenizer but discarded afterward. In this way, the
train-test mismatch arises without tuning the visual tokenizer, leading to unsatisfactory performance
for downstream tasks. On the other hand, when the visual tokenizer is jointly optimized with the
instruction data, they are inferior to the original CLIP on VQA and image captioning, indicating
semantic loss occurs.

Given the fact that modern MLLMs are often trained on high-quality and small-scale instruction
datasets (Zhu et al., 2023; Liu et al., 2023), our observation suggests that visual tokenizer should
be frozen to maintain the powerful semantic representation capability from large-scale pretraining.
Nonetheless, for visual tokenizers pretrained with MIM, the introduction of the [MASK] token
inevitably leads to train-test mismatch, necessitating it to be jointly tuned on the instruction data.
This contradiction indicates that mask-based pretraining may not lead to a good visual tokenizer
under MLLM’s framework.

As such, even though the results in Table 2 suggest that region-level supervision is effective for
fine-grained visual understanding, it should be carefully utilized under the MLLMs framework. To
properly utilize it to improve CLIP’s fine-grained visual perceptual capabilities, the results in Table 4
demonstrate that, with its current architecture, the mask-based strategies that were once all the rage
may not lead to good visual tokenizer supervision.

Table 4: Comparison of different strategies that utilize CLIP features as region supervision.
Method Tuning Mask VQAv2 COCO-Caption COCO-OC COCO-MCI VCR-OC VCR-MCI Avg

CLIP (Radford et al., 2021) × - 52.2 69.3 42.5 86.0 33.4 71.2 59.1
FD (Wei et al., 2022b) × × 49.4 72.1 46.5 86.7 34.2 72.3 60.2
EVA (Fang et al., 2023) × ✓ 42.9 27.0 46.9 70.5 21.6 59.9 44.8

CLIP (Radford et al., 2021) ✓ - 47.7 64.2 45.5 88.0 34.5 68.8 58.1
FD (Wei et al., 2022b) ✓ × 49.3 53.3 40.5 85.8 32.1 70.2 55.2
EVA (Fang et al., 2023) ✓ ✓ 51.4 61.6 45.9 87.1 31.4 69.8 57.9

3.2 MLLM WITH GOOD VISUAL TOKENIZER

Based on the insights above, we found the patch supervision introduced by feature distillation is
helpful in maintaining the semantic representation capability of CLIP while improving its fine-
grained perceptual capabilities. As such, we tune a new visual tokenizer that unifies the advantages
of semantic representation and fine-grained visual perception capabilities. In particular, we achieve
this objective by utilizing a visual tokenizer pretrained on large-scale datasets and properly integrat-
ing it with patch-level supervision. Motivated the findings in Table 4, we do not use any mask-based
strategy, so the rich semantics could be preserved by freezing it in the instruction tuning process. To
achieve stronger performance, we take the powerful EVA-CLIP (Sun et al., 2023) based on ViT-L as
the teacher model and randomly initialize another model with identical architecture as the student.
During training, each image is fed into the teacher and student model, obtaining the representation
t and s ∈ RD for each image patch, respectively. Then, we perform feature distillation with the
following objective:

Ldistill(s, t) =

{
1
2 (g(s)− whiten(t))2 /β, if |g(s)− whiten(t)| ≤ β

|g(s)− whiten(t)| − 1
2β, otherwise

(1)

The patch features from the student model are first passed through a learnable function g(·), which is
a 1×1 convolution layer. The whitening operation is utilized to stabilize the training process, which
is implemented as a non-parametric layer normalization without scaling and bias Wei et al. (2022b).
In the FD process, only the student model and the projector g(·) are used for training, while the
teacher model is frozen.

Based on the tuned visual tokenizer, we construct a new MLLM with Good Visual Tokenizer (GVT).
The framework of GVT is shown in Figure 2. Following (ml_foundations, 2023), we also random
initialize a Receiver Resampler (Jaegle et al., 2021) with 32 learnable queries to attend to the features
from the visual tokenizer. Then, the features from the Perceiver Resampler are fed into the LLM
(Vicuna-7B (FastChat, 2023))together with the language prompts. The whole model is trained by
the language modeling loss, and only the Perceiver Resampler is optimized in this process.
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VICUNA-7B

Distilled Visual
Tokenizer

Perceiver
Resampler What does this image describe?

  A cute dog sitting on the garden.

Distilled Visual
Tokenizer

Pretrained Visual
Tokenizer (CLIP)

Feature Distillation Learnable Queries

Figure 2: The framework of our GVT. We first distill the features of a pretrained CLIP via smoothed
L1 loss. Then, we use it to encode images into a set of tokens, which are fed into the Perceiver
Resampler (Jaegle et al., 2021) as soft prompts. Together with language instructions, these prompts
are fed into LLM to generate responses. Only the Perceiver Resampler is optimized in this process.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We train our model on a joint dataset of image-text pairs, including CC3M (Sharma et al., 2018),
SBU (Vicente et al., 2016), Visual Genome (Krishna et al., 2017) and MS-COCO (Lin et al., 2014).
We formulate these datasets as image captioning task, and use "what does the image describe?"
as prompt during training. Besides, we also use two object detection datasets – Object365 (Shao
et al., 2019) and OpenImagesV6 (Kuznetsova et al., 2020) to design a set of object-centric tasks
following (Piergiovanni et al., 2022). The LLaVA-150k (Liu et al., 2023) dataset is also utilized for
joint training. This results in a total of 15M image-text pairs. The images are resized to 224 × 224,
and we adopt random resized crop and horizontal flipping for data augmentation during training.
The model is trained for 50k steps with 2k steps for linear warmup. We use AdamW ((Loshchilov &
Hutter, 2017)) optimizer with a learning rate of 1e-4 and batch size 1024. The training process takes
about 2 days on 32 Tesla V100 GPUs. For feature distillation, we followed the training protocol
in Wei et al. (2022b) except that we trained the model for a total of 50 epochs on the ImageNet-
1k (Russakovsky et al., 2015) dataset due to its high quality. The β is set to 2.0 through the process.
For more implementation details, please refer to our appendix.

4.2 COMPARISON WITH OTHER MLLMS

We evaluate GVT on our GVTBench, and compare it with recent MLLMs, including
Flamingo (ml_foundations, 2023), KosMos-1 (Huang et al., 2023), BLIP-2 (Li et al., 2023b), ,
LLaVa (Liu et al., 2023), MiniGPT4 (Zhu et al., 2023). The results are shown in Table 5.

Our GVT achieves the best overall performance across competitors. Specifically, on tasks requiring
fine-grained visual perception, i.e., OC and MCI on both COCO and VCR datasets, GVT surpasses
models with larger visual tokenizer and more curated data. This indicates our visual tokenizer can
better capture the fine-grained visual information, providing representations with better details. For
semantic understanding tasks including VQA and image captioning, GVT achieves the second-best
result. It is only inferior to BLIP-2, which utilized a much larger instruction dataset with high-quality
image captions filtered by (Li et al., 2022).

Table 5: Comparison with MLLMs. The best results are bold and the second best is underlined.
Model #Vis. Tok. Size VQAv2 COCO-Caption COCO-OC COCO-MCI VCR-OC VCR-MCI Avg

Flamingo-9B (Alayrac et al., 2022) 438 M 51.8 79.4 - - - - -
Kosmos-1 (Huang et al., 2023) 307 M 51.0 84.7 - - - - -

LLaVa (Liu et al., 2023) 307 M 39.0 48.3 22.2 52.0 24.6 66.9 44.7
MiniGPT4 (Zhu et al., 2023) 1.0 B 58.2 80.6 21.5 76.8 25.1 70.1 55.4
BLIP-2 (Li et al., 2023b) 1.0 B 62.4 93.3 48.0 81.9 20.2 68.9 62.5

GVT (Ours) 307 M 60.4 89.9 56.2 89.3 40.3 78.9 69.2
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4.3 ABLATION STUDY
Effect of Feature Distillation. To further validate the effectiveness of Feature Distillation, we
compared the visual tokenizer before and after in Table 6. It can be observed that the distilled vi-
sual tokenizer achieves comparable performance on semantic understanding tasks (VQA and Image
Captioning), while greatly improving fine-grained visual perception tasks (OC and MCI), resulting
in improved overall performance. This observation is aligned with our findings in Section 3, where
feature distillation consistently improves model performance across different architectures. We also
provide an evaluation on SEED-Bench Li et al. (2023a), which is a recently released MLLM bench-
mark focusing on visual understanding. In Table 7, FD improves performance more on fine-grained
understanding tasks such as instance identity, location, and counting.

Table 6: Comparison between visual tokenizer with and without FD.
Visual VQAv2 COCO-Caption COCO-OC COCO-MCI VCR-OC VCR-MCI Avg

EVA-CLIP 60.5 90.8 43.5 85.6 37.6 71.1 64.9
EVA-CLIP-FD 60.4 89.9 56.2 89.3 40.3 78.9 69.2

Table 7: Comparison between with and without FD on SEED-Bench Li et al. (2023a).
Visual Scene Inst.Id Inst.Loc Inst.Attr Inst.Count Spatial Interaction Reason Avg

EVA-CLIP 41.26 34.30 31.40 29.84 34.81 32.98 31.96 50.75 35.93
EVA-CLIP-FD 41.74 35.50 31.79 29.45 36.17 31.96 31.96 51.06 36.20

Table 8: Comparison of visual tokenizer with different LLMs.
LLM Visual Tokenizer VQAv2 COCO-Caption COCO-OC COCO-MCI VCR-OC VCR-MCI Avg

Flant5-xxl EVA-CLIP 55.8 68.1 42.5 70.6 19.9 66.6 53.9
EVA-CLIP-FD 55.4 67.2 43.6 71.4 20.3 66.8 54.1

LLaMa-7B EVA-CLIP 54.2 66.3 42.9 68.3 17.3 54.4 50.6
EVA-CLIP-FD 53.9 67.5 43.2 70.3 18.9 56.2 51.7

Effectiveness with Different LLMs. Our GVT is trained with our distilled visual tokenizer and
Vicuna-7B as LLM. In fact, our distilled visual tokenizer is also effective with different LLMs. In
Table 8, our distilled visual tokenizer can generally improve the overall performance when using
Flant5-xxl and LLaMa-7B as LLM, with the performance on OC and MCI particularly improved.

4.4 VISUALIZATIONS
Attention Maps. To further understand how FD improves fine-grained understanding, we selected
one query in the perceiver resampler, and visualized the attentions in two heads in Figure 3. It can
be observed that, without FD, the attention mostly focuses on the salient areas of the image, and the
attention maps in two different heads are generally similar. In contrast, with FD, the attention maps
exhibit higher diversity, which is aligned with Wei et al. (2022b). Also, the attention may focus
more on informative but non-salient regions (e.g., broccoli and bike in the last column).

Qualitative Results.We show some qualitative comparison of OC and MCI between our GVT and
BLIP-2 in Figure 4. It can be observed that our method demonstrates better fine-grained visual
understanding capabilities than the baseline method. Take the first example in OC as an example,
our method not only recognizes the 3 people in the foreground but also takes the fourth person who is
far away from the camera into consideration. Besides, GVT also successfully recognizes non-salient
or small-sized objects in the image, such as the bicycle and broccoli in MCI.

5 RELATED WORK

Multimodal Large Language Models. Recently, with the open source of Large Language Mod-
els (Touvron et al., 2023; FastChat, 2023; Radford et al.; Chung et al., 2022), a lot of large mul-
timodal models are constructed based on them. Mini-GPT4 (Zhu et al., 2023) is built on the
instruction-tuned Vicuna (FastChat, 2023) and the visual encoder from BLIP-2 (Li et al., 2023b),
with only a linear layer trained to bridge the two modules. This simple design results in a powerful
multi-modal chatbot, with noticeable vision-language understanding capability. LLaVa (Liu et al.,
2023) adopts CLIP as visual tokenizer, and trains the projector with a curated dataset with balanced
concepts. The model then can be finetuned for downstream tasks, e.g., ScienceQA (Lu et al., 2022).
Apart from using frozen visual tokenizer, mPLUG-OWL (Ye et al., 2023) tunes the Perceiver Re-
sampler with large-scale image-text data in the first stage, followed by the finetuning of the language
model with LoRA (Hu et al.) in the second stage. Although these generalist models have demon-
strated impressive capability on multimodal tasks, we find that they mostly focus on the general or
overall semantic understanding of the image, ignoring more fine-grained visual perception.
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Figure 3: Visualization of feature maps with and without FD. We select one query in the perceiver
resampler and visualize its attention map in two fixed heads over the image. With FD, the attention
maps not only show higher diversity but also focus more on informative and fine-grained regions
(e.g., broccoli in the first row and bike in the second row).

Q: How many people are there in the image?
OURS: 4 
BLIP-2: 3

Q: How many people are there in the image?
OURS: 4 
BLIP-2: 2

Q: Does bike exist in the image?
OURS: Yes
BLIP-2: No

Q: Does broccoli exist in the image?
OURS: Yes
BLIP-2: No

Object Counting (OC) Multi-Class Identification (MCI)

Figure 4: Qualitative comparison on OC and MCI. Our model is better at fine-grained perception.

Visual Tokenizer Pretraining. Visual encoders have been shown to benefit from large-scale pre-
training for downstream tasks. The most common approach first pretrains the model on a large
dataset with annotations, e.g., ImageNet (Russakovsky et al., 2015), and finetunes it for downstream
tasks such as semantic segmentation (Zhou et al., 2019) and object detection (Lin et al., 2014). Re-
cently, self-supervised pre-training have also shown to improve model’s representation capability.
The typical contrastive-based methods (Caron et al., 2021; Chen et al., 2020; Chen & He, 2021)
trains the model by aligning views from the same image. Inspired by the idea of mask-language-
modeling for pretraining language models (Kenton & Toutanova, 2019), masked-image-modeling
has also evolved for visual encoder pretraining. These methods mask a proportion of image patches
before feeding them into the model, and ask the model to recover the masked patches. Some meth-
ods (Bao et al.) discretize the masked patches via a pretrained tokenizer (Ramesh et al., 2021). Re-
cently, auto-encoder based (He et al., 2022) methods ask the model to directly generate the masked
patch in the continuous space. Another stream of visual encoders is pretrained on massive image-text
pairs via contrastive learning (Radford et al., 2021), achieving strong zero-shot understanding.

6 CONCLUSION AND FUTURE WORK
We comprehensively studied various visual tokenizer supervisions through the lens of MLLM.
Our investigation reveals that i) fully/weakly supervised models perform generally better than self-
supervised ones on semantic representation. ii) Self-supervised models are better at fine-grained vi-
sual perception, where patch-level supervision is particularly effective. iii) jointly tuning the visual
tokenizer on the small-scale instruction dataset leads to the loss of rich semantics from large-scale
pretraining. Then, we seek a visual tokenizer supervision that excels at both semantic understand-
ing and fine-grained visual perception. We reviewed existing methods and found that directly
fine-tuning CLIP with region supervision does not lead to a versatile visual tokenizer. Besides, the
masking strategy for pretraining is not suitable due to the train-test mismatch. Based on the insights
above, we tune a new visual tokenizer, which distills the CLIP patch feature into a new model with-
out masking. With our visual tokenizer, Vicuna can better understand images at multiple levels,
resulting in superior performance on various vision-language tasks. For future work, we would like
to explore a more versatile visual tokenizer that can handle more challenging visual understandings.
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